Chapter 15 Solving PDEs using the Fourier transform

  • Example 15.1. We reconsider the calculations in Chapter 13 in light of the Fourier transform from Chapter 14.

    We consider the heat equation \(\partial _tu=\partial _{xx}u\) on the spatial interval \(\mR \). We Fourier transform in \(x\) (really: Fourier–Plancherel transform as we consider the solution space \(L^2(\mR )\)) and use Remark 14.9 to obtain

    \[ \partial _t \hat {u}(t,\omega )=-\omega ^2\hat {u}(t,\omega ). \]

    The initial value transforms to

    \[ \hat {u}(0,\omega )=\hat {u}_0(\omega ). \]

    We therefore want to solve the ODE initial value problem for \(t\mapsto \hat {u}(t,\omega )\) (where \(\omega \in \mR \) is a parameter):

    \[ \partial _t \hat {u}(t,\omega )=-\omega ^2\hat {u}(t,\omega ),\qquad \hat {u}(0,\omega )=\hat {u}_0(\omega ). \]

    This gives

    \begin{equation} \label {eq:uhatheat} \hat {u}(t,\omega )=\e ^{-\omega ^2t}\hat {u}_0(\omega ). \end{equation}

    From Remark 14.11, we have

    \[ \mathcal {F}\left (x\mapsto \frac {1}{\sqrt {2t}}\e ^{-x^2/(4t)}\right )= \omega \mapsto \e ^{-\omega ^2t}, \]

    so that (15.1) is

    \[ \mathcal {F}(u)=\mathcal {F}\left (\frac {1}{\sqrt {2t}}\e ^{-x^2/(4t)}\right )\mathcal {F}(u_0). \]

    Using the convolution theorem (Theorem 14.14) we then obtain

    \[ \mathcal {F}(u)=\frac {1}{\sqrt {2\pi }}\mathcal {F}\left (\frac {1}{\sqrt {2t}}\e ^{-x^2/(4t)}\ast u_0\right ), \]

    so that

    \[ u(t,x)=\frac {1}{\sqrt {4\pi t}}\e ^{-x^2/(4t)}\ast u_0, \]

    which we can more explicitly write as

    \[ u(t,x)=\frac {1}{\sqrt {4\pi t}}\int _{-\infty }^\infty \e ^{-(x-y)^2/(4t)}u_0(y)\,dy. \]

    The function \((x,t)\mapsto \frac {1}{\sqrt {4\pi t}}\e ^{-x^2/(4t)}\) is called the heat kernel.

  • Remark 15.2. The calculation in Chapter 13 more or less coincides with the above calculation (but the above calculation is a bit more streamlined). The solution

    \[ u(t,x)=\frac {1}{\sqrt {2\pi }} \int _\mR C(\omega ) \e ^{-\omega ^2 t}\e ^{i\omega x}\,d\omega ,\qquad C(\omega )=\frac {1}{\sqrt {2\pi }}\int _\mR u^0(x) \e ^{-i\omega x}\,dx, \]

    as given in Chapter 13 is

    \[ C=\mathcal {F}(u^0),\qquad u=\mathcal {F}^{-1}\left (\mathcal {F}(u^0)\mathcal {F}\left (x\mapsto \frac {1}{\sqrt {2t}}\e ^{-x^2/(4t)}\right )\right ). \]

    Applying the convolution theorem gives that this is

    \[ u=\mathcal {F}^{-1}\left (\mathcal {F}\left (\frac {1}{\sqrt {2\pi }}u^0\ast \frac {1}{\sqrt {2t}}\e ^{-x^2/(4t)}\right )\right )=\frac {1}{\sqrt {2\pi }}u^0\ast \frac {1}{\sqrt {2t}}\e ^{-x^2/(4t)}, \]

    which coincides with the solution given in this chapter.

  • Lemma 15.3 (Space-shift formula). For \(a\in \mR \) and \(u\in L^1(\mR )\) we have

    \[ \mathcal {F}\left (x\mapsto u(x-a)\right )=\omega \mapsto \e ^{-ia\omega }\hat {u}(\omega ). \]

  • Proof. We have (using the substitution \(y=x-a\))

    \begin{multline*} \mathcal {F}\left (x\mapsto u(x-a)\right ) =\frac {1}{\sqrt {2\pi }}\int _{-\infty }^\infty \e ^{-i\omega x}u(x-a)\,dx =\frac {1}{\sqrt {2\pi }}\int _{-\infty }^\infty \e ^{-i\omega (y+a)}u(y)\,dy \\ =\e ^{-i\omega a}~\frac {1}{\sqrt {2\pi }}\int _{-\infty }^\infty \e ^{-i\omega y}u(y)\,dy =\e ^{-ia\omega }\hat {u}(\omega ). \end{multline*}

  • Remark 15.4. The term time-shift formula is also used for Lemma 15.3.

  • Example 15.5. Let \(c>0\) and \(u_0:\mR \to \mR \) be given. We solve the transport equation

    \[ \partial _tu=c\,\partial _xu,\qquad u(0,x)=u_0(x), \]

    where \(x\in \mR \) and \(t>0\), using the Fourier transform.

    Taking the Fourier transform in \(x\) of the differential equation and using the relation between differentiation and Fourier transformation (Remark 14.9) gives

    \[ \partial _t \hat {u}(t,\omega )=ci\omega \hat {u}(t,\omega ),\qquad \hat {u}(0,\omega )=\hat {u}_0(\omega ). \]

    We therefore want to solve this ODE initial value problem for \(t\mapsto \hat {u}(t,\omega )\) (where \(\omega \in \mR \) is a parameter). Solving this ODE initial value problem gives

    \[ \hat {u}(t,\omega )=\e ^{ci\omega t}\hat {u}_0(\omega ). \]

    By the space-shift formula (Lemma 15.3) we recognize the right-hand side as the Fourier transform of \(x\mapsto u_0(x+ct)\). Therefore

    \[ u(t,x)=u_0(x+ct). \]