\(\newcommand{\footnotename}{footnote}\)
\(\def \LWRfootnote {1}\)
\(\newcommand {\footnote }[2][\LWRfootnote ]{{}^{\mathrm {#1}}}\)
\(\newcommand {\footnotemark }[1][\LWRfootnote ]{{}^{\mathrm {#1}}}\)
\(\let \LWRorighspace \hspace \)
\(\renewcommand {\hspace }{\ifstar \LWRorighspace \LWRorighspace }\)
\(\newcommand {\mathnormal }[1]{{#1}}\)
\(\newcommand \ensuremath [1]{#1}\)
\(\newcommand {\LWRframebox }[2][]{\fbox {#2}} \newcommand {\framebox }[1][]{\LWRframebox } \)
\(\newcommand {\setlength }[2]{}\)
\(\newcommand {\addtolength }[2]{}\)
\(\newcommand {\setcounter }[2]{}\)
\(\newcommand {\addtocounter }[2]{}\)
\(\newcommand {\arabic }[1]{}\)
\(\newcommand {\number }[1]{}\)
\(\newcommand {\noalign }[1]{\text {#1}\notag \\}\)
\(\newcommand {\cline }[1]{}\)
\(\newcommand {\directlua }[1]{\text {(directlua)}}\)
\(\newcommand {\luatexdirectlua }[1]{\text {(directlua)}}\)
\(\newcommand {\protect }{}\)
\(\def \LWRabsorbnumber #1 {}\)
\(\def \LWRabsorbquotenumber "#1 {}\)
\(\newcommand {\LWRabsorboption }[1][]{}\)
\(\newcommand {\LWRabsorbtwooptions }[1][]{\LWRabsorboption }\)
\(\def \mathchar {\ifnextchar "\LWRabsorbquotenumber \LWRabsorbnumber }\)
\(\def \mathcode #1={\mathchar }\)
\(\let \delcode \mathcode \)
\(\let \delimiter \mathchar \)
\(\let \LWRref \ref \)
\(\renewcommand {\ref }{\ifstar \LWRref \LWRref }\)
\(\newcommand {\intertext }[1]{\text {#1}\notag \\}\)
\(\let \Hat \hat \)
\(\let \Check \check \)
\(\let \Tilde \tilde \)
\(\let \Acute \acute \)
\(\let \Grave \grave \)
\(\let \Dot \dot \)
\(\let \Ddot \ddot \)
\(\let \Breve \breve \)
\(\let \Bar \bar \)
\(\let \Vec \vec \)
\( \newcommand {\multicolumn }[3]{#3}\)
\(\newcommand {\mathllap }[2][]{{#1#2}}\)
\(\newcommand {\mathrlap }[2][]{{#1#2}}\)
\(\newcommand {\mathclap }[2][]{{#1#2}}\)
\(\newcommand {\mathmbox }[1]{#1}\)
\(\newcommand {\clap }[1]{#1}\)
\(\newcommand {\LWRmathmakebox }[2][]{#2}\)
\(\newcommand {\mathmakebox }[1][]{\LWRmathmakebox }\)
\(\newcommand {\cramped }[2][]{{#1#2}}\)
\(\newcommand {\crampedllap }[2][]{{#1#2}}\)
\(\newcommand {\crampedrlap }[2][]{{#1#2}}\)
\(\newcommand {\crampedclap }[2][]{{#1#2}}\)
\(\newenvironment {crampedsubarray}[1]{}{}\)
\(\newcommand {\crampedsubstack }{}\)
\(\newcommand {\smashoperator }[2][]{#2\limits }\)
\(\newcommand {\adjustlimits }{}\)
\(\newcommand {\SwapAboveDisplaySkip }{}\)
\(\require {extpfeil}\)
\(\Newextarrow \xleftrightarrow {10,10}{0x2194}\)
\(\Newextarrow \xLeftarrow {10,10}{0x21d0}\)
\(\Newextarrow \xhookleftarrow {10,10}{0x21a9}\)
\(\Newextarrow \xmapsto {10,10}{0x21a6}\)
\(\Newextarrow \xRightarrow {10,10}{0x21d2}\)
