We consider input-state-output systems with two external inputs, \(w:[0,\infty )\to \mR ^{m_1}\) of which we have some knowledge, namely that it is generated by an exosystem
\[ \dot {x}_e=A_ex_e,\qquad w=C_ex_e, \]
with
\[ A_e\in \mR ^{n_e\times n_e},\qquad C_e\in \mR ^{m_1\times n_e}, \]
and \(\wt :[0,\infty )\to \mR ^{\widetilde {m}_1}\) of which we assume no such knowledge. We also have two performance outputs, \(z:[0,\infty )\to \mR ^{p_1}\) on which we have a regulation requirement and \(\zt :[0,\infty )\to \mR ^{\widetilde {p}_1}\) on which we have an \(H^2\) requirement. The system is given by
\(\seteqnumber{0}{17.}{0}\)\begin{align} \label {eq:H2OR:xzy} \dot {x}&=Ax+B_1w+\widetilde {B}_1\wt +B_2u, \\ z&=C_1x+D_{11}w, \notag \\ \zt &=\widetilde {C}_1x+\widetilde {D}_{11}w+\widetilde {D}_{12}u,\notag \\ y&=C_2x+D_{21}w+\widetilde {D}_{21}\wt ,\notag \end{align} where
\(\seteqnumber{0}{17.}{1}\)\begin{gather*} A\in \mR ^{n\times n},~ B_1\in \mR ^{n\times m_1},~ \widetilde {B}_1\in \mR ^{n\times \widetilde {m}_1},~ B_2\in \mR ^{n\times m_2}, \\ C_1\in \mR ^{p_1\times n},~ D_{11}\in \mR ^{p_1\times m_1},~ \widetilde {C}_1\in \mR ^{\widetilde {p}_1\times n},~ \widetilde {D}_{11}\in \mR ^{\widetilde {p}_1\times m_1},~ \widetilde {D}_{12}\in \mR ^{\widetilde {p}_1\times m_2}, \\ C_2\in \mR ^{p_2\times n},~ D_{21}\in \mR ^{p_2\times m_1},~ \widetilde {D}_{21}\in \mR ^{p_2\times \widetilde {m}_1}. \end{gather*}
Definition 17.1 (Optimal \(H^2\) measurement feedback problem with output regulation and disturbance rejection). The objective is to find matrices
\[ A_c\in \mR ^{n_c\times n_c},~ B_c\in \mR ^{n_c\times p_2},~ C_c\in \mR ^{m_2\times n_c},~ D_c\in \mR ^{m_2\times p_2}, \]
such that with the control
\(\seteqnumber{0}{17.}{1}\)\begin{equation} \label {eq:H2OR:controller} \dot {x}_c=A_cx_x+B_cy,\quad u=C_cx_c+D_cy, \end{equation}
where \(x_c(0)=x_c^0\), we have
1. for \(\wt =0\) and for all \(x^0\), \(x_c^0\) and \(x_e^0\) we have \(\lim _{t\to \infty }z(t)=0\);
2. for \(x_e^0=0\) and \(\wt =0\) and all \(x^0\) and \(x_c^0\) we have \(\lim _{t\to \infty }x(t)=0\) and \(\lim _{t\to \infty }x_c(t)=0\).
3. \(\int _{-\infty }^\infty \|F_{\zt \wt }(\omega )\|_{\HS }^2\,d\omega \) is minimized amongst all such matrices, where \(F_{\zt \wt }\) is the frequency response of the combination of (17.1) and (17.2) from \(\wt \) to \(\zt \).
Remark 17.2. An issue with the problem in Definition 17.1 is that the integral typically only has an infimum which is not a minimum. Therefore we will relax the minimality to \(\int _{-\infty }^\infty \|F_{\zt \wt }(\omega )\|_{\HS }^2\,d\omega \) being “close to minimal”.
