\(\newcommand{\footnotename}{footnote}\)
\(\def \LWRfootnote {1}\)
\(\newcommand {\footnote }[2][\LWRfootnote ]{{}^{\mathrm {#1}}}\)
\(\newcommand {\footnotemark }[1][\LWRfootnote ]{{}^{\mathrm {#1}}}\)
\(\let \LWRorighspace \hspace \)
\(\renewcommand {\hspace }{\ifstar \LWRorighspace \LWRorighspace }\)
\(\newcommand {\mathnormal }[1]{{#1}}\)
\(\newcommand \ensuremath [1]{#1}\)
\(\newcommand {\LWRframebox }[2][]{\fbox {#2}} \newcommand {\framebox }[1][]{\LWRframebox } \)
\(\newcommand {\setlength }[2]{}\)
\(\newcommand {\addtolength }[2]{}\)
\(\newcommand {\setcounter }[2]{}\)
\(\newcommand {\addtocounter }[2]{}\)
\(\newcommand {\arabic }[1]{}\)
\(\newcommand {\number }[1]{}\)
\(\newcommand {\noalign }[1]{\text {#1}\notag \\}\)
\(\newcommand {\cline }[1]{}\)
\(\newcommand {\directlua }[1]{\text {(directlua)}}\)
\(\newcommand {\luatexdirectlua }[1]{\text {(directlua)}}\)
\(\newcommand {\protect }{}\)
\(\def \LWRabsorbnumber #1 {}\)
\(\def \LWRabsorbquotenumber "#1 {}\)
\(\newcommand {\LWRabsorboption }[1][]{}\)
\(\newcommand {\LWRabsorbtwooptions }[1][]{\LWRabsorboption }\)
\(\def \mathchar {\ifnextchar "\LWRabsorbquotenumber \LWRabsorbnumber }\)
\(\def \mathcode #1={\mathchar }\)
\(\let \delcode \mathcode \)
\(\let \delimiter \mathchar \)
\(\def \oe {\unicode {x0153}}\)
\(\def \OE {\unicode {x0152}}\)
\(\def \ae {\unicode {x00E6}}\)
\(\def \AE {\unicode {x00C6}}\)
\(\def \aa {\unicode {x00E5}}\)
\(\def \AA {\unicode {x00C5}}\)
\(\def \o {\unicode {x00F8}}\)
\(\def \O {\unicode {x00D8}}\)
\(\def \l {\unicode {x0142}}\)
\(\def \L {\unicode {x0141}}\)
\(\def \ss {\unicode {x00DF}}\)
\(\def \SS {\unicode {x1E9E}}\)
\(\def \dag {\unicode {x2020}}\)
\(\def \ddag {\unicode {x2021}}\)
\(\def \P {\unicode {x00B6}}\)
\(\def \copyright {\unicode {x00A9}}\)
\(\def \pounds {\unicode {x00A3}}\)
\(\let \LWRref \ref \)
\(\renewcommand {\ref }{\ifstar \LWRref \LWRref }\)
\( \newcommand {\multicolumn }[3]{#3}\)
\(\require {textcomp}\)
\(\newcommand {\intertext }[1]{\text {#1}\notag \\}\)
\(\let \Hat \hat \)
\(\let \Check \check \)
\(\let \Tilde \tilde \)
\(\let \Acute \acute \)
\(\let \Grave \grave \)
\(\let \Dot \dot \)
\(\let \Ddot \ddot \)
\(\let \Breve \breve \)
\(\let \Bar \bar \)
\(\let \Vec \vec \)
\(\require {mathtools}\)
\(\newenvironment {crampedsubarray}[1]{}{}\)
\(\newcommand {\smashoperator }[2][]{#2\limits }\)
\(\newcommand {\SwapAboveDisplaySkip }{}\)
\(\newcommand {\LaTeXunderbrace }[1]{\underbrace {#1}}\)
\(\newcommand {\LaTeXoverbrace }[1]{\overbrace {#1}}\)
\(\newcommand {\LWRmultlined }[1][]{\begin {multline*}}\)
\(\newenvironment {multlined}[1][]{\LWRmultlined }{\end {multline*}}\)
\(\let \LWRorigshoveleft \shoveleft \)
\(\renewcommand {\shoveleft }[1][]{\LWRorigshoveleft }\)
\(\let \LWRorigshoveright \shoveright \)
