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Abstract

We devise and implement quasi-Monte Carlo methods for computing the expectations
of nonlinear functionals of solutions of a class of elliptic partial differential equations with
random coefficients. Our motivation comes from fluid flow in random porous media, where
relevant functionals include the fluid pressure/velocity at any point in space or the break-
through time of a pollution plume being transported by the velocity field. Our emphasis
is on situations where a very large number of random variables is needed to model the
coefficient field. As an alternative to classical Monte Carlo, we here employ quasi-Monte
Carlo methods, which use deterministically chosen sample points in an appropriate (usually
high-dimensional) parameter space. Each realization of the PDE solution requires a finite
element (FE) approximation in space, and this is done using a realization of the coefficient
field restricted to a suitable regular spatial grid (not necessarily the same as the FE grid).
In the statistically homogeneous case the corresponding covariance matrix can be diagonal-
ized and the required coefficient realizations can be computed efficiently using FFT. In this
way we avoid the use of a truncated Karhunen-Loéve expansion, but introduce high nomi-
nal dimension in parameter space. Numerical experiments with 2-dimensional rough random
fields, high variance and small length scale are reported, showing that the quasi-Monte Carlo
method consistently outperforms the Monte Carlo method, with a smaller error and a notice-
ably better than O(N~1/2) convergence rate, where N is the number of samples. Moreover,
the rate of convergence of the quasi-Monte Carlo method does not appear to degrade as the
nominal dimension increases. Examples with dimension as high as 10° are reported.
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1 Introduction

Many physical, biological or geological models involve spatially varying input data which may
be subject to uncertainty. This induces a corresponding uncertainty in the outputs of the model
and in any physical quantities of interest which may be derived from these outputs. A common
way to deal with these uncertainties is by considering the input data to be a random field, in
which case the derived quantity of interest will in general also be a random variable or a random
field (e.g., the velocity of fluid in a random medium). The computational goal is usually to find
the expected value, higher order moments or other statistics of these derived quantities.

The aim of this paper is to formulate and implement quasi-Monte Carlo (QMC) methods
for such problems in the case where the model is a first order system of PDEs of the form

q+kVp =0, V-g=0,



which is to be solved for the scalar-valued function p and the vector-valued function ¢ on a
domain D C RZ?, subject to suitable boundary conditions, where k is a random field with
certain characteristics. This system is often used as a model for flow in random porous media,
in which case p and ¢ are the fluid pressure and velocity respectively and k is the model for
permeability (more precisely the ratio of permeability to dynamic viscosity). Our paper is
motivated by the huge interest in problems of this sort in the geosciences, where Monte Carlo
(MC) methods are regularly employed, see, e.g., [11, 29, 30, 50, 38, 27] and the references therein.
For convenience, we shall assume here (as is often done in practice) that the permeability is a
statistically homogeneous lognormal random field.

The expected values or higher moments of quantities derived from this PDE system are,
by definition, integrals. These are in principle infinite dimensional, but in practice they are
approximated by finite (often very high-dimensional) integrals. MC methods approximate such
integrals by equal-weight quadrature rules with randomly chosen points. QMC methods are
also equal-weight quadrature rules but aim to outperform the MC methods by clever choices of
deterministic points. As we shall show in our numerical experiments, our QMC methods consis-
tently outperform MC methods in all cases studied, and in the best cases enjoy an improvement
in running time by a factor of several hundred. Moreover, the QMC methods are observed to
converge noticeably faster than the rate O(N -1/ 2), where N is the number of samples, and
this rate is robust as the dimension d of the domain of integration increases. By contrast MC
methods are also robust to increasing dimension, but converge only with the well-known char-
acteristic rate of O(N~2). In our theoretical discussion in §4.1 we review sufficient conditions
for the observed dimension-independent convergence behavior of QMC methods. However it is
not known if these sufficient conditions are satisfied by the rather complicated PDE problems
solved here, and so this aspect of the presentation is experimental.

In recent years there has been a great interest in methods that treat PDE problems with
random input data by simultaneous approximation in both physical and probability space. These
go under names such as stochastic Galerkin, stochastic collocation or polynomial chaos, see, e.g.,
(3, 2, 17, 33, 34, 37, 42]. Many of these methods start by representing the random field using
the Karhunen-Loéve (KL) expansion, and then truncate this expansion after a finite number
of terms before discretization in space. From another point of view, it is sometimes said that
these methods depend on a “finite-dimensional noise” assumption. While such approaches can
be very effective when the KL expansion converges rapidly, they face the serious challenges of
high cost combined with large truncation error when the convergence of the KL expansion is
slow (cf. the discussion in §3.3). Such slow convergence is a common feature in practical flow
problems and motivates the development of the alternative methods proposed in this paper.

The starting point of our approach is the observation that if we first approximate the random
PDE problem ((2.1)—(2.3) below) by finite elements (FEs) in space then, without paying a
penalty in the order of finite element accuracy, the resulting (still random, but now) discrete
problem may be formulated using data taken from only the finite set of values of the original
continuous field sampled on a regular grid. Thus realizations of the random discrete problem
may be computed by realizing only the discrete field, whose covariance matriz is inherited from
the covariance function of the continuous field.

While this observation is hardly deep, it turns out to be crucially important to the design of
efficient algorithms. Fast linear algebra techniques can be designed to sample random vectors
with a given covariance matrix, thus avoiding the truncations required in a KL-based approach.
In fact these linear algebra techniques can be based on existing methods for realizing random
fields at discrete points in space. In our implementation we use the circulant embedding approach
combined with FFT for homogeneous Gaussian random fields, see [5, 12]. It produces realizations
of such fields at uniformly spaced points on a tensor product grid. All our experiments here are
on (0,1)2, but the method is applicable to more general domains, as long as the grid on which
the random field is sampled is a regular tensor product grid. Note that the sampling grid does



not have to be identical to the FE grid.

By choosing sampling grids and FE grids of similar mesh size, the dimension d of the domain
of the integral being computed is proportional to the dimension M of the FE space in our
approach, i.e., d = O(M). In practice this relatively large dimension does not seem to have any
detrimental effect on the performance of the QMC methods. The (extended) covariance matrix
is diagonalized (using FFT), enabling an ordering of the variables in decreasing importance
which is crucial to the success of QMC. Each point evaluation of the integrand requires (i) the
computation of an M-dimensional vector representing the permeability field at the grid points
through diagonalizing a d x d circulant matrix which (via FFT) costs O(dlogd) = O(M log M)
operations and (ii) the solution of the mixed FE approximation of the relevant system of PDEs.
This results in an indefinite, highly ill-conditioned system which we solve robustly in O(M)
operations. Thus the overall computational cost is O(NM log M), where N is the number of
quadrature points (i.e., the number of times the random field is sampled). We choose mixed
finite elements because they provide physically realistic velocity fields which are crucial to the
accurate computation of quantities of physical interest. We combine this discretization with
the divergence-free reduction technique from [8, 40] which provides a robust and very efficient
solver, and as an additional novel feature of the paper, indicate also how all the quantities of
physical interest can be computed very fast due to the divergence-free reduction.

