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Abstract In this paper we propose and analyse adaptive finite element methods for computing the band
structure of 2D periodic photonic crystals. The problem can be reduced to the computation of the discrete
spectra of each member of a family of periodic Hermitian eigenvalue problems on a unit cell, parametrised by
a two-dimensional parameter - the quasimomentum. These eigenvalue problems involve non-coercive elliptic
operators with generally discontinuous coefficients and are solved by adaptive finite elements. We propose
an error estimator of residual type and show it is reliable and efficient for each eigenvalue problem in the
family. In particular we prove that if the error estimator converges to zero then the distance of the computed
eigenfunction from the true eigenspace also converges to zero and the computed eigenvalue converges to a true
eigenvalue with double the rate. We also prove that if the distance of a computed sequence of approximate
eigenfunctions from the true eigenspace approaches zero, then so must the error estimator. The results hold
for eigenvalues of any multiplicity. We illustrate the benefits of the resulting adaptive method in practice, both
for fully periodic structures and also for the computation of eigenvalues in the band gap of structures with
defect, using the supercell method.

MSC2010 Subject Classification: 65M50, 65M60, 65F15

1 Introduction

Photonic crystals (PCs) are constructed by assembling portions of periodic media composed of dielectric
materials and they are designed to exhibit interesting properties in the propagation of electromagnetic waves,
such as spectral band gaps. Media with band gaps have many potential applications, for example, in optical
communications, filters, lasers, switches and optical transistors; see [26,38,30,2] for an introduction. In this
paper we consider only 2D PCs, whose behaviour is periodic in the plane determined by two orthogonal
directions, and is constant in the direction normal to this plane.

The propagation of light in any kind of PC is governed by Maxwell’s equations. In 2D PCs, the 3D
Maxwell’s equations reduce to a two-dimensional one-component wave equation, which determines either the
electric field or the magnetic field. Because the problem is periodic, the Floquet transform [30,29] can be
applied to split each mode into a family of eigenvalue problems on a unit cell Ω of the periodic medium with
periodic boundary conditions. This family is parameterised by the quasimomentum κ, which varies in the
first Brillouin zone - for a definition see § 2. All eigenvalue problems in the family have the weak form: seek
eigenpairs of the form (λ, u) ∈ C×H1

π(Ω), with u appropraitely normalised, such that

∫

Ω

((∇+ iκ)v)∗A(∇+ iκ)u = λ

∫

Ω

Buv̄ in Ω, for all v ∈ H1
π(Ω), (1.1)
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where Ω is the primitive cell of the photonic crystal and H1
π(Ω) is the space all functions of H1(Ω) satisfying

periodic boundary conditions on ∂Ω. Here, the (generally) matrix-valued function A is real symmetric and
uniformly positive definite, i.e.,

0 < a ≤ ξ∗A(x)ξ ≤ a for all ξ ∈ C
2 with |ξ| = 1 and all x ∈ Ω , (1.2)

where ∗ denotes Hermitian transpose. The scalar function B is real and bounded above and below by positive
constants for all x ∈ Ω, i.e.,

0 < b ≤ B(x) ≤ b for all x ∈ Ω. (1.3)

We note that the eigenvalue problem, subject to the normalisation constraint on u, is a nonlinear problem for
the unknown pair (λ, u).

In the theory in this paper we will assume (as is generally the case in applications), that A and B are both
piecewise constant on Ω and we will also assume that any jumps in A and B are aligned with the meshes used
in this work. However the algorithm will still run even if these constraints are not satisfied Due to the jumps
of the coefficients, the eigenfunctions of (1.1) could have localized singularities in the gradient, which could
diminish the rate of convergence of finite element methods on uniformly refined meshes.

A very popular practical numerical method for PCs is the Fourier spectral method (also called the “plane-
wave expansion method”), for example [37,26,11,34,36]. This method exploits the periodicity in the PC and
uses modern highly tuned FFT algorithms to obtain fast implementations. However the overall rate of conver-
gence of approximate spectra to true spectra is slow because the jumps in the dielectric destroy the exponential
accuracy which is achieved by Fourier spectral methods for smooth problems. Methods for accelerating the
convergence by artificially smoothing the jumps in the dielectric have also been proposed. These converge
quickly to a solution which contains a smoothing error and it turns out to be impossible to recover overall
exponential accuracy by this method - see [34–36] for a complete analysis. Other spectral methods include
[17] which uses an expansion in terms of eigenfunctions for the crystal without any defects. Semi-analytical
methods which impose considerable limitations on the geometry of the crystal are also considered, for example,
in [18].

We use adaptive finite element methods because they provide flexible solvers for PDE eigenvalue problems
and are able to deal optimally with the heterogeneous media problems encountered in PC models. There
are already a number of papers about low order finite element methods for PCs [4,10,14,15,24,28] and most
recently there has been considerable interest in p and hp methods, with the latter having the potential to
obtain exponential accuracy [16,32,39,40] . Accurate computations based on a priori hp refinement strategies
are shown in [39,40]. However, as far as we are aware, until now no one has used adaptivity based on a
posteriori error estimates on these problems.

Mesh adaptivity based on a posteriori error estimates has been widely used to improve the accuracy of
numerical solutions of PDEs (e.g. [1]). Recently the question of convergence of h-adaptive methods for elliptic
eigenvalue problems has received intensive interest. One of the first proofs was in [22], but this is only for
eigenproblems based on coercive bilinear forms. As we shall see the Hermitian form on the left-hand side of
the PC eigenvalue problem (1.1) is not coercive for all values of the quasimomentum κ, so new methods of
analysis are required. Some of the methods presented in this paper were first developed in the PhD thesis [21],
where the convergence of adaptive methods for PCs was also discussed. Some previous numerical experiments
were reported in [23]. Recently there is much interest in adaptive methods for PDE eigenvalue problems in
general - see for example [12,33] for other applications.

The outline of the paper is as follows. The next section - §2 - briefly describes how problem (1.1) is derived
from Maxwell’s equations. Here we also prove some basic properties of the Hermitian form in (1.1) and we
introduce the finite element discretization. Then §3 proves some basic a priori estimates for finite element
approximation of PC eigenvalue problems. These are derived from the classical literature and are essential
for the main results of this paper which are contained in §§4 and 5. To give a flavour of the main results, let
(λj,n, uj,n) denote a computed finite element eigenpair of (1.1) (where uj,n is a finite element function and λj,n
approximates a true eigenvalue λj of arbitrary multiplicity), then in Definition 4.3 we define an a posteriori
error estimator ηj,n (being a sum of computable contributions from each mesh element), and in Theorems 4.7
and 4.9 we prove that

dist(uj,n, E1(λj)) ≤ Cηj,n and |λj,n − λj | ≤ Cη2j,n , (1.4)

with C independent of the mesh, where E1(λj) denotes the unit ball in the exact eigenspace corresponding
to λj and the distance is measured in an energy inner product related to the Hermitian form in (1.1) (see
Lemma 2.1). Recalling that nonlinearity of the eigenvalue problem (1.1), it is not surprising that elementary
a posteriori error estimates usually involve additional terms on the right hand side. However, due to the a
priori results in §3 these are rigorously shown to be of higher order and so do not appear in our estimates.
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By (1.4), the eigenfunction and eigenvalue error both approach zero if the estimator ηj,n → 0. The converse
is established in §5, i.e., if the eigenfunction and eigenvalue errors both converge to zero, then so does the
error estimate ηj,n. (This is known as “efficiency”.) Finally, numerical experiments illustrating the results with
our method, compared to more standard FEM methods, are collected in §6. These include both results on
infinite periodic structures and on periodic structures with defect. We believe that the present paper is the
first contribution to the topic of the analysis of adaptive finite element methods for PC applications.

2 Photonic crystal eigenvalue problem and numerical method

In general, PCs are of practical interest because of their band gap properties - i.e., monochromatic electro-
magnetic waves of certain frequencies may not propagate inside them. Since fabrication is simpler in 2D than
in 3D and since the 2D case still includes many important applications, (e.g., [27]), considerable numerical
interest has focussed on the 2D case - e.g. [4,11,14,17,32,34,39,40] - and the present paper obtains the first
rigorous theory for adaptive finite element methods in this case.

The mathematical development (see e.g. [30]) begins with the eigenvalue problem for Maxwell’s equations

∇×Eω = − iω
c µHω, ∇ · µHω = 0 ,

∇×Hω = iω
c εEω , ∇ · εEω = 0 .

(2.1)

where Eω is the electric field, Hω is the magnetic field, ε and µ are, respectively, the dielectric permittivity
and magnetic permeability tensors, and c is the speed of light in a vacuum. We assume the medium is periodic
in the (x, y) plane and is constant in the third (z) direction and that the material is non-magnetic (so µ = 1).
The problem (2.1) splits naturally into two independent problems, called transverse magnetic (TM) and
transverse electric (TE) modes, as explained in [30]. On the assumption that the medium is isotropic (so ε is
scalar-valued), the problems are

∆uω +
ω2

c2
εuω = 0 (TM case) , (2.2)

and

∇ ·
1

ε
(∇uω) +

ω2

c2
uω = 0, (TE case) . (2.3)

Both problems (2.2) and (2.3) may be written in the abstract form as that of seeking (λ, u) with u 6= 0 such
that

∇ · (A∇u) + λBu = 0 . (2.4)

The anisotropic case (where ε is a tensor) may also be included in this formulation - see e.g. [32]. Since A or
B may be discontinuous, (2.4) has to be understood in an appropriate weak form. So far (2.4) is posed over
all of R2, with periodic data.

