\(\newcommand{\footnotename}{footnote}\) \(\def \LWRfootnote {1}\) \(\newcommand {\footnote }[2][\LWRfootnote ]{{}^{\mathrm {#1}}}\) \(\newcommand {\footnotemark }[1][\LWRfootnote ]{{}^{\mathrm {#1}}}\) \(\let \LWRorighspace \hspace \) \(\renewcommand {\hspace }{\ifstar \LWRorighspace \LWRorighspace }\) \(\newcommand {\TextOrMath }[2]{#2}\) \(\newcommand {\mathnormal }[1]{{#1}}\) \(\newcommand \ensuremath [1]{#1}\) \(\newcommand {\LWRframebox }[2][]{\fbox {#2}} \newcommand {\framebox }[1][]{\LWRframebox } \) \(\newcommand {\setlength }[2]{}\) \(\newcommand {\addtolength }[2]{}\) \(\newcommand {\setcounter }[2]{}\) \(\newcommand {\addtocounter }[2]{}\) \(\newcommand {\arabic }[1]{}\) \(\newcommand {\number }[1]{}\) \(\newcommand {\noalign }[1]{\text {#1}\notag \\}\) \(\newcommand {\cline }[1]{}\) \(\newcommand {\directlua }[1]{\text {(directlua)}}\) \(\newcommand {\luatexdirectlua }[1]{\text {(directlua)}}\) \(\newcommand {\protect }{}\) \(\def \LWRabsorbnumber #1 {}\) \(\def \LWRabsorbquotenumber "#1 {}\) \(\newcommand {\LWRabsorboption }[1][]{}\) \(\newcommand {\LWRabsorbtwooptions }[1][]{\LWRabsorboption }\) \(\def \mathchar {\ifnextchar "\LWRabsorbquotenumber \LWRabsorbnumber }\) \(\def \mathcode #1={\mathchar }\) \(\let \delcode \mathcode \) \(\let \delimiter \mathchar \) \(\def \oe {\unicode {x0153}}\) \(\def \OE {\unicode {x0152}}\) \(\def \ae {\unicode {x00E6}}\) \(\def \AE {\unicode {x00C6}}\) \(\def \aa {\unicode {x00E5}}\) \(\def \AA {\unicode {x00C5}}\) \(\def \o {\unicode {x00F8}}\) \(\def \O {\unicode {x00D8}}\) \(\def \l {\unicode {x0142}}\) \(\def \L {\unicode {x0141}}\) \(\def \ss {\unicode {x00DF}}\) \(\def \SS {\unicode {x1E9E}}\) \(\def \dag {\unicode {x2020}}\) \(\def \ddag {\unicode {x2021}}\) \(\def \P {\unicode {x00B6}}\) \(\def \copyright {\unicode {x00A9}}\) \(\def \pounds {\unicode {x00A3}}\) \(\let \LWRref \ref \) \(\renewcommand {\ref }{\ifstar \LWRref \LWRref }\) \( \newcommand {\multicolumn }[3]{#3}\) \(\require {textcomp}\) \(\newcommand {\intertext }[1]{\text {#1}\notag \\}\) \(\let \Hat \hat \) \(\let \Check \check \) \(\let \Tilde \tilde \) \(\let \Acute \acute \) \(\let \Grave \grave \) \(\let \Dot \dot \) \(\let \Ddot \ddot \) \(\let \Breve \breve \) \(\let \Bar \bar \) \(\let \Vec \vec \) \(\require {mathtools}\) \(\newcommand {\vcentcolon }{\mathrel {\unicode {x2236}}}\) \(\newcommand {\approxcolon }{\approx \vcentcolon }\) \(\newcommand {\Approxcolon }{\approx \dblcolon }\) \(\newcommand {\simcolon }{\sim \vcentcolon }\) \(\newcommand {\Simcolon }{\sim \dblcolon }\) \(\newcommand {\dashcolon }{\mathrel {-}\vcentcolon }\) \(\newcommand {\Dashcolon }{\mathrel {-}\dblcolon }\) \(\newcommand {\colondash }{\vcentcolon \mathrel {-}}\) \(\newcommand {\Colondash }{\dblcolon \mathrel {-}}\) \(\newenvironment {crampedsubarray}[1]{}{}\) \(\newcommand {\smashoperator }[2][]{#2\limits }\) \(\newcommand {\SwapAboveDisplaySkip }{}\) \(\newcommand {\LaTeXunderbrace }[1]{\underbrace {#1}}\) \(\newcommand {\LaTeXoverbrace }[1]{\overbrace {#1}}\) \(\Newextarrow \xLongleftarrow {10,10}{0x21D0}\) \(\Newextarrow \xLongrightarrow {10,10}{0x21D2}\) \(\let \xlongleftarrow \xleftarrow \) \(\let \xlongrightarrow \xrightarrow \) \(\newcommand {\LWRmultlined }[1][]{\begin {multline*}}\) \(\newenvironment {multlined}[1][]{\LWRmultlined }{\end {multline*}}\) \(\let \LWRorigshoveleft \shoveleft \) \(\renewcommand {\shoveleft }[1][]{\LWRorigshoveleft }\) \(\let \LWRorigshoveright \shoveright \) \(\renewcommand {\shoveright }[1][]{\LWRorigshoveright }\) \(\newcommand {\shortintertext }[1]{\text {#1}\notag \\}\) \(\newcommand {\bigzero }{\smash {\text {\huge 0}}}\) \(\newcommand {\am }{\mathrm {am}}\) \(\newcommand {\gm }{\mathrm {gm}}\) \(\newcommand {\id }{\operatorname {id}}\) \(\newcommand {\GL }{\operatorname {GL}}\) \(\newcommand {\im }{\operatorname {im}}\) \(\newcommand {\rank }{\operatorname {rank}}\) \(\newcommand {\sol }{\operatorname {sol}}\) \(\newcommand {\ann }{\operatorname {ann}}\) \(\newcommand {\rO }{\operatorname {O}}\) \(\newcommand {\rU }{\operatorname {U}}\) \(\newcommand {\rSU }{\operatorname {SU}}\) \(\newcommand {\ev }{\operatorname {ev}}\) \(\newcommand {\bil }{\operatorname {Bil}}\) \(\newcommand {\rad }{\operatorname {rad}}\) \(\newcommand {\Span }[1]{\operatorname {span}\{#1\}}\) \(\newcommand {\R }{\mathbb {R}}\) \(\newcommand {\C }{\mathbb {C}}\) \(\newcommand {\Z }{\mathbb {Z}}\) \(\newcommand {\F }{\mathbb {F}}\) \(\newcommand {\Q }{\mathbb {Q}}\) \(\newcommand {\N }{\mathbb {N}}\) \(\renewcommand {\P }{\mathbb {P}}\) \(\newcommand {\I }{\mathrm {I}}\) \(\newcommand {\half }{\tfrac 12}\) \(\newcommand {\rel }{\mathrel {\mathrm {rel}}}\) \(\renewcommand {\vec }[3]{(#1_{#2},\dots ,#1_{#3})}\) \(\newcommand {\lst }[3]{#1_{#2},\dots ,#1_{#3}}\) \(\newcommand {\plst }[3]{#1_{#2}+\dots +#1_{#3}}\) \(\newcommand {\oplst }[3]{#1_{#2}\oplus \dots \oplus #1_{#3}}\) \(\newcommand {\pplst }[3]{#1_{#2}\times \dots \times #1_{#3}}\) \(\newcommand {\dlst }[3]{\lst {#1^{*}}{#2}{#3}}\) \(\newcommand {\dlc }[4]{\lc #1{#2^{*}}#3#4}\) \(\newcommand {\hmg }[3]{[#1_{#2},\dots ,#1_{#3}]}\) \(\newcommand {\rng }[2]{#1,\dots ,#2}\) \(\newcommand {\lc }[4]{#1_{#3}#2_{#3}+\dots +#1_{#4}#2_{#4}}\) \(\newcommand {\plus }[2]{#1+\dots +#2}\) \(\newcommand {\set }[1]{\{#1\}}\) \(\newcommand {\abs }[1]{\lvert #1\rvert }\) \(\newcommand {\ip }[1]{\langle #1\rangle }\) \(\newcommand {\norm }[1]{\|#1\|}\) \(\newcommand {\bx }{\mathbf {x}}\) \(\newcommand {\be }{\mathbf {e}}\) \(\newcommand {\bq }{\mathbf {q}}\) \(\newcommand {\bu }{\mathbf {u}}\) \(\newcommand {\by }{\mathbf {y}}\) \(\newcommand {\bv }{\mathbf {v}}\) \(\newcommand {\E }{\mathbb {E}}\) \(\newcommand {\cI }{\mathcal {I}}\) \(\newcommand {\cB }{\mathcal {B}}\) \(\newcommand {\sub }{\subseteq }\) \(\newcommand {\st }{\mathrel {|}}\) \(\newcommand {\bw }[3]{#1\leq #2\leq #3}\) \(\newcommand {\col }[3]{(#1_{#2})_{#2\in #3}}\) \(\newcommand {\supp }{\mathrm {supp}}\) \(\newcommand {\restr }[1]{_{|#1}}\)

