\(\newcommand{\footnotename}{footnote}\)
\(\def \LWRfootnote {1}\)
\(\newcommand {\footnote }[2][\LWRfootnote ]{{}^{\mathrm {#1}}}\)
\(\newcommand {\footnotemark }[1][\LWRfootnote ]{{}^{\mathrm {#1}}}\)
\(\let \LWRorighspace \hspace \)
\(\renewcommand {\hspace }{\ifstar \LWRorighspace \LWRorighspace }\)
\(\newcommand {\mathnormal }[1]{{#1}}\)
\(\newcommand \ensuremath [1]{#1}\)
\(\newcommand {\LWRframebox }[2][]{\fbox {#2}} \newcommand {\framebox }[1][]{\LWRframebox } \)
\(\newcommand {\setlength }[2]{}\)
\(\newcommand {\addtolength }[2]{}\)
\(\newcommand {\setcounter }[2]{}\)
\(\newcommand {\addtocounter }[2]{}\)
\(\newcommand {\arabic }[1]{}\)
\(\newcommand {\number }[1]{}\)
\(\newcommand {\noalign }[1]{\text {#1}\notag \\}\)
\(\newcommand {\cline }[1]{}\)
\(\newcommand {\directlua }[1]{\text {(directlua)}}\)
\(\newcommand {\luatexdirectlua }[1]{\text {(directlua)}}\)
\(\newcommand {\protect }{}\)
\(\def \LWRabsorbnumber #1 {}\)
\(\def \LWRabsorbquotenumber "#1 {}\)
\(\newcommand {\LWRabsorboption }[1][]{}\)
\(\newcommand {\LWRabsorbtwooptions }[1][]{\LWRabsorboption }\)
\(\def \mathchar {\ifnextchar "\LWRabsorbquotenumber \LWRabsorbnumber }\)
\(\def \mathcode #1={\mathchar }\)
\(\let \delcode \mathcode \)
\(\let \delimiter \mathchar \)
\(\let \LWRref \ref \)
\(\renewcommand {\ref }{\ifstar \LWRref \LWRref }\)
\(\newcommand {\intertext }[1]{\text {#1}\notag \\}\)
\(\let \Hat \hat \)
\(\let \Check \check \)
\(\let \Tilde \tilde \)
\(\let \Acute \acute \)
\(\let \Grave \grave \)
\(\let \Dot \dot \)
\(\let \Ddot \ddot \)
\(\let \Breve \breve \)
\(\let \Bar \bar \)
\(\let \Vec \vec \)
\( \newcommand {\multicolumn }[3]{#3}\)
\(\newcommand {\mathllap }[2][]{{#1#2}}\)
\(\newcommand {\mathrlap }[2][]{{#1#2}}\)
\(\newcommand {\mathclap }[2][]{{#1#2}}\)
\(\newcommand {\mathmbox }[1]{#1}\)
\(\newcommand {\clap }[1]{#1}\)
\(\newcommand {\LWRmathmakebox }[2][]{#2}\)
\(\newcommand {\mathmakebox }[1][]{\LWRmathmakebox }\)
\(\newcommand {\cramped }[2][]{{#1#2}}\)
\(\newcommand {\crampedllap }[2][]{{#1#2}}\)
\(\newcommand {\crampedrlap }[2][]{{#1#2}}\)
\(\newcommand {\crampedclap }[2][]{{#1#2}}\)
\(\newenvironment {crampedsubarray}[1]{}{}\)
\(\newcommand {\crampedsubstack }{}\)
\(\newcommand {\smashoperator }[2][]{#2\limits }\)
\(\newcommand {\adjustlimits }{}\)
\(\newcommand {\SwapAboveDisplaySkip }{}\)
\(\require {extpfeil}\)
\(\Newextarrow \xleftrightarrow {10,10}{0x2194}\)
\(\Newextarrow \xLeftarrow {10,10}{0x21d0}\)
\(\Newextarrow \xhookleftarrow {10,10}{0x21a9}\)
\(\Newextarrow \xmapsto {10,10}{0x21a6}\)
\(\Newextarrow \xRightarrow {10,10}{0x21d2}\)
\(\Newextarrow \xLeftrightarrow {10,10}{0x21d4}\)
