\(\newcommand{\footnotename}{footnote}\)
\(\def \LWRfootnote {1}\)
\(\newcommand {\footnote }[2][\LWRfootnote ]{{}^{\mathrm {#1}}}\)
\(\newcommand {\footnotemark }[1][\LWRfootnote ]{{}^{\mathrm {#1}}}\)
\(\let \LWRorighspace \hspace \)
\(\renewcommand {\hspace }{\ifstar \LWRorighspace \LWRorighspace }\)
\(\newcommand {\mathnormal }[1]{{#1}}\)
\(\newcommand \ensuremath [1]{#1}\)
\(\newcommand {\LWRframebox }[2][]{\fbox {#2}} \newcommand {\framebox }[1][]{\LWRframebox } \)
\(\newcommand {\setlength }[2]{}\)
\(\newcommand {\addtolength }[2]{}\)
\(\newcommand {\setcounter }[2]{}\)
\(\newcommand {\addtocounter }[2]{}\)
\(\newcommand {\arabic }[1]{}\)
\(\newcommand {\number }[1]{}\)
\(\newcommand {\noalign }[1]{\text {#1}\notag \\}\)
\(\newcommand {\cline }[1]{}\)
\(\newcommand {\directlua }[1]{\text {(directlua)}}\)
\(\newcommand {\luatexdirectlua }[1]{\text {(directlua)}}\)
\(\newcommand {\protect }{}\)
\(\def \LWRabsorbnumber #1 {}\)
\(\def \LWRabsorbquotenumber "#1 {}\)
\(\newcommand {\LWRabsorboption }[1][]{}\)
\(\newcommand {\LWRabsorbtwooptions }[1][]{\LWRabsorboption }\)
\(\def \mathchar {\ifnextchar "\LWRabsorbquotenumber \LWRabsorbnumber }\)
\(\def \mathcode #1={\mathchar }\)
\(\let \delcode \mathcode \)
\(\let \delimiter \mathchar \)
\(\let \LWRref \ref \)
\(\renewcommand {\ref }{\ifstar \LWRref \LWRref }\)
\(\newcommand {\intertext }[1]{\text {#1}\notag \\}\)
\(\let \Hat \hat \)
\(\let \Check \check \)
\(\let \Tilde \tilde \)
\(\let \Acute \acute \)
\(\let \Grave \grave \)
\(\let \Dot \dot \)
\(\let \Ddot \ddot \)
\(\let \Breve \breve \)
\(\let \Bar \bar \)
\(\let \Vec \vec \)
\( \newcommand {\multicolumn }[3]{#3}\)
\(\newcommand {\mathllap }[2][]{{#1#2}}\)
\(\newcommand {\mathrlap }[2][]{{#1#2}}\)
\(\newcommand {\mathclap }[2][]{{#1#2}}\)
\(\newcommand {\mathmbox }[1]{#1}\)
\(\newcommand {\clap }[1]{#1}\)
\(\newcommand {\LWRmathmakebox }[2][]{#2}\)
\(\newcommand {\mathmakebox }[1][]{\LWRmathmakebox }\)
\(\newcommand {\cramped }[2][]{{#1#2}}\)
\(\newcommand {\crampedllap }[2][]{{#1#2}}\)
\(\newcommand {\crampedrlap }[2][]{{#1#2}}\)
\(\newcommand {\crampedclap }[2][]{{#1#2}}\)
\(\newenvironment {crampedsubarray}[1]{}{}\)
\(\newcommand {\crampedsubstack }{}\)
\(\newcommand {\smashoperator }[2][]{#2\limits }\)
\(\newcommand {\adjustlimits }{}\)
\(\newcommand {\SwapAboveDisplaySkip }{}\)
\(\require {extpfeil}\)
\(\Newextarrow \xleftrightarrow {10,10}{0x2194}\)
\(\Newextarrow \xLeftarrow {10,10}{0x21d0}\)
\(\Newextarrow \xhookleftarrow {10,10}{0x21a9}\)
\(\Newextarrow \xmapsto {10,10}{0x21a6}\)
\(\Newextarrow \xRightarrow {10,10}{0x21d2}\)
\(\Newextarrow \xLeftrightarrow {10,10}{0x21d4}\)
