\(\newcommand{\footnotename}{footnote}\)
\(\def \LWRfootnote {1}\)
\(\newcommand {\footnote }[2][\LWRfootnote ]{{}^{\mathrm {#1}}}\)
\(\newcommand {\footnotemark }[1][\LWRfootnote ]{{}^{\mathrm {#1}}}\)
\(\let \LWRorighspace \hspace \)
\(\renewcommand {\hspace }{\ifstar \LWRorighspace \LWRorighspace }\)
\(\newcommand {\mathnormal }[1]{{#1}}\)
\(\newcommand \ensuremath [1]{#1}\)
\(\newcommand {\LWRframebox }[2][]{\fbox {#2}} \newcommand {\framebox }[1][]{\LWRframebox } \)
\(\newcommand {\setlength }[2]{}\)
\(\newcommand {\addtolength }[2]{}\)
\(\newcommand {\setcounter }[2]{}\)
\(\newcommand {\addtocounter }[2]{}\)
\(\newcommand {\arabic }[1]{}\)
\(\newcommand {\number }[1]{}\)
\(\newcommand {\noalign }[1]{\text {#1}\notag \\}\)
\(\newcommand {\cline }[1]{}\)
\(\newcommand {\directlua }[1]{\text {(directlua)}}\)
\(\newcommand {\luatexdirectlua }[1]{\text {(directlua)}}\)
\(\newcommand {\protect }{}\)
\(\def \LWRabsorbnumber #1 {}\)
\(\def \LWRabsorbquotenumber "#1 {}\)
\(\newcommand {\LWRabsorboption }[1][]{}\)
\(\newcommand {\LWRabsorbtwooptions }[1][]{\LWRabsorboption }\)
\(\def \mathchar {\ifnextchar "\LWRabsorbquotenumber \LWRabsorbnumber }\)
\(\def \mathcode #1={\mathchar }\)
\(\let \delcode \mathcode \)
\(\let \delimiter \mathchar \)
\(\let \LWRref \ref \)
\(\renewcommand {\ref }{\ifstar \LWRref \LWRref }\)
\(\newcommand {\intertext }[1]{\text {#1}\notag \\}\)
\(\newcommand {\mathllap }[2][]{{#1#2}}\)
\(\newcommand {\mathrlap }[2][]{{#1#2}}\)
\(\newcommand {\mathclap }[2][]{{#1#2}}\)
\(\newcommand {\mathmbox }[1]{#1}\)
\(\newcommand {\clap }[1]{#1}\)
\(\newcommand {\LWRmathmakebox }[2][]{#2}\)
\(\newcommand {\mathmakebox }[1][]{\LWRmathmakebox }\)
\(\newcommand {\cramped }[2][]{{#1#2}}\)
\(\newcommand {\crampedllap }[2][]{{#1#2}}\)
\(\newcommand {\crampedrlap }[2][]{{#1#2}}\)
\(\newcommand {\crampedclap }[2][]{{#1#2}}\)
\(\newenvironment {crampedsubarray}[1]{}{}\)
\(\newcommand {\crampedsubstack }{}\)
\(\newcommand {\smashoperator }[2][]{#2\limits }\)
\(\newcommand {\adjustlimits }{}\)
\(\newcommand {\SwapAboveDisplaySkip }{}\)
\(\require {extpfeil}\)
\(\Newextarrow \xleftrightarrow {10,10}{0x2194}\)
\(\Newextarrow \xLeftarrow {10,10}{0x21d0}\)
\(\Newextarrow \xhookleftarrow {10,10}{0x21a9}\)
\(\Newextarrow \xmapsto {10,10}{0x21a6}\)
\(\Newextarrow \xRightarrow {10,10}{0x21d2}\)
\(\Newextarrow \xLeftrightarrow {10,10}{0x21d4}\)
\(\Newextarrow \xhookrightarrow {10,10}{0x21aa}\)
\(\Newextarrow \xrightharpoondown {10,10}{0x21c1}\)
\(\Newextarrow \xleftharpoondown {10,10}{0x21bd}\)
\(\Newextarrow \xrightleftharpoons {10,10}{0x21cc}\)
\(\Newextarrow \xrightharpoonup {10,10}{0x21c0}\)
\(\Newextarrow \xleftharpoonup {10,10}{0x21bc}\)
\(\Newextarrow \xleftrightharpoons {10,10}{0x21cb}\)
\(\newcommand {\LWRdounderbracket }[3]{\mathinner {\underset {#3}{\underline {\llcorner {#1}\lrcorner }}}}\)