\(\Newextarrow \xhookrightarrow {10,10}{0x21aa}\)
\(\Newextarrow \xrightharpoondown {10,10}{0x21c1}\)
\(\Newextarrow \xleftharpoondown {10,10}{0x21bd}\)
\(\Newextarrow \xrightleftharpoons {10,10}{0x21cc}\)
\(\Newextarrow \xrightharpoonup {10,10}{0x21c0}\)
\(\Newextarrow \xleftharpoonup {10,10}{0x21bc}\)
\(\Newextarrow \xleftrightharpoons {10,10}{0x21cb}\)
\(\newcommand {\LWRdounderbracket }[3]{\mathinner {\underset {#3}{\underline {\llcorner {#1}\lrcorner }}}}\)
\(\newcommand {\LWRunderbracket }[2][]{\LWRdounderbracket {#2}}\)
\(\newcommand {\underbracket }[1][]{\LWRunderbracket }\)
\(\newcommand {\LWRdooverbracket }[3]{\mathinner {\overset {#3}{\overline {\ulcorner {#1}\urcorner }}}}\)
\(\newcommand {\LWRoverbracket }[2][]{\LWRdooverbracket {#2}}\)
\(\newcommand {\overbracket }[1][]{\LWRoverbracket }\)
\(\newcommand {\LaTeXunderbrace }[1]{\underbrace {#1}}\)
\(\newcommand {\LaTeXoverbrace }[1]{\overbrace {#1}}\)
\(\newenvironment {matrix*}[1][]{\begin {matrix}}{\end {matrix}}\)
\(\newenvironment {pmatrix*}[1][]{\begin {pmatrix}}{\end {pmatrix}}\)
\(\newenvironment {bmatrix*}[1][]{\begin {bmatrix}}{\end {bmatrix}}\)
\(\newenvironment {Bmatrix*}[1][]{\begin {Bmatrix}}{\end {Bmatrix}}\)
\(\newenvironment {vmatrix*}[1][]{\begin {vmatrix}}{\end {vmatrix}}\)
\(\newenvironment {Vmatrix*}[1][]{\begin {Vmatrix}}{\end {Vmatrix}}\)
\(\newenvironment {smallmatrix*}[1][]{\begin {matrix}}{\end {matrix}}\)
\(\newenvironment {psmallmatrix*}[1][]{\begin {pmatrix}}{\end {pmatrix}}\)
\(\newenvironment {bsmallmatrix*}[1][]{\begin {bmatrix}}{\end {bmatrix}}\)
\(\newenvironment {Bsmallmatrix*}[1][]{\begin {Bmatrix}}{\end {Bmatrix}}\)
\(\newenvironment {vsmallmatrix*}[1][]{\begin {vmatrix}}{\end {vmatrix}}\)
\(\newenvironment {Vsmallmatrix*}[1][]{\begin {Vmatrix}}{\end {Vmatrix}}\)
\(\newenvironment {psmallmatrix}[1][]{\begin {pmatrix}}{\end {pmatrix}}\)
\(\newenvironment {bsmallmatrix}[1][]{\begin {bmatrix}}{\end {bmatrix}}\)
\(\newenvironment {Bsmallmatrix}[1][]{\begin {Bmatrix}}{\end {Bmatrix}}\)
\(\newenvironment {vsmallmatrix}[1][]{\begin {vmatrix}}{\end {vmatrix}}\)
\(\newenvironment {Vsmallmatrix}[1][]{\begin {Vmatrix}}{\end {Vmatrix}}\)
\(\newcommand {\LWRmultlined }[1][]{\begin {multline*}}\)
\(\newenvironment {multlined}[1][]{\LWRmultlined }{\end {multline*}}\)
\(\let \LWRorigshoveleft \shoveleft \)
\(\renewcommand {\shoveleft }[1][]{\LWRorigshoveleft }\)
\(\let \LWRorigshoveright \shoveright \)
\(\renewcommand {\shoveright }[1][]{\LWRorigshoveright }\)
\(\newenvironment {dcases}{\begin {cases}}{\end {cases}}\)
\(\newenvironment {dcases*}{\begin {cases}}{\end {cases}}\)
\(\newenvironment {rcases}{\begin {cases}}{\end {cases}}\)