\(\Newextarrow \xLeftrightarrow {10,10}{0x21d4}\)
\(\Newextarrow \xhookrightarrow {10,10}{0x21aa}\)
\(\Newextarrow \xrightharpoondown {10,10}{0x21c1}\)
\(\Newextarrow \xleftharpoondown {10,10}{0x21bd}\)
\(\Newextarrow \xrightleftharpoons {10,10}{0x21cc}\)
\(\Newextarrow \xrightharpoonup {10,10}{0x21c0}\)
\(\Newextarrow \xleftharpoonup {10,10}{0x21bc}\)
\(\Newextarrow \xleftrightharpoons {10,10}{0x21cb}\)
\(\newcommand {\LWRdounderbracket }[3]{\mathinner {\underset {#3}{\underline {\llcorner {#1}\lrcorner }}}}\)
\(\newcommand {\LWRunderbracket }[2][]{\LWRdounderbracket {#2}}\)
\(\newcommand {\underbracket }[1][]{\LWRunderbracket }\)
\(\newcommand {\LWRdooverbracket }[3]{\mathinner {\overset {#3}{\overline {\ulcorner {#1}\urcorner }}}}\)
\(\newcommand {\LWRoverbracket }[2][]{\LWRdooverbracket {#2}}\)
\(\newcommand {\overbracket }[1][]{\LWRoverbracket }\)
\(\newcommand {\LaTeXunderbrace }[1]{\underbrace {#1}}\)
\(\newcommand {\LaTeXoverbrace }[1]{\overbrace {#1}}\)
\(\newenvironment {matrix*}[1][]{\begin {matrix}}{\end {matrix}}\)
\(\newenvironment {pmatrix*}[1][]{\begin {pmatrix}}{\end {pmatrix}}\)
\(\newenvironment {bmatrix*}[1][]{\begin {bmatrix}}{\end {bmatrix}}\)
\(\newenvironment {Bmatrix*}[1][]{\begin {Bmatrix}}{\end {Bmatrix}}\)
\(\newenvironment {vmatrix*}[1][]{\begin {vmatrix}}{\end {vmatrix}}\)
\(\newenvironment {Vmatrix*}[1][]{\begin {Vmatrix}}{\end {Vmatrix}}\)
\(\newenvironment {smallmatrix*}[1][]{\begin {matrix}}{\end {matrix}}\)
\(\newenvironment {psmallmatrix*}[1][]{\begin {pmatrix}}{\end {pmatrix}}\)
\(\newenvironment {bsmallmatrix*}[1][]{\begin {bmatrix}}{\end {bmatrix}}\)
\(\newenvironment {Bsmallmatrix*}[1][]{\begin {Bmatrix}}{\end {Bmatrix}}\)
\(\newenvironment {vsmallmatrix*}[1][]{\begin {vmatrix}}{\end {vmatrix}}\)
\(\newenvironment {Vsmallmatrix*}[1][]{\begin {Vmatrix}}{\end {Vmatrix}}\)
\(\newenvironment {psmallmatrix}[1][]{\begin {pmatrix}}{\end {pmatrix}}\)
\(\newenvironment {bsmallmatrix}[1][]{\begin {bmatrix}}{\end {bmatrix}}\)
\(\newenvironment {Bsmallmatrix}[1][]{\begin {Bmatrix}}{\end {Bmatrix}}\)
\(\newenvironment {vsmallmatrix}[1][]{\begin {vmatrix}}{\end {vmatrix}}\)
\(\newenvironment {Vsmallmatrix}[1][]{\begin {Vmatrix}}{\end {Vmatrix}}\)
\(\newcommand {\LWRmultlined }[1][]{\begin {multline*}}\)
\(\newenvironment {multlined}[1][]{\LWRmultlined }{\end {multline*}}\)
\(\let \LWRorigshoveleft \shoveleft \)
\(\renewcommand {\shoveleft }[1][]{\LWRorigshoveleft }\)
\(\let \LWRorigshoveright \shoveright \)
\(\renewcommand {\shoveright }[1][]{\LWRorigshoveright }\)