Even though there is a huge literature on QMC methods, especially in mathematical finance,
they have to our knowledge not been applied in the context of PDEs with random coefficients
before. The generally very large dimensions that arise in the studied problems (up to nominal
dimension d > 10°) put these quadrature rules into uncharted territory. Also, circulant em-
bedding techniques seem not to have previously been used for QMC sampling. Note that the
assumption that log k is statistically homogeneous and Gaussian is only required for our fast
sampling technique based on circulant embedding. QMC methods can equally be applied to
statistically inhomogeneous non-Gaussian distributions. Note that such problems are gaining
more and more interest in the context of more realistic groundwater flow (cf. [49, 26]).

The plan of the paper is as follows. In §2 we outline the target problems, motivated by the
computation of flow in random porous media. In §3 we describe the linear algebra approach
to generating the random discrete field and show how this leads to formulae for expectations
of quantities of interest in terms of integrals over a (possibly high-dimensional) unit cube. We
also explain how the QMC (and MC) methods can be used to evaluate these high-dimensional
integrals and mention here how our method is related to methods based on truncating the KL
expansion, such as the stochastic collocation method. In §4 we provide more details about QMC
methods and give an overview of the expected performance and strategies for implementing
these methods. The following two sections are devoted to fast implementation: §5 explains
how circulant embedding techniques can be used to efficiently compute the formulas developed
in §3, while §6 discusses fast methods for computing quantities of interest using mixed finite
elements. In §6 we restrict the physical domain to a simple rectangular “flow cell” and study the
computation of expected value of three quantities of physical interest: (i) pressure at a point; (ii)
a commonly used model of the effective permeability of the medium and (iii) the breakthrough
time of a plume of pollution moving through the medium under simplified physical assumptions.
Extensive numerical experiments on the flow cell are given in §7 which confirm the efficiency
and robustness of our QMC method.

The hardest problem we solve is a 2-dimensional unit flow cell with a lognormal input random
field with exponential covariance function, variance o2 = 3 and correlation length A = 0.1. Due
to the pre-asymptotic phase in the decay of the KL-eigenvalues for this problem (cf. Figure 1 in
§3.3 for the 1-dimensional case), the first 300 terms in the KL expansion are essentially all of
the same size (i.e., \/f300 > 0.1,/1 in the KL expansion (3.10) below). Truncation after a few
hundred terms which is currently the state-of-the-art in KL-based methods (see, e.g. [14]), will
therefore lead to a large truncation error. With the proposed method, we are able to compute



the effective permeability for this problem in the 2D case to an accuracy of 1072 (controlling
both discretization and sampling error) by avoiding a truncation of the KL expansion. To
achieve this accuracy we require a spatial mesh with M ~ 10% degrees of freedom and about
N =~ 2.9 x 10* QMC samples, and the computation takes about 35 hours of CPU time on a
standard processor. On the other hand, to obtain the same accuracy with MC (on the same
spatial mesh and using the same circulant embedding) requires about N ~ 5.3 x 10° samples,
which equates to more than 2 months in computational time on the same processor. Note that
(as usual with MC-type methods) CPU times are of course greatly reduced on multi-processor
machines (which we used), since the PDE problems for individual realizations of the random
field are completely independent leading to an optimal parallel scalability of our method.

2 Random PDE model and its spatial discretization

We consider flow in a 2D porous medium governed by Darcy’s law:
7+ kVp =0, (2.1)

and the law of mass conservation:
V-q=0, (2.2)
where ¢, p are respectively the (2-dimensional) velocity (also called the specific discharge) and

(scalar) residual pressure, which are to be found on a bounded domain D C R2. The boundary
conditions are taken to be

p =g on I'P, G- =0 on IV (2.3)

where I'? and TV are the Dirichlet and Neumann parts of I, the boundary of D, and 7 denotes
the outer unit normal on I'. Note that although we restrict ourselves here to 2 space dimensions,
only the fast mixed finite element solver in §6 is specific to 2D. By replacing this with a 3D mixed
finite element solver (many exist, but not as fast), our approach will extend in a straightforward
way to 3D.

2.1 Modeling the permeability as a random field

In (2.1) k is the permeability (more precisely the ratio of permeability to dynamic viscosity) and
is modeled as a random field. Because k is physically positive, we shall here make the popular
and natural assumption that k is a lognormal random field, i.e.,

k(Z; w) = exp(Z(7; w)), (2.4)

where Z = Z(Z; -), is a zero mean Gaussian random field on D, with a specified continuous
)

covariance function r(Z, %), and w denotes an event in the probability space (2, F,P). That is
E(Z(Z;-) =0 and E(Z(Z;-)Z(y; ) = r(Z,y) forall & yeD,

where E denotes expectation with respect to the Gaussian probability measure on 2. There is
some evidence from field data that (2.4) gives a reasonable representation of reality in certain
cases (see [15, 22]).

Throughout we will assume that Z is homogeneous (see, e.g., [1, p.24]), i.e., its covariance
function satisfies

r(Z,4) = p(& =), (2.5)

where p : R? — R is a suitably behaved given function. An example of particular significance is
p(f) = 0% exp (= IF]p/2) (2.6)

4



with || - ||, denoting the £, norm on R?, and where the parameters o and A denote respectively
the wvariance and (correlation) length scale. All our computations will be for this covariance
function with p = 1 or p = 2. Since the function p is not smooth at the origin, realizations
of Z can be quite irregular. In fact Kolmogorov’s theorem [1, Theorem 8.3.2] implies that
with probability 1, realizations Z(Z'; w) are Holder continuous with respect to Z, with Holder
exponent a < 1/2. Decreasing the length scale increases the frequency of oscillations in Z, while
increasing the variance increases their amplitude. The roughness in Z induces roughness in k,
and in the solution (¢, p), and, as we shall see, increases the number of degrees of freedom needed
to achieve acceptable accuracy in the solution of (2.1)—(2.3).

Our overall goal is to compute expectations of a random variable G(Z), derived from Z
through solving the PDE problem (2.1)—(2.3) with k given by (2.4). A simple example of
physical interest is the pressure head at a particular point ¥* € D, i.e.,

9(2) = pI"), (2.7)

where p is the solution of (2.1)—(2.3). The computation of each realization G(Z) requires the
construction of a realization of Z, the solution of the PDE system (2.1)-(2.3), with permeability
given by (2.4), and finally the evaluation of the pressure approximation at *. We will give other
examples of G(Z) in §6.

2.2 Solving the PDE problem using the mixed finite element method

To compute approximate solutions to (2.1)—(2.3) for a given realization of (2.4), we use the
mixed finite element method. Problem (2.1)—(2.3) is written in weak form as the problem of
Seeking ((j‘?p) € HO,N(divv D) X LQ(D)v

mo(@.5) + b(p,F) = G(@), forall 7€ Hoy(div, D), o)
b(w, q) = 0, for all w € Lo(D), ’
where Hy n(div, D) := {# € La(D)?: V-T€ LyD)and 7-7=0on TN},
mu(@9) = [ ko) a@) - 6@ d. (2.9
D
bp,5) — — / p(@)V - 5(7)d7, and G@) — — / o(7) 5(3) - A(F) dT(@) . (2.10)
D rb

The subscript w in (2.9) indicates that the randomness appears in this bilinear form. In
a proper probabilistic setting we would seek random solutions (¢, p) in an appropriate tensor
product space (e.g., p(Z) = p(Z; w) would be required to be square integrable with respect to
Gaussian probability measure on 2, with values in Ly(D)) and (2.8) would be required to be
satisfied almost surely for w € Q). A precise probabilistic setting of the problem can be found,
e.g., in [33], but we suppress this here as it is not needed for the formulation of our algorithm.

