\(\newcommand{\footnotename}{footnote}\)
\(\def \LWRfootnote {1}\)
\(\newcommand {\footnote }[2][\LWRfootnote ]{{}^{\mathrm {#1}}}\)
\(\newcommand {\footnotemark }[1][\LWRfootnote ]{{}^{\mathrm {#1}}}\)
\(\let \LWRorighspace \hspace \)
\(\renewcommand {\hspace }{\ifstar \LWRorighspace \LWRorighspace }\)
\(\newcommand {\mathnormal }[1]{{#1}}\)
\(\newcommand \ensuremath [1]{#1}\)
\(\newcommand {\LWRframebox }[2][]{\fbox {#2}} \newcommand {\framebox }[1][]{\LWRframebox } \)
\(\newcommand {\setlength }[2]{}\)
\(\newcommand {\addtolength }[2]{}\)
\(\newcommand {\setcounter }[2]{}\)
\(\newcommand {\addtocounter }[2]{}\)
\(\newcommand {\arabic }[1]{}\)
\(\newcommand {\number }[1]{}\)
\(\newcommand {\noalign }[1]{\text {#1}\notag \\}\)
\(\newcommand {\cline }[1]{}\)
\(\newcommand {\directlua }[1]{\text {(directlua)}}\)
\(\newcommand {\luatexdirectlua }[1]{\text {(directlua)}}\)
\(\newcommand {\protect }{}\)
\(\def \LWRabsorbnumber #1 {}\)
\(\def \LWRabsorbquotenumber "#1 {}\)
\(\newcommand {\LWRabsorboption }[1][]{}\)
\(\newcommand {\LWRabsorbtwooptions }[1][]{\LWRabsorboption }\)
\(\def \mathchar {\ifnextchar "\LWRabsorbquotenumber \LWRabsorbnumber }\)
\(\def \mathcode #1={\mathchar }\)
\(\let \delcode \mathcode \)
\(\let \delimiter \mathchar \)
\(\def \oe {\unicode {x0153}}\)
\(\def \OE {\unicode {x0152}}\)
\(\def \ae {\unicode {x00E6}}\)
\(\def \AE {\unicode {x00C6}}\)
\(\def \aa {\unicode {x00E5}}\)
\(\def \AA {\unicode {x00C5}}\)
\(\def \o {\unicode {x00F8}}\)
\(\def \O {\unicode {x00D8}}\)
\(\def \l {\unicode {x0142}}\)
\(\def \L {\unicode {x0141}}\)
\(\def \ss {\unicode {x00DF}}\)
\(\def \SS {\unicode {x1E9E}}\)
\(\def \dag {\unicode {x2020}}\)
\(\def \ddag {\unicode {x2021}}\)
\(\def \P {\unicode {x00B6}}\)
\(\def \copyright {\unicode {x00A9}}\)
\(\def \pounds {\unicode {x00A3}}\)
\(\let \LWRref \ref \)
\(\renewcommand {\ref }{\ifstar \LWRref \LWRref }\)
\( \newcommand {\multicolumn }[3]{#3}\)
\(\require {textcomp}\)
\(\newcommand {\intertext }[1]{\text {#1}\notag \\}\)
\(\let \Hat \hat \)
\(\let \Check \check \)
\(\let \Tilde \tilde \)
\(\let \Acute \acute \)
\(\let \Grave \grave \)
\(\let \Dot \dot \)
\(\let \Ddot \ddot \)
\(\let \Breve \breve \)
\(\let \Bar \bar \)
\(\let \Vec \vec \)
\(\require {mathtools}\)
\(\newenvironment {crampedsubarray}[1]{}{}\)
\(\newcommand {\smashoperator }[2][]{#2\limits }\)
\(\newcommand {\SwapAboveDisplaySkip }{}\)
\(\newcommand {\LaTeXunderbrace }[1]{\underbrace {#1}}\)
\(\newcommand {\LaTeXoverbrace }[1]{\overbrace {#1}}\)
\(\newcommand {\LWRmultlined }[1][]{\begin {multline*}}\)
\(\newenvironment {multlined}[1][]{\LWRmultlined }{\end {multline*}}\)
\(\let \LWRorigshoveleft \shoveleft \)
\(\renewcommand {\shoveleft }[1][]{\LWRorigshoveleft }\)
\(\let \LWRorigshoveright \shoveright \)
\(\renewcommand {\shoveright }[1][]{\LWRorigshoveright }\)
\(\newcommand {\shortintertext }[1]{\text {#1}\notag \\}\)
\(\newcommand {\vcentcolon }{\mathrel {\unicode {x2236}}}\)
\(\newcommand {\mC }{\mathbb C}\)
\(\newcommand {\mR }{\mathbb R}\)