\(\newcommand {\LWRunderbracket }[2][]{\LWRdounderbracket {#2}}\)
\(\newcommand {\underbracket }[1][]{\LWRunderbracket }\)
\(\newcommand {\LWRdooverbracket }[3]{\mathinner {\overset {#3}{\overline {\ulcorner {#1}\urcorner }}}}\)
\(\newcommand {\LWRoverbracket }[2][]{\LWRdooverbracket {#2}}\)
\(\newcommand {\overbracket }[1][]{\LWRoverbracket }\)
\(\newcommand {\LaTeXunderbrace }[1]{\underbrace {#1}}\)
\(\newcommand {\LaTeXoverbrace }[1]{\overbrace {#1}}\)
\(\newenvironment {matrix*}[1][]{\begin {matrix}}{\end {matrix}}\)
\(\newenvironment {pmatrix*}[1][]{\begin {pmatrix}}{\end {pmatrix}}\)
\(\newenvironment {bmatrix*}[1][]{\begin {bmatrix}}{\end {bmatrix}}\)
\(\newenvironment {Bmatrix*}[1][]{\begin {Bmatrix}}{\end {Bmatrix}}\)
\(\newenvironment {vmatrix*}[1][]{\begin {vmatrix}}{\end {vmatrix}}\)
\(\newenvironment {Vmatrix*}[1][]{\begin {Vmatrix}}{\end {Vmatrix}}\)
\(\newenvironment {smallmatrix*}[1][]{\begin {matrix}}{\end {matrix}}\)
\(\newenvironment {psmallmatrix*}[1][]{\begin {pmatrix}}{\end {pmatrix}}\)
\(\newenvironment {bsmallmatrix*}[1][]{\begin {bmatrix}}{\end {bmatrix}}\)
\(\newenvironment {Bsmallmatrix*}[1][]{\begin {Bmatrix}}{\end {Bmatrix}}\)
\(\newenvironment {vsmallmatrix*}[1][]{\begin {vmatrix}}{\end {vmatrix}}\)
\(\newenvironment {Vsmallmatrix*}[1][]{\begin {Vmatrix}}{\end {Vmatrix}}\)
\(\newenvironment {psmallmatrix}[1][]{\begin {pmatrix}}{\end {pmatrix}}\)
\(\newenvironment {bsmallmatrix}[1][]{\begin {bmatrix}}{\end {bmatrix}}\)
\(\newenvironment {Bsmallmatrix}[1][]{\begin {Bmatrix}}{\end {Bmatrix}}\)
\(\newenvironment {vsmallmatrix}[1][]{\begin {vmatrix}}{\end {vmatrix}}\)
\(\newenvironment {Vsmallmatrix}[1][]{\begin {Vmatrix}}{\end {Vmatrix}}\)
\(\newcommand {\LWRmultlined }[1][]{\begin {multline*}}\)
\(\newenvironment {multlined}[1][]{\LWRmultlined }{\end {multline*}}\)
\(\let \LWRorigshoveleft \shoveleft \)
\(\renewcommand {\shoveleft }[1][]{\LWRorigshoveleft }\)
\(\let \LWRorigshoveright \shoveright \)
\(\renewcommand {\shoveright }[1][]{\LWRorigshoveright }\)
\(\newenvironment {dcases}{\begin {cases}}{\end {cases}}\)
\(\newenvironment {dcases*}{\begin {cases}}{\end {cases}}\)
\(\newenvironment {rcases}{\begin {cases}}{\end {cases}}\)
\(\newenvironment {rcases*}{\begin {cases}}{\end {cases}}\)
\(\newenvironment {drcases}{\begin {cases}}{\end {cases}}\)
\(\newenvironment {drcases*}{\begin {cases}}{\end {cases}}\)
\(\newenvironment {cases*}{\begin {cases}}{\end {cases}}\)
\(\newcommand {\MoveEqLeft }[1][]{}\)
\(\def \LWRAboxed #1!|!{\fbox {\(#1\)}&\fbox {\(#2\)}} \newcommand {\Aboxed }[1]{\LWRAboxed #1&&!|!} \)
\( \newcommand {\LWRABLines }[1][\Updownarrow ]{#1 \notag \\}\newcommand {\ArrowBetweenLines }{\ifstar \LWRABLines \LWRABLines } \)
\(\newcommand {\shortintertext }[1]{\text {#1}\notag \\}\)
\(\newcommand {\vdotswithin }[1]{\hspace {.5em}\vdots }\)