A 2D periodic medium can be described using a lattice L := {R = n1r1 + n2r2 , n1, n2 ∈ Z} , where
{r1, r2} is a basis for R2. The (Wigner-Seitz) primitive cell for L is the set Ω of all points in R2 which are
closer to 0 than to any other point in L - see [3]. When Ω is translated through all R ∈ L, we obtain a covering

of R2 with overlap of measure 0. The reciprocal lattice for L is the lattice L̂ generated by a basis {k1,k2},
chosen so that ri · kj = 2πδi,j , i, j = 1, 2 , where δi,j is the Kronecker delta and the primitive cell for the
reciprocal lattice is called the first Brillouin zone, which we denote here by K [3].

For example, if L is the square lattice generated by {e1, e2} (where ei are the standard basis functions in

R2), then Ω = [−0.5, 0.5]2, L̂ is generated by {2πe1, 2πe2} and the first Brillouin zone is K = [−π,+π]2. Such
square lattices are used in all numerical experiments in Section 6.

The Floquet transform - see, e.g. [30] - may them be used to show the equivalence of the problem (2.4) to
a family of problems on the primitive cell Ω parametrized by quasimomentum κ ∈ K. This is the family

(∇+ iκ) ·A(∇+ iκ)ũ+ λBũ = 0 on Ω, κ ∈ K , (2.5)

where ũ is the Floquet transform of u and λ is the corresponding eigenvalue which now depends on κ. This
equation should again be understood in the weak form - a rigorous derivation can be found for example in [9].
In order to recover the spectrum of the problem (2.4), it is sufficient to compute the union of all the spectra
of the problems in the family (2.5) for all κ ∈ K, and these problems have discrete spectrum since the domain
Ω is compact. For more details see [30, page 19]. Writing (2.5) in weak form gives precisely (1.1).

Throughout L2(Ω) denotes the usual space of square integrable complex valued functions equipped with
the weighted norm

‖f‖0,B = b(f, f)1/2 , b(f, g) :=

∫

Ω

Bfḡ . (2.6)
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H1(Ω) denotes the usual space of functions in L2(Ω) with square integrable gradient, with H1-norm denoted
‖f‖1, and H

1
π(Ω) denotes the subspace of functions in f ∈ H1(Ω) which satisfy periodic boundary conditions

on ∂Ω. We will also need the fractional order spaces H1+s(Ω), s ∈ [0, 1]. When we want to restrict these
norms to a measurable subset S ⊆ Ω, we write ‖f‖0,B,S , ‖f‖1,S , etc.

Problem (1.1) can be rewritten as: seek eigenpairs of the form (λj , uj) ∈ R×H1
π(Ω) such that

aκ(uj , v) = λj b(uj , v) , for all v ∈ H1
π(Ω)

‖uj‖0,B = 1

}

(2.7)

where

aκ(u, v) :=

∫

Ω

((∇+ iκ)v(x))∗A(x)((∇+ iκ)u(x)) . (2.8)

It is easy to see that aκ is a Hermitian form on H1
π(Ω). which is bounded on H1(Ω) independently of κ ∈ K.

Moreover by the positive definiteness of A assumed in (1.2), we have

aκ(u, u) ≥ a

∫

Ω

|(∇+ iκ)u|2 ≥ 0 , for all u ∈ H1
π(Ω) . (2.9)

Thus the spectrum of (2.7) is real and non-negative
However aκ(u, u) is not always strictly positive (for u 6= 0), since if κ = (0, 0) then aκ(1, 1) = 0. Thus we

introduce the shifted Hermitian form:

(u, v)κ,A,B := aκ(u, v) + σ b(u, v) , for all u, v ∈ H1
π(Ω) , (2.10)

with a fixed shift
σ := max

κ∈K
|κ|2a/b + 1 . (2.11)

As the following result shows, this shifted form is coercive on H1
π(Ω) (i.e., (u, u)κ,A,B/‖u‖

2
1 is bounded below

by a positive constant for all u ∈ H1
π(Ω)). This shifted form is used in the theory below, but is never used in

computations.

Lemma 2.1 (·, ·)κ,A,B is an inner product on H1
π(Ω) and we denote the induced norm by ‖ · ‖κ,A,B,

Proof. We shall show that

‖u‖2κ,A,B = (u, u)κ,A,B ≥ ca‖u‖
2
1, for all κ ∈ K, u ∈ H1

π(Ω) , (2.12)

when ca = min{a/2, b}. Since (·, ·)κ is a Hermitian form on H1
π(Ω), this proves the result.

By definition of aκ(·, ·), we have:

aκ(u, u) =

∫

Ω

((∇u)∗A∇u) + (κTAκ)|u|2 + i{((∇u)∗Aκ)u− (κTA∇u)u}

=

∫

Ω

(∇u)∗A∇u + (κTAκ)|u|2 − 2 Im{((∇u)∗Aκ)u} .

It is straightforward to show that

Im {((∇u)∗Aκ)u} ≤ |(∇u)∗Aκ| |u| ≤ {(∇u)∗A∇u}
1/2 {

κTAκ
}1/2

|u| ,

and by an application of Cauchy-Schwarz in L2(Ω) we obtain

∫

Ω

Im {((∇u)∗Aκ)u} ≤

{
∫

Ω

(∇u)∗A∇u

}1/2 {∫

Ω

(κTAκ) |u|2
}1/2

.

Thus calling α =
{∫

Ω
∇u∗A∇u

}1/2
, and β =

{∫

Ω
(κTAκ)|u|2

}1/2
we have from the arithmetic-geometric mean

inequality, i.e 2αβ ≤ δα2 + δ−1β2, that for any δ ∈ (0, 1)

aκ(u, u) ≥ α2 + β2 − 2αβ ≥ (1− δ)α2 + (1− δ−1)β2

Hence, for any σ ∈ R we have

aκ(u, u) + σ b(u, u) ≥ (1− δ)a |u|21 +
(

(1− δ−1)a|κ|2 + σb
)

‖u‖20

≥ min{(1− δ)a, (1− δ−1)a|κ|2 + σb}‖u‖21 .
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Now choosing δ = 1/2 and since σ = amaxκ∈K |κ|2/b+ 1 we see that

min{(1− δ)a, (1− δ−1)a|κ|2 + σb} = min{a/2,−a|κ|2 + σb} ≥ min{a/2, b} = ca .

Now, to discretize (2.7), let Tn , n = 1, 2, . . . denote a family of conforming, shape-regular (see, e.g., [1]) and
periodic triangular meshes on Ω. These meshes may be computed adaptively. With Hτ denoting the diameter
of element τ , we define Hmax

n := maxτ∈Tn
{Hτ}. On any mesh Tn we denote by Vn ⊂ H1

π(Ω) the finite
dimensional space of continuous functions which are affine on each element τ ∈ Tn. The discrete formulation
of problem (2.7) is: seek eigenpairs of the form (λj,n, uj,n) ∈ R× Vn such that

aκ(uj,n, vn) = λj,n b(uj,n, vn) , for all vn ∈ Vn
‖uj,n‖0,B = 1

}

(2.13)

3 A priori convergence results

In this section we gather together some a priori estimates for PC eigenvalue problems. These results are mostly
classical so we only give a few details for results which are not easily found in the literature. Suitable references
are [5–7,44]. With the shift σ from (2.11), the shifted versions of problems (2.7) and (2.13) are:
Seek eigenpairs of the form (ζj , uj) ∈ R×H1

π(Ω) such that

aκ(uj , v) + σ b(uj , v) = ζj b(uj , v) , for all v ∈ H1
π(Ω)

‖uj‖0,B = 1 ;

}

(3.1)

Seek eigenpairs of the form (ζj,n, uj,n) ∈ R× Vn such that

aκ(uj,n, vn) + σ b(uj,n, vn) = ζj,n b(uj,n, vn) , for all vn ∈ Vn
‖uj,n‖0,B = 1 .

}

(3.2)

The following proposition is self-evident:

Proposition 3.1 The eigenpairs of (2.7) and (3.1) are in one-one correspondence. In fact, (uj , λj) is an
eigenpair of (2.7) if and only if (uj , ζj), with ζj = λj + σ, is an eigenpair of (3.1). Similarly (uj,n, λj,n) is an
eigenpair of (2.13) if and only if (uj,n, ζj,n), with ζj,n = λj,n + σ, is an eigenpair of (3.2).

It follows from Lemma 2.1 that all eigenvalues of (3.1) and all N = dimVn eigenvalues of (3.2) are
positive. We can order them as 0 < ζ1 ≤ ζ2 . . . and 0 < ζ1,n ≤ ζ2,n . . . ≤ λN,n. Moreover, we know (e.g. [6])
that ζj,n → ζj , for any j, as H

max
n → 0 and (by the minimax principle) that ζj,n is monotone non-increasing,

i.e.