\(\Newextarrow \xhookrightarrow {10,10}{0x21aa}\)
\(\Newextarrow \xrightharpoondown {10,10}{0x21c1}\)
\(\Newextarrow \xleftharpoondown {10,10}{0x21bd}\)
\(\Newextarrow \xrightleftharpoons {10,10}{0x21cc}\)
\(\Newextarrow \xrightharpoonup {10,10}{0x21c0}\)
\(\Newextarrow \xleftharpoonup {10,10}{0x21bc}\)
\(\Newextarrow \xleftrightharpoons {10,10}{0x21cb}\)
\(\newcommand {\LWRdounderbracket }[3]{\mathinner {\underset {#3}{\underline {\llcorner {#1}\lrcorner }}}}\)
\(\newcommand {\LWRunderbracket }[2][]{\LWRdounderbracket {#2}}\)
\(\newcommand {\underbracket }[1][]{\LWRunderbracket }\)
\(\newcommand {\LWRdooverbracket }[3]{\mathinner {\overset {#3}{\overline {\ulcorner {#1}\urcorner }}}}\)
\(\newcommand {\LWRoverbracket }[2][]{\LWRdooverbracket {#2}}\)
\(\newcommand {\overbracket }[1][]{\LWRoverbracket }\)
\(\newcommand {\LaTeXunderbrace }[1]{\underbrace {#1}}\)
\(\newcommand {\LaTeXoverbrace }[1]{\overbrace {#1}}\)
\(\newenvironment {matrix*}[1][]{\begin {matrix}}{\end {matrix}}\)
\(\newenvironment {pmatrix*}[1][]{\begin {pmatrix}}{\end {pmatrix}}\)
\(\newenvironment {bmatrix*}[1][]{\begin {bmatrix}}{\end {bmatrix}}\)
\(\newenvironment {Bmatrix*}[1][]{\begin {Bmatrix}}{\end {Bmatrix}}\)
\(\newenvironment {vmatrix*}[1][]{\begin {vmatrix}}{\end {vmatrix}}\)
\(\newenvironment {Vmatrix*}[1][]{\begin {Vmatrix}}{\end {Vmatrix}}\)
\(\newenvironment {smallmatrix*}[1][]{\begin {matrix}}{\end {matrix}}\)
\(\newenvironment {psmallmatrix*}[1][]{\begin {pmatrix}}{\end {pmatrix}}\)
\(\newenvironment {bsmallmatrix*}[1][]{\begin {bmatrix}}{\end {bmatrix}}\)
\(\newenvironment {Bsmallmatrix*}[1][]{\begin {Bmatrix}}{\end {Bmatrix}}\)
\(\newenvironment {vsmallmatrix*}[1][]{\begin {vmatrix}}{\end {vmatrix}}\)
\(\newenvironment {Vsmallmatrix*}[1][]{\begin {Vmatrix}}{\end {Vmatrix}}\)
\(\newenvironment {psmallmatrix}[1][]{\begin {pmatrix}}{\end {pmatrix}}\)
\(\newenvironment {bsmallmatrix}[1][]{\begin {bmatrix}}{\end {bmatrix}}\)
\(\newenvironment {Bsmallmatrix}[1][]{\begin {Bmatrix}}{\end {Bmatrix}}\)
\(\newenvironment {vsmallmatrix}[1][]{\begin {vmatrix}}{\end {vmatrix}}\)
\(\newenvironment {Vsmallmatrix}[1][]{\begin {Vmatrix}}{\end {Vmatrix}}\)
\(\newcommand {\LWRmultlined }[1][]{\begin {multline*}}\)
\(\newenvironment {multlined}[1][]{\LWRmultlined }{\end {multline*}}\)
\(\let \LWRorigshoveleft \shoveleft \)
\(\renewcommand {\shoveleft }[1][]{\LWRorigshoveleft }\)
\(\let \LWRorigshoveright \shoveright \)
\(\renewcommand {\shoveright }[1][]{\LWRorigshoveright }\)
\(\newenvironment {dcases}{\begin {cases}}{\end {cases}}\)
\(\newenvironment {dcases*}{\begin {cases}}{\end {cases}}\)
\(\newenvironment {rcases}{\begin {cases}}{\end {cases}}\)
