\(\newcommand{\footnotename}{footnote}\) \(\def \LWRfootnote {1}\) \(\newcommand {\footnote }[2][\LWRfootnote ]{{}^{\mathrm {#1}}}\) \(\newcommand {\footnotemark }[1][\LWRfootnote ]{{}^{\mathrm {#1}}}\) \(\let \LWRorighspace \hspace \) \(\renewcommand {\hspace }{\ifstar \LWRorighspace \LWRorighspace }\) \(\newcommand {\TextOrMath }[2]{#2}\) \(\newcommand {\mathnormal }[1]{{#1}}\) \(\newcommand \ensuremath [1]{#1}\) \(\newcommand {\LWRframebox }[2][]{\fbox {#2}} \newcommand {\framebox }[1][]{\LWRframebox } \) \(\newcommand {\setlength }[2]{}\) \(\newcommand {\addtolength }[2]{}\) \(\newcommand {\setcounter }[2]{}\) \(\newcommand {\addtocounter }[2]{}\) \(\newcommand {\arabic }[1]{}\) \(\newcommand {\number }[1]{}\) \(\newcommand {\noalign }[1]{\text {#1}\notag \\}\) \(\newcommand {\cline }[1]{}\) \(\newcommand {\directlua }[1]{\text {(directlua)}}\) \(\newcommand {\luatexdirectlua }[1]{\text {(directlua)}}\) \(\newcommand {\protect }{}\) \(\def \LWRabsorbnumber #1 {}\) \(\def \LWRabsorbquotenumber "#1 {}\) \(\newcommand {\LWRabsorboption }[1][]{}\) \(\newcommand {\LWRabsorbtwooptions }[1][]{\LWRabsorboption }\) \(\def \mathchar {\ifnextchar "\LWRabsorbquotenumber \LWRabsorbnumber }\) \(\def \mathcode #1={\mathchar }\) \(\let \delcode \mathcode \) \(\let \delimiter \mathchar \) \(\def \oe {\unicode {x0153}}\) \(\def \OE {\unicode {x0152}}\) \(\def \ae {\unicode {x00E6}}\) \(\def \AE {\unicode {x00C6}}\) \(\def \aa {\unicode {x00E5}}\) \(\def \AA {\unicode {x00C5}}\) \(\def \o {\unicode {x00F8}}\) \(\def \O {\unicode {x00D8}}\) \(\def \l {\unicode {x0142}}\) \(\def \L {\unicode {x0141}}\) \(\def \ss {\unicode {x00DF}}\) \(\def \SS {\unicode {x1E9E}}\) \(\def \dag {\unicode {x2020}}\) \(\def \ddag {\unicode {x2021}}\) \(\def \P {\unicode {x00B6}}\) \(\def \copyright {\unicode {x00A9}}\) \(\def \pounds {\unicode {x00A3}}\) \(\let \LWRref \ref \) \(\renewcommand {\ref }{\ifstar \LWRref \LWRref }\) \( \newcommand {\multicolumn }[3]{#3}\) \(\require {textcomp}\) \(\newcommand {\intertext }[1]{\text {#1}\notag \\}\) \(\let \Hat \hat \) \(\let \Check \check \) \(\let \Tilde \tilde \) \(\let \Acute \acute \) \(\let \Grave \grave \) \(\let \Dot \dot \) \(\let \Ddot \ddot \) \(\let \Breve \breve \) \(\let \Bar \bar \) \(\let \Vec \vec \) \(\require {mathtools}\) \(\newcommand {\vcentcolon }{\mathrel {\unicode {x2236}}}\) \(\newcommand {\approxcolon }{\approx \vcentcolon }\) \(\newcommand {\Approxcolon }{\approx \dblcolon }\) \(\newcommand {\simcolon }{\sim \vcentcolon }\) \(\newcommand {\Simcolon }{\sim \dblcolon }\) \(\newcommand {\dashcolon }{\mathrel {-}\vcentcolon }\) \(\newcommand {\Dashcolon }{\mathrel {-}\dblcolon }\) \(\newcommand {\colondash }{\vcentcolon \mathrel {-}}\) \(\newcommand {\Colondash }{\dblcolon \mathrel {-}}\) \(\newenvironment {crampedsubarray}[1]{}{}\) \(\newcommand {\smashoperator }[2][]{#2\limits }\) \(\newcommand {\SwapAboveDisplaySkip }{}\) \(\newcommand {\LaTeXunderbrace }[1]{\underbrace {#1}}\) \(\newcommand {\LaTeXoverbrace }[1]{\overbrace {#1}}\) \(\Newextarrow \xLongleftarrow {10,10}{0x21D0}\) \(\Newextarrow \xLongrightarrow {10,10}{0x21D2}\) \(\let \xlongleftarrow \xleftarrow \) \(\let \xlongrightarrow \xrightarrow \) \(\newcommand {\LWRmultlined }[1][]{\begin {multline*}}\) \(\newenvironment {multlined}[1][]{\LWRmultlined }{\end {multline*}}\) \(\let \LWRorigshoveleft \shoveleft \) \(\renewcommand {\shoveleft }[1][]{\LWRorigshoveleft }\) \(\let \LWRorigshoveright \shoveright \) \(\renewcommand {\shoveright }[1][]{\LWRorigshoveright }\) \(\newcommand {\shortintertext }[1]{\text {#1}\notag \\}\) \(\newcommand {\bigzero }{\smash {\text {\huge 0}}}\) \(\newcommand {\am }{\mathrm {am}}\) \(\newcommand {\gm }{\mathrm {gm}}\) \(\newcommand {\id }{\operatorname {id}}\) \(\newcommand {\GL }{\operatorname {GL}}\) \(\newcommand {\im }{\operatorname {im}}\) \(\newcommand {\rank }{\operatorname {rank}}\) \(\newcommand {\sol }{\operatorname {sol}}\) \(\newcommand {\ann }{\operatorname {ann}}\) \(\newcommand {\rO }{\operatorname {O}}\) \(\newcommand {\rU }{\operatorname {U}}\) \(\newcommand {\rSU }{\operatorname {SU}}\) \(\newcommand {\ev }{\operatorname {ev}}\) \(\newcommand {\bil }{\operatorname {Bil}}\) \(\newcommand {\rad }{\operatorname {rad}}\) \(\newcommand {\Span }[1]{\operatorname {span}\{#1\}}\) \(\newcommand {\R }{\mathbb {R}}\) \(\newcommand {\C }{\mathbb {C}}\) \(\newcommand {\Z }{\mathbb {Z}}\) \(\newcommand {\F }{\mathbb {F}}\) \(\newcommand {\Q }{\mathbb {Q}}\) \(\newcommand {\N }{\mathbb {N}}\) \(\renewcommand {\P }{\mathbb {P}}\) \(\newcommand {\I }{\mathrm {I}}\) \(\newcommand {\half }{\tfrac 12}\) \(\newcommand {\rel }{\mathrel {\mathrm {rel}}}\) \(\renewcommand {\vec }[3]{(#1_{#2},\dots ,#1_{#3})}\) \(\newcommand {\lst }[3]{#1_{#2},\dots ,#1_{#3}}\) \(\newcommand {\plst }[3]{#1_{#2}+\dots +#1_{#3}}\) \(\newcommand {\oplst }[3]{#1_{#2}\oplus \dots \oplus #1_{#3}}\) \(\newcommand {\pplst }[3]{#1_{#2}\times \dots \times #1_{#3}}\) \(\newcommand {\dlst }[3]{\lst {#1^{*}}{#2}{#3}}\) \(\newcommand {\dlc }[4]{\lc #1{#2^{*}}#3#4}\) \(\newcommand {\hmg }[3]{[#1_{#2},\dots ,#1_{#3}]}\) \(\newcommand {\rng }[2]{#1,\dots ,#2}\) \(\newcommand {\lc }[4]{#1_{#3}#2_{#3}+\dots +#1_{#4}#2_{#4}}\) \(\newcommand {\plus }[2]{#1+\dots +#2}\) \(\newcommand {\set }[1]{\{#1\}}\) \(\newcommand {\abs }[1]{\lvert #1\rvert }\) \(\newcommand {\ip }[1]{\langle #1\rangle }\) \(\newcommand {\norm }[1]{\|#1\|}\) \(\newcommand {\bx }{\mathbf {x}}\) \(\newcommand {\be }{\mathbf {e}}\) \(\newcommand {\bq }{\mathbf {q}}\) \(\newcommand {\bu }{\mathbf {u}}\) \(\newcommand {\by }{\mathbf {y}}\) \(\newcommand {\bv }{\mathbf {v}}\) \(\newcommand {\E }{\mathbb {E}}\) \(\newcommand {\cI }{\mathcal {I}}\) \(\newcommand {\cB }{\mathcal {B}}\) \(\newcommand {\sub }{\subseteq }\) \(\newcommand {\st }{\mathrel {|}}\) \(\newcommand {\bw }[3]{#1\leq #2\leq #3}\) \(\newcommand {\col }[3]{(#1_{#2})_{#2\in #3}}\) \(\newcommand {\supp }{\mathrm {supp}}\) \(\newcommand {\restr }[1]{_{|#1}}\)