To discretize (2.8), we introduce a mesh 7, (here taken to be triangular) on D, and we
approximate ¢(Z) by ¢ (Z) € Vy,, where V), C Hy n(div, D) is the space of lowest order Raviart-
Thomas elements characterized by: (i) ¢n(%) = d@r + V%, & € 7, for each 7 € T}, and for some
suitable coefficients @, € R? and 7, € R; (ii) ¢, has continuous normal component across the
interior edges of the mesh; and (iii) @, - @ = 0 on I'V. (For more details on Raviart-Thomas
elements see [4, 28].) The pressure p(¥) is approximated by pp,(Z) € W), the subspace of La(D)
consisting of all piecewise constant functions with respect to 7,. The approximate solution
(Gn, pr) is then computed as the solution to the discrete system

My (Gh, Uh) + b(pn,¥h) = G(), for all o), € Vy,, }

b(wh, (Th) = 0, for all wyp € W), . (2.11)



Again we should more properly write @, (%) = ¢»(Z; w) and pp(¥) = pp(F; w) and require (2.11)
to hold almost surely for w € Q.

Choosing bases {¥; : j = 1,...,n,} and {wy : £ = 1,...,n,} for V), and W, respectively,
and writing ¢ := 2?21 Q;U; and pp, := >, Pyw;, we obtain the symmetric indefinite system

(F(E-() <o~ e

with B;; = b(wy, U;) and g; = G(¥;). The random matrix M,, is given by
(My),; = mu(@, ) = / KE; @) 5,(F) - 5(F) AT, 6= 1. me. (2.13)
D

As we have remarked above, for the covariance function (2.6), with probability 1, we have
Z(-;w) € C*D) for a < 1/2. Tt follows from the arguments in [9] that then @, converges
to ¢ w-almost-surely in 2, with order O(h%) as h — 0 and, moreover, no degradation of this
rate of convergence is incurred if the integrals (2.13) are approximated by even a low order
quadrature rule using evaluations of the integrand at one or more points in (or near) 7. As a
simple example, if the FE grid is itself regular we may approximate Z(Z'; w) in each element
7 € Ty, by the average of its values at the three nodes of 7, without sacrificing accuracy. Thus
if Z1,...,Z)r are the nodes of the mesh 7;, which lie on D UTY, and if Z € RM denotes the
random vector

Z = (Zy,....Zu)" = (Z(Z1;w),..., Z(Zam;w)) T, (2.14)

then an appropriate approximation of M, may be taken as M (Z), with

~ =1 [ L o o - 1
(M(Z));; = ZTkT /T 7;(T) - 0;(F)dZ, where k, .:§ZWGTexp(zg), (2.15)

and it suffices to take the first sum over all 7 C supp(¢;) N supp(v;). The resulting approximate
saddle point system is

(B () () <

Thus the expected value of a quantity of interest G(Z) can be approximated by the expected
value of its finite element approximation Gp(Z), which only depends on the random vector Z.
In the particular example (2.7), a realization of G(Z) would be approximated by

Gn(Z) = pu(")

with pj, computed from (2.16).

3 Sampling Z and evaluating expectations

The vector Z in (2.14) is Gaussian with mean zero and M x M positive definite covariance

matrix o
T R

R = E(ZZ'") = (r(:ci,xj))mzl.

A procedure for sampling Z can be based on any real factorization of R of the form

R =00", (3.1)

where © is a real M x M matrix (e.g., a Cholesky factorization). From this, it can easily be
seen that
Z = 0Y (3.2)



defines a suitable realization, provided Y := (Yj(w),...,Yar(w))" is a vector of independent
standard Gaussian random variables. The formula (3.2) represents the field exactly at the dis-
crete points &y, ..., Zy without any truncation. By contrast, the commonly used KL expansion
(see §3.3 below), represents the field at all points in the domain, but in general requires careful
control of the truncation error.

3.1 MC and QMC approximations

With the finite element approximation Gy (Z) as described in §2.2, the MC (simulation) method
approximates the expected value by an equal-weight average

N
£(0(7) ¥ EG1(2) K Y Guoy™) (33)
n=1

where y(, ..., y®™) € RM are N independent samples of standard Gaussian random vectors.

The implementation of this requires the solution of N different instances of (2.16) with Z =
Oy, n=1,...,N.

To apply QMC methods we need to step away from the MC simulation point of view and
express the expected value explicitly as an M-dimensional integral

exp(—i2zTR 12
BGW2) = [ Gaan 2t (3.4)

dz.
RM (27r)M/2(det R)1/2 *

Moreover, since QMC methods are (equal-weight) quadrature rules defined over the unit cube,
it is necessary to transform (3.4) to an integral over the M-dimensional unit cube. This can
easily be done if we have factorized R in the form (3.1). We introduce the univariate standard
normal cumulative distribution function

v exp (—t%/2)
—o V27

and set @,/ (z) := (2~ (z1),...,2 (zn))T € RM for x € [0,1]M. The successive changes of
variables z = Oy and y = &,/ (x) transform (3.4) into

O(y) = dt for yeR,

BGn(2) = [ 6u(0%;](@)de.

[071]1V1

Then a QMC method approximates the expected value by

N
FE QMC 1 _ n
EG(2) ¥ EG(2) B Y6 (0%:} ")), (3.5)
n=1
where (V... 2) € [0,1]M are N deterministically chosen points from the unit cube. We will

return to discuss QMC methods in more detail in §4, and in particular, we will replace (3.5) by
a randomized QMC method for practical error estimation.

We remark that the MC method can also be viewed as an equal-weight quadrature rule over
the unit cube as in (3.5), but with {#(™} being independent random vectors drawn from a
uniform distribution in [0, 1]™. This latter point of view for MC is less convenient in practice
than the more standard MC formulation (3.3), because (3.5) requires the evaluation of &}
which has no analytic form, whereas the Gaussian random vectors in (3.3) can be sampled
directly using, e.g., acceptance-rejection schemes.



3.2 Embedding in a larger matrix

Both MC and QMC approximations discussed above rely on a factorization of R in the form
(3.1). However such factorization can be expensive — a Cholesky factorization requires O(M?3)
operations in general — so we seek more efficient methods by first extending R to a larger
symmetric positive definite d x d matrix C. The disadvantage of the larger dimension is offset
by the extra freedom in choosing the structure of C' in such a way as to make it easy to factorize.
Dietrich and Newsam [12] and Chan and Wood [5] proposed to construct C' as a circulant
extension of R, for then a factorization of C' can be constructed in O(d logd) operations using
a fast Fourier transform. Furthermore, this yields an orthogonal diagonalization of C' and the
resulting eigenstructure allows us to identify the order of importance of the variables, something
that is crucial to the success of QMC, see §4. We return to circulant embedding in §5.

The justification provided in [12] for the embedding approach is expressed in terms of ob-
taining the correct correlation structure in the random MC samples. Since QMC methods are
quadrature rules rather than simulation techniques, the justification behind the embedding ap-
proach has to be quite different in nature. We provide this justification below. Lemma 1 shows
that the extension from R to C' still yields an integral of an analogous form to (3.4). Lemma 2
then shows how such integrals can be transformed to the d-dimensional unit cube. Corollary 3
applies the result (slightly generalized) to (3.4).