4.3 Jordan decomposition

4.3.1 Powers of operators and Fitting’s Lemma
  • Proposition 4.6 (Increasing kernels, decreasing images). Let \(V\) be a vector space over a field \(\F \) and \(\phi \in L(V)\). Then

    • (1) \(\ker \phi ^k\leq \ker \phi ^{k+1}\), for all \(k\in \N \). That is,

      \begin{equation*} \set {0}=\ker \phi ^0\leq \ker \phi \leq \ker \phi ^2\leq \dots . \end{equation*}

      If \(\ker \phi ^k=\ker \phi ^{k+1}\) then \(\ker \phi ^k=\ker \phi ^{k+n}\), for all \(n\in \N \).

    • (2) \(\im \phi ^k\geq \im \phi ^{k+1}\), for all \(k\in \N \). That is,

      \begin{equation*} V=\im \phi ^0\geq \im \phi \geq \im \phi ^2\geq \dots . \end{equation*}

      If \(\im \phi ^k=\im \phi ^{k+1}\) then \(\im \phi ^k=\im \phi ^{k+n}\), for all \(n\in \N \).

  • Proof. We prove (1) and leave (2) as an exercise5.

    If \(v\in \ker \phi ^k\) then \(\phi ^k(v)=0\) so that \(\phi ^{k+1}(v)=\phi (\phi ^k(v))=\phi (0)=0\). Thus \(v\in \ker \phi ^{k+1}\) as required.

    Now suppose that \(\ker \phi ^k=\ker \phi ^{k+1}\) and induct to prove that \(\ker \phi ^k=\ker \phi ^{k+n}\), for \(n\in \N \). We already have the \(n=1\) case by assumption so suppose \(\ker \phi ^k=\ker \phi ^{k+n}\), for some \(n\) and let \(v\in \ker \phi ^{k+n+1}\). Then

    \begin{equation*} 0=\phi ^{k+n+1}(v)=\phi ^{k+1}(\phi ^n(v)) \end{equation*}

    so that \(\phi ^n(v)\in \ker \phi ^{k+1}=\ker \phi ^k\). Thus \(\phi ^{n+k}(v)=0\) and \(v\in \ker \phi ^{n+k}=\ker \phi ^k\) by the induction hypothesis. Induction now tells us that \(\ker \phi ^k=\ker \phi ^{k+n}\), for all \(n\in \N \).

