\(\newcommand{\footnotename}{footnote}\)
\(\def \LWRfootnote {1}\)
\(\newcommand {\footnote }[2][\LWRfootnote ]{{}^{\mathrm {#1}}}\)
\(\newcommand {\footnotemark }[1][\LWRfootnote ]{{}^{\mathrm {#1}}}\)
\(\let \LWRorighspace \hspace \)
\(\renewcommand {\hspace }{\ifstar \LWRorighspace \LWRorighspace }\)
\(\newcommand {\mathnormal }[1]{{#1}}\)
\(\newcommand \ensuremath [1]{#1}\)
\(\newcommand {\LWRframebox }[2][]{\fbox {#2}} \newcommand {\framebox }[1][]{\LWRframebox } \)
\(\newcommand {\setlength }[2]{}\)
\(\newcommand {\addtolength }[2]{}\)
\(\newcommand {\setcounter }[2]{}\)
\(\newcommand {\addtocounter }[2]{}\)
\(\newcommand {\arabic }[1]{}\)
\(\newcommand {\number }[1]{}\)
\(\newcommand {\noalign }[1]{\text {#1}\notag \\}\)
\(\newcommand {\cline }[1]{}\)
\(\newcommand {\directlua }[1]{\text {(directlua)}}\)
\(\newcommand {\luatexdirectlua }[1]{\text {(directlua)}}\)
\(\newcommand {\protect }{}\)
\(\def \LWRabsorbnumber #1 {}\)
\(\def \LWRabsorbquotenumber "#1 {}\)
\(\newcommand {\LWRabsorboption }[1][]{}\)
\(\newcommand {\LWRabsorbtwooptions }[1][]{\LWRabsorboption }\)
\(\def \mathchar {\ifnextchar "\LWRabsorbquotenumber \LWRabsorbnumber }\)
\(\def \mathcode #1={\mathchar }\)
\(\let \delcode \mathcode \)
\(\let \delimiter \mathchar \)
\(\def \oe {\unicode {x0153}}\)
\(\def \OE {\unicode {x0152}}\)
\(\def \ae {\unicode {x00E6}}\)
\(\def \AE {\unicode {x00C6}}\)
\(\def \aa {\unicode {x00E5}}\)
\(\def \AA {\unicode {x00C5}}\)
\(\def \o {\unicode {x00F8}}\)
\(\def \O {\unicode {x00D8}}\)
\(\def \l {\unicode {x0142}}\)
\(\def \L {\unicode {x0141}}\)
\(\def \ss {\unicode {x00DF}}\)
\(\def \SS {\unicode {x1E9E}}\)
\(\def \dag {\unicode {x2020}}\)
\(\def \ddag {\unicode {x2021}}\)
\(\def \P {\unicode {x00B6}}\)
\(\def \copyright {\unicode {x00A9}}\)
\(\def \pounds {\unicode {x00A3}}\)
\(\let \LWRref \ref \)
\(\renewcommand {\ref }{\ifstar \LWRref \LWRref }\)
\( \newcommand {\multicolumn }[3]{#3}\)
\(\require {textcomp}\)
\(\newcommand {\intertext }[1]{\text {#1}\notag \\}\)
\(\let \Hat \hat \)
\(\let \Check \check \)
\(\let \Tilde \tilde \)
\(\let \Acute \acute \)
\(\let \Grave \grave \)
\(\let \Dot \dot \)
\(\let \Ddot \ddot \)
\(\let \Breve \breve \)
\(\let \Bar \bar \)
\(\let \Vec \vec \)
\(\require {mathtools}\)
\(\newenvironment {crampedsubarray}[1]{}{}\)
\(\newcommand {\smashoperator }[2][]{#2\limits }\)
\(\newcommand {\SwapAboveDisplaySkip }{}\)
\(\newcommand {\LaTeXunderbrace }[1]{\underbrace {#1}}\)
\(\newcommand {\LaTeXoverbrace }[1]{\overbrace {#1}}\)
\(\newcommand {\LWRmultlined }[1][]{\begin {multline*}}\)