Lemma 1 Suppose that R is any symmetric positive definite M x M matrixz and suppose C' is
a d X d symmetric positive definite matrixz of the form

C = [[ﬁr g] . (3.6)

Then for any integrable function g : RM — R we have

/ (2) exp(—12TR12) o — / ( )exp(—%uTCflu)d
et T MR e )2 F T Jpa T HEMY (9yd2(qer )12

where, for any vector u € RY, U € RM s the vector containing the first M components of u.

Proof. Let R = LLT be a Cholesky factorization of R. Then with the substitution z = L w we

have ( 1T 1) ( 1,.T )
exp(—52 Rz / exp(—sw w

= Lw) ——=——= .

/RM 9(=) (27)M/2(det R)1/2 az RM g(Law) (2m)M/2 w

A Cholesky factorization of C' can be written in the form

g ~ L 0
C = LL", where L = [K L,]

Hence, introducing the new variable v = [wT, w'T]T, where w’ € R ig a vector of dummy

variables, and then making the substitution v = L™ u where u € R%, we obtain

']

T,U)

ex —lzT 1z ex —l'v
/ g(2) p( 2 R >dz :/ g(L(v[le]))p(72
RM R4

d
(2m)M/72(det R)1/2 emaz

sty BRAETC )
= /Rdg(L(L w) 1)) (2m)4/2(det C)1/2 du.

To complete the proof note that L(E_lu)[LM] = (LL_l)u[le} = U] O




Lemma 2 Let C be as in Lemma 1 and suppose C' has a factorization of the form
C=585T. (3.7)
Then for any integrable function f : R® — R we have

exp(—suTC~tu) B _
/Rd ) i@ oy /[o,udf (5%, (@) dz.

Proof. Straightforward, using the successive changes of variables u = Sy and y = @gl(w) . O

It is easy to check that instead of the specific form (3.6), C' in Lemmas 1 and 2 may actually
be any symmetric positive definite matrix chosen so that some M x M selection of C' coincides
with R. By this we mean that selecting some subset of rows, and the same selection of columns,
of C gives us R. (Such a selection is sometimes called a principal submatrix.) In this case,
u[y.y) in Lemma 1 is replaced by the vector ug made up of the components of u corresponding
to the particular selection of C.

Corollary 3 Let C be any symmetric positive definite d x d matriz such that some M x M
selection of C' coincides with R. If C has the factorization (3.7), then (3.4) can be written as

E(Gh(Z)) = /[0 .y Gr((S®;'(2)) ) dez, (3.8)

where, for any u € R, up denotes the M entries of w corresponding to the particular selection
of C. The MC and QMC approzximations for the expected value are, respectively,

1 & 1 &
v > Gu((Sy™),)  and ¥ > (S (™)) ), (3.9)
n=1 n=1

where {y™} are independent standard Gaussian random vectors from R? and {x(™} are deter-
ministically chosen QMC points from [0,1]%.

3.3 Truncated KL expansion

A starting point for the solution of (2.1)—(2.4) is often taken to be the Karhunen-Loéve expansion
2(F;w) = Y V(@) Yi(w), TeD, weq. (3.10)

The functions v, are orthonormal eigenfunctions in Lo(D) and p, are the corresponding (posi-

tive) eigenvalues of the positive definite integral operator with kernel function r(Z, ) on D. Since

Z is a Gaussian random field, the Y(w) are independent standard Gaussian random variables.

As an alternative to the circulant embedding approach described above, it would be possible

for us to truncate this KL expansion (3.10) to d terms and to use it to approximate the random
vector Z given in (2.14) by

Z(w) = UY (w), (3.11)

where Y (w) is a d-dimensional standard Gaussian random vector and W is the M x d matrix
given by

W0 =t z;), i=1,....M, (=1,...,d. (3.12)
From this, following the same arguments as above, we may approximate E(G(Z)) by
KL ~ FE ~ -1
E(G(Z)) ~ E(G(Z)) =~ E(Gn(Z)) = " G (U@ (x)) da. (3.13)
0,1



The MC and QMC approximations can then be obtained analogously to (3.9) with S replaced
by U.

Although in theory the KL approach gives a uniformly accurate representation of the field
independent of any (sampling) mesh, in practice it still has to be computed numerically, which
can be very expensive (except in special cases, such as for (2.6) with p = 1). However, the
main drawback is that an additional error is introduced by the truncation in (3.11), even before
any finite element approximation is carried out. For continuous covariance functions r(Z, %), by
compactness of the corresponding integral operator, the sequence of eigenvalues {yus} may be
chosen non-increasing, and converges to 0 as £ — oo. When r is sufficiently well behaved near the
diagonal Z = ¥, the KL expansion (3.10) then converges to a continuous function uniformly on
D, with probability 1. In particular, [1, Theorems 3.3.2 and 3.4.1] tell us that this convergence
property holds for the covariance function (2.6). However, the convergence rate of (3.10) is
determined by the decay of the eigenvalues uy, and can be slow when r is not smooth across the
diagonal (as in (2.6)). For the analogue of (2.5) and (2.6) in the 1D case, the KL eigenvalues
(e are known analytically (see e.g. [17]). In this case, although puy = O(£~2) as £ — oo, there is
a preasymptotic phase containing O(A~!) KL eigenvalues before this decay starts. This can be
seen clearly in Figure 1 (left). Therefore methods which attack (2.1)-(2.4) by first truncating
(3.10) may suffer large truncation error in the expected value of the quantity of interest (see
Figure 1, right) unless the number of terms taken is large (>> 100). The difficulty is even more
pronounced when D C R? or R3. For certain functionals the strong and weak truncation error
have in fact been recently bounded rigorously in [7] for the covariance function (2.6).

1)

KL eigenvalue u,
Relative error in E(q|s

10 10 10 10 10 10 10

Figure 1: Left: Plot of the decreasing sequence of KL eigenvalues i, against £ in one dimension,
for different choices of the correlation length A\ and for D = (0,1). Right: Corresponding
relative error (or bias) |E(G(Z))— E(Gh(Z)) |/E(G(Z)) in a typical quantity of interest, namely
the outflow G(Z) = ¢|z=1, as a function of the number d of KL modes included.

3.4 Stochastic collocation

Suppose we have a general quadrature rule on the d-dimensional unit cube with weights {w, }
and points {x(™}:

N
/ fl@)yde ~ > w,f(z™). (3.14)
[071]d n=1

If this rule is applied to (3.13), then we obtain

N
E(G(2)) ~ Y wiGn(V®, (x™)), (3.15)

n=1
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where U is as defined in (3.12). As above, the implementation of this requires the solution
of N different instances of (2.16). This is reminiscent of the stochastic collocation method
in, e.g., [2, 33, 34, 14]. For example if (3.14) represents a quadrature rule based on applying
sparse grid techniques to d-fold tensor products of one dimensional interpolatory rules, then
the resulting approximation is essentially the method proposed in [33] (although the PDE to
be solved in [33] is the primal instead of the mixed form (2.16)). An anisotropic variant of [33]
which performs more work in the directions of the important variables and is more suitable for
higher dimensions is given in [34]. A multi-element version has recently been proposed in [14].
However the quadrature rules in these papers are different to the QMC rules which we study in
this paper. In particular, our methods use equal weights and our quadrature points are more
uniformly distributed in the d-dimensional unit cube. The anisotropic and the multi-element
sparse grid methods both aim for robustness with respect to dimension (like our QMC method),
but the dimensions of the examples which we report in this paper (up to 10%) go far beyond
those tested in the examples in [34, 14]. Moreover, as mentioned before, our method has the
additional attraction that it does not involve truncation of the KL expansion.