5 Question 5 on exercise sheet 4.

  • Corollary 4.7. Let \(V\) be finite-dimensional with \(\dim V=n\) and \(\phi \in L(V)\). Then, for all \(k\in \N \),

    \begin{align*} \ker \phi ^n&=\ker \phi ^{n+k}\\ \im \phi ^n&=\im \phi ^{n+k}. \end{align*}

  • Proof. By Theorem 4.6, we need to prove \(\ker \phi ^n=\ker \phi ^{n+1}\) and \(\im \phi ^n=\im \phi ^{n+1}\).

    If \(\ker \phi ^n\neq \ker \phi ^{n+1}\) then, by Theorem 4.6, we have subspaces

    \begin{equation*} \set {0}\lneqq \ker \phi \lneqq \dots \lneqq \ker \phi ^{n+1} \end{equation*}

    of strictly increasing dimension so that \(\dim \ker \phi ^{n+1}\geq n+1>\dim V\): a contradiction. Thus \(\ker \phi ^n=\ker \phi ^{n+1}\).

    Rank-nullity now tells us that \(\dim \im \phi ^{n}=\dim \im \phi ^{n+1}\) whence \(\im \phi ^n=\im \phi ^{n+1}\) also.

  • Theorem 4.8 (Fitting6’s Lemma). Let \(\phi \in L(V)\) be a linear operator on a finite-dimensional vector space over a field \(\F \). Then, with \(n=\dim V\), we have

    \begin{equation*} V=\ker \phi ^n\oplus \im \phi ^n. \end{equation*}

6 Hans Fitting, 1906–1938.

  • Proof. From Theorem 4.7, we know that \(\ker \phi ^n=\ker \phi ^{n+k}\), \(\im \phi ^n=\im \phi ^{n+k}\), for all \(k\in \N \).

    We start by proving that \(\ker \phi ^n\cap \im \phi ^n=\set 0\). For this, let \(v\in \ker \phi ^n\cap \im \phi ^n\) so that \(\phi ^n(v)=0\) and there is \(w\in V\) such that \(v=\phi ^n(w)\). Then \(0=\phi ^n(v)=\phi ^{2n}(w)\) so that \(w\in \ker \phi ^{2n}=\ker \phi ^n\). Thus \(v=\phi ^n(w)=0\) as required.

    It follows that \(V\geq \ker \phi ^n\oplus \im \phi ^n\) but, by rank-nullity, the dimensions of these spaces coincide whence \(V=\ker \phi ^n\oplus \im \phi ^n\).

4.3.2 Generalised eigenspaces

Let us revisit the example of Section 4.1 of an operator with not enough eigenvectors: contemplate \(\phi :=\phi _A\in L(\C ^2)\) where

\begin{equation*} A= \begin{pmatrix} 0&1\\0&0 \end {pmatrix}. \end{equation*}

We know that \(\phi \) has only zero as eigenvalue and the corresponding eigenspace \(E_{\phi }(0)=\Span {(1,0)}\neq \C ^2\). However, \(A^2=0\) so that \(\ker (\phi -0\id )^2=\C ^2\).

This gives us a new idea: for \(\phi \in L(V)\) and \(\lambda \in \F \) look for non-zero \(v\in V\) such that

\begin{equation*} (\phi -\lambda \id )^k(v)=0, \end{equation*}

for some \(k\in \N \). Thanks to Theorem 4.6 and Theorem 4.7, this amounts to demanding that

\begin{equation*} (\phi -\lambda \id )^n(v)=0, \end{equation*}

where \(n=\dim V\).

Observe that this means that \((\phi -\lambda \id )^k\) is not injective (it has non-trivial kernel) so that \(\phi -\lambda \id \) is not injective either (and so has non-trivial kernel) and therefore \(\lambda \) is an eigenvalue of \(\phi \).