\(\newcommand {\LWRshortvdotswithinstar }[1]{\vdots \hspace {.5em} & \\}\)
\(\newcommand {\LWRshortvdotswithinnostar }[1]{& \hspace {.5em}\vdots \\}\)
\(\newcommand {\shortvdotswithin }{\ifstar \LWRshortvdotswithinstar \LWRshortvdotswithinnostar }\)
\(\newcommand {\MTFlushSpaceAbove }{}\)
\(\newcommand {\MTFlushSpaceBelow }{\\}\)
\(\newcommand \lparen {(}\)
\(\newcommand \rparen {)}\)
\(\newcommand {\ordinarycolon }{:}\)
\(\newcommand {\vcentcolon }{\mathrel {\unicode {x2236}}}\)
\(\newcommand \dblcolon {\mathrel {\unicode {x2237}}}\)
\(\newcommand \coloneqq {\mathrel {\unicode {x2236}\!=}}\)
\(\newcommand \Coloneqq {\mathrel {\unicode {x2237}\!=}}\)
\(\newcommand \coloneq {\mathrel {\unicode {x2236}-}}\)
\(\newcommand \Coloneq {\mathrel {\unicode {x2237}-}}\)
\(\newcommand \eqqcolon {\mathrel {=\!\unicode {x2236}}}\)
\(\newcommand \Eqqcolon {\mathrel {=\!\unicode {x2237}}}\)
\(\newcommand \eqcolon {\mathrel {-\unicode {x2236}}}\)
\(\newcommand \Eqcolon {\mathrel {-\unicode {x2237}}}\)
\(\newcommand \colonapprox {\mathrel {\unicode {x2236}\!\approx }}\)
\(\newcommand \Colonapprox {\mathrel {\unicode {x2237}\!\approx }}\)
\(\newcommand \colonsim {\mathrel {\unicode {x2236}\!\sim }}\)
\(\newcommand \Colonsim {\mathrel {\unicode {x2237}\!\sim }}\)
\(\newcommand {\nuparrow }{\mathrel {\cancel {\uparrow }}}\)
\(\newcommand {\ndownarrow }{\mathrel {\cancel {\downarrow }}}\)
\(\newcommand {\bigtimes }{\mathop {\Large \times }\limits }\)
\(\newcommand {\prescript }[3]{{}^{#1}_{#2}#3}\)
\(\newenvironment {lgathered}{\begin {gathered}}{\end {gathered}}\)
\(\newenvironment {rgathered}{\begin {gathered}}{\end {gathered}}\)
\(\newcommand {\splitfrac }[2]{{}^{#1}_{#2}}\)
\(\let \splitdfrac \splitfrac \)
\(\newcommand {\mC }{\mathbb C}\)
\(\newcommand {\mR }{\mathbb R}\)
\(\newcommand {\mN }{\mathbb N}\)
\(\newcommand {\mZ }{\mathbb Z}\)
\(\newcommand {\mL }{\mathcal L}\)
\(\newcommand {\mF }{\mathcal F}\)
\(\newcommand {\ipd }[2]{\langle #1 , #2 \rangle }\)
\(\newcommand {\Ipd }[2]{\left \langle #1 , #2 \right \rangle }\)
\(\newcommand {\sbm }[1]{\left [\begin {smallmatrix}#1\end {smallmatrix}\right ]}\)
\(\newcommand {\bbm }[1]{\begin {bmatrix}#1\end {bmatrix}}\)
\(\newcommand {\re }{{\rm Re}}\)
\(\newcommand {\imag }{{\rm Im}}\)
\(\newcommand {\e }{{\rm e}}\)
\(\newcommand {\HS }{{\rm HS}}\)
\(\newcommand {\cl }{{\rm cl}}\)
\(\newcommand {\wt }{\widetilde {w}}\)
\(\newcommand {\zt }{\widetilde {z}}\)
\(\newcommand {\xu }{\underline {x}}\)
\(\newcommand {\uu }{\underline {u}}\)
\(\DeclareMathOperator {\vecc }{vec}\)
\(\DeclareMathOperator {\trace }{trace}\)
\(\)
Chapter 5 The transfer function
-
Definition 5.1. The Laplace transform of a function \(f:[0,\infty )\to \mR ^{n_1\times
n_2}\) is defined by
\[ \mL (f)=s\mapsto \int _0^\infty \e ^{-st}f(t)\,dt. \]
We will also use the notation \(\hat {f}\) for \(\mL (f)\).