As is natural for the regulation condition, we assume existence of a solution \(\Pi \in \mR ^{n\times n_e}\), \(V\in \mR ^{m_2\times n_e}\) of the regulator equations
\[ A\Pi +B_1C_e+B_2V=\Pi A_e,\qquad C_1\Pi +D_{11}C_e=0. \]
We apply the change of variables
\[ \xu =x-\Pi x_e,\quad \uu =u-Vx_e. \]
Substituting this in (17.1) gives
\(\seteqnumber{0}{17.}{2}\)\begin{align*} \dot {\xu }&=A\xu +(A\Pi -\Pi A_e+B_2V)x_e+B_1w+\widetilde {B}_1\wt +B_2\uu , \\ z&=C_1\xu +C_1\Pi x_e+D_{11}w, \\ \zt &=\widetilde {C}_1\xu +(\widetilde {C}_1\Pi +\widetilde {D}_{12}V) x_e+\widetilde {D}_{11}w+\widetilde {D}_{12}\uu , \\ y&=C_2\xu +C_2\Pi x_e+D_{21}w+\widetilde {D}_{21}\wt . \end{align*} Using the regulator equations (and \(w=C_ex_e\)) this gives
\(\seteqnumber{0}{17.}{2}\)\begin{align*} \dot {\xu }&=A\xu +\widetilde {B}_1\wt +B_2\uu , \\ z&=C_1\xu , \\ \zt &=\widetilde {C}_1\xu +(\widetilde {C}_1\Pi +\widetilde {D}_{12}V+\widetilde {D}_{11}C_e) x_e+\widetilde {D}_{12}\uu , \\ y&=C_2\xu +(C_2\Pi +D_{21}C_e) x_e+\widetilde {D}_{21}\wt . \end{align*} We see that \(\xu \) and \(z\) no longer depend on \(x_e\) (this is by construction of the regulator equations). We also want \(y\) to not depend on \(x_e\) (since then we can ignore the dependence on \(x_e\) in the \(H^2\) part of the problem and therefore obtain a problem without regulation constraint). For this we want
\[ C_2\Pi +D_{21}C_e=0. \]
This is for example true if \(C_2=C_1\) and \(D_{21}=D_{11}\) (i.e. the measurement equals the regulation performance output plus something depending on \(\wt \)). We can then ignore the regulation constraint and simply solve the \(H^2\) problem for the system
\(\seteqnumber{0}{17.}{2}\)\begin{align} \label {eq:H2OR} \dot {\xu }&=A\xu +\widetilde {B}_1\wt +B_2\uu , \\ \zt &=\widetilde {C}_1\xu +\widetilde {D}_{12}\uu ,\notag \\ y&=C_2\xu +\widetilde {D}_{21}\wt .\notag \end{align} (We note that the omission of \((\widetilde {C}_1\Pi +\widetilde {D}_{12}V+\widetilde {D}_{11}C_e) x_e\) in the equation for \(\zt \) is justified since \(F_{\zt \wt }\) does not depend on this term). From the \(\uu \) we obtain as control we then obtain the original \(u\) as \(u=\uu +Vx_e\).
The above amounts to choosing in Theorem 10.4 \(F_2\) to be the state feedback for the \(H^2\) problem defined by (17.3) and the output injection \(\sbm {L_1\\L_2}\) being such that \(L_1\) is the output injection for the \(H^2\) problem defined by (17.3). One issue (this is related to the earlier mentioned fact that the infimum of the integral is generally not a minimum) is that this does not determine \(L_2\). We can initially choose \(L_2=0\) which leads to
\[ \bbm {A&B_1C_e\\0&A_e}-\bbm {L_1\\0}\bbm {C_2&D_{21}C_e} =\bbm {A-L_1C_2&B_1C_e-L_1D_{21}C_e\\0&A_e}. \]
The eigenvalues of this upper-triangular block matrix are those of \(A-L_1C_2\) (which are stable by the \(H^2\) construction of \(L_1\)) and those of \(A_e\) (which will be on the imaginary axis). To this we can apply an additional output injection
\[ \bbm {A-L_1C_2&B_1C_e-L_1D_{21}C_e\\0&A_e}-\widetilde {L}\bbm {C_2&D_{21}C_e}, \]
where we can for example use pole placement to keep the eigenvalues of \(A-L_1C_2\) and move those of \(A_e\) slightly to the left (so as to make them stable). The total output injection then is \(L:=\sbm {L_1\\0}+\widetilde {L}\).