\(\newenvironment {dcases}{\begin {cases}}{\end {cases}}\)
\(\newenvironment {dcases*}{\begin {cases}}{\end {cases}}\)
\(\newenvironment {rcases}{\begin {cases}}{\end {cases}}\)
\(\newenvironment {rcases*}{\begin {cases}}{\end {cases}}\)
\(\newenvironment {drcases}{\begin {cases}}{\end {cases}}\)
\(\newenvironment {drcases*}{\begin {cases}}{\end {cases}}\)
\(\newenvironment {cases*}{\begin {cases}}{\end {cases}}\)
\(\newcommand {\MoveEqLeft }[1][]{}\)
\(\def \LWRAboxed #1!|!{\fbox {\(#1\)}&\fbox {\(#2\)}} \newcommand {\Aboxed }[1]{\LWRAboxed #1&&!|!} \)
\( \newcommand {\LWRABLines }[1][\Updownarrow ]{#1 \notag \\}\newcommand {\ArrowBetweenLines }{\ifstar \LWRABLines \LWRABLines } \)
\(\newcommand {\shortintertext }[1]{\text {#1}\notag \\}\)
\(\newcommand {\vdotswithin }[1]{\hspace {.5em}\vdots }\)
\(\newcommand {\LWRshortvdotswithinstar }[1]{\vdots \hspace {.5em} & \\}\)
\(\newcommand {\LWRshortvdotswithinnostar }[1]{& \hspace {.5em}\vdots \\}\)
\(\newcommand {\shortvdotswithin }{\ifstar \LWRshortvdotswithinstar \LWRshortvdotswithinnostar }\)
\(\newcommand {\MTFlushSpaceAbove }{}\)
\(\newcommand {\MTFlushSpaceBelow }{\\}\)
\(\newcommand \lparen {(}\)
\(\newcommand \rparen {)}\)
\(\newcommand {\ordinarycolon }{:}\)
\(\newcommand {\vcentcolon }{\mathrel {\unicode {x2236}}}\)
\(\newcommand \dblcolon {\mathrel {\unicode {x2237}}}\)
\(\newcommand \coloneqq {\mathrel {\unicode {x2236}\!=}}\)
\(\newcommand \Coloneqq {\mathrel {\unicode {x2237}\!=}}\)
\(\newcommand \coloneq {\mathrel {\unicode {x2236}-}}\)
\(\newcommand \Coloneq {\mathrel {\unicode {x2237}-}}\)
\(\newcommand \eqqcolon {\mathrel {=\!\unicode {x2236}}}\)
\(\newcommand \Eqqcolon {\mathrel {=\!\unicode {x2237}}}\)
\(\newcommand \eqcolon {\mathrel {-\unicode {x2236}}}\)
\(\newcommand \Eqcolon {\mathrel {-\unicode {x2237}}}\)
\(\newcommand \colonapprox {\mathrel {\unicode {x2236}\!\approx }}\)
\(\newcommand \Colonapprox {\mathrel {\unicode {x2237}\!\approx }}\)
\(\newcommand \colonsim {\mathrel {\unicode {x2236}\!\sim }}\)
\(\newcommand \Colonsim {\mathrel {\unicode {x2237}\!\sim }}\)
\(\newcommand {\nuparrow }{\mathrel {\cancel {\uparrow }}}\)
\(\newcommand {\ndownarrow }{\mathrel {\cancel {\downarrow }}}\)
\(\newcommand {\bigtimes }{\mathop {\Large \times }\limits }\)
\(\newcommand {\prescript }[3]{{}^{#1}_{#2}#3}\)
\(\newenvironment {lgathered}{\begin {gathered}}{\end {gathered}}\)
\(\newenvironment {rgathered}{\begin {gathered}}{\end {gathered}}\)
\(\newcommand {\splitfrac }[2]{{}^{#1}_{#2}}\)
\(\let \splitdfrac \splitfrac \)
\(\newcommand {\bigzero }{\smash {\text {\huge 0}}}\)