\(\newenvironment {rcases*}{\begin {cases}}{\end {cases}}\)
\(\newenvironment {drcases}{\begin {cases}}{\end {cases}}\)
\(\newenvironment {drcases*}{\begin {cases}}{\end {cases}}\)
\(\newenvironment {cases*}{\begin {cases}}{\end {cases}}\)
\(\newcommand {\MoveEqLeft }[1][]{}\)
\(\def \LWRAboxed #1!|!{\fbox {\(#1\)}&\fbox {\(#2\)}} \newcommand {\Aboxed }[1]{\LWRAboxed #1&&!|!} \)
\( \newcommand {\LWRABLines }[1][\Updownarrow ]{#1 \notag \\}\newcommand {\ArrowBetweenLines }{\ifstar \LWRABLines \LWRABLines } \)
\(\newcommand {\shortintertext }[1]{\text {#1}\notag \\}\)
\(\newcommand {\vdotswithin }[1]{\hspace {.5em}\vdots }\)
\(\newcommand {\LWRshortvdotswithinstar }[1]{\vdots \hspace {.5em} & \\}\)
\(\newcommand {\LWRshortvdotswithinnostar }[1]{& \hspace {.5em}\vdots \\}\)
\(\newcommand {\shortvdotswithin }{\ifstar \LWRshortvdotswithinstar \LWRshortvdotswithinnostar }\)
\(\newcommand {\MTFlushSpaceAbove }{}\)
\(\newcommand {\MTFlushSpaceBelow }{\\}\)
\(\newcommand \lparen {(}\)
\(\newcommand \rparen {)}\)
\(\newcommand {\ordinarycolon }{:}\)
\(\newcommand {\vcentcolon }{\mathrel {\unicode {x2236}}}\)
\(\newcommand \dblcolon {\mathrel {\unicode {x2237}}}\)
\(\newcommand \coloneqq {\mathrel {\unicode {x2236}\!=}}\)
\(\newcommand \Coloneqq {\mathrel {\unicode {x2237}\!=}}\)
\(\newcommand \coloneq {\mathrel {\unicode {x2236}-}}\)
\(\newcommand \Coloneq {\mathrel {\unicode {x2237}-}}\)
\(\newcommand \eqqcolon {\mathrel {=\!\unicode {x2236}}}\)
\(\newcommand \Eqqcolon {\mathrel {=\!\unicode {x2237}}}\)
\(\newcommand \eqcolon {\mathrel {-\unicode {x2236}}}\)
\(\newcommand \Eqcolon {\mathrel {-\unicode {x2237}}}\)
\(\newcommand \colonapprox {\mathrel {\unicode {x2236}\!\approx }}\)
\(\newcommand \Colonapprox {\mathrel {\unicode {x2237}\!\approx }}\)
\(\newcommand \colonsim {\mathrel {\unicode {x2236}\!\sim }}\)
\(\newcommand \Colonsim {\mathrel {\unicode {x2237}\!\sim }}\)
\(\newcommand {\nuparrow }{\mathrel {\cancel {\uparrow }}}\)
\(\newcommand {\ndownarrow }{\mathrel {\cancel {\downarrow }}}\)
\(\newcommand {\bigtimes }{\mathop {\Large \times }\limits }\)
\(\newcommand {\prescript }[3]{{}^{#1}_{#2}#3}\)
\(\newenvironment {lgathered}{\begin {gathered}}{\end {gathered}}\)
\(\newenvironment {rgathered}{\begin {gathered}}{\end {gathered}}\)
\(\newcommand {\splitfrac }[2]{{}^{#1}_{#2}}\)
\(\let \splitdfrac \splitfrac \)
\(\newcommand {\bigzero }{\smash {\text {\huge 0}}}\)
\(\newcommand {\am }{\mathrm {am}}\)
\(\newcommand {\gm }{\mathrm {gm}}\)
\(\newcommand {\id }{\operatorname {id}}\)
\(\newcommand {\GL }{\operatorname {GL}}\)
\(\newcommand {\im }{\operatorname {im}}\)
\(\newcommand {\rank }{\operatorname {rank}}\)