\(\newenvironment {multlined}[1][]{\LWRmultlined }{\end {multline*}}\)
\(\let \LWRorigshoveleft \shoveleft \)
\(\renewcommand {\shoveleft }[1][]{\LWRorigshoveleft }\)
\(\let \LWRorigshoveright \shoveright \)
\(\renewcommand {\shoveright }[1][]{\LWRorigshoveright }\)
\(\newcommand {\shortintertext }[1]{\text {#1}\notag \\}\)
\(\newcommand {\vcentcolon }{\mathrel {\unicode {x2236}}}\)
\(\newcommand {\mC }{\mathbb C}\)
\(\newcommand {\mR }{\mathbb R}\)
\(\newcommand {\mN }{\mathbb N}\)
\(\newcommand {\mZ }{\mathbb Z}\)
\(\newcommand {\mL }{\mathcal L}\)
\(\newcommand {\mF }{\mathcal F}\)
\(\newcommand {\ipd }[2]{\langle #1 , #2 \rangle }\)
\(\newcommand {\Ipd }[2]{\left \langle #1 , #2 \right \rangle }\)
\(\newcommand {\sbm }[1]{\left [\begin {smallmatrix}#1\end {smallmatrix}\right ]}\)
\(\newcommand {\bbm }[1]{\begin {bmatrix}#1\end {bmatrix}}\)
\(\newcommand {\re }{{\rm Re}}\)
\(\newcommand {\imag }{{\rm Im}}\)
\(\newcommand {\e }{{\rm e}}\)
\(\newcommand {\HS }{{\rm HS}}\)
\(\newcommand {\cl }{{\rm cl}}\)
\(\newcommand {\wt }{\widetilde {w}}\)
\(\newcommand {\zt }{\widetilde {z}}\)
\(\newcommand {\xu }{\underline {x}}\)
\(\newcommand {\uu }{\underline {u}}\)
\(\DeclareMathOperator {\vecc }{vec}\)
\(\DeclareMathOperator {\trace }{trace}\)
\(\)
Chapter B Problem Sheet 2 (Lectures 4–5)
-
1. Calculate the step response of \(\dot {x}=2x+5u\), \(y=x\).
-
Solution. We obtain the step response by solving \(\dot {x}=2x+5\), \(x(0)=0\). The homogeneous equation \(\dot {x}=2x\) has general solution \(a\e ^{2t}\) and a particular solution of \(\dot
{x}=2x+5u\) is \(x=\frac {-5}{2}\). Therefore the general solution of \(\dot {x}=2x+5u\) is \(x(t)=\frac {-5}{2}+a\e ^{2t}\). From the initial condition we obtain \(a=\frac {5}{2}\) so that \(x(t)=\frac {-5}{2}+\frac {5}{2}\e ^{2t}\).
Therefore \(H(t)=\frac {-5}{2}+\frac {5}{2}\e ^{2t}\) is the step response. □
-
2. Calculate the step response of \(\ddot {q}+4\dot {q}+3q=6u\), \(y=5q\).
-
Solution. We obtain the step response by solving \(\ddot {q}+4\dot {q}+3q=6\), \(q(0)=\dot {q}(0)=0\). The homogeneous equation \(\ddot {q}+4\dot {q}+3q=0\) has general solution \(a\e
^{-t}+b\e ^{-3t}\) and a particular solution of \(\ddot {q}+4\dot {q}+3q=6\) is \(q=2\). Therefore the general solution of \(\ddot {q}+4\dot {q}+3q=6\) is \(q(t)=2+a\e ^{-t}+b\e ^{-3t}\). From the initial condition we obtain
\[ 0=q(0)=2+a+b,\qquad 0=\dot {q}(0)=-a-3b. \]
Solving this gives \(a=-3\), \(b=1\) so that \(q(t)=2-3\e ^{-t}+\e ^{-3t}\). We then have \(y(t)=5q(t)=10-15\e ^{-t}+5\e ^{-3t}\), so that \(H(t)=10-15\e ^{-t}+5\e ^{-3t}\) is the step response. □