\(\newenvironment {rcases*}{\begin {cases}}{\end {cases}}\)
\(\newenvironment {drcases}{\begin {cases}}{\end {cases}}\)
\(\newenvironment {drcases*}{\begin {cases}}{\end {cases}}\)
\(\newenvironment {cases*}{\begin {cases}}{\end {cases}}\)
\(\newcommand {\MoveEqLeft }[1][]{}\)
\(\def \LWRAboxed #1!|!{\fbox {\(#1\)}&\fbox {\(#2\)}} \newcommand {\Aboxed }[1]{\LWRAboxed #1&&!|!} \)
\( \newcommand {\LWRABLines }[1][\Updownarrow ]{#1 \notag \\}\newcommand {\ArrowBetweenLines }{\ifstar \LWRABLines \LWRABLines } \)
\(\newcommand {\shortintertext }[1]{\text {#1}\notag \\}\)
\(\newcommand {\vdotswithin }[1]{\hspace {.5em}\vdots }\)
\(\newcommand {\LWRshortvdotswithinstar }[1]{\vdots \hspace {.5em} & \\}\)
\(\newcommand {\LWRshortvdotswithinnostar }[1]{& \hspace {.5em}\vdots \\}\)
\(\newcommand {\shortvdotswithin }{\ifstar \LWRshortvdotswithinstar \LWRshortvdotswithinnostar }\)
\(\newcommand {\MTFlushSpaceAbove }{}\)
\(\newcommand {\MTFlushSpaceBelow }{\\}\)
\(\newcommand \lparen {(}\)
\(\newcommand \rparen {)}\)
\(\newcommand {\ordinarycolon }{:}\)
\(\newcommand {\vcentcolon }{\mathrel {\unicode {x2236}}}\)
\(\newcommand \dblcolon {\mathrel {\unicode {x2237}}}\)
\(\newcommand \coloneqq {\mathrel {\unicode {x2236}\!=}}\)
\(\newcommand \Coloneqq {\mathrel {\unicode {x2237}\!=}}\)
\(\newcommand \coloneq {\mathrel {\unicode {x2236}-}}\)
\(\newcommand \Coloneq {\mathrel {\unicode {x2237}-}}\)
\(\newcommand \eqqcolon {\mathrel {=\!\unicode {x2236}}}\)
\(\newcommand \Eqqcolon {\mathrel {=\!\unicode {x2237}}}\)
\(\newcommand \eqcolon {\mathrel {-\unicode {x2236}}}\)
\(\newcommand \Eqcolon {\mathrel {-\unicode {x2237}}}\)
\(\newcommand \colonapprox {\mathrel {\unicode {x2236}\!\approx }}\)
\(\newcommand \Colonapprox {\mathrel {\unicode {x2237}\!\approx }}\)
\(\newcommand \colonsim {\mathrel {\unicode {x2236}\!\sim }}\)
\(\newcommand \Colonsim {\mathrel {\unicode {x2237}\!\sim }}\)
\(\newcommand {\nuparrow }{\mathrel {\cancel {\uparrow }}}\)
\(\newcommand {\ndownarrow }{\mathrel {\cancel {\downarrow }}}\)
\(\newcommand {\bigtimes }{\mathop {\Large \times }\limits }\)
\(\newcommand {\prescript }[3]{{}^{#1}_{#2}#3}\)
\(\newenvironment {lgathered}{\begin {gathered}}{\end {gathered}}\)
\(\newenvironment {rgathered}{\begin {gathered}}{\end {gathered}}\)
\(\newcommand {\splitfrac }[2]{{}^{#1}_{#2}}\)
\(\let \splitdfrac \splitfrac \)
\(\newcommand {\bigzero }{\smash {\text {\huge 0}}}\)
\(\newcommand {\am }{\mathrm {am}}\)
\(\newcommand {\gm }{\mathrm {gm}}\)
\(\newcommand {\id }{\operatorname {id}}\)
\(\newcommand {\GL }{\operatorname {GL}}\)
\(\newcommand {\im }{\operatorname {im}}\)
\(\newcommand {\rank }{\operatorname {rank}}\)