The controller then is (with \(F_2\) and \(L\) as above)
\(\seteqnumber{0}{17.}{3}\)\begin{gather*} A_c=\bbm {A&B_1C_e\\0&A_e}-L\bbm {C_2&D_{21}C_e}+\bbm {B_2\\0}\bbm {F_2&V-F_2\Pi },\\ B_c=L,\qquad C_c=\bbm {F_2&V-F_2\Pi },\qquad D_c=0. \end{gather*}
Example 17.3. Consider similarly as in Example 10.7 the first order system
\[ T\dot {x}(t)+x(t)=K_1w(t)+K_2u(t)+\widetilde {K}_1\wt _1(t), \]
where \(T,K_1,\widetilde {K}_1,K_2>0\) and the second-order exosystem
\[ \ddot {w}=-\omega ^2 w. \]
The objective is that \(\lim _{t\to \infty }x(t)=0\) for all \(w\) as above if \(\wt =0\), i.e. the performance output for regulation is \(z=x\). The measurement equals \(y=x+\delta \wt _2\), where \(\delta >0\). For the \(H^2\) optimization, the performance output is
\[ \zt =\bbm {x\\\varepsilon u}, \]
where \(\varepsilon >0\) and (as usual) the first component means that we want \(x\) to be small (consistent with the regulation requirement) and the second component means that \(u\) should not be too large.
Since the measurement equals the performance output for regulation plus something depending on \(\wt \), this is a problem of the special form we considered above.
We have
\(\seteqnumber{0}{17.}{3}\)\begin{gather*} A=\frac {-1}{T},\quad B_1=\frac {K_1}{T},\quad \widetilde {B}_1=\bbm {\dfrac {\widetilde {K}_1}{T}&0},\quad B_2=\frac {K_2}{T}, \\ C_1=1,\quad D_{11}=0,\quad \widetilde {C}_1=\bbm {1\\0},\quad \widetilde {D}_{11}=\bbm {0\\0},\quad \widetilde {D}_{12}=\bbm {0\\\varepsilon },\quad C_2=1,\quad D_{21}=0,\quad \widetilde {D}_{21}=\delta , \\ A_e=\bbm {0&1\\-\omega ^2&0},\qquad C_e=\bbm {1&0}. \end{gather*} In Example 10.7 we solved the regulator equations and obtained \(\Pi =0\) and \(V=\bbm {-\frac {K_1}{K_2}&0}\). In Example 16.5 we solve the \(H^2\) problem for the transformed system (with notation differing by tildes). This gives
\[ F_2=\frac {1-\sqrt {1+K_2^2\varepsilon ^{-2}}}{K_2},\qquad L_1=\frac {-1+\sqrt {1+\widetilde {K}_1^2\delta ^{-2}}}{T}. \]
We now determine an additional output injection \(\widetilde {L}\) (by doing pole placement “by hand”). Writing
\[ \widetilde {L}=\bbm {\widetilde {L}_1\\\widetilde {L}_2\\\widetilde {L}_3}, \]
we have
\[ \bbm {A-L_1C_2&B_1C_e-L_1D_{21}C_e\\0&A_e}-\widetilde {L}\bbm {C_2&D_{21}C_e} =\bbm { -\frac {\sqrt {1+\widetilde {K}_1^2\delta ^{-2}}}{T}-\widetilde {L}_1&\frac {K_1}{T}&0\\ -\widetilde {L}_2&0&1\\ -\widetilde {L}_3&-\omega ^2&0 }, \]
the characteristic polynomial of which is
\[ s^3 +\left (\frac {\sqrt {1+\widetilde {K}_1^2\delta ^{-2}}}{T}+\widetilde {L}_1\right )s^2 +\left (\frac {K_1}{T}\widetilde {L}_2+\omega ^2\right )s +\omega ^2\frac {\sqrt {1+\widetilde {K}_1^2\delta ^{-2}}}{T} +\omega ^2\widetilde {L}_1 +\frac {K_1}{T}\widetilde {L}_3. \]