\(\renewcommand {\shoveright }[1][]{\LWRorigshoveright }\)
\(\newcommand {\shortintertext }[1]{\text {#1}\notag \\}\)
\(\newcommand {\vcentcolon }{\mathrel {\unicode {x2236}}}\)
\(\newcommand {\bigzero }{\smash {\text {\huge 0}}}\)
\(\newcommand {\am }{\mathrm {am}}\)
\(\newcommand {\gm }{\mathrm {gm}}\)
\(\newcommand {\id }{\operatorname {id}}\)
\(\newcommand {\GL }{\operatorname {GL}}\)
\(\newcommand {\im }{\operatorname {im}}\)
\(\newcommand {\rank }{\operatorname {rank}}\)
\(\newcommand {\sol }{\operatorname {sol}}\)
\(\newcommand {\ann }{\operatorname {ann}}\)
\(\newcommand {\rO }{\operatorname {O}}\)
\(\newcommand {\rU }{\operatorname {U}}\)
\(\newcommand {\rSU }{\operatorname {SU}}\)
\(\newcommand {\ev }{\operatorname {ev}}\)
\(\newcommand {\bil }{\operatorname {Bil}}\)
\(\newcommand {\rad }{\operatorname {rad}}\)
\(\newcommand {\Span }[1]{\operatorname {span}\{#1\}}\)
\(\newcommand {\R }{\mathbb {R}}\)
\(\newcommand {\C }{\mathbb {C}}\)
\(\newcommand {\Z }{\mathbb {Z}}\)
\(\newcommand {\F }{\mathbb {F}}\)
\(\newcommand {\Q }{\mathbb {Q}}\)
\(\newcommand {\N }{\mathbb {N}}\)
\(\renewcommand {\P }{\mathbb {P}}\)
\(\newcommand {\I }{\mathrm {I}}\)
\(\newcommand {\half }{\tfrac 12}\)
\(\newcommand {\rel }{\mathrel {\mathrm {rel}}}\)
\(\renewcommand {\vec }[3]{(#1_{#2},\dots ,#1_{#3})}\)
\(\newcommand {\lst }[3]{#1_{#2},\dots ,#1_{#3}}\)
\(\newcommand {\plst }[3]{#1_{#2}+\dots +#1_{#3}}\)
\(\newcommand {\oplst }[3]{#1_{#2}\oplus \dots \oplus #1_{#3}}\)
\(\newcommand {\pplst }[3]{#1_{#2}\times \dots \times #1_{#3}}\)
\(\newcommand {\dlst }[3]{\lst {#1^{*}}{#2}{#3}}\)
\(\newcommand {\dlc }[4]{\lc #1{#2^{*}}#3#4}\)
\(\newcommand {\hmg }[3]{[#1_{#2},\dots ,#1_{#3}]}\)
\(\newcommand {\rng }[2]{#1,\dots ,#2}\)
\(\newcommand {\lc }[4]{#1_{#3}#2_{#3}+\dots +#1_{#4}#2_{#4}}\)
\(\newcommand {\plus }[2]{#1+\dots +#2}\)
\(\newcommand {\set }[1]{\{#1\}}\)
\(\newcommand {\abs }[1]{\lvert #1\rvert }\)
\(\newcommand {\ip }[1]{\langle #1\rangle }\)
\(\newcommand {\norm }[1]{\|#1\|}\)
\(\newcommand {\bx }{\mathbf {x}}\)
\(\newcommand {\be }{\mathbf {e}}\)
\(\newcommand {\bq }{\mathbf {q}}\)
\(\newcommand {\bu }{\mathbf {u}}\)
\(\newcommand {\by }{\mathbf {y}}\)
\(\newcommand {\bv }{\mathbf {v}}\)
\(\newcommand {\E }{\mathbb {E}}\)
\(\newcommand {\cI }{\mathcal {I}}\)
\(\newcommand {\cB }{\mathcal {B}}\)
\(\newcommand {\sub }{\subseteq }\)
\(\newcommand {\st }{\mathrel {|}}\)
\(\newcommand {\bw }[3]{#1\leq #2\leq #3}\)
\(\newcommand {\col }[3]{(#1_{#2})_{#2\in #3}}\)
\(\newcommand {\supp }{\mathrm {supp}}\)
\(\newcommand {\restr }[1]{_{|#1}}\)
Chapter 5 Symmetric bilinear forms and quadratic forms
We give describe a generalisation of real inner products to vectors spaces \(V\) over an arbitrary field \(\F \) and use this to study the simplest non-linear functions on \(V\).