-
. If \(\int _0^\infty \e ^{-\sigma t}|f(t)|\,dt<\infty \), then the Laplace transform is a
function \(\{s:\re (s)>\sigma \}\to \mC ^{n_1\times n_2}\). When Laplace transforming a function, we will always assume that such a \(\sigma \in \mR \) exists.
-
. The most important property for us of the Laplace transform is how it interacts with differentiation:
for \(\re (s)\) large enough
\(\seteqnumber{0}{5.}{0}\)
\begin{equation}
\label {eq:Laplacediff} \mL (f')(s)=s\mL (f)(s)-f(0).
\end{equation}
This can be proven though integration by parts:
\[ \mL (f')(s) =\int _0^\infty \e ^{-st}f'(t)\,dt =\left [\e ^{-st}f(t)\right ]_{t=0}^\infty +s\int _0^\infty \e ^{-st}f(t)\,dt =-f(0)+s\mL (f)(s), \]
where we have used that \(\lim _{t\to \infty }\e ^{-st}f(t)=0\) for \(\re (s)\) large enough.
Applying (5.1) to \(f'\) rather than \(f\) gives \(\mL (f'')(s)=s\mL (f')-f'(0)\) and using (5.1) then gives
\(\seteqnumber{0}{5.}{1}\)
\begin{equation}
\label {eq:Laplacediff2} \mL (f'')(s)=s^2\mL (f)(s)-sf(0)-f'(0).
\end{equation}
Laplace transforming (3.1) with \(x(0)=0\) gives
\[ s\hat {x}(s)=A\hat {x}(s)+B\hat {u}(s),\qquad \hat {y}(s)=C\hat {x}(s)+D\hat {u}(s). \]
Solving this gives
\[ \hat {x}(s)=(sI-A)^{-1}B\hat {u}(s),\qquad \hat {y}(s)=\left (C(sI-A)^{-1}B+D\right )\hat {u}(s). \]
-
. A second interpretation of the transfer function is as follows. We
seek a solution of (3.1) of the form \(u(t)=\e ^{st}u_0\), \(x(t)=\e ^{st}x_0\), \(y(t)=\e ^{st}y_0\). Substituting this in (3.1) gives
\[ s\e ^{st}x_0=A\e ^{st}x_0+B\e ^{st}u_0,\qquad \e ^{st}y_0=C\e ^{st}x_0+D\e ^{st}u_0. \]
Here \(\e ^{st}\) cancels out and we obtain
\[ sx_0=Ax_0+Bu_0,\qquad y_0=Cx_0+Du_0. \]
Solving this gives
\[ x_0=(sI-A)^{-1}Bu_0,\qquad y_0=\left [C(sI-A)^{-1}B+D\right ]u_0. \]
Therefore the transfer function is such that for the input \(u(t)=\e ^{st}u_0\) and the initial condition \(x^0:=(sI-A)^{-1}Bu_0\) we have \(y(t)=\e ^{st}G(s)u_0\).
In the above it makes more sense to view \(t\in \mR \) and consider the “initial condition” \(x^0\) as the value at an intermediate time. That value for \(x(0)\) is special in the sense that the output is again a constant times \(\e ^{st}\).