The collocation methods can be seen as approximations of stochastic Galerkin methods
[3, 17, 37, 42|, in which, starting from a KL truncation of the random coefficient, a variational
approximation in both physical and probability space is performed. These methods, together
with stochastic collocation, have an extensive and elegant error analysis, e.g., [3, 42, 2, 33, 34].
Although the error analysis of our method is the focus of current work, it is not the aim of this

paper.

4 Quasi-Monte Carlo methods

Although QMC methods have already been successfully applied in various other areas of high-
dimensional integration, to the best of our knowledge they have not yet been used in solving
PDEs with random coefficients, where significant new issues arise due to the very high nominal
dimension d.

We begin this section with a brief but contemporary introduction to QMC theory, intended
only to be sufficient for understanding the key issues concerning their use in §7. We stress that
in any given application the theory discussed in this section only applies if the integrand is suffi-
ciently smooth (measured in an appropriate weighted Sobolev norm). As in other applications,
such as option pricing in mathematical finance, it is unfortunately not easy to show this for our
application, and it is therefore left for a future paper.

4.1 QMC theory

Recall that QMC methods seek to approximate an integral of a function f : [0, 1] — R over the
d-dimensional unit cube by an equal-weight quadrature rule

1 N
W= [ J@de = 53 = Q)

The name “quasi-Monte Carlo” reflects the fact that the simple Monte Carlo rule for the integral
I4(f) has exactly the same appearance as Qn q4(f), albeit with a crucial difference, that in the
MC rule the points {m(”)} are chosen randomly and independently from a uniform distribution
on [0,1]¢. The MC rule has the well known probabilistic error estimate

VEU) = Qualh)? = D0 where  o2(p) = 1(2) - (L)

5 \/N

The general ambition of QMC rules is to improve upon the performance of the MC rule through
a clever deterministic choice of points {z(™}.

11
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Figure 2: Comparison of MC and QMC points

There are two main classes of QMC rules: so-called lattice rules and nets. Both classes of
methods were initially introduced and studied by number theorists fifty years ago. Although we
discuss examples of both classes of QMC rules here, our computations in §7 are restricted to
Sobol' points [46], which are the earliest and perhaps the most popular examples of nets.

In Figure 2 we show, for the 2-dimensional case, the first 64 Sobol’ points, compared to the
points of a (good) 64-point lattice rule, and 64 (pseudo-) random points in the plane. Lattice
points are very regular as seen in the figure: the lattice points form a group under addition
modulo the integers, which includes all integer points if extended periodically from the unit
square [0,1]? to all of R2. On the other hand, Sobol’ points are also very uniform albeit in
a different sense: in every dyadic subdivision of the unit square into 64 identical pieces (for
example, into 64 strips of size 1 X 6—14, or 64 rectangles of size % X 3%, etc), there is exactly 1
point. In general, Sobol’ point sets with 2™ points in d dimensions are “(¢,m, d) nets” in base 2,
meaning that each subdivision of the unit cube into 2™~ identical pieces contains exactly 2¢
points (as described above for ¢ = 0, m = 6 and d = 2). We see that the uniform distribution
of (t,m,d) nets deteriorates as t increases, and so we can think of ¢ as a “(lack of) quality
parameter”. Unfortunately, it is known that for Sobol’ points ¢ generally increases with d. This
implies that Sobol’ points have an intrinsic order of importance of coordinate directions. They
are more uniformly spread in the early dimensions and so the integration variables should always
be ordered according to their importance.

The above description considers only Sobol’ point sets of size 2™ for some positive integer
m, but practical Sobol’ point generators allow all intermediate vales of N to be filled in, and
indeed are usually presented as infinite sequences. For reviews of the classical material on QMC
rules, see Niederreiter [31] and Sloan and Joe [43]. However, for both classes of QMC rules the
justification for their use (and in the case of lattice rules, even the method of construction) has
to be very different from the original arguments when d is large: we think that either rule is
better analyzed not in any of the classical function spaces, but rather in the weighted spaces
introduced by Sloan and Wozniakowski [45].

The intuition behind the weighted spaces is that most problems are too hard when d is
large and all variables are of equal importance; but that the situation may be better if (with
the variables appropriately ordered) the successive variables (that is, the successive components
of  in f(x)) are of declining importance. To quantify the declining importance of successive
variables, [45] introduced an infinite sequence of positive weights v;, satisfying

Y>>0,

These weights are then built into the function spaces in which the error analysis is done. Specif-
ically, in its original version in [45] the d-dimensional weighted Hilbert space Hy. is a tensor
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product of the 1-dimensional Sobolev spaces Hj ,, with inner product

1 1
(Fo)s, = FD o+ [ f@)d@)da (1)
j
and norm || f|l14, = (f, f)i/wzj The space Hg~ with norm || - ||q~ is a weighted Sobolev space

containing real-valued, continuous functions whose mixed first derivatives are square integrable.
Other more general weighted spaces have been defined in the literature, but for our present
purposes the details of weighted spaces are not important; only the weights themselves are.

It is known from [20] that QMC rules exist for which

1Ia(f) = Qna(f)] < Cs N fllay, (4.2)
for every 0 > 0, and with Cs independent of d if
Sl < o, (4.3)
j=1

A similar result under the weaker condition that the weights are summable was already given
in [45], resulting in a convergence rate of N —1/2_ The importance of these results can be illus-
trated by noting that for the classical case, where all weights are equal, the constant Cy grows
exponentially with d.

In addition, we know how to construct “rank-1” lattice rules (randomly shifted, see §4.2
below) that achieve the error bound (4.2) under the condition (4.3) on the weights by means of
the component-by-component (CBC) construction; see [24, 35, 44], or see [25] for a non-technical
review of recent developments on weighted spaces and lattice rules. The points of a rank-1 lattice
rule can be completely specified by one integer vector g whose components are all relatively prime
to IN. The essence of the CBC construction is that the components of g are determined one after
the other, with the value of the kth component chosen such that it minimizes a certain quantity
depending on the weights 71, ..., v%. Because the weights are decreasing and the earlier choices
are in some sense more free than the later ones, the quality of the rule constructed by the CBC
algorithm can be expected to deteriorate as the dimension increases — the same conclusion that
we reached, for a different reason, for the Sobol’ sequence.

However, weighted spaces also provide a framework for understanding the success of the
Sobol’ points in high dimensions. This comes from the work of Wang, [48], who showed that the
Sobol’ points in any number of dimensions d can achieve an error bound of the form (4.2) with
Cs independent of d, albeit with a condition on the weights that is slightly stronger than (4.3).

In summary, in the case of lattice rules the framework of weighted spaces provides an algo-
rithm by which a suitable lattice rule can be constructed, once the weights are chosen. In the
case of the Sobol’ points the weighted spaces (unlike the classical spaces) allow us to understand
how and why the Sobol’ points (and indeed other nets) can be successful even in high dimen-
sions. However, the key lesson we want the reader to take away from this section is that when
using QMC rules it is crucial to order the components of the d-dimensional integration variable
x in order of decreasing importance.

Parameters for obtaining good lattice or Sobol’ points can be found in http://www.maths.
unsw.edu.au/~fkuo/.

