\(\newcommand{\footnotename}{footnote}\) \(\def \LWRfootnote {1}\) \(\newcommand {\footnote }[2][\LWRfootnote ]{{}^{\mathrm {#1}}}\) \(\newcommand {\footnotemark }[1][\LWRfootnote ]{{}^{\mathrm {#1}}}\) \(\let \LWRorighspace \hspace \) \(\renewcommand {\hspace }{\ifstar \LWRorighspace \LWRorighspace }\) \(\newcommand {\TextOrMath }[2]{#2}\) \(\newcommand {\mathnormal }[1]{{#1}}\) \(\newcommand \ensuremath [1]{#1}\) \(\newcommand {\LWRframebox }[2][]{\fbox {#2}} \newcommand {\framebox }[1][]{\LWRframebox } \) \(\newcommand {\setlength }[2]{}\) \(\newcommand {\addtolength }[2]{}\) \(\newcommand {\setcounter }[2]{}\) \(\newcommand {\addtocounter }[2]{}\) \(\newcommand {\arabic }[1]{}\) \(\newcommand {\number }[1]{}\) \(\newcommand {\noalign }[1]{\text {#1}\notag \\}\) \(\newcommand {\cline }[1]{}\) \(\newcommand {\directlua }[1]{\text {(directlua)}}\) \(\newcommand {\luatexdirectlua }[1]{\text {(directlua)}}\) \(\newcommand {\protect }{}\) \(\def \LWRabsorbnumber #1 {}\) \(\def \LWRabsorbquotenumber "#1 {}\) \(\newcommand {\LWRabsorboption }[1][]{}\) \(\newcommand {\LWRabsorbtwooptions }[1][]{\LWRabsorboption }\) \(\def \mathchar {\ifnextchar "\LWRabsorbquotenumber \LWRabsorbnumber }\) \(\def \mathcode #1={\mathchar }\) \(\let \delcode \mathcode \) \(\let \delimiter \mathchar \) \(\def \oe {\unicode {x0153}}\) \(\def \OE {\unicode {x0152}}\) \(\def \ae {\unicode {x00E6}}\) \(\def \AE {\unicode {x00C6}}\) \(\def \aa {\unicode {x00E5}}\) \(\def \AA {\unicode {x00C5}}\) \(\def \o {\unicode {x00F8}}\) \(\def \O {\unicode {x00D8}}\) \(\def \l {\unicode {x0142}}\) \(\def \L {\unicode {x0141}}\) \(\def \ss {\unicode {x00DF}}\) \(\def \SS {\unicode {x1E9E}}\) \(\def \dag {\unicode {x2020}}\) \(\def \ddag {\unicode {x2021}}\) \(\def \P {\unicode {x00B6}}\) \(\def \copyright {\unicode {x00A9}}\) \(\def \pounds {\unicode {x00A3}}\) \(\let \LWRref \ref \) \(\renewcommand {\ref }{\ifstar \LWRref \LWRref }\) \( \newcommand {\multicolumn }[3]{#3}\) \(\require {textcomp}\) \(\newcommand {\intertext }[1]{\text {#1}\notag \\}\) \(\let \Hat \hat \) \(\let \Check \check \) \(\let \Tilde \tilde \) \(\let \Acute \acute \) \(\let \Grave \grave \) \(\let \Dot \dot \) \(\let \Ddot \ddot \) \(\let \Breve \breve \) \(\let \Bar \bar \) \(\let \Vec \vec \) \(\require {mathtools}\) \(\newcommand {\vcentcolon }{\mathrel {\unicode {x2236}}}\) \(\newcommand {\approxcolon }{\approx \vcentcolon }\) \(\newcommand {\Approxcolon }{\approx \dblcolon }\) \(\newcommand {\simcolon }{\sim \vcentcolon }\) \(\newcommand {\Simcolon }{\sim \dblcolon }\) \(\newcommand {\dashcolon }{\mathrel {-}\vcentcolon }\) \(\newcommand {\Dashcolon }{\mathrel {-}\dblcolon }\) \(\newcommand {\colondash }{\vcentcolon \mathrel {-}}\) \(\newcommand {\Colondash }{\dblcolon \mathrel {-}}\) \(\newenvironment {crampedsubarray}[1]{}{}\) \(\newcommand {\smashoperator }[2][]{#2\limits }\) \(\newcommand {\SwapAboveDisplaySkip }{}\) \(\newcommand {\LaTeXunderbrace }[1]{\underbrace {#1}}\) \(\newcommand {\LaTeXoverbrace }[1]{\overbrace {#1}}\) \(\Newextarrow \xLongleftarrow {10,10}{0x21D0}\) \(\Newextarrow \xLongrightarrow {10,10}{0x21D2}\) \(\let \xlongleftarrow \xleftarrow \) \(\let \xlongrightarrow \xrightarrow \) \(\newcommand {\LWRmultlined }[1][]{\begin {multline*}}\) \(\newenvironment {multlined}[1][]{\LWRmultlined }{\end {multline*}}\) \(\let \LWRorigshoveleft \shoveleft \) \(\renewcommand {\shoveleft }[1][]{\LWRorigshoveleft }\) \(\let \LWRorigshoveright \shoveright \) \(\renewcommand {\shoveright }[1][]{\LWRorigshoveright }\) \(\newcommand {\shortintertext }[1]{\text {#1}\notag \\}\) \(\newcommand {\bigzero }{\smash {\text {\huge 0}}}\) \(\newcommand {\am }{\mathrm {am}}\) \(\newcommand {\gm }{\mathrm {gm}}\) \(\newcommand {\id }{\operatorname {id}}\) \(\newcommand {\GL }{\operatorname {GL}}\) \(\newcommand {\im }{\operatorname {im}}\) \(\newcommand {\rank }{\operatorname {rank}}\) \(\newcommand {\sol }{\operatorname {sol}}\) \(\newcommand {\ann }{\operatorname {ann}}\) \(\newcommand {\rO }{\operatorname {O}}\) \(\newcommand {\rU }{\operatorname {U}}\) \(\newcommand {\rSU }{\operatorname {SU}}\) \(\newcommand {\ev }{\operatorname {ev}}\) \(\newcommand {\bil }{\operatorname {Bil}}\) \(\newcommand {\rad }{\operatorname {rad}}\) \(\newcommand {\Span }[1]{\operatorname {span}\{#1\}}\) \(\newcommand {\R }{\mathbb {R}}\) \(\newcommand {\C }{\mathbb {C}}\) \(\newcommand {\Z }{\mathbb {Z}}\) \(\newcommand {\F }{\mathbb {F}}\) \(\newcommand {\Q }{\mathbb {Q}}\) \(\newcommand {\N }{\mathbb {N}}\) \(\renewcommand {\P }{\mathbb {P}}\) \(\newcommand {\I }{\mathrm {I}}\) \(\newcommand {\half }{\tfrac 12}\) \(\newcommand {\rel }{\mathrel {\mathrm {rel}}}\) \(\renewcommand {\vec }[3]{(#1_{#2},\dots ,#1_{#3})}\) \(\newcommand {\lst }[3]{#1_{#2},\dots ,#1_{#3}}\) \(\newcommand {\plst }[3]{#1_{#2}+\dots +#1_{#3}}\) \(\newcommand {\oplst }[3]{#1_{#2}\oplus \dots \oplus #1_{#3}}\) \(\newcommand {\pplst }[3]{#1_{#2}\times \dots \times #1_{#3}}\) \(\newcommand {\dlst }[3]{\lst {#1^{*}}{#2}{#3}}\) \(\newcommand {\dlc }[4]{\lc #1{#2^{*}}#3#4}\) \(\newcommand {\hmg }[3]{[#1_{#2},\dots ,#1_{#3}]}\) \(\newcommand {\rng }[2]{#1,\dots ,#2}\) \(\newcommand {\lc }[4]{#1_{#3}#2_{#3}+\dots +#1_{#4}#2_{#4}}\) \(\newcommand {\plus }[2]{#1+\dots +#2}\) \(\newcommand {\set }[1]{\{#1\}}\) \(\newcommand {\abs }[1]{\lvert #1\rvert }\) \(\newcommand {\ip }[1]{\langle #1\rangle }\) \(\newcommand {\norm }[1]{\|#1\|}\) \(\newcommand {\bx }{\mathbf {x}}\) \(\newcommand {\be }{\mathbf {e}}\) \(\newcommand {\bq }{\mathbf {q}}\) \(\newcommand {\bu }{\mathbf {u}}\) \(\newcommand {\by }{\mathbf {y}}\) \(\newcommand {\bv }{\mathbf {v}}\) \(\newcommand {\E }{\mathbb {E}}\) \(\newcommand {\cI }{\mathcal {I}}\) \(\newcommand {\cB }{\mathcal {B}}\) \(\newcommand {\sub }{\subseteq }\) \(\newcommand {\st }{\mathrel {|}}\) \(\newcommand {\bw }[3]{#1\leq #2\leq #3}\) \(\newcommand {\col }[3]{(#1_{#2})_{#2\in #3}}\) \(\newcommand {\supp }{\mathrm {supp}}\) \(\newcommand {\restr }[1]{_{|#1}}\)