5.1 Examples
5.1.1 First order systems
The transfer function of the first order system
\[ T\dot {y}(t)+y(t)=Ku(t), \]
is
\[ G(s)=\frac {K}{Ts+1}. \]
5.1.2 Second order systems (low pass)
The transfer function of the second order (low pass) system
\[ T^2\ddot {y}(t)+2\zeta T\dot {y}(t)+y(t)=Ku(t), \]
is
\[ G(s)=\frac {K}{T^2s^2+2\zeta Ts+1}=\frac {K\omega _0^2}{s^2+2\zeta \omega _0s+\omega _0^2}. \]
The easiest way to obtain this formula is by Laplace transforming the equations using (5.1) and (5.2) rather than by going through the state. We have that
\[ \mL \left (T^2\ddot {y}+2\zeta T\dot {y}+y\right )=\mL \left (Ku\right ), \]
which using linearity, (5.2) and the fact that \(y(0)=\dot {y}(0)=0\) (which comes from the assumption of zero initial condition \(x(0)\)) gives
\[ T^2s^2\hat {y}+2\zeta Ts\hat {y}+\hat {y}=K\hat {u}, \]
which gives
\[ (T^2s^2+2\zeta Ts+1)\hat {y}=K\hat {u}, \]
which gives
\[ \hat {y}=\frac {K}{T^2s^2+2\zeta Ts+1}\hat {u}. \]
Since the relation \(\hat {y}(s)=G(s)\hat {u}(s)\) characterizes the transfer function, we must have \(G(s)=\frac {K}{T^2s^2+2\zeta Ts+1}\).
5.1.3 Second order systems (band pass)
The transfer function of the second order (band pass) system
\[ T^2\ddot {q}(t)+2\zeta T\dot {q}(t)+q(t)=Ku(t),\qquad y(t)=\dot {q}(t), \]
is
\[ G(s)=\frac {Ks}{T^2s^2+2\zeta Ts+1}=\frac {K\omega _0^2s}{s^2+2\zeta \omega _0s+\omega _0^2}. \]
5.2 Case study: control of a tape drive
We compute the transfer function from the disturbance \(v_e\) to each of the state variables \(v_1\), \(v_2\) and \(T\). Laplace transforming the differential equations with zero initial condition (and \(u_1=0\) and \(u_2=0\)) gives
\(\seteqnumber{0}{5.}{2}\)
\begin{align*}
M_1s\hat {v}_1+d_1\hat {v}_1-\hat {T}&=0,\\ M_2s\hat {v}_2+d_2\hat {v}_2+\hat {T}&=0,\\ s\hat {T}+k(\hat {v}_1-\hat {v}_2)&=k\hat {v}_e.
\end{align*}
From the first equation we obtain \(\hat {v}_1=\frac {1}{M_1s+d_1}\hat {T}\) and from the second equation we obtain \(\hat {v}_2=\frac {-1}{M_2s+d_2}\hat {T}\). Substituting this into the third equation gives
\[ \left (s+\frac {k}{M_1s+d_1}+\frac {k}{M_2s+d_2}\right )\hat {T}=k\hat {v}_e. \]
Combining the terms in brackets gives
\[ \frac {s(M_1s+d_1)(M_2s+d_2)+k(M_2s+d_2)+k(M_1s+d_1)}{(M_1s+d_1)(M_2s+d_2)}\hat {T}=k\hat {v}_e, \]
from which we deduce that
\[ \hat {T}=\frac {k(M_1s+d_1)(M_2s+d_2)}{s(M_1s+d_1)(M_2s+d_2)+k(M_2s+d_2)+k(M_1s+d_1)}\hat {v}_e, \]
so that the transfer function from \(v_e\) to \(T\) is
\[ G_{Tv_e}(s)=\frac {k(M_1s+d_1)(M_2s+d_2)}{s(M_1s+d_1)(M_2s+d_2)+k(M_2s+d_2)+k(M_1s+d_1)}. \]
Using the earlier equations \(\hat {v}_1=\frac {1}{M_1s+d_1}\hat {T}\) and \(\hat {v}_2=\frac {-1}{M_2s+d_2}\hat {T}\), we then obtain
\(\seteqnumber{0}{5.}{2}\)
\begin{align*}
G_{v_1v_e}(s)&=\frac {k(M_2s+d_2)}{s(M_1s+d_1)(M_2s+d_2)+k(M_2s+d_2)+k(M_1s+d_1)}, \\ G_{v_2v_e}(s)&=\frac {-k(M_1s+d_1)}{s(M_1s+d_1)(M_2s+d_2)+k(M_2s+d_2)+k(M_1s+d_1)}.
