Ivan Graham : Research Interests |
My research is in Numerical Analysis, mainly on PDEs and
applications.
Here are some current, recent and not so recent journal articles. A more
complete list can be found here
Efficient Solvers for discretizations of
frequency-domain wave problems :
-
J. Galkowski, S. Gong, I.G. Graham, D. Lafontaine, E.A. Spence
Convergence of overlapping domain decomposition methods with PML transmission conditions applied to nontrapping Helmholtz problems, 2 April 2024
preprint
- S. Gong, I. G. Graham and E.A. Spence,
Convergence of Restricted Additive Schwarz with impedance transmission conditions for
discretised Helmholtz problems, Math. Comput. 92, 175–215 (2023).
final preprint
-
N. Bootland, V. Dolean, I. G. Graham, C. Ma and R. Scheichl,
Overlapping Schwarz methods with GenEO coarse spaces for indefinite and non-self-adjoint problems, IMA J.Numer. Anal. 43, 1899–1936 (2023).
final preprint
-
S. Gong, M.J. Gander, I.G. Graham, D. Lafontaine and E.A. Spence,
Convergence of parallel overlapping domain decomposition methods for the Helmholtz equation, Numer. Math. 152, 259–306 (2022).
Published paper
Final Preprint.
- S. Gong, I.G. Graham and E.A. Spence,
Domain decomposition preconditioners for high-order discretisations of the heterogeneous Helmholtz equation, IMA J. Numer. Anal. 41, 2139–2185 (2021).
final preprint Final published version
-
I.G. Graham, E.A. Spence and J. Zou,
Domain Decomposition with local impedance conditions for the Helmholtz equation, SIAM J. Numer. Anal. 58, pp 2515–2543 (2020)
final preprint Final published version
- M. Bonazzoli, V. Dolean, I.G. Graham, E. A. Spence, P.-H. Tournier,
Domain decomposition preconditioning for the
high-frequency
time-harmonic Maxwell equations with absorption, Math. Comp. 88 (2019), 2559-2604
Final preprint
Final published version
-
I.G. Graham, E.A. Spence and E. Vainikko,
Domain decomposition preconditioning for high-frequency Helmholtz
problems with absorption. Math. Comp. 86 (2017), 2089-2127
Final preprint
Final published version
-
M.J. Gander, I.G. Graham, E.A. Spence,
How should one choose the shift for the shifted Laplacian to be a good
preconditioner for the Helmholtz equation?, Numerische
Mathematik, 2015. DoI: 10.1007/s00211-015-0700-2,
preprint
The Helmholtz equation at high frequency :
-
I.G. Graham and S.A. Sauter, Stability and error analysis for the
Helmholtz equation with variable coefficients. Math. Comp. 89 (2020), 105-138
Final preprint
Final published version
-
I.G. Graham, O.R. Pembery and E.A. Spence The Helmholtz equation in heterogeneous media: a priori bounds, well-posedness, and resonances, Journal of Differential Equations 266 (2019) 2869-2923.
Final preprint
Final published version
Analysis of methods for solving PDEs with random coefficients:
-
I.G. Graham, O.R. Pembery, E.A. Spence,
Analysis of a Helmholtz preconditioning problem motivated by uncertainty quantification, Advances in Computational Mathematics(2021) 47:68
final preprint
published paper
- I.G. Graham, M.J. Parkinson, R. Scheichl,
Error Analysis and Uncertainty Quantification for the Heterogeneous Transport Equation in Slab Geometry, IMA Journal of Numerical Analysis 2020.
final preprint Final published version
-
I. G. Graham, F. Y. Kuo, D. Nuyens, R. Scheichl, and I. H. Sloan,
Circulant embedding with QMC -- analysis for elliptic PDE with lognormal coefficients,
Numer. Math. (2018). https://doi.org/10.1007/s00211-018-0968-0
final preprint
Final published version
-
I.G. Graham, R. Scheichl and E. Ullmann,
Mixed Finite Element Analysis of Lognormal Diffusion and Multilevel
Monte Carlo Methods, Stochastic Partial Differential Equations,
Analysis and Computation, 4, 41–75 (2016)
Final preprint
Final published version
-
I.G. Graham, F.Y. Kuo, J.A. Nicholls, R. Scheichl, Ch. Schwab and
I.H. Sloan, Quasi-Monte Carlo Finite Element Methods for Elliptic PDEs
with Log-normal Random Coefficients, Numer. Math. 131 (2), 329-368
(2015).
