\(\newcommand{\footnotename}{footnote}\)
\(\def \LWRfootnote {1}\)
\(\newcommand {\footnote }[2][\LWRfootnote ]{{}^{\mathrm {#1}}}\)
\(\newcommand {\footnotemark }[1][\LWRfootnote ]{{}^{\mathrm {#1}}}\)
\(\let \LWRorighspace \hspace \)
\(\renewcommand {\hspace }{\ifstar \LWRorighspace \LWRorighspace }\)
\(\newcommand {\mathnormal }[1]{{#1}}\)
\(\newcommand \ensuremath [1]{#1}\)
\(\newcommand {\LWRframebox }[2][]{\fbox {#2}} \newcommand {\framebox }[1][]{\LWRframebox } \)
\(\newcommand {\setlength }[2]{}\)
\(\newcommand {\addtolength }[2]{}\)
\(\newcommand {\setcounter }[2]{}\)
\(\newcommand {\addtocounter }[2]{}\)
\(\newcommand {\arabic }[1]{}\)
\(\newcommand {\number }[1]{}\)
\(\newcommand {\noalign }[1]{\text {#1}\notag \\}\)
\(\newcommand {\cline }[1]{}\)
\(\newcommand {\directlua }[1]{\text {(directlua)}}\)
\(\newcommand {\luatexdirectlua }[1]{\text {(directlua)}}\)
\(\newcommand {\protect }{}\)
\(\def \LWRabsorbnumber #1 {}\)
\(\def \LWRabsorbquotenumber "#1 {}\)
\(\newcommand {\LWRabsorboption }[1][]{}\)
\(\newcommand {\LWRabsorbtwooptions }[1][]{\LWRabsorboption }\)
\(\def \mathchar {\ifnextchar "\LWRabsorbquotenumber \LWRabsorbnumber }\)
\(\def \mathcode #1={\mathchar }\)
\(\let \delcode \mathcode \)
\(\let \delimiter \mathchar \)
\(\let \LWRref \ref \)
\(\renewcommand {\ref }{\ifstar \LWRref \LWRref }\)
\(\newcommand {\intertext }[1]{\text {#1}\notag \\}\)
\(\let \Hat \hat \)
\(\let \Check \check \)
\(\let \Tilde \tilde \)
\(\let \Acute \acute \)
\(\let \Grave \grave \)
\(\let \Dot \dot \)
\(\let \Ddot \ddot \)
\(\let \Breve \breve \)
\(\let \Bar \bar \)
\(\let \Vec \vec \)
\( \newcommand {\multicolumn }[3]{#3}\)
\(\newcommand {\mathllap }[2][]{{#1#2}}\)
\(\newcommand {\mathrlap }[2][]{{#1#2}}\)
\(\newcommand {\mathclap }[2][]{{#1#2}}\)
\(\newcommand {\mathmbox }[1]{#1}\)
\(\newcommand {\clap }[1]{#1}\)
\(\newcommand {\LWRmathmakebox }[2][]{#2}\)
\(\newcommand {\mathmakebox }[1][]{\LWRmathmakebox }\)
\(\newcommand {\cramped }[2][]{{#1#2}}\)
\(\newcommand {\crampedllap }[2][]{{#1#2}}\)
\(\newcommand {\crampedrlap }[2][]{{#1#2}}\)
\(\newcommand {\crampedclap }[2][]{{#1#2}}\)
\(\newenvironment {crampedsubarray}[1]{}{}\)
\(\newcommand {\crampedsubstack }{}\)
\(\newcommand {\smashoperator }[2][]{#2\limits }\)
\(\newcommand {\adjustlimits }{}\)
\(\newcommand {\SwapAboveDisplaySkip }{}\)
\(\require {extpfeil}\)
\(\Newextarrow \xleftrightarrow {10,10}{0x2194}\)
\(\Newextarrow \xLeftarrow {10,10}{0x21d0}\)
\(\Newextarrow \xhookleftarrow {10,10}{0x21a9}\)
\(\Newextarrow \xmapsto {10,10}{0x21a6}\)
\(\Newextarrow \xRightarrow {10,10}{0x21d2}\)
\(\Newextarrow \xLeftrightarrow {10,10}{0x21d4}\)
\(\Newextarrow \xhookrightarrow {10,10}{0x21aa}\)
\(\Newextarrow \xrightharpoondown {10,10}{0x21c1}\)
\(\Newextarrow \xleftharpoondown {10,10}{0x21bd}\)
\(\Newextarrow \xrightleftharpoons {10,10}{0x21cc}\)