This prompts:

  • Definition. Let \(\phi \in L(V)\) be a linear operator on an \(n\)-dimensional vector space over a field \(\F \). A generalised eigenvector of \(\phi \) with eigenvalue \(\lambda \) is a non-zero \(v\in V\) such that

    \begin{equation} \label {eq:15} (\phi -\lambda \id )^n(v)=0. \end{equation}

    The set of all such along with \(0\) is called the generalised eigenspace of \(\phi \) with eigenvalue \(\lambda \) and denoted \(G_{\phi }(\lambda )\). Thus

    \begin{equation*} G_{\phi }(\lambda )=\ker (\phi -\lambda \id _{V})^{n}\leq V. \end{equation*}

  • Lemma 4.9. \(E_{\phi }(\lambda )\leq G_{\phi }(\lambda )\leq V\) and \(G_{\phi }(\lambda )\) is \(\phi \)-invariant.

  • Proof. There are two things to prove:

    • (1) \(E_{\phi }(\lambda )\leq G_{\phi }(\lambda )\). This is straight from Theorem 4.6: \(E_{\phi }(\lambda )=\ker (\phi -\lambda \id _{V})\leq \ker (\phi -\lambda \id _{V})^{n}=G_{\phi }(\lambda )\).

    • (2) \(G_{\phi }(\lambda )\) is \(\phi \)-invariant. \(G_{\phi }(\lambda )=\ker p(\phi )\) where \(p=(x-\lambda )^{n}\) which is \(\phi \)-invariant (see the examples after Theorem 4.1).

  • Lemma 4.10. Let \(\phi \in L(V)\) be a linear operator on an \(n\)-dimensional vector space over \(\F \) and \(\lambda _1,\lambda _2\in \F \) distinct eigenvalues of \(\phi \). Then \(G_{\phi }(\lambda _1)\cap G_{\phi }(\lambda _2)=\set 0\).

  • Proof. If \(v\in V\) is an eigenvector for \(\lambda _1\), we have from Theorem 3.10 that \((\phi -\lambda _2\id )^n(v)=(\lambda _1-\lambda _2)^nv\neq 0\). We conclude that \((\phi -\lambda _1\id )\restr {G_{\phi }(\lambda _2)}\) is injective so that \((\phi -\lambda _{1}\id )^n\restr {G_{\phi }(\lambda _2)}\) is injective also and therefore has trivial kernel. Thus

    \begin{equation*} \set {0}=\ker (\phi -\lambda _1\id _V)^n\restr {G_{\phi }(\lambda _{2})}= G_{\phi }(\lambda _1)\cap G_{\phi }(\lambda _2) \end{equation*}

    as required.

We now arrive at the promised generalisation of Theorem 4.5.

  • Theorem 4.11 (Jordan7 decomposition). Let \(\phi \in L(V)\) be a linear operator on a finite-dimensional vector space over \(\C \) with distinct eigenvalues \(\lst \lambda 1k\). Then

    \begin{equation*} V=\bigoplus _{i=1}^kG_{\phi }(\lambda _i). \end{equation*}

7 Camille Jordan, 1838–1922.

  • Proof. We induct on \(n:=\dim V\).

    When \(n=1\), \(\phi =\lambda \id \), for some \(\lambda \in \C \), so that \(V=E_{\phi }(\lambda )=G_{\phi }(\lambda )\). This settles the base case.

    For the induction step, suppose that the theorem holds for spaces of dimension \(<n\) and that \(\dim V=n\). Now, by Theorem 3.9, \(\phi \) has an eigenvalue \(\lambda _1\), say (this is where we use \(\F =\C \)). Then \(G_{\phi }(\lambda _1)=\ker (\phi -\lambda _1\id )^n\) so that, by Theorem 4.8, we have

    \begin{equation*} V=G_{\phi }(\lambda _1)\oplus \im (\phi -\lambda _1\id )^n. \end{equation*}

    Set \(U:=\im (\phi -\lambda _1\id )^{n}\) and write \(\hat {\phi }=\phi \restr {U}\). We claim:

    • 1. \(\hat {\phi }\) has eigenvalues \(\lst {\lambda }2k\).