Chapter 1 Linear algebra: key concepts

Let us warm up by revising some of the key ideas from Algebra 1B.

1.1 Vector spaces

Recall from Algebra 1B, §1.1:

  • Definition. A vector space \(V\) over a field \(\F \) is a set \(V\) with two operations:

    addition

    \(V\times V\to V: (v,w)\mapsto v+w\) such that:

    • \(v+w=w+v\), for all \(v,w\in V\);

    • \(u+(v+w)=(u+v)+w\), for all \(u,v,w\in V\);

    • there is a zero element \(0\in V\) for which \(v+0=v=0+v\), for all \(v\in V\);

    • each element \(v\in V\) has an additive inverse \(-v\in V\) for which \(v+(-v)=0=(-v)+v\).

    In fancy language, \(V\) with addition is an abelian group.

    scalar multiplication

    \(\F \times V\to V: (\lambda ,v)\mapsto \lambda v\) such that

    • \((\lambda +\mu )v=\lambda v+\mu v\), for all \(v\in V\), \(\lambda ,\mu \in \F \).

    • \(\lambda (v+w)=\lambda v+\lambda w\), for all \(v,w\in V\), \(\lambda \in \F \).

    • \((\lambda \mu )v=\lambda (\mu v)\), for all \(v\in V\), \(\lambda ,\mu \in \F \).

    • \(1v=v\), for all \(v\in V\).

    We call the elements of \(\F \) scalars and those of \(V\) vectors.

  • Examples.

    • (1) Take \(V=\F \), the field itself, with addition and scalar multiplication the field addition and multiplication.

    • (2) \(\F ^n\), the \(n\)-fold Cartesian product of \(\F \) with itself, with component-wise addition and scalar multiplication:

      \begin{align*} \vec \lambda 1n+\vec \mu 1n&:=(\lambda _1+\mu _1,\dots ,\lambda _n+\mu _n)\\ \lambda \vec \lambda 1n&:=\vec {\lambda \lambda }1n. \end{align*}

    • (3) Let \(M_{m\times n}(\F )\) denote the set of \(m\) by \(n\) matrices (thus \(m\) rows and \(n\) columns) with entries in \(\F \). This is a vector space under entry-wise addition and scalar multiplication.

      Special cases are the vector spaces of column vectors \(M_{n\times 1}(\F )\) and row vectors \(M_{1\times n}(\F )\). In computations, we often identify \(\F ^n\) with \(M_{n\times 1}(\F )\) by associating \(x=\vec {x}1n\in \F ^{n}\) with the column vector

      \begin{equation*} \bx = \begin{pmatrix} x_1\\\vdots \\x_n \end {pmatrix}. \end{equation*}