4.2 Randomization

It is well known that an estimate of the standard error for the MC method Qn4(f) can be
obtained from

. N ) 1/2
SN = (N(N—l) Z (f(w(n)) - QN,d(f)) ) . (4.4)

n=1
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An empirical 95% confidence interval for the integral approximation (based on the assumption
of Gaussian distribution of Qn q(f) = 25:1 f(x™)/N) is then Qy4(f) = 1.96sy. Note that
there is an equivalent formula for (4.4) which requires only one pass through the evaluations
of f. But for both the one-pass and two-pass implementations, care must be taken to avoid
numerical instability, see e.g., [21].

We recommend that QMC be implemented not in the pure, deterministic form described in
§4.1, but rather in a randomized form that borrows from the MC method an estimate of the
error from the spread of the results. There are two popular forms of randomization: shifting and
scrambling, the former preserves the lattice structure while the latter preserves the net structure,
see, e.g., [19]. Here we describe shifting and a simple form of scrambling called digital shifting.

We can add a shift A € [0,1]% to any QMC point = € [0,1]¢, and “wrap” it back into the
unit cube if necessary, to obtain a shifted point in the unit cube denoted by x ® A = frac(x+ A)
where frac denotes the fractional part. This describes shifting. With digital shifting, we rewrite
both  and A in some base (2 is the natural choice for Sobol’ points) and perform digitwise
addition modulo the base. For example, with base 2, @ is the bitwise exclusive-or operator:
if & = (0.25,0.75) = (0.01,0.11)2 and A = (0.375,0.625) = (0.011,0.101)5 then the digitally
shifted point is & A = (0.001,0.011)s = (0.125,0.375).

To estimate the QMC error we make use of some number, say v, of random shifts (or digital
shifts) of a selected QMC rule. Suppose the chosen QMC rule is a s-point rule @, 4 with points
{x(™}. Then the same rule shifted (or digitally shifted) by A € [0,1]% is

Qraalf) = Y [ 6 A),
n=1

and the randomly shifted (or digitally shifted) version of this rule with N = vk points is

ran 1 - 1 o n %
N,d(f) = ;ZQR%AU)U) = TKZZJC(SU( )EBA()), (4.5)
i=1 i=1 n=1
where A(l), cees A™) are v independent random samples from a uniform distribution on [0, 1]¢,

such that the @, ; A« are independent estimates for I14(f). It is easy to verify that }”{‘}I}i( f)
provides an unbiased estimate for I;(f). An approximation of the standard error for Q3 (f) is

given by
v 1/2

SNy = (1/(1/1_1) Z (de’A(i) (f) - Q?\%ﬁl(f))Q) . (4'6)
=1

To avoid spoiling the good QMC convergence rate, the number of random shifts (or digital
shifts) should be small and fixed, say v = 10 or 20. Then instead of taking the number of points
k to be fixed, we increase k successively until the desired error threshold is satisfied. This is
straightforward with the Sobol’ sequence. A method to construct “extensible” (or embedded)
lattice rules is described in [10].

5 Circulant embedding and FFT

To motivate this section, let us recall Corollary 3, which gives a formula for the expected value
of Gr(Z), on the assumption that the covariance matrix R of Z (recall (2.14)) can be embedded
in a symmetric positive definite matrix C'. In this section we show that C' can be taken to be a
circulant matrix when the field is sampled at a regular rectangular array of points in R?. There
are several new aspects to our discussion here compared to [5, 12]. In particular, the fact that
the resulting C' can be diagonalized in real arithmetic is of importance to our algorithm.
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To explain the circulant embedding technique we need to introduce some extra notation.
Suppose that Ay, ..., A, are symmetric square matrices of the same size. Then the symmetric
block Toeplitz matrix whose first block row and column contains these matrices is denoted by
SBT(A(), ey An), i.e.,

Ag Ay Ay - Ay

Ay Ag Ay N W
SBT(Ao,...,An) = Ay A4 Ay - Apo

_An Anfl An72 T AO |

With this notation, the matrix SBT(Aq, ..., An, Ap—1,..., A1) is block circulant, that is, the jth
block row of this matrix is just the same as the (7 — 1)th block row shifted one place to the right
and wrapped around. Obviously these definitions also make sense in the special case when the
blocks A; are scalars.

5.1 The 1D case

To facilitate understanding, it is useful to consider first the model case of a 1D random field Z,
with covariance function r(z,y) := p(|z —y|) for some p : Rt — R, and suppose this is to be
sampled at m + 1 equally spaced points (including the end points) in [0, 1]. (We remark that the
absolute value in p can be left out by some minor modifications.) Then the relevant covariance
matrix is
R = SBT(po,.--,pm), where p;j = p(j/m) for j=0,...,m.
An embedding of R in a d x d symmetric circulant matrix C' with d := 2(m + J) can be

obtained by taking

C = SBT(po, - -, Pms Pmt1s- - - Pmtd, Pmtd—1: - - - P1) (5.1)

-~

padding mirroring

for some integer J > 0. Clearly C' contains R in its top left-hand corner and the “mirroring”
ensures the circulant structure for any choice of J. “Padding”, i.e., taking J > 1 in (5.1), with
large enough J and suitable padding values, can ensure positive definiteness for all covariance
functions of interest in this paper (see [6] and [12] for theory and numerical experiments). The
choice J = 0, i.e., no padding, is sufficient for most of the examples in §7. When padding is
needed, we specify our padding values by p; = p(j/m) for j =m+1,...,m+ J. The matrix C
can then be written as

C = SBT(po, - -, pa(mts)—1); Wwhere p; = p(j/m) for j=0,...,2(m+J)—1,
and p: RT — R is the 2¢-periodic function (where ¢ := 1+ J/m), defined by

p(t) for t € [0, 4],
p(20 —1t) fort e [¢,24],
p(t —2¢) otherwise.

=Y

—
~~

S—
Il

The diagonalization of a d x d circulant matrix may be achieved in O(dlog d) operations by
fast Fourier transform. Indeed, for a circulant matrix C' we have C' = FH A F, where F is the
unitary Fourier matrix with entries

1 .
Fp,q = ﬁ exp(27r1pq/d), b,q= 07 .. ‘7d - 17 (52)
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F" is the Hermitian conjugate of F, and A := dia,g(\/& F ¢) is the diagonal matrix of eigenvalues
of C, with ¢ denoting the first column of C'. Note that since C' is symmetric and real and has real
eigenvalues, we also have C = F' A FH. The following lemma states that a real diagonalization
of C' can be obtained by combining real and imaginary parts of F'. This is sometimes called the
(orthogonal) Hartley transform.

Lemma 4 Let C be any symmetric circulant matriz and let C = FAF?. Then the matriz
G := Re(F) + Jm(F) is real, symmetric and orthogonal, and C = GAGT.

Proof. The matrices F, := fRe(F) and Fy := Jm(F') are symmetric, and so is G. Since F is
unitary, we have [ = FFH = (F, +iF,)(F. —iF;) = (F? 4+ F?) +i(FsF, — F.Fs) . Hence

F?+F?=1 and F.F,—FF.=0. (5.3)

This and elementary trigonometry give

d—1
1 2rpr\ . [2mrq
(FsFo)py = (FoFs)pg = drgo cos( y >sm< y ) =0.

Using (5.3) again we have GG = GG = F? + F? =1, so G is orthogonal.