\(\Newextarrow \xrightharpoonup {10,10}{0x21c0}\)
\(\Newextarrow \xleftharpoonup {10,10}{0x21bc}\)
\(\Newextarrow \xleftrightharpoons {10,10}{0x21cb}\)
\(\newcommand {\LWRdounderbracket }[3]{\mathinner {\underset {#3}{\underline {\llcorner {#1}\lrcorner }}}}\)
\(\newcommand {\LWRunderbracket }[2][]{\LWRdounderbracket {#2}}\)
\(\newcommand {\underbracket }[1][]{\LWRunderbracket }\)
\(\newcommand {\LWRdooverbracket }[3]{\mathinner {\overset {#3}{\overline {\ulcorner {#1}\urcorner }}}}\)
\(\newcommand {\LWRoverbracket }[2][]{\LWRdooverbracket {#2}}\)
\(\newcommand {\overbracket }[1][]{\LWRoverbracket }\)
\(\newcommand {\LaTeXunderbrace }[1]{\underbrace {#1}}\)
\(\newcommand {\LaTeXoverbrace }[1]{\overbrace {#1}}\)
\(\newenvironment {matrix*}[1][]{\begin {matrix}}{\end {matrix}}\)
\(\newenvironment {pmatrix*}[1][]{\begin {pmatrix}}{\end {pmatrix}}\)
\(\newenvironment {bmatrix*}[1][]{\begin {bmatrix}}{\end {bmatrix}}\)
\(\newenvironment {Bmatrix*}[1][]{\begin {Bmatrix}}{\end {Bmatrix}}\)
\(\newenvironment {vmatrix*}[1][]{\begin {vmatrix}}{\end {vmatrix}}\)
\(\newenvironment {Vmatrix*}[1][]{\begin {Vmatrix}}{\end {Vmatrix}}\)
\(\newenvironment {smallmatrix*}[1][]{\begin {matrix}}{\end {matrix}}\)
\(\newenvironment {psmallmatrix*}[1][]{\begin {pmatrix}}{\end {pmatrix}}\)
\(\newenvironment {bsmallmatrix*}[1][]{\begin {bmatrix}}{\end {bmatrix}}\)
\(\newenvironment {Bsmallmatrix*}[1][]{\begin {Bmatrix}}{\end {Bmatrix}}\)
\(\newenvironment {vsmallmatrix*}[1][]{\begin {vmatrix}}{\end {vmatrix}}\)
\(\newenvironment {Vsmallmatrix*}[1][]{\begin {Vmatrix}}{\end {Vmatrix}}\)
\(\newenvironment {psmallmatrix}[1][]{\begin {pmatrix}}{\end {pmatrix}}\)
\(\newenvironment {bsmallmatrix}[1][]{\begin {bmatrix}}{\end {bmatrix}}\)
\(\newenvironment {Bsmallmatrix}[1][]{\begin {Bmatrix}}{\end {Bmatrix}}\)
\(\newenvironment {vsmallmatrix}[1][]{\begin {vmatrix}}{\end {vmatrix}}\)
\(\newenvironment {Vsmallmatrix}[1][]{\begin {Vmatrix}}{\end {Vmatrix}}\)
\(\newcommand {\LWRmultlined }[1][]{\begin {multline*}}\)
\(\newenvironment {multlined}[1][]{\LWRmultlined }{\end {multline*}}\)
\(\let \LWRorigshoveleft \shoveleft \)
\(\renewcommand {\shoveleft }[1][]{\LWRorigshoveleft }\)
\(\let \LWRorigshoveright \shoveright \)
\(\renewcommand {\shoveright }[1][]{\LWRorigshoveright }\)
\(\newenvironment {dcases}{\begin {cases}}{\end {cases}}\)
\(\newenvironment {dcases*}{\begin {cases}}{\end {cases}}\)
\(\newenvironment {rcases}{\begin {cases}}{\end {cases}}\)
\(\newenvironment {rcases*}{\begin {cases}}{\end {cases}}\)
\(\newenvironment {drcases}{\begin {cases}}{\end {cases}}\)
\(\newenvironment {drcases*}{\begin {cases}}{\end {cases}}\)
\(\newenvironment {cases*}{\begin {cases}}{\end {cases}}\)
\(\newcommand {\MoveEqLeft }[1][]{}\)
\(\def \LWRAboxed #1!|!{\fbox {\(#1\)}&\fbox {\(#2\)}} \newcommand {\Aboxed }[1]{\LWRAboxed #1&&!|!} \)