\(\newcommand {\sol }{\operatorname {sol}}\)
\(\newcommand {\ann }{\operatorname {ann}}\)
\(\newcommand {\rO }{\operatorname {O}}\)
\(\newcommand {\rU }{\operatorname {U}}\)
\(\newcommand {\rSU }{\operatorname {SU}}\)
\(\newcommand {\ev }{\operatorname {ev}}\)
\(\newcommand {\bil }{\operatorname {Bil}}\)
\(\newcommand {\rad }{\operatorname {rad}}\)
\(\newcommand {\Span }[1]{\operatorname {span}\{#1\}}\)
\(\newcommand {\R }{\mathbb {R}}\)
\(\newcommand {\C }{\mathbb {C}}\)
\(\newcommand {\Z }{\mathbb {Z}}\)
\(\newcommand {\F }{\mathbb {F}}\)
\(\newcommand {\Q }{\mathbb {Q}}\)
\(\newcommand {\N }{\mathbb {N}}\)
\(\renewcommand {\P }{\mathbb {P}}\)
\(\newcommand {\I }{\mathrm {I}}\)
\(\newcommand {\half }{\tfrac 12}\)
\(\newcommand {\rel }{\mathrel {\mathrm {rel}}}\)
\(\renewcommand {\vec }[3]{(#1_{#2},\dots ,#1_{#3})}\)
\(\newcommand {\lst }[3]{#1_{#2},\dots ,#1_{#3}}\)
\(\newcommand {\plst }[3]{#1_{#2}+\dots +#1_{#3}}\)
\(\newcommand {\oplst }[3]{#1_{#2}\oplus \dots \oplus #1_{#3}}\)
\(\newcommand {\pplst }[3]{#1_{#2}\times \dots \times #1_{#3}}\)
\(\newcommand {\dlst }[3]{\lst {#1^{*}}{#2}{#3}}\)
\(\newcommand {\dlc }[4]{\lc #1{#2^{*}}#3#4}\)
\(\newcommand {\hmg }[3]{[#1_{#2},\dots ,#1_{#3}]}\)
\(\newcommand {\rng }[2]{#1,\dots ,#2}\)
\(\newcommand {\lc }[4]{#1_{#3}#2_{#3}+\dots +#1_{#4}#2_{#4}}\)
\(\newcommand {\plus }[2]{#1+\dots +#2}\)
\(\newcommand {\set }[1]{\{#1\}}\)
\(\newcommand {\abs }[1]{\lvert #1\rvert }\)
\(\newcommand {\ip }[1]{\langle #1\rangle }\)
\(\newcommand {\norm }[1]{\|#1\|}\)
\(\newcommand {\bx }{\mathbf {x}}\)
\(\newcommand {\be }{\mathbf {e}}\)
\(\newcommand {\bq }{\mathbf {q}}\)
\(\newcommand {\bu }{\mathbf {u}}\)
\(\newcommand {\by }{\mathbf {y}}\)
\(\newcommand {\bv }{\mathbf {v}}\)
\(\newcommand {\E }{\mathbb {E}}\)
\(\newcommand {\cI }{\mathcal {I}}\)
\(\newcommand {\cB }{\mathcal {B}}\)
\(\newcommand {\sub }{\subseteq }\)
\(\newcommand {\st }{\mathrel {|}}\)
\(\newcommand {\bw }[3]{#1\leq #2\leq #3}\)
\(\newcommand {\col }[3]{(#1_{#2})_{#2\in #3}}\)
\(\newcommand {\supp }{\mathrm {supp}}\)
\(\newcommand {\restr }[1]{_{|#1}}\)
5.3 Transposes
There is a duality construction for linear maps also: let \(V,W\) be vector spaces, \(\phi \in L(V,W)\) and \(\alpha \in W^{*}\). Then \(\alpha \circ \phi :V\to \F \) is also linear, so that \(\alpha \circ \phi \in V^{*}\). This prompts:
-
Definition. Let \(\phi \in L(V,W)\) be a linear map of vector spaces. The transpose \(\phi ^T\) of \(\phi \) is the map \(\phi ^T:W^{*}\to V^{*}\) given by
\(\seteqnumber{0}{5.}{1}\)
\begin{equation*}
\phi ^T(\alpha ):=\alpha \circ \phi ,
\end{equation*}
for all \(\alpha \in W^{*}\).