We desire the characteristic polynomial
\[ (s+s_0)(s^2+2\zeta \omega s+\omega ^2) =s^3+\left (s_0+2\zeta \omega \right )s^2+\left (\omega ^2+2s_0\zeta \omega \right )s+s_0\omega ^2. \]
Comparing coefficients, we obtain the equations
\(\seteqnumber{0}{17.}{3}\)\begin{gather*} s_0+2\zeta \omega =\frac {\sqrt {1+\widetilde {K}_1^2\delta ^{-2}}}{T}+\widetilde {L}_1,\\ \omega ^2+2s_0\zeta \omega =\frac {K_1}{T}\widetilde {L}_2+\omega ^2\\ s_0\omega ^2=\omega ^2\frac {\sqrt {1+\widetilde {K}_1^2\delta ^{-2}}}{T} +\omega ^2\widetilde {L}_1 +\frac {K_1}{T}\widetilde {L}_3. \end{gather*} Solving this (solving the third equation last) gives
\(\seteqnumber{0}{17.}{3}\)\begin{align*} \widetilde {L}_1&=s_0+2\zeta \omega -\frac {\sqrt {1+\widetilde {K}_1^2\delta ^{-2}}}{T}\\ \widetilde {L}_2&=2s_0\zeta \omega \frac {T}{K_1}\\ \widetilde {L}_3&=\frac {-T}{K_1}2\zeta \omega ^3. \end{align*} The overall output injection \(L=\sbm {L_1\\0}+\widetilde {L}\) then is
\[ L=\bbm { \frac {-1}{T}+s_0+2\zeta \omega \\ 2s_0\zeta \omega \frac {T}{K_1}\\ \frac {-T}{K_1}2\zeta \omega ^3 }. \]
The controller then is
\(\seteqnumber{0}{17.}{3}\)\begin{gather*} A_c=\bbm { -s_0-2\zeta \omega +\frac {\sqrt {1+K_2^2\varepsilon ^{-2}}}{T} &0&0\\ -2s_0\zeta \omega \frac {T}{K_1}&0&1\\ \frac {T}{K_1}2\zeta \omega ^3&-\omega ^2&0 },\qquad B_c=\bbm { \frac {-1}{T}+s_0+2\zeta \omega \\ 2s_0\zeta \omega \frac {T}{K_1}\\ \frac {-T}{K_1}2\zeta \omega ^3 },\\ C_c=\bbm {\frac {1-\sqrt {1+K_2^2\varepsilon ^{-2}}}{K_2}&-\frac {K_1}{K_2}&0},\qquad D_c=0. \end{gather*} As mentioned, we would ideally want to keep the eigenvalues of \(A-L_1C_2\) and move those of \(A_e\) slightly to the left. This amounts to choosing \(s_0=\frac {\sqrt {1+\widetilde {K}_1^2\delta ^{-2}}}{T}\) and \(\zeta >0\) “small”. This results in a frequency response from \(w\) to \(z\) as in Figure 17.1. In the figure we see the regulation requirement (the frequency response is zero at the given frequency \(\omega \)) and the \(H^2\) requirement (the frequency response is a lot “lower” on average over the whole frequency range compared to without control).
Example 17.4. Consider the undamped second order system
\[ \ddot {q}(t)+\omega _0^2q(t)=K_1\omega _0^2w(t)+K_2\omega _0^2u(t)+\widetilde {K}_1\wt _1(t), \]
where \(\omega _0,K_1,K_2,\widetilde {K}_1>0\) and with the state \(x=\sbm {q\\\dot {q}}\). We consider the performance output for regulation \(z=\dot {q}\), the measurement \(y=\dot {q}+\delta \wt _2\) where \(\delta >0\) (so that we have the special form considered above) and the \(H^2\) performance output
\[ z=\bbm {\dot {q}\\\varepsilon u}, \]
where \(\varepsilon >0\).