    • 2. For \(i\geq 2\), \(G_{\hat {\phi }}(\lambda _i)=G_{\phi }(\lambda _i)\).

    Given the claim, since \(\dim U<n\), the induction hypothesis applies to give

    \begin{equation*} U=\bigoplus _{i=2}^kG_{\phi }(\lambda _i) \end{equation*}

    whence

    \begin{equation*} V=G_{\phi }(\lambda _1)\oplus U=\bigoplus _{i=1}^kG_{\phi }(\lambda _i) \end{equation*}

    as required. The magic of induction now proves the theorem.

    It remains to prove the claim. For this, first note that if \(\lambda \) is an eigenvalue of \(\hat {\phi }\) with eigenvector \(u\in U\) then

    \begin{equation*} \lambda u=\hat {\phi }(u)=\phi (u) \end{equation*}

    so that \(\lambda \) is an eigenvalue of \(\phi \).

    Next, observe that

    \begin{equation*} E_{\phi }(\lambda _1)\cap U\leq G_{\phi }(\lambda _1)\cap U=\set 0 \end{equation*}

    so that \(\lambda _1\) is not an eigenvalue of \(\hat {\phi }\).

    On the other hand, for \(i\geq 2\), Theorem 4.4 tells us that

    \begin{equation*} G_{\phi }(\lambda _i)=\ker (\phi -\lambda _i\id _V)^n=(G_{\phi }(\lambda _i)\cap G_{\phi }(\lambda _1))\oplus (G_{\phi }(\lambda _i)\cap U)=G_{\phi }(\lambda _i)\cap U, \end{equation*}

    where the last equality comes from Theorem 4.10. From this we learn that \(G_{\phi }(\lambda _i)\leq U\) so that, first, \(\lambda _i\) is an eigenvalue of \(\hat {\phi }\) and also that \(G_{\hat {\phi }}(\lambda _i)=G_{\phi }(\lambda _i)\) (since it is always true that \(G_{\hat {\phi }}(\lambda _i)=G_{\phi }(\lambda _i)\cap U\)). This settles the claim and so the whole proof.

Let us summarise the situation. With \(V_i=G_{\phi }(\lambda _i)\) and \(\phi _i=\phi \restr {V_i}\), we have \(V=\oplst {V}1k\) and

\begin{equation*} \phi _i=\lambda _i\id _{V_i}+N_i, \end{equation*}

where we have set \(N_i=\phi _i-\lambda _i\id _{V_i}\in L(V_i)\). The key point is that \(N_i^n=0\) which prompts some terminology.

  • Definition. A linear operator \(\phi \) on a vector space \(V\) is nilpotent if \(\phi ^k=0\), for some \(k\in \N \). or, equivalently, if \(\ker \phi ^k=V\).

  • Remark. If \(V\) is finite-dimensional, we may take \(k=\dim V\) by Theorem 4.7.

Our remaining task is to understand nilpotent operators. As a useful first pass at this, we have:

  • Proposition 4.12. Let \(\phi \in L(V)\) be a linear operator on a finite-dimensional vector space \(V\) over \(\F \).

    Then \(\phi \) is nilpotent if and only if there is a basis with respect to which \(\phi \) has a strictly upper triangular matrix \(A\) (thus \(A_{ij}=0\) whenever \(i\geq j\)):

    \begin{equation*} A= \begin{pmatrix} 0&&*\\&\ddots &\\0&&0 \end {pmatrix}. \end{equation*}

  • Proof. Begin by observing that \(\phi \) has strictly upper triangular matrix with respect to \(\cB :\lst {v}1n\) if and only if \(\phi (v_{1})=0\) and \(\phi (v_j)\in \Span {\lst {v}1{j-1}}\), for \(j>1\).