-
Proof. Let \(\alpha ,\beta \in W^{*}\) and \(\lambda \in \F \). We must show that
\(\seteqnumber{0}{5.}{1}\)
\begin{equation*}
\phi ^T(\alpha +\lambda \beta )=\phi ^T(\alpha )+\lambda \phi ^T(\beta ).
\end{equation*}
Unravelling the definition, this means
\(\seteqnumber{0}{5.}{1}\)
\begin{equation*}
(\alpha +\lambda \beta )\circ \phi =\alpha \circ \phi +\lambda \beta \circ \phi .
\end{equation*}
This is an equality of functions and so holds exactly when
\(\seteqnumber{0}{5.}{1}\)
\begin{equation*}
(\alpha +\lambda \beta )(\phi (v))=\alpha (\phi (v))+\lambda (\beta (\phi (v))),
\end{equation*}
for all \(v\in V\). However, this last is true by the very definition of addition and scalar multiplication in \(W^{*}\). □
-
Examples.
-
-
(1) \(\id _V^T=\id _{V^{*}}\). Indeed, \(\id _V^T(\alpha )=\alpha \circ \id _V=\alpha \), for all \(\alpha \in V^{*}\).
-
(2) \((\psi \circ \phi )^T=\phi ^T\circ \psi ^T\). Indeed, \((\psi \circ \phi )^T(\alpha )=\alpha \circ \psi \circ \phi = \phi ^T(\alpha \circ \psi )=\phi ^T(\psi ^T(\alpha ))\).
Here is why \(\phi ^T\) is called the transpose of \(\phi \):
-
Proposition 5.14. Let \(V,W\) be finite-dimensional vector spaces and \(\phi \in L(V,W)\) with matrix \(A\in M_{m\times n}(\F
)\) with respect to bases \(\lst {v}1n\) and \(\lst {w}1m\) of \(V\) and \(W\).
Then \(\phi ^T\) has matrix \(A^T\) with respect to the dual bases \(\dlst {w}1m\) and \(\dlst {v}1n\) of \(W^{*}\) and \(V^{*}\).
-
Proof. Let \(\phi ^T\) have matrix \(B\) so that
\(\seteqnumber{0}{5.}{1}\)
\begin{equation*}
\phi ^T(w^{*}_j)=\sum _{i=1}^nB_{ij}v^{*}_i.
\end{equation*}
Evaluate both sides of this at \(v_k\) to get
\(\seteqnumber{0}{5.}{1}\)
\begin{align*}
\phi ^T(w^{*}_j)(v_k)&=B_{kj}\\
\end{align*}
or, unravelling the definition of \(\phi ^T\),
\(\seteqnumber{0}{5.}{1}\)
\begin{align*}
w^{*}_j(\phi (v_k))&=B_{kj}.
\end{align*}
Now
\(\seteqnumber{0}{5.}{1}\)
\begin{equation*}
\phi (v_k)=\sum _{i=1}^mA_{ik}w_i
\end{equation*}
so that we also get
\(\seteqnumber{0}{5.}{1}\)
\begin{equation*}
w_j^{*}(\phi (v_k))=A_{jk}.