\(\newcommand {\sol }{\operatorname {sol}}\)
\(\newcommand {\ann }{\operatorname {ann}}\)
\(\newcommand {\rO }{\operatorname {O}}\)
\(\newcommand {\rU }{\operatorname {U}}\)
\(\newcommand {\rSU }{\operatorname {SU}}\)
\(\newcommand {\ev }{\operatorname {ev}}\)
\(\newcommand {\bil }{\operatorname {Bil}}\)
\(\newcommand {\rad }{\operatorname {rad}}\)
\(\newcommand {\Span }[1]{\operatorname {span}\{#1\}}\)
\(\newcommand {\R }{\mathbb {R}}\)
\(\newcommand {\C }{\mathbb {C}}\)
\(\newcommand {\Z }{\mathbb {Z}}\)
\(\newcommand {\F }{\mathbb {F}}\)
\(\newcommand {\Q }{\mathbb {Q}}\)
\(\newcommand {\N }{\mathbb {N}}\)
\(\renewcommand {\P }{\mathbb {P}}\)
\(\newcommand {\I }{\mathrm {I}}\)
\(\newcommand {\half }{\tfrac 12}\)
\(\newcommand {\rel }{\mathrel {\mathrm {rel}}}\)
\(\renewcommand {\vec }[3]{(#1_{#2},\dots ,#1_{#3})}\)
\(\newcommand {\lst }[3]{#1_{#2},\dots ,#1_{#3}}\)
\(\newcommand {\plst }[3]{#1_{#2}+\dots +#1_{#3}}\)
\(\newcommand {\oplst }[3]{#1_{#2}\oplus \dots \oplus #1_{#3}}\)
\(\newcommand {\pplst }[3]{#1_{#2}\times \dots \times #1_{#3}}\)
\(\newcommand {\dlst }[3]{\lst {#1^{*}}{#2}{#3}}\)
\(\newcommand {\dlc }[4]{\lc #1{#2^{*}}#3#4}\)
\(\newcommand {\hmg }[3]{[#1_{#2},\dots ,#1_{#3}]}\)
\(\newcommand {\rng }[2]{#1,\dots ,#2}\)
\(\newcommand {\lc }[4]{#1_{#3}#2_{#3}+\dots +#1_{#4}#2_{#4}}\)
\(\newcommand {\plus }[2]{#1+\dots +#2}\)
\(\newcommand {\set }[1]{\{#1\}}\)
\(\newcommand {\abs }[1]{\lvert #1\rvert }\)
\(\newcommand {\ip }[1]{\langle #1\rangle }\)
\(\newcommand {\norm }[1]{\|#1\|}\)
\(\newcommand {\bx }{\mathbf {x}}\)
\(\newcommand {\be }{\mathbf {e}}\)
\(\newcommand {\bq }{\mathbf {q}}\)
\(\newcommand {\bu }{\mathbf {u}}\)
\(\newcommand {\by }{\mathbf {y}}\)
\(\newcommand {\bv }{\mathbf {v}}\)
\(\newcommand {\E }{\mathbb {E}}\)
\(\newcommand {\cI }{\mathcal {I}}\)
\(\newcommand {\cB }{\mathcal {B}}\)
\(\newcommand {\sub }{\subseteq }\)
\(\newcommand {\st }{\mathrel {|}}\)
\(\newcommand {\bw }[3]{#1\leq #2\leq #3}\)
\(\newcommand {\col }[3]{(#1_{#2})_{#2\in #3}}\)
\(\newcommand {\supp }{\mathrm {supp}}\)
\(\newcommand {\restr }[1]{_{|#1}}\)
5.2 Solution sets and annihilators
Here is one way to think about \(V^{*}\): consider the equation
\(\seteqnumber{0}{5.}{0}\)
\begin{equation}
\label {eq:25} \alpha (v)=0,
\end{equation}
for some \(\alpha \in V^{*}\) and \(v\in V\). If we choose dual bases \(\lst {v}1n\) and \(\dlst {v}1n\) of \(V\) and \(V^{*}\), (5.1) reads
\(\seteqnumber{0}{5.}{1}\)
\begin{equation*}
\lc \alpha {x}1n=0
\end{equation*}
where we have written \(\alpha =\lc \alpha {v^{*}}1n\) and \(v=\lc {x}v1n\). This is a single homogeneous linear equation.