ζj,n ≥ ζj,m ≥ ζj , for all j = 1, . . . , N, and all m ≥ n . (3.3)

Hence λj,n → λj , for any j, as H
max
n → 0 and

λj,n ≥ λj,m ≥ λj , for all j = 1, . . . , N, and all m ≥ n . (3.4)

Let uj and uj,n be any normalised eigenvectors of (2.7) and (2.13). Then

aκ(uj − uj,n, uj − uj,n) = aκ(uj , uj) + aκ(uj,n, uj,n)− 2Re{aκ(uj , uj,n)}

= λj + λj,n − 2λj Re{b(uj , uj,n)}

= (λj,n − λj) + 2λj (1− Re{b(uj , uj,n)})

= (λj,n − λj) + λj b(uj − uj,n, uj − uj,n) . (3.5)

Combining this with (3.4), we obtain

aκ(uj − uj,n, uj − uj,n) = |aκ(uj − uj,n, uj − uj,n)| = |λj − λj,n| + λj ‖uj − uj,n‖
2
0,B . (3.6)

The distance of an approximate eigenfunction from the true eigenspace is a crucial quantity in the conver-
gence analysis for eigenvalue problems especially in the case of non-simple eigenvalues.
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Definition 3.2 Given a function v ∈ L2(Ω) and a finite dimensional subspace P ⊂ L2(Ω), we define:

dist(v,P)0,B := min
w∈P

‖v − w‖0,B .

Similarly, given a function v ∈ H1
π(Ω) and a finite dimensional subspace P ⊂ H1

π(Ω), we define:

dist(v,P)κ,A,B := min
w∈P

‖v − w‖κ,A,B ,

where ‖ · ‖κ,A,B is defined in Lemma 2.1.

Now let λj be any eigenvalue of (2.7), let E(λj) denote the (finite dimensional) space spanned by the
eigenfunctions of λj and set E1(λj) = {u ∈ E(λj) : ‖u‖0,B = 1}. Let Tλj

denote the orthogonal projection of

H1
π onto E(λj) with respect to the inner product (·, ·)κ,A,B defined in (2.10).

Lemma 3.3 Let (λj,n, uj,n) be an eigenpair of (2.13). Then

‖uj,n − uj‖0,B = dist(uj,n, E1(λj))0,B , (3.7)

if and only if
‖uj,n − uj‖κ,A,B = dist(uj,n, E1(λj))κ,A,B . (3.8)

Proof. Since E(λj) is finite dimensional, the minimizers in (3.7) and (3.8) exist. Moreover

0 = (Tλj
w, (I − Tλj

)v)κ,A,B = (λj + σ) b(Tλj
w, (I − Tλj

)v) for all v, w ∈ L2
B(Ω) ∩H1

π(Ω) . (3.9)

Hence for any vj ∈ E(λj) we have the decomposition

uj,n − vj = (I − Tλj
)uj,n + Tλj

(uj,n − vj) = (I − Tλj
)uj,n + (Tλj

uj,n − vj) ,

which is orthogonal both with respect to (·, ·)κ,A,B and (·, ·)0,B . Thus

‖uj,n − vj‖
2
0,B = ‖(I − Tλj

)uj,n‖
2
0,B + ‖Tλj

uj,n − vj‖
2
0,B ,

‖uj,n − vj‖
2
κ,A,B = ‖(I − Tλj

)uj,n‖
2
κ,A,B + ‖Tλj

uj,n − vj‖
2
κ,A,B .

Hence uj satisfies (3.8) if and only if it minimizes ‖Tλj
uj,n − vj‖

2
κ,A,B . The latter quantity is equal to

(λj − σ)‖Tλj
uj,n − vj‖

2
0,B and hence uj satisfies (3.8) if and only if it satisfies (3.7).

In order to make further progress we need some assumption on regularity of solutions of elliptic problems
associated with (·, ·)κ,A,B .

Assumption 3.4 We assume that there exists a constant Cell > 0 and s ∈ (0, 1] with the following property.
For f ∈ L2(Ω), if v := Sf ∈ H1

π(Ω) solves the problem (v, w)κ,A,B = b(f, w) for all w ∈ H1
π(Ω), then

‖Sf‖1+s ≤ Cell‖f‖0,B , (3.10)

where ‖ · ‖1+s is the norm in the Sobolev space H1+s(Ω).

This is a standard assumption which is satisfied in a wide number of applications such as problems with
discontinuous coefficients (see eg. [22] for more references).

From now on we shall let C denote a generic constant which may depend on the true eigenvalues and
vectors of (2.7) and other constants introduced above, but is always independent of n.

Theorem 3.5 Suppose 1 ≤ j ≤ dimVn. Let λj be an eigenvalue of (2.7) with corresponding eigenspace E(λj)
of any (finite) dimension and let (λj,n, uj,n) be an eigenpair of (2.13). Then, for Hmax

n sufficiently small,

(i)
|λj − λj,n| ≤ (dist(uj,n, E1(λj))κ,A,B)

2; and |λj − λj,n| ≤ C(Hmax
n )2s; (3.11)

(ii)

dist(uj,n, E1(λj))0,B ≤ C(Hmax
n )sdist(uj,n, E1(λj))κ,A,B ; (3.12)

(iii)
dist(uj,n, E1(λj))κ,A,B ≤ C(Hmax

n )s . (3.13)
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Proof. First consider part (i). Since λj ≥ 0 and σ > 0, the first estimate in (3.11) follows directly from (3.6).
To obtain the second estimate in (3.11), we recall a standard error estimate for elliptic eigenvalues (see e.g.
[6, (1.1)]) which, appled to problems (3.1) and (3.2), gives

λj,n − λj = (λj,n + σ)− (λj + σ) ≤ C sup
u∈E1(λj)

inf
vn∈Vn

‖u− vn‖
2
κ,A,B .

Combining this with standard finite element error estimates and recalling (3.4), we get

|λj,n − λj | ≤ C(Hmax
n )2s sup

u∈E1(λj)

‖u‖21+s, (3.14)

For u ∈ E1(λj), Assumption 3.4 implies ‖u‖1+s ≤ Cell(λj + σ)‖u‖0,B ≤ Cell(λj + σ), which yields the
result.

To obtain (ii), we use the following estimate [6, (3.31a)]:

‖Tλj
uj,n − uj,n‖0,B

‖Tλj
uj,n − uj,n‖κ,A,B

≤ Cηn , where ηn = sup
g∈L2(Ω)

‖g‖0,B=1

inf
χ∈Vn

‖Sg − χ‖κ,A,B , (3.15)

and S is the solution operator defined in Assumption 3.4. Analogously to (3.14) we have ηn ≤ C(Hmax
n )s and

hence (3.15) implies

‖Tλj
uj,n − uj,n‖0,B ≤ C(Hmax

n )s‖Tλj
uj,n − uj,n‖κ,A,B

= C(Hmax
n )sdist(uj,n, E(λj))κ,A,B

≤ C(Hmax
n )sdist(uj,n, E1(λj))κ,A,B , (3.16)

where we used the inclusion E1(λj) ⊂ E(λj). Since ‖uj,n‖0,B = 1, (3.16) also implies that
∣

∣

∣

∣

‖Tλj
uj,n‖0,B − 1

∣

∣

∣

∣

≤ ‖Tλj
uj,n − uj,n‖0,B

≤ C(Hmax
n )sdist(uj,n, E1(λj))κ,A,B . (3.17)

Combining (3.16) and (3.17), we obtain

dist(uj,n, E1(λj))0,B ≤

∥

∥

∥

∥

Tλj
uj,n

‖Tλj
uj,n‖0,B

− uj,n

∥

∥

∥

∥

0,B

≤

∥

∥

∥

∥

Tλj
uj,n − uj,n

∥

∥

∥

∥

0,B

+

∣

∣

∣

∣

1− ‖Tλj
uj,n‖

−1
0,B

∣

∣

∣

∣

‖Tλj
uj,n‖0,B

=

∥

∥

∥

∥

Tλj
uj,n − uj,n

∥

∥

∥

∥

0,B

+

∣

∣

∣

∣

‖Tλj
uj,n‖0,B − 1

∣

∣

∣

∣

≤ C(Hmax
n )sdist(uj,n , E1(λj))κ,A,B .

which is (3.12).
Finally, for part (iii), we note that (3.6), Lemma 3.3 and (3.11) imply ,

dist(uj,n, E1(λj))
2
κ,A,B ≤ C(Hmax

n )2s + λj dist(uj,n, E1(λj))
2
0,B (3.18)

which, via (3.12), implies (3.13).

4 A posteriori error estimator and reliability

Our a posteriori error estimator is presented in (4.1) below. Its most important characteristics are reliability
and efficiency. In broad terms reliability means that the ratio of the actual error to the error estimator is
bounded above by a positive constant independent of the mesh, while efficiency means that this ratio is
bounded below by a positive constant independent of the mesh. We prove reliability and efficiency for (4.1) in
this and the following sections.