This gives
\(\seteqnumber{0}{17.}{3}\)\begin{gather*} A=\bbm {0&1\\-\omega _0^2&0},\quad B_1=\bbm {0\\K_1\omega _0^2},\quad B_2=\bbm {0\\K_2\omega _0^2},\quad \widetilde {B}_1=\bbm {0&0\\\widetilde {K}_1\omega _0^2&0},\quad \\ C_1=\bbm {0&1},\quad D_{12}=0,\quad \widetilde {C}_1=\bbm {0&1\\0&0},\quad \widetilde {D}_{12}=\bbm {0\\\varepsilon }, \\ C_2=\bbm {0&1},\quad D_{21}=0,\quad \widetilde {D}_{21}=\bbm {0&\delta } \end{gather*} We assume that the exo-system is
\[ A_e=\bbm {0&1\\-\omega _e^2&0},\qquad C_e=\bbm {1&0}, \]
where \(\omega _e>0\).
We solved the regulator equations in Example 9.15, where we obtained
\[ \Pi =\bbm {0&0\\0&0},\qquad V=\bbm {-\dfrac {K_1}{K_2}&0}. \]
In Example 16.6 we solve the \(H^2\) problem for the transformed system (with notation differing by tildes). This gives
\[ F_2=\bbm {0&-\varepsilon ^{-1}},\qquad L_1=\bbm {0\\\delta ^{-1}\widetilde {K}_1\omega _0^2}. \]
We now determine an additional output injection \(\widetilde {L}\) (by doing pole placement “by hand”). Writing
\[ \widetilde {L}=\bbm {\widetilde {L}_1\\\widetilde {L}_2\\\widetilde {L}_3\\\widetilde {L}_4}, \]
we have
\[ \bbm {A-L_1C_2&B_1C_e-L_1D_{21}C_e\\0&A_e}-\widetilde {L}\bbm {C_2&D_{21}C_e} =\bbm { 0&1-\widetilde {L}_1&0&0\\ -\omega _0^2&-\delta ^{-1}\widetilde {K}_1\omega _0^2-\widetilde {L}_2&K_1\omega _0^2&0\\ 0&-\widetilde {L}_3&0&1\\ 0&-\widetilde {L}_4&-\omega _e^2&0 }, \]
the characteristic polynomial of which is
\[ s^4 +\left (\delta ^{-1}\widetilde {K}_1\omega _0^2+\widetilde {L}_2\right )s^3 +\left (\omega _e^2+K_1\omega _0^2\widetilde {L}_3+\omega _0^2[1-\widetilde {L}_1]\right )s^2 +\left (\delta ^{-1}\widetilde {K}_1\omega _0^2\omega _e^2+\widetilde {L}_2\omega _e^2+K_1\omega _0^2\widetilde {L}_4\right )s +\omega _0^2\omega _e^2[1-\widetilde {L}_1]. \]
We desire the characteristic polynomial
\(\seteqnumber{0}{17.}{3}\)\begin{multline*} (s^2+2\zeta _0\omega _0s+\omega _0^2)(s^2+2\zeta _e\omega _e s+\omega _e^2) \\= s^4 +\left (2\zeta _0\omega _0+2\zeta _e\omega _e \right )s^3 +\left (\omega _0^2+\omega _e^2+4\zeta _0\omega _0\zeta _e\omega _e\right )s^2 +\left (2\zeta _0\omega _0\omega _e^2+2\zeta _e\omega _e\omega _0^2\right )s +\omega _0^2\omega _e^2. \end{multline*} Comparing coefficients, we obtain the equations
\(\seteqnumber{0}{17.}{3}\)\begin{align*} \delta ^{-1}\widetilde {K}_1\omega _0^2+\widetilde {L}_2 &=2\zeta _0\omega _0+2\zeta _e\omega _e\\ \omega _e^2+K_1\omega _0^2\widetilde {L}_3+\omega _0^2[1-\widetilde {L}_1] &=\omega _0^2+\omega _e^2+4\zeta _0\omega _0\zeta _e\omega _e\\ \delta ^{-1}\widetilde {K}_1\omega _0^2\omega _e^2+\widetilde {L}_2\omega _e^2+K_1\omega _0^2\widetilde {L}_4 &=2\zeta _0\omega _0\omega _e^2+2\zeta _e\omega _e\omega _0^2\\ \omega _0^2\omega _e^2[1-\widetilde {L}_1] &=\omega _0^2\omega _e^2. \end{align*} From the last equation we obtain \(\widetilde {L}_1=0\). We then solve the first, second and third equation in order to obtain