This gives us the idea of viewing \(V^{*}\) as the set of linear equations on \(V\). From this point of view, a subspace \(E\leq V^{*}\) should be viewed as a system of linear equations and so we should be interested in the solutions of that system:
-
Definition. Let \(E\leq V^{*}\). The solution set of \(E\) is
\(\seteqnumber{0}{5.}{1}\)
\begin{equation*}
\sol E:=\set {v\in V\st \text {$\alpha (v)=0$, for all $\alpha \in E$}}=\bigcap _{\alpha \in E}\ker \alpha \leq V.
\end{equation*}
For finite-dimensional \(V\), one might expect each equation in a linear system to reduce the dimension of the solution set by one and this is exactly what happens:
-
Proposition 5.6. If \(V\) is finite-dimensional and \(E\leq V^{*}\) then
\(\seteqnumber{0}{5.}{1}\)
\begin{equation*}
\dim \sol E=\dim V-\dim E.
\end{equation*}
We say that \(E\) and \(\sol E\) have complementary dimension.
-
Proof. Let \(\dlst {v}1k\) be a basis of \(E\) and extend to a basis \(\dlst {v}1n\) of \(V^{*}\). Let \(\lst {v}1n\) be the dual basis of \(V\) provided by Proposition 5.4.
Now \(E=\Span {\dlst {v}1k}\) so that \(\sol E=\bigcap _{i=1}^k\ker v^{*}_i\). Thus \(v=\sum _{j=1}^n\lambda _jv_j\) lies in \(\sol E\) if and only if \(\lambda _i=v^{*}_i(v)=0\), for \(\bw 1ik\). Otherwise said,
\(\seteqnumber{0}{5.}{1}\)
\begin{equation*}
\sol E=\Span {\lst {v}{k+1}n}
\end{equation*}
so that
\(\seteqnumber{0}{5.}{1}\)
\begin{equation*}
\dim \sol E=n-k=\dim V-\dim E.
\end{equation*}
□
-
. Here is a slicker argument. Let \(\ev ^E:V\to E^{*}\) be the linear map given by
\(\seteqnumber{0}{5.}{1}\)
\begin{equation*}
\ev ^E(v)(\alpha )=\alpha (v).
\end{equation*}
-
(1) \(\im \ev ^E=E^{*}\): for this, you use Theorem 5.5 along with the fact that restriction to \(E\) is a surjection from \(V^{**}\) to \(E^{*}\) thanks to Proposition 2.11.
-
(2) \(\ker \ev ^E=\set {v\in V\st \text {$\alpha (v)=0$, for all $\alpha \in E $}}=\sol E\).
So rank-nullity tells us that
\(\seteqnumber{0}{5.}{1}\)
\begin{equation*}
\dim \sol E+\dim E^{*}=\dim V
\end{equation*}
and, since \(\dim E=\dim E^{*}\), we are done.
-
Corollary 5.7. Let \(V\) have dimension \(n\) and suppose that \(\lst {\alpha }1n\in V^{*}\) are such that
\(\seteqnumber{0}{5.}{1}\)
\begin{equation*}
\bigcap _{i=1}^n\ker \alpha _i=\set 0.
\end{equation*}
Then \(\lst \alpha 1n\) is a basis of \(V^{*}\).
-
Proof. Let \(E:=\Span {\lst \alpha 1n}\). The hypothesis says that \(\sol E=\set 0\) so, by Proposition 5.6, \(\dim E=n\) whence \(E=V^{*}\). Thus \(\lst \alpha 1n\) span \(V^{*}\)
and so are a basis. □
Here is an application:
-
Example. Let \(P_2\) be the vector space of polynomials of degree at most \(2\). Thus \(\dim P_2=3\).