Chapter 2 Sums and quotients

We will discuss various ways of building new vector spaces out of old ones.

  • Convention. In this chapter, all vector spaces are over the same field \(\F \) unless we say otherwise.

2.1 Sums of subspaces

  • Definition. Let \(\lst {V}1k\leq V\). The sum \(\plst {V}1k\) is the set

    \begin{equation*} \plst {V}1k:=\set {\plst {v}1k\st v_i\in V_i, 1\leq i\leq k}. \end{equation*}

\(\plst {V}1k\) is the smallest subspace of \(V\) that contains each \(V_i\). More precisely:

  • Proposition 2.1. Let \(\lst {V}1k\leq V\). Then

    • (1) \(\plst {V}1k\leq V\).

    • (2) If \(W\leq V\) and \(\lst {V}1k\leq W\) then \(\lst {V}1k\leq \plst {V}1k\leq W\).

  • Proof. It suffices to prove (2) since (1) then follows by taking \(W=V\).

    For (2), first note that \(\plst {V}1k\) is a subset of \(W\): if \(v_i\in V_i\) then \(v_i\in W\) so that \(\plst {v}1k\in W\) since \(W\) is closed under addition.

    Now observe that each \(V_i\leq \plst {V}1k\) since we can write any \(v_i\in V_i\) as \(0+\dots +v_i+\dots +0\in \plst {V}1k\). In particular, \(0\in \plst {V}1k\).

    Finally, we show that \(\plst {V}1k\) is a subspace. If \(\plst {v}1k,\plst {w}1k\in \plst {V}1k\), with \(v_i,w_i\in V_i\), for all \(i\), and \(\lambda \in \F \) then

    \begin{equation*} (\plst {v}1k)+\lambda (\plst {w}1k)=\plus {(v_1+\lambda w_1)}{(v_k+\lambda w_k)}\in \plst {V}1k \end{equation*}

    since each \(v_i+\lambda w_i\in V_i\).

  • Remark. The union \(\bigcup _{i=1}^kV_{i}\) is almost never a subspace of \(V\) so we use sums as a substitute for unions in Linear Algebra.