Names of the members of the Bath 2D Crystals group (at the time of the project work) are in bold.

[44] W. Luckin, Y. Li, J. Jiang, S. M. Gunasekera, C. Wen, Y. Zhang, D. Prabhakaran, F. Flicker, Y. Chen, and Marcin Mucha-Kruczyński, Controlling charge density order in 2H-TaSe2 using van Hove singularity, Physical Review Research xx, xx (2024) (preprint available at: arXiv:2211.01780).

[43] J. E. Nunn, A. McEllistrim, A. Weston, A. Garcia-Ruiz, M. D. Watson, M. Mucha-Kruczyński, C. Cacho, R. Gorbachev, V. I. Fal'ko, and N. R. Wilson, ARPES signatures of few-layer twistronic graphenes, Nano Letters 23, 5201 (2023) (preprint available at: arXiv:2304.01931).

[42] M. F. Tomlinson, D. Greenwood, and M. Mucha-Kruczyński, 2T-POT Hawkes model for dynamic left- and right-tail quantile forecasts of financial returns: out-of-sample validation of self-exciting extremes versus conditional volatility, International Journal of Forecasting 40, 324 (2024) (preprint available at: arXiv:2202.01043).

[41] A. Usman, M. Adel Aly, H. Masenda, J. J. P. Thompson, S. M. Gunasekera, M. Mucha-Kruczyński, S. Brem, E. Malic, and M. Koch, Enhanced excitonic features in an anisotropic ReS2/WSe2 heterostructure, Nanoscale 14, 10851 (2022).

[40] N. Zibouche, S. M. Gunasekera, D. Wolverson, M. Mucha-Kruczyński, Using in-plane anisotropy to engineer Janus monolayers of rhenium dichalcogenides, Physical Review Materials 6, 054002 (2022) (preprint available at: arXiv:2109.00071).

[39] M. J. Hamer, A. Giampietri, V. Kandyba, F. Genuzio, A. Locatelli, R. V. Gorbachev, A. V. Barinov, and M. Mucha-Kruczyński, Moiré superlattice effects and band structure evolution in near-30-degree twisted bilayer graphene, ACS Nano 16, 1954 (2022) (preprint available at: arXiv:2010.09668).

[38] L. S. Hart, S. M. Gunasekera, J. L. Webb, M. Mucha-Kruczyński, J. Avila, M.-C. Asensio, D. Wolverson, Interplay of crystal thickness and in-plane anisotropy and evolution of quasi-one dimensional electronic character in ReSe2 , Physical Review B 104, 035421 (2021) (preprint available at: arXiv:2012.12659).

[37] M. F. Tomlinson, D. Greenwood, and M. Mucha-Kruczyński, Asymmetric excitation of left- and right-tail extreme events probed using a Hawkes model: Application to financial returns, Physical Review E 104, 024112 (2021) (preprint available at: arXiv:2011.12291).

[36] A. García-Ruiz, J. J. P. Thompson, M. Mucha-Kruczyński, and V. I. Fal'ko, Electronic Raman Scattering in Twistronic Few-Layer Graphene, Physical Review Letters 125, 197401 (2020) (preprint available at: arXiv:2005.10721).

[35] J. J. P. Thompson, D. Pei, H. Peng, H. Wang, N. Channa, H. L. Peng, A. Barinov, N. B. M. Schroter, Y. Chen, and M. Mucha-Kruczyński, Determination of interatomic coupling between two-dimensional crystals using angle-resolved photoemission spectroscopy, Nature Communications 11, 3582 (2020) (preprint available at: arXiv:2007.08946).

[34] B. K. Choi, S. Ulstrup, S. M. Gunasekera, J. Kim, S. Y. Lim, L. Moreschini, J. S. Oh, S.-H. Chun, C. Jozwiak, A. Bostwick, E. Rotenberg, H. Cheong, I.-W. Lyo, M. Mucha-Kruczyński, and Y. J. Chang, Visualizing Orbital Content of Electronic Bands in Anisotropic 2D Semiconducting ReSe2, ACS Nano 14, 7880 (2020) (preprint available at: arXiv:2005.14525).

[33] A. García-Ruiz, S. Slizovskiy, M. Mucha-Kruczyński, and V. I. Fal'ko, Spectroscopic Signatures of Electronic Excitations in Raman Scattering in Thin Films of Rhombohedral Graphite, Nano Letters 19, 6152 (2019) (preprint available at: arXiv:1905.12481).

[32] J. J. P. Thompson, D. J. Leech, M. Mucha-Kruczyński, Valley-polarised tunnelling currents in bilayer graphene tunnelling transistors, Physical Review B 99, 085420 (2019) (preprint available at: arXiv:1811.04687).

[31] D. J. Leech, J. J. P. Thompson, M. Mucha-Kruczyński, Negative differential resistance in Van der Waals heterostructures due to moiré-induced spectral reconstruction, Physical Review Applied 10, 034014 (2018) (preprint available at: arXiv:1802.08100).