\( \newcommand {\LWRABLines }[1][\Updownarrow ]{#1 \notag \\}\newcommand {\ArrowBetweenLines }{\ifstar \LWRABLines \LWRABLines } \)
\(\newcommand {\shortintertext }[1]{\text {#1}\notag \\}\)
\(\newcommand {\vdotswithin }[1]{\hspace {.5em}\vdots }\)
\(\newcommand {\LWRshortvdotswithinstar }[1]{\vdots \hspace {.5em} & \\}\)
\(\newcommand {\LWRshortvdotswithinnostar }[1]{& \hspace {.5em}\vdots \\}\)
\(\newcommand {\shortvdotswithin }{\ifstar \LWRshortvdotswithinstar \LWRshortvdotswithinnostar }\)
\(\newcommand {\MTFlushSpaceAbove }{}\)
\(\newcommand {\MTFlushSpaceBelow }{\\}\)
\(\newcommand \lparen {(}\)
\(\newcommand \rparen {)}\)
\(\newcommand {\ordinarycolon }{:}\)
\(\newcommand {\vcentcolon }{\mathrel {\unicode {x2236}}}\)
\(\newcommand \dblcolon {\mathrel {\unicode {x2237}}}\)
\(\newcommand \coloneqq {\mathrel {\unicode {x2236}\!=}}\)
\(\newcommand \Coloneqq {\mathrel {\unicode {x2237}\!=}}\)
\(\newcommand \coloneq {\mathrel {\unicode {x2236}-}}\)
\(\newcommand \Coloneq {\mathrel {\unicode {x2237}-}}\)
\(\newcommand \eqqcolon {\mathrel {=\!\unicode {x2236}}}\)
\(\newcommand \Eqqcolon {\mathrel {=\!\unicode {x2237}}}\)
\(\newcommand \eqcolon {\mathrel {-\unicode {x2236}}}\)
\(\newcommand \Eqcolon {\mathrel {-\unicode {x2237}}}\)
\(\newcommand \colonapprox {\mathrel {\unicode {x2236}\!\approx }}\)
\(\newcommand \Colonapprox {\mathrel {\unicode {x2237}\!\approx }}\)
\(\newcommand \colonsim {\mathrel {\unicode {x2236}\!\sim }}\)
\(\newcommand \Colonsim {\mathrel {\unicode {x2237}\!\sim }}\)
\(\newcommand {\nuparrow }{\mathrel {\cancel {\uparrow }}}\)
\(\newcommand {\ndownarrow }{\mathrel {\cancel {\downarrow }}}\)
\(\newcommand {\bigtimes }{\mathop {\Large \times }\limits }\)
\(\newcommand {\prescript }[3]{{}^{#1}_{#2}#3}\)
\(\newenvironment {lgathered}{\begin {gathered}}{\end {gathered}}\)
\(\newenvironment {rgathered}{\begin {gathered}}{\end {gathered}}\)
\(\newcommand {\splitfrac }[2]{{}^{#1}_{#2}}\)
\(\let \splitdfrac \splitfrac \)
\(\newcommand {\bigzero }{\smash {\text {\huge 0}}}\)
\(\newcommand {\am }{\mathrm {am}}\)
\(\newcommand {\gm }{\mathrm {gm}}\)
\(\newcommand {\id }{\operatorname {id}}\)
\(\newcommand {\GL }{\operatorname {GL}}\)
\(\newcommand {\im }{\operatorname {im}}\)
\(\newcommand {\rank }{\operatorname {rank}}\)
\(\newcommand {\sol }{\operatorname {sol}}\)
\(\newcommand {\ann }{\operatorname {ann}}\)
\(\newcommand {\rO }{\operatorname {O}}\)
\(\newcommand {\rU }{\operatorname {U}}\)
\(\newcommand {\rSU }{\operatorname {SU}}\)
\(\newcommand {\ev }{\operatorname {ev}}\)
\(\newcommand {\bil }{\operatorname {Bil}}\)
\(\newcommand {\rad }{\operatorname {rad}}\)
\(\newcommand {\Span }[1]{\operatorname {span}\{#1\}}\)
\(\newcommand {\R }{\mathbb {R}}\)
\(\newcommand {\C }{\mathbb {C}}\)
\(\newcommand {\Z }{\mathbb {Z}}\)
\(\newcommand {\F }{\mathbb {F}}\)
\(\newcommand {\Q }{\mathbb {Q}}\)
\(\newcommand {\N }{\mathbb {N}}\)