\end{align*}
Note that in each case the denominator equals
\[ M_1M_2s^3+(d_1M_2+d_2M_1)s^2+(d_1d_2+kM_1+kM_2)s+(d_1+d_2)k, \]
which we already saw in Section 2.3.
5.3 Case study: a suspension system
It is possible (though tedious) to compute the transfer functions of the fixed structure suspension system as given in Section 1.2.1. These are
\(\seteqnumber{0}{5.}{2}\)
\begin{align*}
G_{\rm handling}(s)&= -r_1~\frac {m_s m_{us}s^3 + d (m_s+m_{us}) s^2 + k_s (m_s+m_{us}) s}{m_s m_{us} s^4+ d (m_s+m_{us}) s^3 + \left [k_s (m_s+m_{us}) + k_{us} m_s \right ] s^2 + d k_{us} s + k_s k_{us}}, \\
G_{\rm stroke}(s)&= -r_2~\frac {k_{us}m_ss}{m_s m_{us} s^4+ d (m_s+m_{us}) s^3 + \left [k_s (m_s+m_{us}) + k_{us} m_s \right ] s^2 + d k_{us} s + k_s k_{us}}, \\ G_{\rm comfort}(s)&= -\frac {d k_{us} s^2 +
k_s k_{us} s}{m_s m_{us} s^4+ d (m_s+m_{us}) s^3 + \left [k_s (m_s+m_{us}) + k_{us} m_s \right ] s^2 + d k_{us} s + k_s k_{us}}.
\end{align*}
5.4 Problems
Let \(M,k>0\) and \(d\geq 0\). Consider as in Section 1.4
\[ \dot {q}=v-v_e,\qquad M\dot {v}+dv+kq=F_e. \]
In the context of this chapter we have the input \(u:=\sbm {F_e\\v_e}\) and the output \(y:=\sbm {q\\v}\). Determine the transfer function of the above system.
-
Solution. Laplace transforming with zero initial conditions gives
\(\seteqnumber{0}{5.}{2}\)
\begin{equation}
\label {eq:problems:transferfunction1} s\hat {q}=\hat {v}-\hat {v_e},\qquad (Ms+d)\hat {v}+k\hat {q}=\hat {F}_e.\tag {$\dagger $}
\end{equation}
Multiplying the second equation by \(s\) and substituting the first equation gives
\[ (Ms^2+ds+k)\hat {v}=s\hat {F}_e+k\hat {v}_e. \]
Hence
\[ \hat {v}=\frac {s}{Ms^2+ds+k}\hat {F}_e+\frac {k}{Ms^2+ds+k}\hat {v}_e. \]
It follows that
\(\seteqnumber{0}{5.}{2}\)
\begin{equation}
\label {eq:problems:transferfunction2} \hat {v}-\hat {v}_e=\frac {s}{Ms^2+ds+k}\hat {F}_e+\frac {-Ms^2-ds}{Ms^2+ds+k}\hat {v}_e\tag {$\ast $}
\end{equation}
This gives
\[ G_{vF_e}(s)=\frac {s}{Ms^2+ds+k},\qquad G_{vv_e}(s)=\frac {k}{Ms^2+ds+k}. \]
Substituting (\(\ast \)) into the first equation in (\(\dagger
\)) gives
\[ \hat {q}=\frac {1}{Ms^2+ds+k}\hat {F}_e+\frac {-Ms-d}{Ms^2+ds+k}\hat {v}_e. \]
Hence
\[ G_{qF_e}(s)=\frac {1}{Ms^2+ds+k},\quad G_{qv_e}(s)=-\frac {Ms+d}{Ms^2+ds+k}. \]
Therefore the transfer function is
\[ G=\bbm { \frac {1}{Ms^2+ds+k}&-\frac {Ms+d}{Ms^2+ds+k}\\ \frac {s}{Ms^2+ds+k}&\frac {k}{Ms^2+ds+k} }. \]
□