[30] C. Chen, J. Avila, H. Arezki, V. L. Nguyen, J. Shen, M. Mucha-Kruczyński, F. Yao, M. Boutchich, Y. Chen, Y. H. Lee, and M. C. Asensio, Large local lattice expansion in graphene adlayers grown on copper, Nature Materials 17, 450 (2018) [Retracted due to inadequate statistical analysis of the experimetal LEED spectra by the first author. My contribution and conclusions remain unaffected.].

[29] S. M. Gunasekera, D. Wolverson, L. S. Hart, and M. Mucha-Kruczyński, Electronic band structure of rhenium dichalcogenides, Journal of Electronic Materials 47, 4314 (2018) (preprint available at: arXiv:1801.02933).

[28] A. García-Ruiz, M. Mucha-Kruczyński, and V. I. Fal'ko, Superconductivity-induced features in electronic Raman spectrum of monolayer graphene, Physical Review B 97, 155405 (2018) (preprint available at: arXiv:1712.09459).

[27] C. Chen, J. Avila, S. Wang, Y. Wang, M. Mucha-Kruczynski, C. Shen, R. Yang, B. Nosarzewski, T. P. Devereaux, G. Zhang, and M. C. Asensio, Emergence of interfacial polarons from electron-phonon coupling in graphene/h-BN van der Waals heterostructures, Nano Letters 18, 1082 (2018) (preprint available at: arXiv:1707.00184).

[26] J. Jung, E. Laksono, A. M. DaSilva, A. H. MacDonald, M. Mucha-Kruczynski, and S. Adam, Moiré band model and band gaps of graphene on hexagonal boron nitride, Physical Review B 96, 085442 (2017) (preprint available at: arXiv:1706.06016).

[25] L. S. Hart, J. L. Webb, S. Dale, S. J. Bending, M. Mucha-Kruczyński, D. Wolverson, C. Chen, J. Avila, and M.-C. Asensio, Electronic band structure and van der Waals coupling of ReSe2 revealed by high-resolution angle-resolved photoemission spectroscopy, Scientific Reports 7, 5145 (2017) (preprint available at: arXiv:1704.00175).

[24] D. J. Leech and M. Mucha-Kruczyński, Controlled formation of isolated miniband in bilayer graphene on almost commensurate 3x3 substrate, Physical Review B 94, 165437 (2016) (preprint available at: arXiv:1607.03710).

[23] X. Chen, J. R. Wallbank, M. Mucha-Kruczyński, E. McCann, and V. I. Fal'ko, Zero-energy modes and valley asymmetry in the Hofstadter spectrum of bilayer graphene van der Waals heterostructures with hBN, Physical Review B 94, 045442 (2016) (preprint available at: arXiv:1603.02035).

[22] M. Mucha-Kruczyński, J. R. Wallbank, and V. I. Fal'ko, Moiré miniband features in the angle-resolved photoemission spectra of graphene/hBN heterostructures, Physical Review B 93, 085409 (2016) (preprint available at: arXiv:1511.00880).

[21] A. Varlet, M. Mucha-Kruczyński, D. Bischoff, P. Simonet, T. Taniguchi, K. Watanabe, V. I. Fal'ko, T. Ihn, and K. Ensslin, Tunable Fermi surface topology and Lifshitz transition in bilayer graphene, Synthetic Metals 210, 19 (2015) (preprint available at: arXiv:1508.02922).

[20] D. S. L. Abergel and M. Mucha-Kruczyński, Infrared absorption of closely aligned heterostructures of monolayer and bilayer graphene with hexagonal boron nitride, Physical Review B 92, 115430 (2015) (preprint available at: arXiv:1507.03813).

[19] J. R. Wallbank, M. Mucha-Kruczyński, X. Chen, and V. I. Fal'ko, Moiré superlattice effects in graphene/boron-nitride van der Waals heterostructures, Annalen der Physik 527, 359 (2015) (preprint available at: arXiv:1411.1235).

[18] D. A. Cosma, M. Mucha-Kruczyński, H. Schomerus, and V. I. Fal'ko, Strain-induced modifications of transport in gated graphene nanoribbons, Physical Review B 90, 245409 (2014) (preprint available at: arXiv:1409.6666).

[17] A. Varlet, D. Bischoff, P. Simonet, K. Watanabe, T. Taniguchi, T. Ihn, K. Ensslin, M. Mucha-Kruczyński, and V. I. Fal'ko, Anomalous Sequence of Quantum Hall Liquids Revealing a Tunable Lifshitz Transition in Bilayer Graphene, Physical Review Letters 113, 116602 (2014) (preprint available at: arXiv:1403.3244).