\(\seteqnumber{0}{17.}{3}\)\begin{align*} \widetilde {L}_1&=0\\ \widetilde {L}_2&=2\zeta _0\omega _0+2\zeta _e\omega _e-\delta ^{-1}\widetilde {K}_1\omega _0^2\\ \widetilde {L}_3&=\frac {4\zeta _0\zeta _e\omega _e}{\omega _0K_1}\\ \widetilde {L}_4&=\frac {2\zeta _e\omega _e}{K_1}\left (1-\frac {\omega _e^2}{\omega _0^2}\right ). \end{align*} The overall output injection \(L=\sbm {L_1\\0}+\widetilde {L}\) then is
\[ L=\bbm { 0\\ 2\zeta _0\omega _0+2\zeta _e\omega _e\\ \frac {4\zeta _0\zeta _e\omega _e}{\omega _0K_1}\\ \frac {2\zeta _e\omega _e}{K_1}\left (1-\frac {\omega _e^2}{\omega _0^2}\right ) }. \]
With the above \(F_2\), \(L\) and \(V\), we can then write down the controller.
The characteristic polynomial of \(A-L_1C_2\) equals \(s^2+\delta ^{-1}\widetilde {K}_1\omega _0^2s+\omega _0^2\), so we would choose \(\zeta _0=\frac {1}{2}\delta ^{-1}\widetilde {K}_1\omega _0\). We want to move the eigenvalues of \(A_e\) slightly to the left, so we would choose \(\zeta _e>0\) “small”.
We consider the \(H^2\) measurement feedback control with output regulation and disturbance rejection problem. The relevant matrices are given in Section 1.1 with the exception that here we assume that we measure only \(v_1-r_v\) and \(T-r_T\) (plus unmodelled dynamics) to fit into the framework of this chapter. This gives
\(\seteqnumber{0}{17.}{3}\)\begin{equation} \label {eq:tape:changed} C_2=\bbm {1&0&0\\0&0&1},\qquad D_{11}=\bbm {-1&0&0\\0&-1&0},\qquad \widetilde {D}_{21}=\bbm {\delta _1&0\\0&\delta _2}, \end{equation}
where \(\delta _1,\delta _2>0\). We obtain \(\Pi \) and \(V\) from the regulator equations as in Section 9.2.
Since \(\widetilde {B}_1=0\),we see that \(Y=0\) is a solution of the Riccati equation (16.4) for the system (17.3). The corresponding \(L\) is zero and since \(A\) is asymptotically stable, we have that \(A-LC_2\) is asymptotically stable for \(L=0\). Therefore \(Y=0\) is the stabilizing solution from Theorem 16.2 (applied to the system (17.3)). Hence in the framework considered above, we pick \(L_1=0\).
Solving the other Riccati equation (i.e. (16.3)) for the system (17.3) is too difficult to do analytically, so we do this numerically for the specific parameter values mentioned in the introduction. The resulting frequency responses are given in Figure 17.2. We see that the \(H^2\) optimal choice of the state feedback \(F_2\) (in Theorem 10.4) leads to the frequency response becoming smaller near frequency zero (the \(H^2\) controller chooses to do this rather than make the peak smaller, this is because the peak is rather narrow).