\(\newcommand {\am }{\mathrm {am}}\)
\(\newcommand {\gm }{\mathrm {gm}}\)
\(\newcommand {\id }{\operatorname {id}}\)
\(\newcommand {\GL }{\operatorname {GL}}\)
\(\newcommand {\im }{\operatorname {im}}\)
\(\newcommand {\rank }{\operatorname {rank}}\)
\(\newcommand {\sol }{\operatorname {sol}}\)
\(\newcommand {\ann }{\operatorname {ann}}\)
\(\newcommand {\rO }{\operatorname {O}}\)
\(\newcommand {\rU }{\operatorname {U}}\)
\(\newcommand {\rSU }{\operatorname {SU}}\)
\(\newcommand {\ev }{\operatorname {ev}}\)
\(\newcommand {\bil }{\operatorname {Bil}}\)
\(\newcommand {\rad }{\operatorname {rad}}\)
\(\newcommand {\Span }[1]{\operatorname {span}\{#1\}}\)
\(\newcommand {\R }{\mathbb {R}}\)
\(\newcommand {\C }{\mathbb {C}}\)
\(\newcommand {\Z }{\mathbb {Z}}\)
\(\newcommand {\F }{\mathbb {F}}\)
\(\newcommand {\Q }{\mathbb {Q}}\)
\(\newcommand {\N }{\mathbb {N}}\)
\(\renewcommand {\P }{\mathbb {P}}\)
\(\newcommand {\I }{\mathrm {I}}\)
\(\newcommand {\half }{\tfrac 12}\)
\(\newcommand {\rel }{\mathrel {\mathrm {rel}}}\)
\(\renewcommand {\vec }[3]{(#1_{#2},\dots ,#1_{#3})}\)
\(\newcommand {\lst }[3]{#1_{#2},\dots ,#1_{#3}}\)
\(\newcommand {\plst }[3]{#1_{#2}+\dots +#1_{#3}}\)
\(\newcommand {\oplst }[3]{#1_{#2}\oplus \dots \oplus #1_{#3}}\)
\(\newcommand {\pplst }[3]{#1_{#2}\times \dots \times #1_{#3}}\)
\(\newcommand {\dlst }[3]{\lst {#1^{*}}{#2}{#3}}\)
\(\newcommand {\dlc }[4]{\lc #1{#2^{*}}#3#4}\)
\(\newcommand {\hmg }[3]{[#1_{#2},\dots ,#1_{#3}]}\)
\(\newcommand {\rng }[2]{#1,\dots ,#2}\)
\(\newcommand {\lc }[4]{#1_{#3}#2_{#3}+\dots +#1_{#4}#2_{#4}}\)
\(\newcommand {\plus }[2]{#1+\dots +#2}\)
\(\newcommand {\set }[1]{\{#1\}}\)
\(\newcommand {\abs }[1]{\lvert #1\rvert }\)
\(\newcommand {\ip }[1]{\langle #1\rangle }\)
\(\newcommand {\norm }[1]{\|#1\|}\)
\(\newcommand {\bx }{\mathbf {x}}\)
\(\newcommand {\be }{\mathbf {e}}\)
\(\newcommand {\bq }{\mathbf {q}}\)
\(\newcommand {\bu }{\mathbf {u}}\)
\(\newcommand {\by }{\mathbf {y}}\)
\(\newcommand {\bv }{\mathbf {v}}\)
\(\newcommand {\E }{\mathbb {E}}\)
\(\newcommand {\cI }{\mathcal {I}}\)
\(\newcommand {\cB }{\mathcal {B}}\)
\(\newcommand {\sub }{\subseteq }\)
\(\newcommand {\st }{\mathrel {|}}\)
\(\newcommand {\bw }[3]{#1\leq #2\leq #3}\)
\(\newcommand {\col }[3]{(#1_{#2})_{#2\in #3}}\)
\(\newcommand {\supp }{\mathrm {supp}}\)
\(\newcommand {\restr }[1]{_{|#1}}\)
4.2 Invariant subspaces
The next lemma gives us lots of examples:
-
Lemma 4.1. Let \(\phi ,\psi \in L(V)\) be linear operators and suppose that \(\phi \psi =\psi \phi \) (say that \(\phi \)
and \(\psi \) commute).