    Thus, if \(\phi \) has strictly upper triangular matrix \(A\in M_n(\F )\) with respect \(\lst {v}1n\), we can iterate to see that \(\phi ^k\) vanishes on \(\lst {v}1k\) and \(\phi ^k(v_j)\in \Span {\lst {v}1{j-k}}\), for \(j>k\). In particular \(\phi ^{n}=0\). Alternatively, \(A^k\) has zeros on the first \(k-1\) super-diagonals:

    \begin{equation*} A^k= \begin{pmatrix} 0&\dots &0&&* \\ &\ddots &&\ddots &\\ &&\ddots &&0\\ &&&\ddots &\vdots \\ 0&&&&0 \end {pmatrix}. \end{equation*}

    In particular, \(A^n=0\) so that \(\phi ^n=0\) also.

    For the converse, if \(\phi \) is nilpotent, we consider the subspaces

    \begin{equation*} \set 0\leq \ker \phi \leq \ker \phi ^2\leq \dots \leq \ker \phi ^{\dim V}=V. \end{equation*}

    Note that, if \(v\in \ker \phi ^k\), \(0=\phi ^k(v)=\phi ^{k-1}(\phi (v))\) so that \(\phi (v)\in \ker \phi ^{k-1}\), for \(k\geq 1\).

    Now take a basis \(\lst {v}1\ell \) of \(\ker \phi \), extend it successively to one of \(\ker \phi ^k\), for each \(k\), until we arrive at a basis \(\lst {v}1n\) of \(V\) with the property that each \(\phi (v_{j})\in \Span {\lst {v}1{j-1}}\). This means precisely that the matrix of \(\phi \) with respect to \(\lst {v}1n\) is strictly upper triangular.

Apply Theorem 4.12 to each \(N_i\) to get a basis of \(V_i\) for which \(\phi _i\) has a matrix of the form

\begin{equation*} \begin{pmatrix} \lambda _i&&*\\ &\ddots &\\ 0&&\lambda _i \end {pmatrix} \end{equation*}

so that, in particular, \(\Delta _{\phi _i}=(\lambda _i-x)^{\dim V_i}\). In view of Theorem 4.4(4), we conclude that

\begin{equation*} \Delta _\phi =\prod _{i=1}^k\Delta _{\phi _i}=\pm \prod _{i=1}(x-\lambda _i)^{\dim V_i}. \end{equation*}

Otherwise said, \(\am (\lambda _i)=\dim V_i\) and we have proved:

  • Proposition 4.13. Let \(\lambda \in \C \) be an eigenvalue of a linear operator \(\phi \) on a complex finite-dimensional vector space. Then

    \begin{equation*} \am (\lambda )=\dim G_{\phi }(\lambda ). \end{equation*}

  • Remark. Since \(E_{\phi }(\lambda )\leq G_{\phi }(\lambda )\), this explains the Algebra 1B result8that \(\gm (\lambda )\leq \am (\lambda )\).

8 Proposition 3.4.6

Finally, we can say something useful about the minimal polynomial of \(\phi \): it is the product of the minimal polynomials of the \(\phi _i\):

  • Proposition 4.14. Let \(\phi \in L(V)\) be a linear operator on a finite-dimensional vector space over \(\C \) with distinct eigenvalues \(\lst \lambda 1k\). Set \(\phi _i=\phi \restr {G_{\phi }(\lambda _i)}\). Then

    • (1) Each \(m_{\phi _i}=(x-\lambda _i)^{s_i}\), for some \(s_i\leq \dim G_{\phi }(\lambda _i)\).

    • (2) \(m_{\phi }=\prod _{i=1}^km_{\phi _i}=\prod _{i=1}^k(x-\lambda _i)^{s_i}\).

  • Proof. We know from Theorem 3.13(1) that \(m_{\phi _i}\) divides \(\Delta _{\phi _i}=(\lambda _i-x)^{\dim G_{\phi }(\lambda _i)}\) so (1) is immediate.

    For (2), let \(p=\prod _{i=1}^k(x-\lambda _i)^{s_i}\). Then \(p(\phi )=\bigoplus _{i=1}^kp(\phi _i)=0\) since each \(p(\phi _i)=0\). Thus \(m_{\phi }\) divides \(p\) and we see conclude that

    \begin{equation*} m_{\phi }=\prod _{i=1}^k(x-\lambda _i)^{t_i}, \end{equation*}

    with each \(\bw 1{t_i}{s_i}\).