Now, starting with C = F A FH, we multiply from the right by F to obtain CF = FA.
Separating this into real and imaginary parts yields CF. = F. A and CF; = Fy; A. Summing the
two equations and multiplying from the right by GT, we obtain the result. O

5.2 The 2D case

Suppose Z is a random field on a 2D domain with covariance function r(Z, %) = p(||Z—|,), with
p =1 or 2, and suppose we want to sample it on a uniform (m; + 1) x (mg + 1) rectilinear grid,
with grid spacing 1/m; in the x; direction and 1/mg in the zo direction. Using a lexicographic
ordering of points (first in the x; direction and then in the x9 direction), the covariance matrix
R is block Toeplitz with Toeplitz blocks Ry, ..., Rm,, i.e.,

R = SBT(Ro, Ry, ..., Rm,),
where each R; is itself an (mq 4+ 1) x (m1 + 1) Toeplitz matrix

Rj = SBT(,O(]J‘,pl,j, ey pm1,j)7

with entries p; ; := p(i/m1,j/m2), for i =0,...,my and j =0,...,ms.

We embed R in a matrix C' which is block circulant with circulant blocks, by first embedding
each Toeplitz block R; in a circulant matrix C; as in the 1D case, and then embedding the
blocks in an analogous way. Again, padding may play a role in ensuring positive-definiteness.
Thus, for padding parameters Ji, Jo > 0, we set

C = SBT(Co,...,Cmy, Crgt1 -+ -, Congt Jos Crngt- Jy—15 - -, C1),5

~
padding mirroring

where the blocks are themselves circulants

Cj = SBT(p0js - -+ s Pma s Pmat1,j « « - > Pmy+J1,3s PrgtJr—1s - - -5 PLj)-

padding mirroring
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Analogous to the 1D case, we specify the padding by introducing the biperiodic function
with period 2¢; in the z1 direction and period 2¢5 in the xo direction defined as

p(ti,ta) for (t1,t2) € [0,41] x [0, £2],

S o LRl ) for (t1,t2) € [01,261] x [0, £s],
B(t1, 205 — 1) for (1, 1) € [0,201] % [fa, 26s),
ﬁ(tl —201,ty — 262) otherwise,

where ¢; = 1+ J;/m;. The blocks of C are chosen to be Cj = SBT(poj, - - -, Pa(my+J1)—1,5) -

The matrix C' may be diagonalized by applying FFT techniques in each of the two coordinate
directions in turn. This technique is well known and is described (in the context of a simpler
matrix) in [47, p. 453-458] for example. To provide some more detail, let d; := 2(m; + J;),
1 =1,2. Then, C is a d X d matrix with d := dyds, and we can identify the rows and columns of
C with the pairs (p1,p2) € {0,...,d1 — 1} x {0,...,ds — 1}, arranged in lexicographical order.
We then have C' = F A FH, where F is the d x d complex 2D Fourier matrix with entries

1 2mip1q1 2mi page ,
F(P17p2),(¢I17Q2) = ﬁ exXp ( dl ) exp < dQ y DPiyqi = 07 sy dZ - 17 v = 1) 2.

Here, as in 1D, ¢ denotes the first column of C, and A = \/&diag(F c) contains the eigenvalues
of C. The following result is the 2D analogue of Lemma 4.

Lemma 5 Let d = dj X do and let C be any d x d symmetric block circulant matriz of the form
C =8SBT(Cy,...,Cqy—1) with dy x di symmetric circulant blocks Cj, 0 < j < dy. IfC = FAFH
then G := Re(F) + Im(F) is a real, symmetric and orthogonal matriz, and C = GAGT.

Proof. It is easy to verify for the 2D case that FF" = I and that DMe(F) Jm(F) = 0. The proof
then follows the same lines as the proof of Lemma 4. O

5.3 Randomized QMC approximation combined with circulant embedding

We now outline the steps required for implementing a randomized version (see §4.2) of the QMC
approximation in (3.9) combined with circulant embedding when the vector Z € RM represents
the random field Z sampled at a regular rectangular array of points. From Lemma 5 we see that
in the factorization (3.7) of C' the matrix S can be chosen to be S = GA/2,

As we explained in §4.1, the opening dimensions of QMC points are of higher quality, and
for this reason we need to identify the importance of the integration variables and relabel them
accordingly. It turns out that the magnitude of the eigenvalues of the circulant C' provides a good
guide, which is why we permute the QMC components in accordance with the non-increasing
sorted eigenvalues (see Step (iv) of the preprocessing below).

Preprocessing: (i) Embed R into a d x d matrix C' that is block circulant with circulant blocks,
and thus obtain ¢, the first column of C. (ii) Compute A := v/d £ft(c) using a 2D FFT routine,
e.g., FFTW [16]. (iii) Check that all eigenvalues in A are real and positive. If not, increase the
padding in C' (thus increasing d by 1) and go back to (i). (iv) Choose a permutation 7 such
that ()\,r(j))?zl are in non-increasing order.

For each QMC point 2™ and each shift A®¥: (a) Compute y := ®,"' (2™ & AD) where
@ denotes either shifting or digital shifting. (b) Evaluate w := (\/A; y,,_1(j))?:1 . (c) Compute
v = fft(w). (d) Take u := Re(v) + Im(v). (e) Set Z := (u)r as described in Corollary 3.
(f) Solve (2.16) with this instance of Z.

Thus, with £ denoting the number of QMC points and v denoting the number of shifts, we
obtain N = vk realizations of Z and N solutions of (2.16). The expected value and its error
estimate are computed as in (4.5) and (4.6).
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5.4 Comparison to the MC approach

We finish this section by highlighting some of the differences between our QMC adaptation and
the MC strategy described, for example, in [12]. Recall that QMC methods take the point of
view of integration, not that of simulation, and therefore the justification for the embedding
approach is quite different, see §3.2. While the MC error can be estimated from the spread of all
function evaluations (since each sample is independent from the others), to estimate the QMC
error we need randomization, see §4.2, which has the added advantage of removing bias from
the QMC estimate. Whereas QMC points need to be mapped from the unit cube back to R?
using the inverse of the cumulative normal distribution function <I>;1, the MC method can avoid
this transformation by generating normal variates directly, and thus saving some computational
work. However, as shown in §7, this is only a minor part of the total cost.

The permutation of variables as described in §5.3 is important for QMC methods, but it
has no effect on the performance of the MC method because the MC samples only need to
have the correct mean and covariance. For the same reason, the MC method has extra freedom
in extracting M components from Sy(™ (see (3.9)) in the sense that a different selection of
components could be used for each simulation.

Finally we note that the MC strategy in [12] makes use of the complex factorization of C' to
transform one complex vector of length d, i.e., two real input vectors, to obtain two real output
vectors by separating the real and imaginary parts of the transformed vector. However, for
QMC methods it is crucial that the assignment of QMC components to the integration variables
remains the same for every function evaluation, which is why we use the real factorization in
terms of G in Lemmas 4 and 5. Application of the real factorization has the same computational
cost as that of the complex factorization using standard FFT tricks.

6 Fast implementation of mixed finite elements

In this section we restrict to the case when (2.1)—(2.2) are to be solved on the simple domain
D = (0,1)? subject to the specific mixed conditions

p(0,2z2) =1 and p(l,z2) =0 for all x5 €[0,1], and (6.1)
¢2(r1,0) =0 and @o(x1,1)=0 forall z; €[0,1].