Then \(\ker \psi \) and \(\im \psi \) are \(\phi \)-invariant.
-
Proof. Let \(v\in \ker \psi \) so that \(\psi (v)=0\). Then
\(\seteqnumber{0}{4.}{1}\)
\begin{equation*}
\psi (\phi (v))=\phi (\psi (v))=\phi (0)=0
\end{equation*}
so that \(\phi (v)\in \ker \psi \) also.
Again, if \(v\in \im \psi \), there is \(w\in V\) with \(\psi (w)=v\) and now
\(\seteqnumber{0}{4.}{1}\)
\begin{equation*}
\phi (v)=\phi (\psi (w))=\psi (\phi (w))\in \im \psi ,
\end{equation*}
as required. □
As a consequence, the following are \(\phi \)-invariant:
-
• \(\ker \phi \) and \(\im \phi \) (since \(\phi \) commutes with itself!).
-
• \(\ker p(\phi )\), \(\im p(\phi )\), for any \(p\in \F [x]\) (since \(xp=px\) so that \(\phi p(\phi )=p(\phi )\phi \)).
Also, we have
-
• \(\Span {v}\), for any eigenvector \(v\) of \(\phi \), since \(\phi (v)=\lambda v\in \Span {v}\). Thus:
-
• Any \(U\leq E_{\phi }(\lambda )\) is \(\phi \)-invariant.
-
Definition. Let \(\lst {V}1k\leq V\) with \(V=\oplst {V}1k\) and let \(\phi _i\in L(V_i)\), for \(\bw 1ik\).
Define \(\phi :V\to V\) by
\(\seteqnumber{0}{4.}{1}\)
\begin{equation*}
\phi (v)=\phi _1(v_1)+\dots +\phi _k(v_k),
\end{equation*}
where \(v=\plst {v}1k\) with \(v_i\in V_i\), for \(\bw 1ik\).
Call \(\phi \) the direct sum of the \(\phi _i\) and write \(\phi =\oplst \phi 1k\).
There is a related notion for matrices:
-
Definition. Let \(\lst {A}1k\) be square matrices with \(A_i\in M_{n_i}(\F )\). The direct sum of the \(A_i\) is
\(\seteqnumber{0}{4.}{1}\)
\begin{equation*}
\oplst {A}1k:= \begin{pmatrix} A_1&&0\\&\ddots &\\0&&A_k \end {pmatrix}\in M_n(\F ),
\end{equation*}
where \(n=\plst {n}1k\).
A matrix of this type is said to be block diagonal.
-
Proof. For (1), let \(v,w\in V\) and write
\(\seteqnumber{0}{4.}{1}\)
\begin{equation*}
v=\plst {v}1k\qquad w=\plst {w}1k,
\end{equation*}
with each \(v_i,w_i\in V_i\). Then
\(\seteqnumber{0}{4.}{1}\)
\begin{equation*}
v+\lambda w=(v_1+\lambda w_1)+\dots +(v_k+\lambda w_k)
\end{equation*}
with each \(v_i+\lambda w_i\in V_i\).
Then
\(\seteqnumber{0}{4.}{1}\)
\begin{equation*}
\phi (v+\lambda w)=\sum _{i=1}^{k}\phi _i(v_i+\lambda w_i) =\sum _{i=1}^{k}\bigl (\phi _i(v_i)+\lambda \phi _i(w_i)\bigr ) =\sum _{i=1}^{k}\phi _i(v_i)+\lambda \sum _{i=1}^{k}\phi _i(w_i)=\phi (v)+\lambda \phi (w),
\end{equation*}
where we used the linearity of \(\phi _i\) in the second equality.