\(\renewcommand {\P }{\mathbb {P}}\)
\(\newcommand {\I }{\mathrm {I}}\)
\(\newcommand {\half }{\tfrac 12}\)
\(\newcommand {\rel }{\mathrel {\mathrm {rel}}}\)
\(\renewcommand {\vec }[3]{(#1_{#2},\dots ,#1_{#3})}\)
\(\newcommand {\lst }[3]{#1_{#2},\dots ,#1_{#3}}\)
\(\newcommand {\plst }[3]{#1_{#2}+\dots +#1_{#3}}\)
\(\newcommand {\oplst }[3]{#1_{#2}\oplus \dots \oplus #1_{#3}}\)
\(\newcommand {\pplst }[3]{#1_{#2}\times \dots \times #1_{#3}}\)
\(\newcommand {\dlst }[3]{\lst {#1^{*}}{#2}{#3}}\)
\(\newcommand {\dlc }[4]{\lc #1{#2^{*}}#3#4}\)
\(\newcommand {\hmg }[3]{[#1_{#2},\dots ,#1_{#3}]}\)
\(\newcommand {\rng }[2]{#1,\dots ,#2}\)
\(\newcommand {\lc }[4]{#1_{#3}#2_{#3}+\dots +#1_{#4}#2_{#4}}\)
\(\newcommand {\plus }[2]{#1+\dots +#2}\)
\(\newcommand {\set }[1]{\{#1\}}\)
\(\newcommand {\abs }[1]{\lvert #1\rvert }\)
\(\newcommand {\ip }[1]{\langle #1\rangle }\)
\(\newcommand {\norm }[1]{\|#1\|}\)
\(\newcommand {\bx }{\mathbf {x}}\)
\(\newcommand {\be }{\mathbf {e}}\)
\(\newcommand {\bq }{\mathbf {q}}\)
\(\newcommand {\bu }{\mathbf {u}}\)
\(\newcommand {\by }{\mathbf {y}}\)
\(\newcommand {\bv }{\mathbf {v}}\)
\(\newcommand {\E }{\mathbb {E}}\)
\(\newcommand {\cI }{\mathcal {I}}\)
\(\newcommand {\cB }{\mathcal {B}}\)
\(\newcommand {\sub }{\subseteq }\)
\(\newcommand {\st }{\mathrel {|}}\)
\(\newcommand {\bw }[3]{#1\leq #2\leq #3}\)
\(\newcommand {\col }[3]{(#1_{#2})_{#2\in #3}}\)
\(\newcommand {\supp }{\mathrm {supp}}\)
\(\newcommand {\restr }[1]{_{|#1}}\)
6.3 Application: Quadratic forms
We can construct a function on \(V\) from a bilinear form \(B\) (which is a function on \(V\times V\)).
-
Definition. A quadratic form on a vector space \(V\) over \(\F \) is a function \(Q:V\to \F \) of the form
\(\seteqnumber{0}{6.}{1}\)
\begin{equation*}
Q(v)=B(v,v),
\end{equation*}
for all \(v\in V\), where \(B:V\times V\to \F \) is a symmetric bilinear form.
We can recover the symmetric bilinear form \(B\) from its quadratic form \(Q\):
-
Lemma 6.8. Let \(Q:V\to \F \) be a quadratic form with \(Q(v)=B(v,v)\) for a symmetric bilinear form \(B\). Then
\(\seteqnumber{0}{6.}{1}\)
\begin{equation*}
B(v,w)=\half \bigl (Q(v+w)-Q(v)-Q(w)\bigr ),
\end{equation*}
for all \(v,w\in V\).
\(B\) is called the polarisation of \(Q\).
Here is how to do polarisation in practice: any quadratic form \(Q:\F ^n\to \F \) is of the form
\(\seteqnumber{0}{6.}{1}\)
\begin{equation*}
Q(x)=\sum _{1\leq i\leq j\leq n}q_{ij}x_ix_j=\bx ^{T} \begin{pmatrix} q_{11}&&\half q_{ji}\\&\ddots &\\\half q_{ij}&&q_{nn} \end {pmatrix}\bx
\end{equation*}
so that the polarisation is \(B_A\) where
\(\seteqnumber{0}{6.}{1}\)
\begin{equation*}
A_{ij}=A_{ji}= \begin{cases} q_{ii}&\text {if $i=j$;}\\ \half q_{ij}&\text {if $i<j$}. \end {cases}
\end{equation*}
-
Example. Let \(Q:\R ^3\to \R \) be given by
\(\seteqnumber{0}{6.}{1}\)
\begin{equation*}
Q(x)=x_1^2+2x_2^2+2x_1x_2+x_1x_3.