Final preprint
Final published version
-
I. G. Graham, F. Y. Kuo, D. Nuyens, R. Scheichl, and I. H. Sloan,
Quasi-Monte Carlo methods for elliptic PDEs
with random coefficients and applications, J. Comp. Phys. 230 (10), 3668-3694 (2011)
Final preprint
Final published version
Algorithms for sampling random fields:
- M. Bachmayr, I.G. Graham, V. K. Nguyen and R. Scheichl,
Unified Analysis of Periodization-Based Sampling Methods for Matérn
Covariances, SIAM J. Numer. Anal. 58(5), 29532980 (2020)
final preprint
-
I. G. Graham, F. Y. Kuo, D. Nuyens, R. Scheichl, and I. H. Sloan,
Analysis of circulant embedding methods for sampling stationary random fields,
SIAM J. Numer. Anal. 56(3), 1871–1895 (2018).
Final preprint
Final published version
Hybrid Numerical-Asymptotic Methods in
High-Frequency Scattering:
-
I.G. Graham, M. Loehndorf, J.M. Melenk and E.A. Spence,
When is the error in the h-BEM for solving the Helmholtz equation
bounded independently of k? BIT Num. Math., vol. 55, no. 1, 171-214
(2015)
final preprint
-
S.N. Chandler-Wilde, I.G. Graham, S. Langdon, E.A. Spence,
Numerical-asymptotic boundary integral methods in high-frequency
acoustic scattering, Acta Numerica, vol. 21, 89--305 (2012)
local
(official) copy
-
E.A. Spence, S. N. Chandler-Wilde, I. G. Graham,
V. P. Smyshlyaev,
A new frequency-uniform coercive boundary integral equation for
acoustic scattering, Communications on Pure and Applied
Mathematics 64(10) (2011) 1384-1415.
final preprint
-
T. Betcke, S.N. Chandler-Wilde, I.G. Graham, S. Langdon, M. Lindner,
Condition number estimates for combined potential operators in
acoustics and their boundary element discretisation,
Numerical Methods for PDEs
27 (2011), 31-69
final preprint
Numerical Methods for highly oscillatory
integrals :
- Z. Wu, I. G. Graham, D. Ma, Z. Zhang
A Filon-Clenshaw-Curtis-Smolyak rule for multi-dimensional oscillatory integrals with application to a UQ problem for the Helmholtz equation,
Math. Comp., to appear preprint
-
V. Dominguez, I. G. Graham and T. Kim,
Filon-Clenshaw-Curtis rules for highly-oscillatory integrals with
algebraic singularities and stationary points.
http://arxiv.org/abs/1207.2283
SIAM J. Numerical Analysis 51(3): 1542-1566 (2013)
-
V. Dominguez, I.G. Graham and V.P. Smyshlyaev,
Stability and error estimates for Filon-Clenshaw-Curtis rules for
highly-oscillatory integrals,
final version, appeared in IMA J. Numer. Anal. 2011
Multiscale Methods for PDEs and
fast solvers for PDEs modelling flow in heterogeneous media :
-
I.G. Graham, T.Y. Hou, O. Lakkis and
R. Scheichl (Editors) Numerical Analysis of
Multiscale Problems , Springer Lecture Notes in Computational Science and
Engineering 83, 2011.
- C.-C. Chu, I.G.Graham and T.-Y. Hou, A new multiscale finite element method
for high-contrast elliptic interface problems, Math. Comp. 79 (2010)
1915-1955.
Final preprint
-
I.G. Graham. P.O. Lechner and R. Scheichl,
Domain Decomposition for Multiscale PDEs,
Numerische Mathematik 106 (2007), 589-626 .
final preprint
Numerical analysis of PDE eigenvalue problems:
-
F. Scheben and I. G. Graham, Iterative methods for neutron transport eigenvalue
problems, SIAM Journal on Scientific Computing,
33 (2011),
2785-2804.
Final Preprint
-
S. Giani and I. G. Graham,
Adaptive finite element methods for computing band gaps in photonic
crystals. Numerische Mathematik 121(1), 31-64, 2012. DOI 10.1007/s00211-011-0425-9
Final preprint
-
S. Giani and I.G. Graham, A convergent adaptive method for elliptic eigenvalue
problems SIAM J Numer Anal, 47 (2009), 1067-1091.
DOI: 10.1137/070697264
Final preprint
Older papers on Nystroem and collocation
methods for boundary integral equations on corner domains:
- K.E. Atkinson and I.G. Graham, Iterative solution of linear systems arising from the boundary integral method. SIAM J. Sci. Statist. Comput. 13 (1992), no. 3, 694–722.
-
I.G. Graham and G.A. Chandler, High-order methods for linear functionals of solutions of second kind integral equations. SIAM J. Numer. Anal. 25 (1988), no. 5, 1118–1137. 65R20
-
G.A. Chandler and I.G. Graham, Product integration-collocation methods for noncompact integral operator equations. Math. Comp. 50 (1988), no. 181, 125–138.
- G.A. Chandler and I.G. Graham, The convergence of Nyström methods for Wiener-Hopf equations. Numer. Math. 52 (1988), no. 3, 345–364.