Notation 4.1 From now on, we write A . B when A/B is bounded above by a constant independent of n.
The notation A ∼= B means A . B and A & B.
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The residual estimator ηj,n is defined as a sum of norms of element residuals and edge residuals, which
are all computable quantities. We denote by Fn the set of all the edges (including boundary edges) of the
elements of the mesh Tn. For f ∈ Fn, we denote by τ1(f) and τ2(f), the two elements sharing f ∈ Fn and we
let Hf denote the length of f . We let nf denote the unit normal on the edge f , which is assumed to point
from τ1(f) into τ2(f). To simplify the notation, we define the functional [·]f as follows

Definition 4.2 We can define for any function g : Ω → C which is continuous on each element of the mesh
Tn and for any f ∈ Fn

[g]f (x) :=

(

lim
x̃∈τ1(f)
x̃→x

g(x̃) − lim
x̃∈τ2(f)
x̃→x

g(x̃)

)

, with x ∈ f .

Definition 4.3 (Residual Estimator) The definition of the residual estimator ηj,n involves two functionals:
the functional RI(·, ·), which expresses the contributions from the elements in the mesh:

RI(u, λ)(x) :=
(

(∇+ iκ) ·A(∇+ iκ)u + λBu
)

(x), with x ∈ int(τ), τ ∈ Tn,

and the functional RF (·), which expresses the contributions from the edges (faces) of the elements:

RF (u)(x) :=
[

nf ·A(∇+ iκ)u
]

f
(x), with x ∈ int(f), f ∈ Fn

(Recall that the jumps of the coefficients are assumed to be aligned with the meshes.) Then the residual estimator
ηj,n for the computed eigenpair (λj,n, uj,n) is defined as:

ηj,n :=

{

∑

τ∈Tn

H2
τ ‖RI(uj,n, λj,n)‖

2
0,τ +

∑

f∈Fn

Hf‖RF (uj,n)‖
2
0,f

}1/2

. (4.1)

In Theorem 4.8 we prove reliability of the estimator ηj,n for eigenfunctions, and in Theorem 4.9 we prove
reliability of the estimator η2j,n for eigenvalues. (The appearance of the square in the latter estimator reflects

the known higher rate of convergence for eigenvalues in the a priori estimates in §3.) The proofs of these
theorems require first proving Theorems 4.6 and 4.7, in which additional terms Gj,n and G′

j,n appear on the
right-hand side. These terms, which we subsequently show are genuinely higher order, reflect the non-linearity
of the eigenvalue problem, as mentioned above.

In order to prove reliability in Theorem 4.6 and Theorem 4.7, we need two preliminary lemmas:

Lemma 4.4 Let (λj,n, uj,n) be an eigenpair of the discrete problem (2.13) and (λj , uj) be an eigenpair of the
continuous problem (2.7). Then denoting by ej,n := uj − uj,n, we have

b(λjuj − λj,nuj,n, ej,n) =
1

2
(λj + λj,n) b(ej,n, ej,n) + i(λj,n − λj)Im b(uj , uj,n). (4.2)

Proof. Using the sesquilinearity of b(·, ·) and exploiting the fact that (λj,n, uj,n) and (λj , uj) are respectively
two normalized eigenpairs of (2.13) and of (2.7), we have

b(λjuj − λj,nuj,n, ej,n) = b(λjuj − λj,nuj,n, uj) − b(λjuj − λj,nuj,n, uj,n)

= λj + λj,n − λj,n b(uj , uj,n) − λj b(uj , uj,n)

= (λj + λj,n)(1− Re b(uj , uj,n)) + i(λj,n − λj)Im b(uj , uj,n) . (4.3)

Another use of sesquilinearity gives us:

b(ej,n, ej,n) = b(uj , uj) + b(uj,n, uj,n) − b(uj , uj,n) − b(uj , uj,n)

= 2− 2Re b(uj , uj,n) .
(4.4)

The insertion of (4.4) into (4.3) concludes the proof.
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Lemma 4.5 Let (λj,n, uj,n) be an eigenpair of problem (2.13) and let (λj , uj) be an eigenpair of problem
(2.7). Then, for any v ∈ H1

π(Ω),

aκ(uj − uj,n, v) − b(λjuj − λj,nuj,n, v) =
∑

τ∈Tn

∫

τ

RI(uj,n, λj,n)v −
∑

f∈Fn

∫

f

RF (uj,n)v . (4.5)

Proof. The result is obtained by integration by parts. We start from the left-most term in (4.5). Using the fact
that (λj , uj) is an eigenpair of (2.7) yields

aκ(uj − uj,n, v) = aκ(uj , v) − aκ(uj,n, v) = λj b(uj , v) − aκ(uj,n, v)

= λj,n b(uj,n, v) − aκ(uj,n, v) + b(λjuj − λj,nuj,n, v) . (4.6)

Now apply element-wise integration by parts to aκ(uj,n, v) in (4.6), yielding:

aκ(uj − uj,n, v) =
∑

τ∈Tn

∫

τ

(

(∇+ iκ) ·A(∇+ iκ)uj,n + λj,nB uj,n

)

v

−
∑

f∈Fn

∫

f

[nf ·A(∇+ iκ)uj,n]f v + b(λjuj − λj,nuj,n, v) .

We now use these lemmas to prove reliability for eigenfunctions. Recall the Scott-Zhang quasi-interpolation
operator In : H1(Ω) → Vn (defined in [42]), which satisfies, for any v ∈ H1(Ω):

‖v − Inv‖0,τ . Hτ‖v‖1,ω(τ), and ‖v − Inv‖0,f . H
1
2

f ‖v‖1,ω(f) , (4.7)

where ω(τ) (respectively ω(f)) denotes the union of all elements sharing at least a vertex with τ (resp. f) .

Theorem 4.6 (Reliability for eigenfunctions) Let (λj,n, uj,n) be a computed eigenpair with λj,n converg-
ing to an eigenvalue λj of (2.7). Then

dist(uj,n, E1(λj))κ,A,B . ηj,n + Gj,n, (4.8)

where

Gj,n =
1

2
(λj + λj,n + 2σ)

dist(uj,n, E1(λj))
2
0,B

dist(uj,n, E1(λj))κ,A,B
. (4.9)

Proof. Given uj,n, define uj ∈ E1(λj) to simultaneously minimize (3.7) and (3.8) in Lemma 3.3. Again, we
define ej,n := uj − uj,n.

Note first that, since (λj , uj) and (λj,n, uj,n) respectively solve the eigenvalue problems (2.7) and (2.13),
we have, for all wn ∈ Vn,

‖ej,n‖
2
κ,A,B = aκ(ej,n, ej,n − wn) + aκ(uj , wn) − aκ(uj,n, wn) + σ b(ej,n, ej,n)

= aκ(ej,n, ej,n − wn) + b(λjuj − λj,nuj,n, wn) + σ b(ej,n, ej,n)

= aκ(ej,n, ej,n − wn) − b(λjuj − λj,nuj,n, ej,n − wn)

+ b(λjuj − λj,nuj,n, ej,n) + σ b(ej,n, ej,n) . (4.10)

Looking first at the final two terms in (4.10) we see from Lemma 4.4

b(λjuj − λj,nuj,n, ej,n) + σ b(ej,n, ej,n) =
1

2
(λj + λj,n + 2σ) b(ej,n, ej,n)

+ i(λj,n − λj) Im b(uj , uj,n) .

(4.11)

Combining this with Lemma 4.5 in (4.10) we get:

‖ej,n‖
2
κ,A,B =

∑

τ∈Tn

∫

τ

RI(uj,n, λj,n)(ej,n − wn)

−
∑

f∈Fn

∫

f

RF (uj,n)(ej,n − wn)

+
1

2
(λj + λj,n + 2σ) b(ej,n, ej,n) + i(λj,n − λj) Im b(uj , uj,n) . (4.12)
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Taking the real part of (4.12) and applying the triangle inequality, yields

‖ej,n‖
2
κ,A,B ≤

∣

∣

∣

∣

∑

τ∈Tn

∫

τ

RI(uj,n, λj,n)(ej,n − wn)

∣

∣

∣

∣

+

∣

∣

∣

∣

∑

f∈Fn

∫

f

RF (uj,n)(ej,n − wn)

∣

∣

∣

∣

+
1

2
(λj + λj,n + 2σ)b(ej,n, ej,n). (4.13)

In particular we are allowed to choose wn = Inej,n where In is the interpolation operator defined above, with
properties (4.7). Substituting this in (4.13) and using Cauchy-Schwarz, together with (4.7), we obtain:

‖ej,n‖
2
κ,A,B ≤

∑

τ∈Tn

‖RI(uj,n, λj,n)‖0,τ‖ej,n − Inej,n‖0,τ

+
∑

f∈Fn

‖RF (uj,n)‖0,f‖ej,n − Inej,n‖0,f +
1

2
(λj + λj,n + 2σ) b(ej,n, ej,n)

.
∑

τ∈Tn

Hτ‖RI(uj,n, λj,n)‖0,τ‖ej,n‖1,ω(τ)

+
∑

f∈Fn

H
1/2
f ‖RF (uj,n)‖0,f‖ej,n‖1,ω(f) +

1

2
(λj + λj,n + 2σ) b(ej,n, ej,n). (4.14)

Since (by an argument analogous to the proof of Lemma 2.1), ‖ej,n‖1,ω(τ) . ‖ej,n‖κ,A,B,ω(τ) and
‖ej,n‖1,ω(f) . ‖ej,n‖κ,A,B,ω(f), another application of the Cauchy-Schwarz inequality yields

‖ej,n‖
2
κ,A,B . ηj,n

{

∑

τ∈Tn

‖ej,n‖
2
κ,A,B,ω(τ) +

∑

f∈Fn

‖ej,n‖
2
κ,A,B,ω(f)

}1/2

+ 1
2 (λj + λj,n + 2σ) b(ej,n, ej,n)

. ηj,n‖ej,n‖κ,A,B +
1

2
(λj + λj,n + 2σ) ‖ej,n‖

2
0,B .