-
3. Calculate the step response of \(\ddot {q}+4\dot {q}+3q=6u\), \(y=\bbm {q\\\dot {q}}\).
-
Solution. In the previous problem we already solved \(\ddot {q}+4\dot {q}+3q=6\), \(q(0)=\dot {q}(0)=0\) and obtained \(q(t)=2-3\e ^{-t}+\e ^{-3t}\). We therefore have
\[ y(t)=\bbm {2-3\e ^{-t}+\e ^{-3t}\\3\e ^{-t}-3\e ^{-3t}}, \]
so that
\[ H(t)=\bbm {2-3\e ^{-t}+\e ^{-3t}\\3\e ^{-t}-3\e ^{-3t}}, \]
is the step response. □
-
4. Calculate the step response of
\[ \dot {x}=\bbm {1&0\\0&2}x+\bbm {1&1\\0&1}u,\qquad y=x_1+x_2. \]
-
Solution. With \(u_1=1\) and \(u_2=0\) we obtain the equations \(\dot {x}_1=x_1+1\), \(\dot {x}_2=2x_2\). Solving this with zero initial conditions gives \(x_1(t)=-1+\e ^t\) and \(x_2=0\). Therefore
\(y(t)=-1+\e ^t\) which therefore is the first column of the step response.
With \(u_1=0\) and \(u_2=1\) we obtain the equations \(\dot {x}_1=x_1+1\), \(\dot {x}_2=2x_2+1\). Solving this with zero initial conditions gives \(x_1(t)=-1+\e ^t\) and \(x_2=\frac {-1}{2}+\frac {1}{2}\e ^{2t}\). Therefore
\(y(t)=\frac {-3}{2}+\e ^t+\frac {1}{2}\e ^{2t}\) which therefore is the second column of the step response. Therefore
\[ H(t)=\bbm {-1+\e ^t&\frac {-3}{2}+\e ^t+\frac {1}{2}\e ^{2t}}, \]
is the step response. □
-
5. Calculate the transfer function of \(\dot {x}=2x+5u\), \(y=x\).
-
Solution. Laplace transforming with zero initial conditions gives \(s\hat {x}=2\hat {x}+5\hat {u}\), so that \(\hat {x}=\frac {5}{s-2}\hat {u}\) and therefore
\[ G(s)=\frac {5}{s-2}, \]
is the transfer function. □
-
6. Calculate the transfer function of \(\ddot {q}+4\dot {q}+3q=6u\), \(y=5q\).
-
Solution. Laplace transforming with zero initial conditions gives \((s^2+4s+3)\hat {q}=6\hat {u}\), so that \(\hat {y}=5\hat {q}=\frac {30}{s^2+4s+3}\hat {u}\) and therefore
\[ G(s)=\frac {30}{s^2+4s+3}, \]
is the transfer function. □
-
7. Calculate the transfer function of \(\ddot {q}+4\dot {q}+3q=6u\), \(y=\bbm {q\\\dot {q}}\).
-
Solution. In the previous problem we saw that \(\hat {q}=\frac {6}{s^2+4s+3}\hat {u}\), so that \(\hat {y}_1=\hat {q}=\frac {6}{s^2+4s+3}\hat {u}\) and \(\hat {y}_2=s\hat {q}=\frac
{6s}{s^2+4s+3}\hat {u}\). Therefore
\[ G(s)=\bbm {\frac {6}{s^2+4s+3}\\\frac {6s}{s^2+4s+3}}, \]
is the transfer function. □
-
8. Calculate the transfer function of
\[ \dot {x}=\bbm {1&0\\0&2}x+\bbm {1&1\\0&1}u,\qquad y=x_1+x_2. \]
-
Solution. We write this in standard form \(\dot {x}=Ax+Bu\), \(y=Cx+Du\) with
\[ A=\bbm {1&0\\0&2},\qquad B=\bbm {1&1\\0&1},\qquad C=\bbm {1&1},\qquad D=0, \]
and calculate the transfer function as
\[ G(s)=C(sI-A)^{-1}B+D=\bbm {1&1}\bbm {\frac {1}{s-1}&0\\0&\frac {1}{s-2}}\bbm {1&1\\0&1} =\bbm {\frac {1}{s-1}&\frac {1}{s-1}+\frac {1}{s-2}}. \]
□