Define \(\alpha _i:P_2\to \R \), \(i=1,2,3\), by
\(\seteqnumber{0}{5.}{1}\)
\begin{align*}
\alpha _1(p)&=p(1)\\ \alpha _2(p)&=p(\sqrt {2})\\ \alpha _3(p)&=p(\pi ),
\end{align*}
for all \(p\in P_2\). These are all linear maps so that \(\alpha _1,\alpha _2,\alpha _3\in P_2^{*}\). We apply Corollary 5.7 so see that \(\alpha _1,\alpha _2,\alpha _3\) are a basis of \(P_2^{*}\). Indeed, if \(p\in \bigcap
_{i=1}^3\ker \alpha _i\) then \(p(1)=p(\sqrt {2})=p(\pi )=0\) so that \(p\) has three distinct roots and so must vanish since it has degree no more than \(2\).
Thus any \(\alpha \in P_2^{*}\) is a linear combination of the \(\alpha _i\). For example, define \(\alpha \) by
\(\seteqnumber{0}{5.}{1}\)
\begin{equation*}
\alpha (p)=\int _0^1p.
\end{equation*}
Then there are \(\lambda _1,\lambda _2,\lambda _3\in \R \) such that \(\alpha =\lambda _1\alpha _1+\lambda _2\alpha _2+\lambda _3\alpha _3\). Otherwise said, we have found clever \(\lambda _i\) such that, for all \(p\in P_2\),
\(\seteqnumber{0}{5.}{1}\)
\begin{equation*}
\int _0^1p=\lambda _1p(1)+\lambda _2p(\sqrt {2})+\lambda _3p(\pi ).
\end{equation*}
Solution sets behave somewhat like orthogonal complements (except that \(E\) and \(\sol E\) live in entirely different vector spaces):
-
Proof.
-
-
(1) Let \(E\leq F\) and \(v\in \sol F\). Then \(\alpha (v)=0\), for all \(\alpha \in F\) and so, in particular, for all \(\alpha \in E\). Thus \(v\in \sol E\).
-
(2) This is an exercise4.
□
Still thinking of \(V^{*}\) as the linear equations on \(V\), we can turn things around and ask which equations the elements of a subspace \(U\leq V\) satisfy:
-
Definition. Let \(U\leq V\). The annihilator of \(U\), denoted \(\ann U\) or \(U^{\circ }\), is given by:
\(\seteqnumber{0}{5.}{1}\)
\begin{equation*}
\ann U:=\set {\alpha \in V^{*}\st \alpha _{|U}=0}=\set {\alpha \in V^{*}\st \text {$\alpha (u)=0$, for all $u\in U$ }}.
\end{equation*}
Annihilators have very similar properties to solution sets. They also have complementary dimension:
Again annihilators swap the order of inclusions and sums with intersections:
What is the relation between annihilators and solution sets?
With this in hand, we have:
-
Theorem 5.12. Let \(U\leq V\) and \(E\leq V^{*}\). Then
\(\seteqnumber{0}{5.}{1}\)
\begin{align*}
U&\leq \sol (\ann U)\\ E&\leq \ann (\sol E),
\end{align*}
with equality if \(V\) is finite-dimensional.
-
Proof. Clearly \(\ann U\leq \ann U\) so putting \(E=\ann U\) in Lemma 5.11 gives
\(\seteqnumber{0}{5.}{1}\)
\begin{equation*}
U\leq \sol (\ann U).
\end{equation*}
Similarly, \(\sol E\leq \sol E\) so Lemma 5.11 gives
\(\seteqnumber{0}{5.}{1}\)
\begin{equation*}
E\leq \ann (\sol E).
\end{equation*}
If \(V\) is finite-dimensional,
\(\seteqnumber{0}{5.}{1}\)
\begin{equation*}
\dim \sol (\ann U)=\dim V-\dim \ann U=\dim U
\end{equation*}
so that \(U=\sol (\ann U)\). Similarly, \(E=\ann (\sol E)\). □
-
. We can view \(\ann \) and \(\sol \) as maps:
\(\seteqnumber{0}{5.}{1}\)
\begin{align*}
\ann :\set {\text {subspaces of $V$}}&\to \set {\text {subspaces of $V^{*}$}}\\ \sol :\set {\text {subspaces of $V^{*}$}}&\to \set {\text {subspaces of $V$}}.
\end{align*}
When \(V\) is finite-dimensional, Theorem 5.12 is telling us that these maps are mutually inverse bijections. This has a beautiful application to geometry that you can see in MA30231.