5.1 Bilinear forms and matrices
-
Definition. Let \(V\) be a vector space over a field \(\F \). A map \(B:V\times V\to \F \) is bilinear if it is linear in each slot separately:
\(\seteqnumber{0}{5.}{0}\)
\begin{align*}
B(\lambda v_1+v_2,v)&=\lambda B(v_1,v)+B(v_2,v)\\ B(v,\lambda v_1+v_2)&=\lambda B(v,v_1)+B(v,v_2),
\end{align*}
for all \(v,v_1,v_2\in V\), \(v,v_1,v_2\in V\) and \(\lambda \in \F \).
A bilinear map \(V\times V\to \F \) is called a bilinear form on \(V\).
-
. A bilinear form \(B:V\times V\to \F \) has \(B(v,0)=B(0,v)=0\), for all \(v\in V\). Indeed,
\(\seteqnumber{0}{5.}{0}\)
\begin{equation*}
B(v,0)=B(v,0+0)=B(v,0)+B(v,0)
\end{equation*}
and similarly for \(B(0,v)\).
-
Examples.
-
-
(1) Any real inner product is a bilinear form (what goes wrong for complex inner products?).
-
(2) Let \(A\in M_{n}(\F )\) and define a bilinear form \(B_A:\F ^n\times \F ^n\to \F \) by
\(\seteqnumber{0}{5.}{0}\)
\begin{equation*}
B_A(x,y)=\bx ^TA\by .
\end{equation*}
This gives us a new use for matrices.
There is a converse to this last example:
-
Definition. Let \(V\) be a vector space over \(\F \) with basis \(\cB =\lst {v}1n\) and let \(B:V\times V\to \F \) be a bilinear form. The matrix of \(B\) with respect to \(\cB \) is \(A\in M_{n}(\F )\) given
by
\(\seteqnumber{0}{5.}{0}\)
\begin{equation*}
A_{ij}=B(v_i,v_j),
\end{equation*}
for \(\bw 1{i,j}n\).
The matrix \(A\) along with \(\cB \) tells the whole story:
-
Proposition 5.1. Let \(B:V\times V\to \F \) be a bilinear form with matrix \(A\) with respect to \(\cB =\lst {v}1n\). Then
\(B\) is completely determined by \(A\): if \(v=\sum _{i=1}^nx_iv_i\) and \(w=\sum _{j=1}^ny_jv_j\) then
\(\seteqnumber{0}{5.}{0}\)
\begin{equation*}
B(v,w)=\sum _{i,j=1}^nx_iy_jA_{ij}=\bx ^TA\by .
\end{equation*}
-
Proof. We simply expand out using the bilinearity of \(B\):
\(\seteqnumber{0}{5.}{0}\)
\begin{equation*}
B(v,w)=\sum _{i,j=1}^nx_iy_jB(v_i,v_j)=\sum _{i,j=1}^nx_iy_jA_{ij}.
\end{equation*}
□
How does \(A\) change when we change basis of \(V\)?
-
Proposition 5.2. Let \(B:V\times V\to \F \) be a bilinear form with matrices \(A\) and \(A'\) with respect to bases \(\cB
:\lst {v}1n\) and \(\cB ':\lst {v'}1n\) of \(V\). Then
\(\seteqnumber{0}{5.}{0}\)
\begin{equation*}
A'=P^TAP
\end{equation*}
where \(P\) is the change of basis matrix1from \(\cB \) to \(\cB '\): thus \(v'_j=\sum _{i=1}^nP_{ij}v_i\), for \(\bw 1jn\).
-
Proof. Using the bilinearity to expand things out, we compute:
\(\seteqnumber{0}{5.}{0}\)
\begin{multline*}
A'_{ij}=B(v'_i,v'_j)=B(\sum _kP_{ki}v_k,\sum _hP_{hj}v_{h})\\ =\sum _{k,h}P_{ki}B(v_k,v_h)P_{hj}=\sum _{k,h}(P^T)_{ik}A_{kh}P_{hj}=(P^TAP)_{ij}.
\end{multline*}
□
This prompts:
-
Definition. We say that matrices \(A,B\in M_n(\F )\) are congruent if there is \(P\in \GL (n,\F )\) such that
\(\seteqnumber{0}{5.}{0}\)
\begin{equation*}
B=P^TAP.
\end{equation*}