(4.15)

Finally, in order to conclude the proof we just have to divide both sides of (4.15) by ‖ej,n‖κ,A,B , and recall
Lemma 3.3.

The next theorem, which is similar to Theorem 4.6, shows the reliability for eigenvalues.

Theorem 4.7 (Reliability for eigenvalues) Under the same assumptions as in Theorem 4.6, we have:

|λj,n − λj | . η2j,n + G′
j,n ,

where

G′
j,n =

1

2
ηj,n(λj + λj,n + 2σ)

dist(uj,n, E1(λj))
2
0,B

dist(uj,n, E1(λj))κ,A,B
+

1

2
(λj,n − λj + 2σ)dist(uj,n, E1(λj))

2
0,B .

Proof. With uj , uj,n and ej,n as in the proof of Theorem 4.6, we use (3.6) to obtain

|λj,n − λj | = aκ(ej,n, ej,n) − λj b(ej,n, ej,n) . (4.16)

Hence noticing that aκ(ej,n, ej,n) ≤ aκ(ej,n, ej,n) + σb(ej,n, ej,n) = ‖ej,n‖
2
κ,A,B = dist(uj,n, E1(λj))κ,A,B ,

and substituting (4.8) into (4.16) we obtain

|λj,n − λj | ≤ (ηj,n +Gj,n)dist(uj,n, E1(λj))κ,A,B − λjdist(uj,n, E1(λj))
2
0,B

= ηj,n dist(uj,n, E1(λj))κ,A,B +
1

2
(λj,n + λj + 2σ) dist(uj,n, E1(λj))

2
0,B

− λj dist(uj,n, E1(λj))
2
0,B

= ηj,n dist(uj,n, E1(λj))κ,A,B +
1

2
(λj,n − λj + 2σ) dist(uj,n, E1(λj))

2
0,B
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Then using (4.8) again we have

|λj,n − λj | . η2j,n +
1

2
ηj,n(λj,n + λj + 2σ)

dist(uj,n, E1(λj))
2
0,B

dist(uj,n, E1(λj))κ,A,B

+
1

2
(λj,n − λj + 2σ) dist(uj,n, E1(λj))

2
0,B .

Now the two final results of this section show that Gj,n in Theorem 4.6 and G′
j,n in Theorem 4.7 are indeed

“higher order terms”.

Theorem 4.8 Under the same assumptions of Theorem 4.6 we have that if Hmax
n is small enough, then

dist(uj,n, E1(λj))κ,A,B . ηj,n . (4.17)

Proof. Again write ej,n := uj − uj,n, where uj ∈ E1(λj) is the simultaneous minimizer of (3.7), (3.8). From
Theorem 4.6 we have

dist(uj,n, E1(λj))κ,A,B . ηj,n + Gj,n . (4.18)

Now, applying Theorem 3.5(ii) we have

Gj,n =
1

2
(λj + λj,n + 2σ)

dist(uj,n, E1(λj))
2
0,B

dist(uj,n, E1(λj))κ,A,B

.
1

2
(λj + λj,n + 2σ)(Hmax

n )2s dist(uj,n, E1(λj))κ,A,B . (4.19)

Supposing that Hmax
n is small enough, we obtain λj,n . λj and

Gj,n . (λj + σ) (Hmax
n )2sdist(uj,n, E1(λj))κ,A,B <

1

2
dist(uj,n, E1(λj))κ,A,B .

Then from (4.18), we have dist(uj,n, E1(λj))κ,A,B . ηj,n , as required.

Theorem 4.9 Under the same assumptions as Theorem 4.8 we have:

|λj,n − λj | . η2j,n .

Proof. Again write ej,n := uj −uj,n, where uj ∈ E1(λj) is the simultaneous minimizer of (3.7), (3.8). Then we
have, from (4.16),

|λj,n − λj | = aκ(ej,n, ej,n) − λj b(ej,n, ej,n) ≤ aκ(ej,n, ej,n) . (4.20)

Noticing that aκ(ej,n, ej,n) ≤ dist(uj,n, E1(λj))
2
κ,A,B and substituting (4.17) in (4.20) we obtain the result.

5 Efficiency

While the reliability estimates in the previous section show the error is bounded above by a positive constant
times an error estimator as the mesh is refined, the “global efficiency” estimate, which we obtain in this section
(Corollary 5.6), obtains a corresponding lower bound. In order to prove Corollary 5.6, we need first a weaker
result called “local efficiency”, which is obtained in Lemma 5.4.

We shall use bubble functions, which are smooth and positive real valued functions with support on an
element and are bounded by 1 in the L∞ norm. They are constructed using polynomials and so satisfy inverse
estimates which are collected in the next proposition. We define for any edge f , the set ∆f , which is the
union of the two elements sharing f . In particular we need for any element τ a real-valued bubble function
ψτ with support in τ which vanishes on the boundary of τ and for any edge f , and we need a real-valued
bubble function ψf with support in ∆f and which vanishes on the boundary of ∆f . In [8, p.587] - see also [45,
Lemma 3.3] - such bubble functions ψτ , ψf are constructed which satisfy the following properties:
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Proposition 5.1 There are constants, which only depend on the regularity of the mesh Tn, such that

‖v‖0,τ . ‖ψ1/2
τ v‖0,τ , (5.1)

|ψτv|1,τ . H−1
τ ‖v‖0,τ , (5.2)

‖w‖0,f . ‖ψ
1/2
f w‖0,f , (5.3)

|ψf w|1,∆f
. H

−1/2
f ‖w‖0,f , (5.4)

‖ψf w‖0,∆f
. H

1/2
f ‖w‖0,f , (5.5)

hold for all τ ∈ Tn, all f ∈ Fn, and for all polynomials v and w.

In the next two lemmas we bound the L2 norms of the residuals RI and RF on τ (defined in Definition 4.3
above) in terms of the energy norm of the error on τ .

Lemma 5.2 Let (λj,n, uj,n) be an eigenpair of (2.13) and (λj , uj) be an eigenpair of (2.7). Then for any
element τ ∈ Tn we have

Hτ‖RI(uj,n, λj,n)‖0,τ . ‖A1/2(∇+ iκ)(uj − uj,n)‖0,τ +Hτ‖λj,nuj,n − λjuj‖0,B,τ . (5.6)

Proof. Let ψτ be the bubble function introduced above and set wτ = ψτ RI(uj,n, λj,n). Because we are using
linear elements, and since A, B are assumed to be constant in the interior of each element, the residual RI is
a linear function on τ . This fact together with (5.1) and the positivity of ψτ leads to

‖RI(uj,n, λj,n)‖
2
0,τ . ‖ψ1/2

τ RI(uj,n, λj,n)‖
2
0,τ =

∫

τ

ψτ |RI(uj,n, λj,n)|
2

=

∫

τ

RI(uj,n, λj,n)wτ

=

∫

τ

(

(∇+ iκ) ·A(∇+ iκ)uj,n + λj,n B uj,n
)

wτ . (5.7)

Hence integrating by parts and using the fact that wτ vanishes on ∂τ , we get

‖RI(uj,n, λj,n)‖
2
0,τ . −aκ(uj,n, wτ ) + λj,nb(uj,n, wτ ).

Since uj satisfies (2.7) and since ωτ ∈ H1
0 (τ) ⊂ H1

π(Ω), we have

‖RI(uj,n, λj,n)‖
2
0,τ . −aκ(uj,n − uj , wτ ) + b(λj,nuj,n − λjuj , wτ ) .

Hence by the Cauchy-Schwarz inequality we obtain

‖RI(uj,n, λj,n)‖
2
0,τ .

∥

∥A1/2(∇+ iκ)(uj − uj,n)
∥

∥

0,τ

∥

∥A1/2(∇− iκ)wτ

∥

∥

0,τ

+ ‖λj,nuj,n − λjuj‖0,B,τ ‖wτ‖0,B,τ

.
∥

∥A1/2(∇+ iκ)(uj − uj,n)
∥

∥

0,τ
‖wτ‖1,τ

(5.8)

+ ‖λj,nuj,n − λjuj‖0,B,τ ‖wτ‖0,B,τ .

For the final step we use the definition of wτ and (5.2) to obtain from (5.8):

‖RI(uj,n, λj,n)‖
2
0,τ .

[

H−1
τ

∥

∥A1/2(∇+ iκ)(uj − uj,n)
∥

∥

0,τ

+‖λj,nuj,n − λjuj‖0,B,τ

]

‖RI(uj,n, λj,n)‖0,τ ,

then multiplying each side by Hτ‖RI(uj,n, λj,n)‖
−1
0,τ yields the result.
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Lemma 5.3 Under the same conditions as Lemma 5.2, for any f in Fn

H
1/2
f ‖RF (uj,n)‖0,f .