\end{equation*}
Let us find the polarisation \(B\) of \(Q\), that is, we find \(A\) so that \(B=B_A\): we have \(q_{11}=1\), \(q_{22}=2\), \(q_{12}=2\) and \(q_{13}=1\) with all other \(q_{ij}\) vanishing so
\(\seteqnumber{0}{6.}{1}\)
\begin{equation*}
A= \begin{pmatrix} 1&1&\half \\1&2&0\\\half &0&0 \end {pmatrix}.
\end{equation*}
-
Definitions. Let \(Q\) be a quadratic form on a finite-dimensional vector space \(V\) over \(\F \).
The rank of \(Q\) is the rank of its polarisation.
If \(\F =\R \), the signature of \(Q\) is the signature of its polarisation.
What does the diagonalisation theorem mean for a quadratic form \(Q\)? Observe:
-
• Any \(\alpha \in V^{*}\) can be squared to give a quadratic form: \(\alpha ^2:V\to \F \) given by \(\alpha ^2(v)=\alpha (v)^2\). Note that this is indeed a quadratic form with polarisation \(B(v,w)=\alpha (v)\alpha (w)\).
-
• If \(\lst {v}1n\) diagonalises the polarisation \(B\) of \(Q\) then \(Q(\sum _i\lambda _iv_i)=\sum _iB(v_i,v_i)\lambda _i^2\) so that
\(\seteqnumber{0}{6.}{1}\)
\begin{equation*}
Q=\sum _{i=1}^nQ(v_i)(v_i^{*})^2.
\end{equation*}
That is, we have written \(Q\) as a linear combination of \(n\) linearly independent squares.
Let us now apply the classification results of §6.2 and summarise the situation for quadratic forms on vector spaces over our favourite fields:
-
Example. Find the signature of \(Q:\R ^3\to \R \) given by
\(\seteqnumber{0}{6.}{1}\)
\begin{equation*}
Q(x)=x_1^2+x_2^2+x_3^2+2x_1x_3+4x_2x_3.
\end{equation*}
\(Q\) has polarisation \(B=B_A\) with
\(\seteqnumber{0}{6.}{1}\)
\begin{equation*}
A= \begin{pmatrix} 1&0&1\\0&1&2\\1&2&1 \end {pmatrix}.
\end{equation*}
Solution: exploit the zero in the \((1,2)\)-slot of \(A\) to see that \(e_1,e_2,y=(-1,-2,1)\) is a diagonalising basis and so gives us a diagonal matrix representing \(B\) with \(Q(e_1)=Q(e_2)=1>0\) and \(Q(y)=-4<0\) along the diagonal. So the signature is
\((2,1)\).
Here are two alternative techniques:
-
(1) Orthogonal diagonalisation yields a diagonal matrix representing \(B\) with the eigenvalues of \(A\) down the diagonal so we just count how many positive and negative eigenvalues there are.
In fact, \(A\) has eigenvalues \(1\) and \(1\pm \sqrt {5}\). Since \(\sqrt {5}>2\), \(1-\sqrt {5}<0\) and we again conclude that the signature is \((2,1)\).
Danger: this method needed us to solve a cubic equation which is already difficult. For an \(n\times n\) \(A\) with \(n\geq 5\), this could be impossible!
-
(2) Finally, we could try and write \(Q\) as a linear combination of linearly independent squares and then count the number of positive and negative coefficients. In fact,
\(\seteqnumber{0}{6.}{1}\)
\begin{align*}
Q(x)&=x_1^2+x_2^2+x_3^2+2x_1x_3+4x_2x_3\\ &=(x_1+x_3)^2+x_2^2+4x_2x_3=(x_1+x_3)^2+(x_2+2x_3)^2-4x_3^2.
\end{align*}
But now we need to check that \(x_1+x_3, x_2+2x_3,x_3\) are linearly independent linear functionals on \(\R ^3\). Here Corollary 5.7 comes to the rescue and says we only need show that \((\ker x_1+x_3)\cap (\ker
x_2+2x_3)\cap (\ker x_3)=\set {0}\). But \(x_3=0=x_1+x_3=x_2+2x_3\) rapidly implies that each \(x_i=0\) and we are done. The coefficients of these squares are \(1,1,-4\) and so, once more, we get that the signature is \((2,1)\).