    On the other hand, each \(m_{\phi _i}=(x-\lambda )^{s_i}\) divides \(m_{\phi }\) since \(m_{\phi }(\phi _i)=m_{\phi }(\phi )\restr {V_i}=0\). Thus \(s_i\leq t_i\), for \(\bw 1ik\), and \(m_{\phi }=p\).

As a corollary, we get an efficient (in the sense of low powers of \((\phi -\lambda _i\id _V)\)) expression for \(G_{\phi }(\lambda _i)\):

  • Corollary 4.15. Let \(\phi \in L(V)\) be a linear operator with minimum polynomial \(\prod _{i=1}^k(x-\lambda _i)^{s_i}\). Then

    \begin{equation*} G_{\phi }(\lambda _i)=\ker (\phi -\lambda _i\id _V)^{s_i}. \end{equation*}

  • Proof. By definition, \(\ker (\phi -\lambda _i\id _V)^{s_i}\leq G_{\phi }(\lambda _i)\). On the other hand, with \(V_i=G_{\phi }(\lambda _i)\) and \(\phi _i=\phi \restr {V_i}\), we know that \(0=m_{\phi _i}(\phi _i)=(\phi _i-\lambda _i\id _{V_i})^{s_{i}}\). Otherwise said, \((\phi -\lambda _i\id _V)^{s_i}\restr {V_i}=0\) so that \(G_{\phi }(\lambda _i)\leq \ker (\phi -\lambda _{i}\id _V)^{s_i}\).

  • Example. Let \(\phi =\phi _A\in L(\C ^3)\) where

    \begin{equation*} A= \begin{pmatrix} 1&1&1\\0&1&1\\0&0&2 \end {pmatrix}. \end{equation*}

    Find \(m_{\phi }\), the eigenspaces and generalised eigenspaces of \(\phi \).

    Solution: \(A\) being upper triangular, we see at once that \(\Delta _\phi =m_A=(1-x)^2(2-x)\) so that \(m_A\) is either \((x-1)(x-2)\) or \((x-1)^2(x-2)\) by Theorem 3.13. We check the first possibility:

    \begin{equation*} (A-I_3)(A-2I_3)= \begin{pmatrix} 0&1&1\\0&0&1\\0&0&1 \end {pmatrix} \begin{pmatrix*}[r] -1&1&1\\0&-1&1\\0&0&0 \end {pmatrix*} = \begin{pmatrix*}[r] 0&-1&1\\0&0&0\\0&0&0 \end {pmatrix*}\neq 0. \end{equation*}

    We conclude that \(m_{\phi }=(x-1)^{2}(x-2)\) and immediately deduce from Theorem 4.15 that \(G_{\phi }(1)=\ker (\phi -\id )^{2}\) while \(G_{\phi }(2)=\ker (\phi -2\id )=E_{\phi }(2)\).

    It remains to compute these:

    \begin{align*} E_{\phi }(1)&=\ker (\phi -\id )=\ker \begin{pmatrix} 0&1&1\\0&0&1\\0&0&1 \end {pmatrix}=\Span {(1,0,0)}\\ G_{\phi }(1)&=\ker (\phi -\id )^{2}=\ker \begin{pmatrix} 0&1&1\\0&0&1\\0&0&1 \end {pmatrix}^{2}= \ker \begin{pmatrix} 0&0&2\\0&0&1\\0&0&1 \end {pmatrix}=\Span {(1,0,0),(0,1,0)}\\ E_{\phi }(2)&=G_{\phi }(2)=\ker (\phi -2\id )=\ker \begin{pmatrix*}[r] -1&1&1\\0&-1&1\\0&0&0 \end {pmatrix*}=\Span {(2,1,1)}. \end{align*}