∑

τ∈∆f

(

‖A1/2(∇+ iκ)(uj − uj,n)‖0,τ +Hf ‖λj,nuj,n − λjuj‖0,B,τ

)

. (5.9)

Proof. Let ψf be as in Proposition 5.1, and set wf := ψf RF (uj,n). Applying (5.3), recalling that wf vanishes
on all edges except f and then using Lemma 4.5, we obtain

‖RF (uj,n)‖
2
0,f . ‖ψ

1/2
f RF (uj,n)‖

2
0,f =

∫

f

RF (uj,n)wf =
∑

f∈Fn

∫

f

RF (uj,n)wf

=
∑

τ∈∆f

∫

τ

RI(uj,n, λj,n)wf − aκ(uj − uj,n, wf ) + b(λjuj − λj,nuj,n, wf ) . (5.10)

Then, using the Cauchy-Schwarz inequality on (5.10), we get:

‖RF (uj,n)‖
2
0,f .

∑

τ∈∆f

‖RI(uj,n, λj,n)‖0,τ ‖wf‖0,τ

+ ‖A1/2(∇+ iκ)(uj − uj,n)‖0,∆f
‖A1/2(∇− iκ)wf‖0,∆f

+ ‖λj,nuj,n − λjuj‖0,B,∆f
‖wf‖0,B,∆f

. (5.11)

Now, we have to estimate each of the three terms on the right-hand side of (5.11). The first term can be
treated using (5.5) and (5.6):

∑

τ∈∆f

‖RI(uj,n, λj,n)‖0,τ ‖wf‖0,τ . H
1/2
f

∑

τ∈∆f

‖RI(uj,n, λj,n)‖0,τ ‖RF (uj,n)‖0,f

. H
1/2
f ‖RF (uj,n)‖0,f

∑

τ∈∆f

(

H−1
τ ‖A1/2(∇+ iκ)(uj − uj,n)‖0,τ + ‖λj,nuj,n − λjuj‖0,B,τ

)

. (5.12)

To treat the second term on the right hand side of (5.11), note that we can use (5.4) and (5.5) to obtain:

‖A1/2(∇− iκ)wf‖0,∆f
. ‖wf‖0,∆f

+ |wf |1,∆f

.
(

H
1/2
f + H

−1/2
f

)

‖RF (uj,n)‖0,f

(5.13)

To treat the last term on the right hand side of (5.11), note that by (5.5),

‖wf‖0,B,∆f
. ‖wf‖0,∆f

. H
1/2
f ‖RF (uj,n)‖0,f . (5.14)

Now substituting (5.12), (5.13) and (5.14) in (5.11) we get:

‖RF (uj,n)‖
2
0,f . ‖RF (uj,n)‖0,f

[

(H
1/2
f +H

−1/2
f )

∑

τ∈∆f
‖A1/2(∇+ iκ)(uj − uj,n)‖0,τ

+ H
1/2
f ‖λj,nuj,n − λjuj‖0,B,τ

]

.

To conclude the proof we have to multiply both sides by H
1/2
f ‖RF (uj,n)‖

−1
0,f and note that HfH

−1
τ . 1.

In Lemma 5.4 we prove a local version of the efficiency, this result is extended to the whole domain Ω in
Theorem 5.5.

Lemma 5.4 (Local efficiency) Under the same conditions as Lemma 5.2, define

η2j,n,f :=
∑

τ∈∆f

H2
τ ‖RI(uj,n, λj,n)‖

2
0,τ + Hf ‖RF (uj,n)‖

2
0,f .

Then

η2j,n,f .
∑

τ∈∆f

(

‖A1/2(∇+ iκ)(uj − uj,n)‖
2
0,τ + H2

τ ‖λj,nuj,n − λjuj‖
2
0,B,τ

)

. (5.15)
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Proof. Combine the results from Lemma 5.2 and Lemma 5.3.

Theorem 5.5 (Global efficiency) Under the same assumptions as Lemma 5.2, suppose also that
uj ∈ E1(λj) minimizes the distance in Lemma 3.3. Then

η2j,n . dist(uj,n, E1(λj))
2
κ,A,B + ‖Hτ (λj,nuj,n − λjuj)‖

2
0,B . (5.16)

Proof. Summing (5.15) over all edges f and recalling (4.1) yields

η2j,n .
∑

f∈Fn

η2j,n,f .
∑

f∈Fn

{

∑

τ∈∆f

(

‖A1/2(∇+ iκ)(uj − uj,n)‖
2
0,τ + H2

τ ‖λj,nuj,n − λjuj‖
2
0,B,τ

)}

. (5.17)

The subsets ∆f , for each value of f , are not all disjoint, but the maximum number of overlapping subdomains
∆f at any point in the interior of an element is 3. So (5.17) yields the result.

The following corollary explains why Theorem 5.5 really is a statement about global efficiency.

Corollary 5.6 Under the same assumptions as Theorem 5.5 and with the extra assumption that Hmax
n is

small enough, we have
ηj,n . dist(uj,n, E1(λj))κ,A,B .

Proof. By Theorem 5.5 (recalling that ‖uj,n‖0,B = 1), and then Theorem 3.5, we obtain

η2j,n . ‖uj − uj,n‖
2
κ,A,B +

(

Hmax
n

)2(
|λj,n − λj |

2 + λ2j ‖uj,n − uj‖
2
0,B

)

. ‖uj − uj,n‖
2
κ,A,B +

(

Hmax
n

)2(
‖uj − uj,n‖

4
κ,A,B + λ2j

(

Hmax
n

)2s
‖uj − uj,n‖

2
κ,A,B

)

.
(

1 +
(

Hmax
n

)2+2s)
‖uj − uj,n‖

2
κ,A,B . dist(uj,n, E1(λj))

2
κ,A,B ,

and the result follows.
The next corollary is very important for computations, since it proves that ηj,n → 0 is equivalent to

convergence of the computed eigenpair in an appropriate sense.

Corollary 5.7 Let (λj,n, uj,n) be a computed eigenpair and assume also that Hmax
n is small enough.

(i) If ηj,n → 0 as n→ ∞, then both dist(uj,n, E1(λj))κ,A,B and |λj,n − λj | tend to zero;
(ii) If dist(uj,n, E1(λj))κ,A,B → 0 as n→ ∞, then both λj,n → λj and ηj,n → 0 as n→ ∞.

Proof. Part (i) follows directly from Theorems 4.8 and 4.9. To obtain (ii), notice that if dist(uj,n, E1(λj))κ,A,B →
0, then by Theorem 3.5 we have λj,n → λj and by Corollary 5.6, we also have ηj,n → 0 as n→ ∞.

6 Adaptive FEM and numerical experiments

In this section we present an adaptive algorithm and study numerically its performance for various problems
related to the TE case mode of problem (1.1). In this case A is piecewise constant, B = 1 and there are
typically localized singularities in the gradient of the eigenfunctions at corner points of the interface in the
dielectric ε, leading to a strong need for adaptivity. We shall use the a posteriori error estimator ηj,n introduced
in §4 (which we shall refer to as the “standard” estimator), and we shall compare the results to those using a
slightly different estimator, below referred to as the “modified” estimator, and defined by

η̃j,n :=

{

∑

τ∈Tn

H2
τα

−1
τ ‖RI(uj,n, λj,n)‖

2
0,τ +

∑

f∈Fn

Hfα
−1
f ‖RF (uj,n)‖

2
0,f

}1/2

, (6.1)

where ατ := Amax|τ , αf := max{Amax|τ1(f), Amax|τ2(f)} , and Amax denotes the maximum eigenvalue of
A. Since ηj,n and η̃j,n are equal up to multiplication by a constant (independent of the mesh), all the results
in §§4 and 5 also hold for η̃j,n. We shall see below that in some cases η̃j,n performs much better than ηj,n. An
error estimator similar to η̃j,n for elliptic PDEs with discontinuous coefficients is presented in [8], where also
its robustness with respect to the jumps in A is proved. In this work we observe that with fixed A, and for some
values of quasimomentum κ, the modified estimator performs better than the standard estimator. However
for other values of κ the two estimators perform similarly. This observation merits further investigation, but
to avoid making the paper longer we do not discuss it further here.

Our adaptivity algorithm uses the following standard marking strategy.
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Definition 6.1 (Marking Strategy) Given a parameter 0 < θ < 1, the procedure is: mark the elements in

a minimal subset M̂n of Tn such that

(

∑

τ∈M̂n

η2j,n,τ

)1/2

≥ θ ηj,n , (6.2)

where ηj,n,τ is:

η2j,n,τ := H2
τ ‖RI(uj,n, λj,n)‖

2
0,τ +

∑

f∈∂τ

1

2
Hf‖ RF (uj,n)‖

2
0,f . (6.3)

It is straightforward to see that
(
∑

τ∈Tn
η2j,n,τ

)1/2
= ηj,n. Also when the “modified” error estimator η̃j,n is

used an analogous marking strategy is employed.