\end{equation*}
Comparing these we get \(B_{kj}=A_{jk}\) whence \(B=A^T\). □
The kernels and images of \(\phi \) and \(\phi ^T\) are intimately related via the annihilators and solution sets of §5.2:
-
Proof. We will prove (1) and leave (2) as an exercise8.
For the first equality, observe that \(v\in \ker \phi \) if and only if \(\phi (v)=0\) or, equivalently, by Theorem 5.3, \(\alpha (\phi (v))=0\), for all \(\alpha \in W^{*}\), which is the same as \(\phi ^T(\alpha )(v)=0\), for all
\(\alpha \in W^{*}\), that is, \(v\in \sol (\im \phi ^T)\).
If \(V,W\) are finite-dimensional we now use this, along with rank-nullity and Proposition 5.6, to get
\(\seteqnumber{0}{5.}{1}\)
\begin{equation*}
\dim V-\dim \im \phi = \dim \ker \phi =\dim \sol (\im \phi ^T)=\dim V-\dim \im \phi ^T
\end{equation*}
so that
\(\seteqnumber{0}{5.}{1}\)
\begin{equation}
\label {eq:26} \rank \phi =\dim \im \phi =\dim \im \phi ^T=\rank \phi ^T.
\end{equation}
For \(\im \phi \leq \sol (\ker \phi ^T)\), let \(w\in \im \phi \) and \(\alpha \in \ker \phi ^T\) so that \(\alpha \circ \phi =0\) and \(w=\phi (v)\), for some \(v\in V\). Then \(\alpha (w)=\alpha (\phi (v))=(\alpha \circ \phi )(v)=0\) so that \(w\in
\sol (\ker \phi ^T)\). Thus \(\im \phi \leq \sol (\ker \phi ^T)\).
Moreover, if \(V,W\) are finite-dimensional, use (5.2), rank-nullity and Proposition 5.6 to get
\(\seteqnumber{0}{5.}{2}\)
\begin{equation*}
\dim \im \phi =\dim \im \phi ^T =\dim W-\dim \ker \phi ^T=\dim \sol (\ker \phi ^T).
\end{equation*}
We conclude that \(\im \phi \) and \(\dim \sol (\ker \phi ^{T})\) have the same dimension and so coincide. □
Along the way, we got (5.2):
-
Corollary 5.16. Let \(\phi \in L(V,W)\) be a linear map of finite-dimensional vector spaces. Then
\(\seteqnumber{0}{5.}{2}\)
\begin{equation*}
\rank \phi =\rank \phi ^T.
\end{equation*}
-
. This gives us a new take on an old result9from Algebra 1B. Let \(A\in M_{m\times n}(\F )\) be the matrix of \(\phi \) with respect to bases of \(V\) and \(W\) so that, by Proposition 5.14, \(A^T\) is the matrix of \(\phi ^T\) with respect to the dual bases. Then the rank of \(\phi \) is the column rank of \(A\) while the rank of \(\phi ^T\) is the column rank of \(A^T\) which is the row rank of \(A\). Thus row rank
and column rank coincide.
The punchline of Theorem 5.15 is that \(\phi \) and \(\phi ^T\) have “opposite” properties. For example:
-
Proof. For (1), \(\phi \) injects if and only if \(\ker \phi =\set 0\) while \(\phi ^T\) surjects if and only if \(\dim \im \phi ^T=\dim V\). By Theorem 5.15, the first happens if and only if
\(\sol (\im \phi ^T)=\set 0\) but, by Proposition 5.6, this is equivalent to the \(\dim \im \phi ^T=\dim V\).
Item (2) is similar. □
-
.
-
-
(1) This result is useful as it is sometimes easier to prove injectivity than surjectivity.
-
(2) With a bit more effort, we can do better than Proposition 5.17: for example, using Theorem 5.3, we can prove that Proposition 5.17(2) holds even in
infinite dimensions.