[16] X. Chen, J. R. Wallbank, A. A. Patel, M. Mucha-Kruczyński, E. McCann, and V. I. Fal'ko, Dirac edges of fractal magnetic minibands in graphene with hexagonal moiré superlattices, Physical Review B 89, 075401 (2014) (preprint available at: arXiv:1310.8578).

[15] D. S. L. Abergel, J. R. Wallbank, X. Chen, M. Mucha-Kruczyński, and V. I. Fal'ko, Infrared absorption by graphene-hBN heterostructures, New Journal of Physics 15, 123009 (2013) (preprint available at: arXiv:1309.2292).

[14] M. Mucha-Kruczyński, J. R. Wallbank, and V. I. Fal'ko, Heterostructures of bilayer graphene and h-BN: Interplay between misalignment, interlayer asymmetry, and trigonal warping, Physical Review B 88, 205418 (2013) (preprint available at: arXiv:1304.1734).

[13] J. R. Wallbank, M. Mucha-Kruczyński, and V. I. Fal'ko, Moiré minibands in graphene heterostructures with almost commensurate 3x3 hexagonal crystals, Physical Review B 88, 155415 (2013) (preprint available at: arXiv:1306.4341).

[12] D. A. Gradinar, M. Mucha-Kruczyński, H. Schomerus, and V. I. Fal'ko, Transport signatures of pseudo-magnetic Landau levels in strained graphene ribbons, Physical Review Letters 110, 266801 (2013) (preprint available at: arXiv:1303.3140).

[11] L. A. Ponomarenko, R. V. Gorbachev, G. L. Yu, D. C. Elias, R. Jalil, A. A. Patel, A. Mishchenko, A. S. Mayorov, C. R. Woods, J. R. Wallbank, M. Mucha-Kruczyński, B. A. Piot, M. Potemski, I. V. Grigorieva, K. S. Novoselov, F. Guinea, V. I. Fal'ko, and A. K. Geim, Cloning of Dirac fermions in graphene superlattices, Nature 497, 594 (2013) (preprint available at: arXiv:1212.5012).

[10] J. R. Wallbank, A. A. Patel, M. Mucha-Kruczyński, A. K. Geim, and V. I. Fal'ko, Generic miniband structure of graphene on a hexagonal substrate, Physical Review B 87, 245408 (2013) (preprint available at: arXiv:1211.4711).

[9] M. Mucha-Kruczyński and V. I. Fal'ko, Pseudo-magnetic field distribution and pseudo-Landau levels in suspended graphene flakes, Solid State Communications 152, 1442 (2012) (preprint available at: arXiv:1207.1807).

[8] A. S. Mayorov, D. C. Elias, M. Mucha-Kruczyński, R. V. Gorbachev, T. Tudorovskiy, A. Zhukov, S. V. Morozov, V. I. Fal'ko, M. I. Katsnelson, A. K. Geim, and K. S. Novoselov, Interaction-Driven Spectrum Reconstruction in Bilayer Graphene, Science 333, 860 (2011) (preprint available at: arXiv:1108.1742).

[7] M. Mucha-Kruczyński, I. L. Aleiner, and V. I. Fal'ko, Landau levels in deformed bilayer graphene at low magnetic fields, Solid State Communications 151, 1088 (2011) (preprint available at: arXiv:1109.3348).

[6] M. Mucha-Kruczyński, I. L. Aleiner, and V. I. Fal'ko, Strained bilayer graphene: Band structure topology and Landau level spectrum, Physical Review B 84, 041404 (2011) (preprint available at: arXiv:1104.5029).

[5] M. Mucha-Kruczyński, O. Kashuba, and V. I. Fal'ko, Spectral features due to inter-Landau-level transitions in the Raman spectrum of bilayer graphene, Physical Review B 82, 045405 (2010) (preprint available at: arXiv:1001.3370).

[4] M. Mucha-Kruczyński, E. McCann, and V. I. Fal'ko, Electron-hole asymmetry and energy gaps in bilayer graphene, Semiconductor Science & Technology 25, 033001 (2010).

[3] M. Mucha-Kruczyński, E. McCann, and V. I. Fal'ko, The influence of interlayer asymmetry on magneto-spectroscopy of bilayer graphene, Solid State Communications 149, 1111 (2009) (preprint available at: arXiv:0901.1245).

[2] M. Mucha-Kruczyński, D. S. L. Abergel, E. McCann, and V. I. Fal'ko, On spectral properties of bilayer graphene: The effect of an SiC substrate and infrared magneto-spectroscopy, Journal of Physics: Condensed Matter 21, 344206 (2009).

[1] M. Mucha-Kruczyński, O. Tsyplyatyev, A. Grishin, E. McCann, V. I. Fal'ko, A. Bostwick, and E. Rotenberg, Characterization of graphene through anisotropy of constant-energy maps in angle-resolved photoemission, Physical Review B 77, 195403 (2008) (preprint available at: arXiv:0711.1129).