For (2), let \(v\in V_i\) so that we can write \(v=\plst {v}1k\) with \(v_i=v\) and \(v_j=0\), for \(i\neq j\). Then
\(\seteqnumber{0}{4.}{1}\)
\begin{equation*}
\phi (v)=\phi _1(0)+\dots +\phi _i(v)+\dots +\phi _k(0)=\phi _i(v)\in V_i
\end{equation*}
so that \(V_i\) is \(\phi \)-invariant and \(\phi \restr {V_i}=\phi _i\).
Finally, for (3), let \(\cB =\cB _1\dots \cB _k=\lst {v}1n\) with \(\cB _i=\lst {v}{a+1}{a+r}\). Let \(\phi \) have matrix \(A\) with respect to \(\cB \). Then, for \(\bw 1jr\),
\(\seteqnumber{0}{4.}{1}\)
\begin{equation*}
\phi (v_{a+j})=\sum _{b=1}^nA_{b,a+j}v_b.
\end{equation*}
On the other hand,
\(\seteqnumber{0}{4.}{1}\)
\begin{equation*}
\phi (v_{a+j})=\phi _i(v_{a+j})=\sum _{c=1}^r(A_i)_{cj}v_{a+c}.
\end{equation*}
Now compare coefficients to see that
\(\seteqnumber{0}{4.}{1}\)
\begin{align*}
A_{a+c,a+j}&=(A_i)_{cj},\quad \bw 1{j}r\\ A_{b,a+j}&=0\quad \text {otherwise}.
\end{align*}
Otherwise said, the \(a+j\)-th column of \(A\) has the \(j\)-th column of the \(r\times r\) matrix \(A_i\) in rows \(a+1,\dots ,a+r\) and zeros elsewhere. This settles (3). □
Conversely, any direct sum decomposition into \(\phi \)-invariant subspaces arises this way:
-
Proposition 4.3. Let \(\lst {V}1k\leq V\) with \(V=\oplst {V}1k\) and let \(\phi \in L(V)\). Suppose that each \(V_i\) is
\(\phi \)-invariant.
Then \(\phi =\oplst \phi 1k\) where \(\phi _i:=\phi \restr {V_i}\in L(V_i)\).
-
Proof. This is almost obvious: write \(v\in V\) as \(v=\plst {v}1k\) with each \(v_i\in V_i\). Then
\(\seteqnumber{0}{4.}{1}\)
\begin{equation*}
\phi (v)=\phi (v_1)+\dots +\phi (v_k)=\phi _1(v_1)+\dots +\phi _k(v_k)= \oplst \phi 1k(v),
\end{equation*}
where the first equality comes from linearity of \(\phi \) and the last from the definition of \(\oplst \phi 1k\). □
The usefulness of such a decomposition comes from the fact that nearly all properties of \(\phi \) reduce to properties of the simpler \(\phi _i\):
Note that the sums in (1) and (2) are direct thanks to:
-
Proof of Proposition 4.4. For (1), write \(v\in \ker \phi \) as \(v=\plst {v}1k\) with each \(v_i\in V_i\). Then
\(\seteqnumber{0}{4.}{1}\)
\begin{equation*}
\phi (v)=\phi _1(v_1)+\dots +\phi _k(v_k)=0=0+\dots +0,
\end{equation*}
with \(\phi _i(v_i),0\in V_i\). The direct sum property tells us that each \(\phi _i(v_i)=0\) so that \(v\in \oplst {\ker \phi }1k\). Thus \(\ker \phi \leq \oplst {\ker \phi }1k\).
Conversely, if \(v=\plst {v}1k\in \oplst {\ker \phi }1k\) then each \(\phi _i(v_i)=0\) and
\(\seteqnumber{0}{4.}{1}\)
\begin{equation*}
\phi (v)=\phi _1(v_1)+\dots +\phi _k(v_k)=0.
\end{equation*}
The argument for item (2) is very similar and so left as an exercise3.
For item (3), note that, for \(v_i\in V_i\), \(\phi (v_i)=\phi _i(v_i)\in V_i\) so that
\(\seteqnumber{0}{4.}{1}\)
\begin{equation*}
\phi ^2(v_i)=\phi (\phi _i(v_i))=\phi _i(\phi _i(v_i))=\phi _i^2(v_i)
\end{equation*}
and so on.