\(\newcommand {\mN }{\mathbb N}\)
\(\newcommand {\mZ }{\mathbb Z}\)
\(\newcommand {\mL }{\mathcal L}\)
\(\newcommand {\mF }{\mathcal F}\)
\(\newcommand {\ipd }[2]{\langle #1 , #2 \rangle }\)
\(\newcommand {\Ipd }[2]{\left \langle #1 , #2 \right \rangle }\)
\(\newcommand {\sbm }[1]{\left [\begin {smallmatrix}#1\end {smallmatrix}\right ]}\)
\(\newcommand {\bbm }[1]{\begin {bmatrix}#1\end {bmatrix}}\)
\(\newcommand {\re }{{\rm Re}}\)
\(\newcommand {\imag }{{\rm Im}}\)
\(\newcommand {\e }{{\rm e}}\)
\(\newcommand {\HS }{{\rm HS}}\)
\(\newcommand {\cl }{{\rm cl}}\)
\(\newcommand {\wt }{\widetilde {w}}\)
\(\newcommand {\zt }{\widetilde {z}}\)
\(\newcommand {\xu }{\underline {x}}\)
\(\newcommand {\uu }{\underline {u}}\)
\(\DeclareMathOperator {\vecc }{vec}\)
\(\DeclareMathOperator {\trace }{trace}\)
\(\)
Chapter C Problem Sheet 3 (Lectures 6–7)
-
1.
-
(a) Determine the frequency response \(F\) of \(\dot {x}=2x+5u\), \(y=x\).
-
(b) Calculate \(|F(\omega )|\) (in such a way that only real numbers are involved).
-
2.
-
(a) Determine the frequency response \(F\) of \(\ddot {q}+4\dot {q}+3q=6u\), \(y=5q\).
-
(b) Calculate \(|F(\omega )|\) (in such a way that only real numbers are involved).
-
3.
-
(a) Determine the frequency response \(F\) of \(\ddot {q}+4\dot {q}+3q=6u\), \(y=\bbm {q\\\dot {q}}\).
-
(b) Calculate \(\|F(\omega )\|\) (in such a way that only real numbers are involved); here the norm is the usual Euclidean norm.
-
4. Consider the frequency response
\[ F(\omega )=\frac {1}{-\omega ^2+2\zeta i\omega +1}, \]
of the second order scalar differential equation \(\ddot {q}+2\zeta \dot {q}+q=u\), \(y=q\).
-
(a) Show that
\[ |F(\omega )|^2=\frac {1}{(1-\omega ^2)^2+4\zeta ^2\omega ^2}. \]
-
(b) Show that when \(\zeta \in [0,\frac {1}{\sqrt {2}})\phantom {]}\), \(|F(\omega )|\) has a maximum at \(\omega _{\rm max}:=\sqrt {1-2\zeta ^2}\) and that when \(\zeta \geq \frac {1}{\sqrt {2}}\), \(|F(\omega )|\) is
monotonically decreasing for \(\omega >0\).
[Hint: it suffices to show these statements for \(|F(\omega )|^2\) rather than for \(|F(\omega )|\) since the squareroot function is strictly increasing. Also note that one can work only with the denominator and subsequently draw conclusions about
the fraction.]
-
5. Consider the second order scalar differential equation
\[ \ddot {q}+4\dot {q}+3q=3u,\qquad y=q. \]
-
(a) Write this in standard form \(\dot {x}=Ax+Bu\), \(y=Cx+Du\) with \(x:=\sbm {q\\\dot {q}}\).
-
(b) Calculate the impulse response by determining \(\e ^{At}\) and forming \(h(t)=C\e ^{At}B\).
-
(c) Calculate the step response by solving \(\ddot {q}+4\dot {q}+3q=3\), \(q(0)=\dot {q}(0)=0\), \(y=q\) and then differentiate this to obtain the impulse response.
-
(d) Determine the transfer function and find the inverse Laplace transform of this to determine the impulse response.
-
(e) Use the initial value problem from Remark 7.2 to determine the impulse response.
-
6. For a system with impulse response \(\e ^{-t}\), determine the output for initial condition zero and input \(\e ^{-2t}\).