Our adaptive algorithm is given in Algorithm 1 and requires specification of the two parameters; tol (the
accuracy tolerance) and maxn (the maximum number of allowed mesh refinements). For the refinement step
in the algorithm we have used standard “red refinement” (see, e.g., [13]). Eigenpairs are computed via Arnoldi’s
method using ARPACK [31] with the associated linear systems implemented by the sparse direct solver ME27
from the HSL archive [41,25].

Algorithm 1 Adaptivity algorithm

Require: T0, j, κ
n = 0
repeat

Compute (λj,n, uj,n) on Tn

Compute ηj,n,τ for all τ ∈ Tn

Mark the elements using the marking strategy (Definition 6.1)
Refine the mesh Tn and construct Tn+1

n = n+ 1
until ηj,n ≤ tol OR n ≥ maxn

6.1 TE case problem on periodic medium

We first consider the TE problem for a periodic medium with square inclusions. The unit cell is the unit square
with a square inclusion of side 0.5 centered inside it. We choose A to take the value 1 inside the inclusion
and the value 0.05 outside it. This is a realistic example, since expected jumps in dielectric properties of real
photonic crystals are of this order. The jump in the value of A could produce a jump in the gradient of the
eigenfunctions across the boundaries of the subdomains. As above, the eigenfunctions lie in Hs+1(Ω), with
s > 1/2−ε, for all ε > 0 in general. However, since we resolve exactly the interface, we see a convergence speed
coming from the regularity of the eigenfunctions in each subdomain, which is u ∈ Hs+1(Ωi) where s > 2/3.
From Theorem 3.5(i,iii) we have that using uniform refinement, the rate of convergence for eigenvalues should
be at least O(Hmax

n )2s.
Tables 1 and 2 illustrate the performance of the standard and modified error estimators for computing

the smallest non-zero eigenvalue of (1.1) in the case of quasimomentum κ = (0, 0). Here n is the refinement
number as in Algorithm 1 and β = − log(|λj − λj,n|/|λj − λj,n−1|)/ log(#DOFsn/#DOFsn−1) is a computed
estimate of the convergence rate. Tables 3 and 4 give the analogous results for quasimomentum κ = (π, π).
We can see that in both cases the adaptive methods perform better than the uniform refinements, however
the “modified” error estimator performs even better than the “standard” one, in fact for both values of κ
less DOFs are necessary for the “modified” error estimator compared to the “standard” one to reach the
same accuracy. In fact this observation holds for any κ which is far enough from the origin. and this is the
main reason behind the introduction of the error estimator η̃j,n. For this problem the exact eigenvalues λ are
unknown, so in all four tables the errors which are displayed are computed using very accurate approximations
of the exact eigenvalues, computed on a very fine mesh involving about a million of DOFs.

Theorem 4.9 shows that for sufficiently fine meshes (apart form a hidden constant), η2j,n provides an upper
bound for the eigenvalue error. This is also true for η̃j,n by the remarks above. To numerically investigate
the implications of this result, we approximate numerically the hidden constant Cr = |λj − λj,n|/η

2
j,n in

Theorem 4.9. Similarly, we compute C̃r = |λj − λj,n|/η̃
2
j,n. As can be seen in Tables 5 and 6, the computed
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Uniform ηj,n
θ = 0.5 θ = 0.8

n |λj − λj,n| #DOFs n |λj − λj,n| #DOFs β n |λj − λj,n| #DOFs β

1 0.0584 400 1 0.0584 400 - 1 0.0584 400 -
2 0.0188 1600 6 0.0155 1584 0.9623 3 0.0187 1460 0.8798
3 0.0063 6400 9 0.0064 3764 1.0277 5 0.0048 5670 1.0025
4 0.0021 25600 13 0.0018 12626 1.0541 6 0.0021 10711 1.3050
5 0.0007 102400 16 0.0006 29583 1.1846 8 0.0005 40698 1.0864

Table 1 Comparison for κ = (0, 0) and with j = 2 between the uniform refinement and the adaptive method with the
“standard” error estimator.

Uniform η̃j,n
θ = 0.5 θ = 0.8

n |λj − λj,n| #DOFs n |λj − λj,n| #DOFs β n |λj − λj,n| #DOFs β

1 0.0584 400 1 0.0584 400 - 1 0.0584 400 -
2 0.0188 1600 5 0.0139 1356 1.1746 3 0.0138 1452 1.1165
3 0.0063 6400 8 0.0058 3437 0.9360 5 0.0032 5824 1.0478
4 0.0021 25600 12 0.0017 11101 1.0522 6 0.0018 11342 0.8904
5 0.0007 102400 15 0.0006 26334 1.1829 7 0.0007 23044 1.2318

Table 2 Comparison for κ = (0, 0) and with j = 2 between the uniform refinement and the adaptive method with the
“modified” error estimator.

Uniform ηj,n
θ = 0.5 θ = 0.8

n |λj − λj,n| #DOFs n |λj − λj,n| #DOFs β n |λj − λj,n| #DOFs β

1 0.0505 400 1 0.0505 400 - 1 0.0505 400 -
2 0.0155 1600 6 0.0158 1686 0.8086 4 0.0089 2922 0.8718
3 0.0050 6400 11 0.0040 7622 0.9073 5 0.0053 6264 0.6742
4 0.0016 25600 15 0.0016 22344 0.8396 7 0.0015 24110 0.9299
5 0.0005 102400 19 0.0005 55426 1.3181 9 0.0004 86668 1.0845

Table 3 Comparison for κ = (π, π) and with j = 2 between the uniform refinement and the adaptive method with
the “standard” error estimator.

Uniform η̃j,n
θ = 0.5 θ = 0.8

n |λj − λj,n| #DOFs n |λj − λj,n| #DOFs β n |λj − λj,n| #DOFs β

1 0.0505 400 1 0.0505 400 - 1 0.0505 400 -
2 0.0155 1600 5 0.0122 1398 1.1314 3 0.0118 1546 1.0727
3 0.0050 6400 9 0.0036 4984 0.9626 5 0.0028 6348 1.0228
4 0.0016 25600 12 0.0016 12505 0.8736 6 0.0015 14749 0.7578
5 0.0005 102400 17 0.0005 32822 1.2407 8 0.0003 57480 1.1161

Table 4 Comparison for κ = (π, π) and with j = 2 between the uniform refinement and the adaptive method with
the “modified” error estimator.

values of Cr and C̃r remain almost constant as the mesh is refined and also they do not seem to be affected by
variations in the value of κ. This implies that both the error estimators ηj,n and η̃j,n decay in the same way as
the true error, which is important in practice since it means that ηj,n and η̃j,n can be used as an indicator of
the size of the true error, even when the true error is not available. However, it is easy to see that the value of
C̃r doesn’t change as much as the value of Cr, this suggests that the “modified” error estimator follows better
the behavior of the true error. Also the “modified” error estimator performs better than the “standard” one
because for the same n, the true error |λj − λj,n| is smaller using the “modified” error estimator. In Figure 1
we depict the mesh coming from the fourth iteration of Algorithm 1 with θ = 0.5. As can be seen the corners
of the inclusion are much more refined than the rest of the domain. In Figure 2 we depict the eigenfunction
corresponding to the smallest positive eigenvalue of the problem with quasimomentum (0, 0).
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n |λj − λj,n| η2
j,n Cr |λj − λj,n| η̃2

j,n C̃r

1 0.0584 0.1126 0.5182 0.0584 1.2280 0.0475
2 0.0543 0.0974 0.5571 0.0425 0.9520 0.0447
3 0.0414 0.0751 0.5513 0.0330 0.6746 0.0489
4 0.0314 0.0538 0.5830 0.0231 0.4848 0.0477
5 0.0232 0.0371 0.6242 0.0139 0.3172 0.0439
6 0.0155 0.0253 0.6135 0.0105 0.2378 0.0440
7 0.0103 0.0191 0.5398 0.0080 0.1752 0.0457
8 0.0083 0.0142 0.5807 0.0058 0.1266 0.0460
9 0.0064 0.0103 0.6168 0.0039 0.0900 0.0437
10 0.0049 0.0074 0.6618 0.0027 0.0671 0.0402
11 0.0028 0.0053 0.5342 0.0022 0.0511 0.0425
12 0.0022 0.0040 0.5504 0.0017 0.0386 0.0439
13 0.0018 0.0030 0.5877 0.0013 0.0290 0.0434
14 0.0014 0.0023 0.6122 0.0009 0.0215 0.0396

Table 5 Comparison for κ = (0, 0) and with j = 2 between the “standard” error estimator and the “modified” error
estimator with θ = 0.5.

n |λj − λj,n| η2
j,n Cr |λj − λj,n| η̃2

j,n C̃r

1 0.0505 0.1629 0.3098 0.0505 1.2271 0.0411
2 0.0473 0.1337 0.3538 0.0363 0.9866 0.0368
3 0.0391 0.1020 0.3832 0.0276 0.7095 0.0389
4 0.0319 0.0750 0.4257 0.0176 0.4690 0.0375
5 0.0244 0.0548 0.4462 0.0122 0.3453 0.0355
6 0.0158 0.0395 0.3988 0.0091 0.2696 0.0336
7 0.0090 0.0285 0.3172 0.0071 0.1997 0.0355
8 0.0082 0.0225 0.3641 0.0054 0.1466 0.0365
9 0.0071 0.0175 0.4079 0.0036 0.1060 0.0340
10 0.0057 0.0135 0.4248 0.0026 0.0809 0.0322
11 0.0040 0.0103 0.3901 0.0020 0.0627 0.0318
12 0.0025 0.0079 0.3175 0.0016 0.0480 0.0336
13 0.0022 0.0063 0.3406 0.0012 0.0366 0.0338
14 0.0019 0.0051 0.3818 0.0009 0.0279 0.0310

Table 6 Comparison for κ = (π, π) and with j = 2 between the “standard” error estimator and the “modified” error
estimator with θ = 0.5.