Finally, for item (4), let \(A_i\) be the matrix of \(\phi \) with respect to some basis \(\cB _i\) of \(V_i\). The \(\phi \) has matrix \(\oplst {A}1k\) with respect to \(\cB _1\dots \cB _k\) by Proposition 4.2(3). Now
Theorem 2.1.4 of Algebra 1B tells us
\(\seteqnumber{0}{4.}{1}\)
\begin{equation*}
\Delta _{\phi }=\det (A-xI)= \begin{vmatrix} A_1-xI&&0\\&\ddots &\\0&&A_k-xI \end {vmatrix}= \prod _{i=1}^k\det (A_i-xI)=\prod _{i=1}^k\Delta _{\phi _i}.
\end{equation*}
□
Here is a first example of these ideas in action:
-
Proposition 4.5. Let \(\phi \in L(V)\) be a linear operator on a finite-dimensional vector space over a field \(\F \) and let
\(\lst \lambda 1k\) be the distinct eigenvalues of \(\phi \).
Then \(\phi \) is diagonalisable if and only if
\(\seteqnumber{0}{4.}{1}\)
\begin{equation}
\label {eq:21} V=\bigoplus _{i=1}^kE_{\phi }(\lambda _i).
\end{equation}
-
Proof. Suppose that (4.2) holds and let \(\cB _i\) be a basis of \(E_{\phi }(\lambda _i)\). Then, by Corollary 2.9, \(\cB
_1\dots \cB _k\) is a basis of \(V\) which consists of eigenvectors and so is an eigenbasis. Thus \(\phi \) is diagonalisable.
Conversely, suppose that \(\cB =\lst {v}1n\) is an eigenbasis for \(\phi \) so that each \(\phi (v_j)=\mu _{j}v_j\), for some \(\mu _j\in \set {\lst \lambda 1k}\).
We claim: for \(\lambda \) an eigenvalue,
\(\seteqnumber{0}{4.}{2}\)
\begin{equation*}
U_{\lambda }:=\Span {v_j\st \mu _j=\lambda }=E_{\phi }(\lambda ).
\end{equation*}
Given this, \(\cB _i:=\set {v_j\st \mu _j=\lambda _i}\) is a basis for \(E_{\phi }(\lambda _i)\) and then \(\cB =\cB _1\dots \cB _k\) so that (4.2) holds, again by Corollary 2.9.
It remains to prove the claim. Clearly \(U_{\lambda }\leq E_{\phi }(\lambda )\). Conversely, if \(v\in E_{\phi }(\lambda )\), write \(v=\sum _{j=1}^na_jv_j\). Then
\(\seteqnumber{0}{4.}{2}\)
\begin{equation*}
0=(\phi -\lambda \id )(v)= \sum _{j\st \mu _j=\lambda }(\mu _j-\lambda )a_jv_j+ \sum _{j\st \mu _j\neq \lambda }(\mu _j-\lambda )a_jv_j= \sum _{j\st \mu _j\neq \lambda }(\mu _j-\lambda )a_jv_j.
\end{equation*}
Since the \(v_j\) are linearly independent, we see that \((\mu _{j}-\lambda )a_j=0\), for all \(j\) with \(\mu _j\neq \lambda \), and so all such \(a_j\) vanish. Thus
\(\seteqnumber{0}{4.}{2}\)
\begin{equation*}
v=\sum _{j\st \mu _j=\lambda }a_jv_j\in U_{\lambda }.
\end{equation*}
□
To summarise the situation: when \(\phi \) is diagonalisable, then with \(V_i:=E_{\phi }(\lambda _i)\) and \(\phi _i:=\phi \restr {V_i}\), we have \(V=\oplst {V}1k\), \(\phi =\oplst {\phi }1k\) and
\(\seteqnumber{0}{4.}{2}\)
\begin{equation*}
\phi _i=\lambda _i\id _{V_i}.
\end{equation*}
Thus the \(\phi _i\) are as simple as they possibly can be!
We now turn to what we can say about general \(\phi \).