• Consider the undamped second order system
\[ \ddot {q}(t)+\omega _0^2q(t)=K_1\omega _0^2w_1(t)+K_2\omega _0^2u(t)+\widetilde {K}_1\wt _1(t), \]
where \(\omega _0,K_1,K_2,\widetilde {K}_1>0\), with the state \(x=\sbm {q\\\dot {q}}\). Consider the performance output for regulation \(z=q\), the measurement \(y=q+\delta \wt _2\) where \(\delta >0\) and the \(H^2\) performance output
\[ z=\bbm {q\\\varepsilon u}, \]
where \(\varepsilon >0\). Consider the following exo-system for \(\wt _1\):
\[ \dot {x}_e=\bbm {0&1\\-\omega _e^2&0}x_e,\qquad \wt _1=\bbm {1&0}x_e. \]
Solve the \(H^2\) measurement feedback problem with disturbance rejection for this system.
Solution. We have
\(\seteqnumber{0}{17.}{4}\)\begin{gather*} A=\bbm {0&1\\-\omega _0^2&0},\quad B_1=\bbm {0\\K_1\omega _0^2},\quad B_2=\bbm {0\\K_2\omega _0^2},\quad \widetilde {B}_1=\bbm {0&0\\\widetilde {K}_1\omega _0^2&0},\\ C_1=\bbm {1&0},\quad D_{12}=0,\quad \widetilde {C}_1=\bbm {1&0\\0&0},\quad \widetilde {D}_{12}=\bbm {0\\\varepsilon }, \\ C_2=\bbm {1&0},\quad D_{21}=0,\quad \widetilde {D}_{21}=\bbm {0&\delta } \\ A_e=\bbm {0&1\\-\omega _e^2&0},\qquad C_e=\bbm {1&0}. \end{gather*} We solved the regulator equations in Section 9.3 , where we obtained
\[ \Pi =\bbm {0&0\\0&0},\qquad V=\bbm {-\dfrac {K_1}{K_2}&0}. \]
In Section 16.2 we solved the \(H^2\) problem for the transformed system (with notation differing by tildes). This gives
\(\seteqnumber{0}{17.}{4}\)\begin{gather*} F_2=\frac {1}{K_2\omega _0^2}\bbm { \omega _0^2-\sqrt {\omega _0^4+\varepsilon ^{-2}K_2^2\omega _0^4} &-\sqrt {-2\omega _0^2+2\sqrt {\omega _0^4+\varepsilon ^{-2}K_2^2\omega _0^4}} },\\ L_1=\bbm { \sqrt {-2\omega _0^2+2\sqrt {\omega _0^4+\delta ^{-2}\widetilde {K}_1^2\omega _0^4}}\\ -\omega _0^2+\sqrt {\omega _0^4+\delta ^{-2}\widetilde {K}_1^2\omega _0^4}}. \end{gather*} We now determine an additional output injection \(\widetilde {L}\) (by doing pole placement “by hand”). Writing
\[ \widetilde {L}=\bbm {\widetilde {L}_1\\\widetilde {L}_2\\\widetilde {L}_3\\\widetilde {L}_4}, \]
we have
\[ \bbm {A-L_1C_2&B_1C_e-L_1D_{21}C_e\\0&A_e}-\widetilde {L}\bbm {C_2&D_{21}C_e} =\bbm { -\sqrt {-2\omega _0^2+2\sqrt {\omega _0^4+\delta ^{-2}\widetilde {K}_1^2\omega _0^4}}-\widetilde {L}_1&1&0&0\\ -\sqrt {\omega _0^4+\delta ^{-2}\widetilde {K}_1^2\omega _0^4}-\widetilde {L}_2&0&K_1\omega _0^2&0\\ -\widetilde {L}_3&0&0&1\\ -\widetilde {L}_4&0&-\omega _e^2&0 }, \]
the characteristic polynomial of which is