6.2 TE mode problem on supercell

The spectra of photonic crystals typically contain band gaps, but, for many applications, the identification
of band gaps is not enough. Commonly it is necessary to create eigenvalues inside the gaps in the spectra
of the media. The importance of these eigenvalues is due to the fact that electromagnetic waves, which have
frequencies corresponding to these eigenvalues, may remain trapped inside the defects [18,20] and they decay
exponentially away from the defects. The common way to create such eigenvalues is by introducing a localized
defect in the periodic structures — see [20] and [19, Theorem 2]. Such localized defects do not change the
bands of the essential spectrum [19, Theorem 1].

In the next set of experiments we continue to work with the TE case problem and we shall use the “supercell
method” [43] to compute the modes arising from the defect. The supercell method takes the defect problem
(which is no longer periodic) and approximates it by a “nearby problem” in which the defect is surrounded by
a finite number of layers of the original periodic medium, which is then truncated and repeated periodically,
so that we get a new artificial periodic problem where each cell has a defect surrounded by some periodic
layers.

We shall compute defect modes for the problem introduced in §6.1 using a supercell with two or more
layers of periodic structure surrounding the defect. (In Figure 3 we depict the unit cell with two layers added).
This new medium (since it is again infinitely periodic) has a new band in its spectrum caused by the defect.
However it is also known ([43]) that as the number of periodic layers increases, and under some conditions,
the band shrinks exponentially quickly to the eigenvalue of the original defective material.

In order to compute good approximations of these trapped modes, it is not only necessary to compute
accurately the TE case problem on supercells, but also it is necessary to use enough layers of periodic structure
around the defect to ensure that the band in the supercell problem is sufficiently narrow. Ideally, the error in
the approximation of the eigenvalue problem and the diameter of the defect band should have the same order.
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Fig. 1 A refined mesh coming from the adaptive FEM for the TE mode problem with κ = (0, 0) and using ηj,n, with
j = 2.

Fig. 2 The eigenfunction with index j = 2 of the TE mode problem with quasimomentum κ = (0, 0).

Just to give an idea of the size of the defect band as a function of the number of layers of periodic structure
around the defect, Table 7, gives the diameters of the defect bands for different sizes of the supercell computed
using the “exact” values of the trapped eigenvalues computed on a very fine mesh at 55 different points of the
first Brillouin zone.

In Tables 8-11 and Figures 4-5 the performance of the two error estimators are compared with uniform
refinement for computing a trapped mode for different values of the quasimomentum on a supercell with 2
layers of periodic medium, whose first Brillouin zone is [−π/5, π/5]2. As can be seen in the case of supercells
and trapped modes we have that both the “standard” and the “modified” error estimators give greater orders
of convergence compared to uniform refinement.

For this problem the difference in the accuracy between our method and the uniform refinement method
is much more striking compared to the previous example. The reason is not only that the adaptive method
refines around the corners, where the singularities are, but also, because the most part of the “energy” of
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Number of Layers Diameter defect band

2 0.3008
3 0.0295
4 0.0154

Table 7 Size of the defect band as function of the number of layers of periodic structure around the defect.
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Fig. 3 The structure of the supercell used for the computations.
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Fig. 4 Loglog plot of convergence of adaptive and uniform refinements for the TE problem on a supercell with
quasimomentum κ = (0, 0) and with j = 28.

the solution is inside the defect, which is a very small region. Moreover, the “modified” error estimator still
performs a bit better than the standard one with no extra computational costs involved. Also in this case we
computed the “exact” values of the eigenvalues λj using more than one million of DOFs.

In Figure 6 we depict the mesh coming from the fourth iteration of Algorithm 1 with θ = 0.5. As can
be seen there is a lot of refinement around the defect, especially around the corners of the inclusions. Away
from the defect there is just a bit of refinement which is again around the corners of the inclusions. The
reason why the refinement is so concentrated in the defect and the reason why the corners of the inclusions
away from the defect seem not to show important singularities, is because the trapped mode has a fast decay
outside the defect and so the singularities at the corners of the inclusions are less important away from the
defect. In Figure 7, we depict the eigenfunction corresponding to the mode “trapped” inside the defect. This
eigenfunction is the one used to refine the mesh in Figure 6.

As explained above, it is important to use enough layers of periodic medium around the defect to have a
narrow defect band. In Tables 12-14 we denote with λ∗ the eigenvalue trapped in the defect and with λ∗n the
approximation of the trapped eigenvalue. We decided to change the notation because increasing the number
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Fig. 5 Loglog plot of convergence of adaptive and uniform refinements for the TE problem on a supercell with
quasimomentum κ = (π/5, π/5) and with j = 28.

Fig. 6 An adapted mesh for a trapped eigenvalue for the TE case on a supercell with quasimomentum κ = (0, 0) and
with j = 28. The structure of the supercell is superimposed on the mesh

of periodic layers in the cell the index j of the trapped mode changes. In Tables 12 and 13 it is possible to
see how the uniform and the adaptive methods behave when increasing the size of the supercell. In particular
the superiority of the adaptive method is clearly visible. Finally in Table 14 we show the DOFs needed by the
uniform and the adaptive methods to reach an accuracy higher than the order of the diameter of the defect
band for different sizes of the supercell.
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Fig. 7 A picture of the eigenfunction trapped in the defect for the TE case on a supercell with quasimomentum
κ = (0, 0) and with j = 28. The structure of the supercell is superimposed on the picture of the eigenfunction

Uniform ηj,n
θ = 0.5 θ = 0.8

n |λj − λj,n| #DOFs n |λj − λj,n| #DOFs β n |λj − λj,n| #DOFs β

1 0.0228 10000 1 0.0228 10000 - 1 0.0228 10000 -
2 0.0074 40000 6 0.0061 17128 2.4583 3 0.0069 16958 2.2677
3 0.0025 160000 9 0.0026 40791 0.9589 5 0.0018 58290 1.1002
4 0.0008 640000 13 0.0008 130455 1.0775 6 0.0009 118082 0.9687

Table 8 Comparison for κ = (0, 0) and with j = 28 between the uniform refinement and the adaptive method with
the “standard” error estimator on a supercell.

Uniform η̃j,n
θ = 0.5 θ = 0.8

n |λj − λj,n| #DOFs n |λj − λj,n| #DOFs β n |λj − λj,n| #DOFs β

1 0.0228 10000 1 0.0228 10000 - 1 0.0228 10000 -
2 0.0074 40000 5 0.0065 14808 3.2038 3 0.0057 19598 2.0628
3 0.0025 160000 8 0.0027 33366 1.0704 4 0.0028 36356 1.1363
4 0.0008 640000 12 0.0008 105876 1.0794 6 0.0006 138720 1.1169

Table 9 Comparison for κ = (0, 0) and with j = 28 between the uniform refinement and the adaptive method with
the “modified” error estimator on a supercell.
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Uniform ηj,n
θ = 0.5 θ = 0.8

n |λj − λj,n| #DOFs n |λj − λj,n| #DOFs β n |λj − λj,n| #DOFs β

1 0.0164 10000 1 0.0164 10000 - 1 0.0164 10000 -
2 0.0055 40000 9 0.0053 31329 0.9873 4 0.0052 30489 1.0114
3 0.0019 160000 14 0.0017 106654 0.9492 6 0.0017 105023 0.9401
4 0.0006 640000 18 0.0006 283900 0.9692 7 0.0009 197817 1.4987

Table 10 Comparison for κ = (π/5, π/5) and with j = 28 between the uniform refinement and the adaptive method
with the “standard” error estimator on a supercell.

Uniform η̃j,n
θ = 0.5 θ = 0.8

n |λj − λj,n| #DOFs n |λj − λj,n| #DOFs β n |λj − λj,n| #DOFs β
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Table 11 Comparison for κ = (π/5, π/5) and with j = 28 between the uniform refinement and the adaptive method
with the “modified” error estimator on a supercell.

3 Layers 4 Layers
Uniform η̃j,n, θ = 0.5 Uniform η̃j,n, θ = 0.5

|λ∗ − λ∗

n| #DOFs |λ∗ − λ∗

n| #DOFs |λ∗ − λ∗

n| #DOFs |λ∗ − λ∗

n| #DOFs

0.0324 12544 0.0324 12544 0.0356 20736 0.0356 20736
0.0092 50176 0.0080 19874 0.0100 82944 0.0101 47824
0.0013 200704 0.0008 60041 0.0015 331776 0.0010 156979

Table 12 Comparison for κ = (0, 0) between the uniform refinement and the adaptive method with the “modified”
error estimator on a supercells of different sizes.

3 Layers 4 Layers
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n| #DOFs |λ∗ − λ∗
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