\(\seteqnumber{0}{17.}{4}\)\begin{multline*} s^4 +\left (\sqrt {-2\omega _0^2+2\sqrt {\omega _0^4+\delta ^{-2}\widetilde {K}_1^2\omega _0^4}}+\widetilde {L}_1\right )s^3 +\left (\omega _e^2+\sqrt {\omega _0^4+\delta ^{-2}\widetilde {K}_1^2\omega _0^4}+\widetilde {L}_2\right )s^2 \\ +\left (\omega _e^2\sqrt {-2\omega _0^2+2\sqrt {\omega _0^4+\delta ^{-2}\widetilde {K}_1^2\omega _0^4}}+\omega _e^2\widetilde {L}_1+K_1\omega _0^2\widetilde {L}_3\right )s +\omega _e^2\sqrt {\omega _0^4+\delta ^{-2}\widetilde {K}_1^2\omega _0^4}+\omega _e^2\widetilde {L}_2+K_1\omega _0^2\widetilde {L}_4. \end{multline*} We desire the characteristic polynomial (this retains the eigenvalues of \(A-L_1C_2\) and for \(\zeta _e>0\) “small” moves those of \(A_e\) slightly to the left)
\(\seteqnumber{0}{17.}{4}\)\begin{multline*} \left (s^2+\sqrt {-2\omega _0^2+2\sqrt {\omega _0^4+\delta ^{-2}\widetilde {K}_1^2\omega _0^4}}\,s+\sqrt {\omega _0^4+\delta ^{-2}\widetilde {K}_1^2\omega _0^4}\right )(s^2+2\zeta _e\omega _e s+\omega _e^2) \\= s^4 +\left (\sqrt {-2\omega _0^2+2\sqrt {\omega _0^4+\delta ^{-2}\widetilde {K}_1^2\omega _0^4}}+2\zeta _e\omega _e\right )s^3 \\ +\left (2\zeta _e\omega _e\sqrt {-2\omega _0^2+2\sqrt {\omega _0^4+\delta ^{-2}\widetilde {K}_1^2\omega _0^4}}+\omega _e^2+\sqrt {\omega _0^4+\delta ^{-2}\widetilde {K}_1^2\omega _0^4}\right )s^2 \\+\left (\omega _e^2\sqrt {-2\omega _0^2+2\sqrt {\omega _0^4+\delta ^{-2}\widetilde {K}_1^2\omega _0^4}}+2\zeta _e\omega _e\sqrt {\omega _0^4+\delta ^{-2}\widetilde {K}_1^2\omega _0^4}\right )s +\omega _e^2\sqrt {\omega _0^4+\delta ^{-2}\widetilde {K}_1^2\omega _0^4}. \end{multline*} Comparing coefficients, we obtain the equations
\(\seteqnumber{0}{17.}{4}\)\begin{align*} \widetilde {L}_1&=2\zeta _e\omega _e,\\ \widetilde {L}_2&=2\zeta _e\omega _e\sqrt {-2\omega _0^2+2\sqrt {\omega _0^4+\delta ^{-2}\widetilde {K}_1^2\omega _0^4}},\\ \omega _e^2\widetilde {L}_1+K_1\omega _0^2\widetilde {L}_3 &=2\zeta _e\omega _e\sqrt {\omega _0^4+\delta ^{-2}\widetilde {K}_1^2\omega _0^4},\\ \omega _e^2\widetilde {L}_2+K_1\omega _0^2\widetilde {L}_4&=0. \end{align*} Solving the last two equations using the first two we obtain
\(\seteqnumber{0}{17.}{4}\)\begin{align*} \widetilde {L}_3&=\frac {2\zeta _e\omega _e}{K_1}\left (\sqrt {1+\delta ^{-2}\widetilde {K}_1}-\frac {\omega _e^2}{\omega _0^2}\right ),\\ \widetilde {L}_4&=\frac {-2\zeta _e\omega _e^3}{K_1\omega _0}\sqrt {-2+2\sqrt {1+\delta ^{-2}\widetilde {K}_1^2}}. \end{align*} With the above \(F_2\), \(L=\sbm {L_1\\0}+\widetilde {L}\) and \(V\), we can then write down the controller. □