This is sometimes referred to as a flow cell in the literature (cf. [29]). We show how to efficiently
compute three quantities of physical interest using Raviart-Thomas mixed finite elements (FEs)
on the uniform triangular meshes with m subdivisions in each coordinate direction depicted in
Figure 3 (left). For convenience we denote h = 1/m. We use the divergence-free reduction
technique introduced in [8, 40] (see also [13]) to solve the resulting saddle point systems (2.12)
or (2.16). The good computation times in §7 depend crucially on this fast procedure.

6.1 Three important physical quantities

The simplest quantity of interest that we will study is the pressure head p(Z*; -) at a given
point &* € D. The second of our quantities of interest is

keff (w) = op

which is one of many measures for the mean behavior of the random porous medium in D. It
is of interest, e.g., in stochastic homogenization, and is sometimes referred to as the effective
permeability (cf. [29]). Note that on the simple flow cell D = (0,1)? with the specified
boundary conditions, the denominator simplifies to [}, —(%71 dz = fol (p(0,22)—p(1,22)) dze = 1.
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Figure 3: Left: Model problem and typical grid. Right: Boundary conditions and grid for
auxiliary problem (6.9)—(6.10).

Finally, in the context of modeling underground waste repositories, it is important to study
the motion of pollutant particles in the velocity field ¢, because transport by flowing groundwater
is the main mechanism for pollutants (such as radionuclides) to return to man’s environment (see
e.g. [32]). We use again an idealized model here neglecting dispersive effects due to molecular
diffusion, which is justified to some extent in the case of highly heterogeneous problems. For
cach realization of the permeability field k, we place a particle at, say Z', and follow its path
through the field ¢ until it exits the domain D. The final position and the time it takes to reach
the boundary, the so-called breakthrough time, are important quantities of physical interest
and in §7, we shall compute expected values of the breakthrough time 7' = T'(w) for the flow
cell D = (0,1)% and &' = (0,0.5)T.

6.2 Divergence-free reduction of mixed finite element systems

It can be shown that (2.16) has a unique solution, but it is highly ill conditioned when h is
small and when k varies strongly. The fact that it is indefinite further complicates the direct
application of fast multilevel solvers, such as algebraic multigrid (AMG). This is the reason
why we first use an algebraic reduction of (2.16) to a symmetric positive definite system and a
triangular system. To explain this reduction we define

Vi i={0€Vy :bw,7) =0 forall we Wy},

the subspace of (discretely) divergence-free Raviart-Thomas elements. Since (2.16) has a unique

solution, we have dimV, = n, — n, =: 7 and we can consider choosing the first n elements
U1,...,V; in the basis of V4, such that they also form a basis of V}. Then B;; = b(wg, ;) = 0
for i = 1,...,n, and since the solution ¢, belongs to V;,, we have Qs11 = -+ = @Qpn, = 0.

Thus, we can decouple the first block-row of (2.16) into two independent (square) problems for

o

Q:=(Q1,...,Q;)" and P, namely

S MiQp = gi forall i=1,...,7, (6.3)
S0 BisstPr = Givs — iy MiysjQ;  forall s=1,... n,. (6.4)
We will see below that ¥y 1,...,Un, can be chosen such that the matrix (Bjys¢)1<e,5<n, 1S

bi-diagonal and (6.4) can therefore be solved in O(n,,) operations by simple back substitution.
The core task is to solve (6.3). This system is 5 times smaller than the original system (2.16)
(cf. [8]) and simpler to solve as we will explain now.

It is a property of the de Rham complex, which describes the connection between various FE
spaces including the Raviart-Thomas elements (cf. [4, 40]), that a basis for Vy, can be constructed
from curls of the standard, scalar-valued, continuous, piecewise linear FE basis associated with
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Tr- To be more precise, for any node Z; of T}, let ¢; be the piecewise linear hat function associated
with #; such that ¢;(Z;) = d; , for all nodes & of Tj,. Further, let us partition the set N of
all nodes &; of Ty, into a set Npg of nodes on the bottom boundary where x5 = 0, a set N of
nodes on the top boundary where x5 = 1, and the remainder which we call N7. Since degrees of
freedom in V}, can be associated with edges of T;, and those in Wy, with elements, it follows from
Euler’s polyhedron theorem that n = #N; + 1 (cf. [8, Theorem 3.3]). Let #1,...,Z5-1 € N7.
Then we can choose the basis for Vj, in the following way (cf. [8, §3.2]):

v = chlcpl-, i=1,...,n—1, and
- - (6.5)
Up = curlyr, where @ = Zij N ©j,

and where curlf := (8f/dxq, —0f/0x1)T in 2D. (Note that the choice of the top, rather than
the bottom boundary in (6.5) is not essential.) Substituting (6.5) into (2.15) we have

M;; = /Dk_lclfrlgoj-cgrlcpidf: /Dk:_lﬁgoj-ﬁgaidf, ,j=1,...,n—1, (6.6)

=: a(p;, v;)

where k is a piecewise constant function defined elementwise in (2.15). Also from (2.10) we have

gi:G(Ui):/ curlg; - AdD(Z) =0, i=1,...,7n—1,
1—‘in

with I'j;, denoting the left-hand boundary {0} x [0,1]. Similarly, M;s = a(es, 1), Mis =
a(er,pr) and gp = 1. Now denote
Ai,j = a(gpz,goj) and f’L = _a(<Pi7<PT)= fOI' 1 S Z?] S fl — 1.

Then the solution of (6.3) can be found via block—factorization (see [8] for details) to be

: A~lf 1
Gon () e e
1 Mﬁj’l —fTA-1f ( )
Hence, solving (6.3) reduces to solving
Au = f and then using Q= < 111 > . (6.8)

Now Au = f is a standard (continuous, piecewise linear) FE discretization of the auxiliary PDE
V- (k'Vu) = 0 (6.9)
subject to the mixed boundary conditions

1)

1,
and g—;fl(l,mg)

and u(z 1 forall z; €]0,1], and

(6.10)
0  forall a9 €][0,1],

u(xy
)

0
0

b
.I'Q) =

i.e., a second-order elliptic problem of the same form as that obtained for the pressure p by
substituting (2.1) into (2.2), but with diffusion coefficient k=! instead of k and the roles of
Dirichlet and Neumann boundary interchanged (see Figure 3, right, for an illustration). The
auxiliary function u plays the role of a stream function for the divergence-free vector field ¢ in
the original system of PDEs (2.1), (2.2). We emphasize again however, that k in the definition
of the stiffness matrix A in (6.6) depends only on the values of the random field contained in
the vector Z € RM,
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Figure 4: Left: Element numbering and distinguished edge e, associated with element 7,. Right:
Piecewise linear particle path (particle released at (0,0.5)T).

There are a number of robust solvers for (6.8) and some recent theory analyzing the resilience
of many of the methods to large variations in the diffusion coefficient (see, e.g., [18, 36]). In
this paper we will use algebraic multigrid (AMG) to solve (6.8), and we will see that its cost
grows linearly with the problem size and is not affected by variations in k. AMG has been shown
experimentally to be a very efficient method for solving high contrast diffusion problems but
unfortunately there is no theoretical justification of its coefficient robustness yet.

6.3 Simple derivation of quantities of interest

We will show now that all the quantities of interest defined above can be computed in a straight-
forward way from the solution u of the auxiliary problem (6.8). Note first that using (6.5), (6.7)
and (6.8), and setting u; = 1 for all #; € Ny and u; = 0 for all Z; € N (cf. (6.10)) we have

n
qn = ZQJ)’Z = Z u; curl p; + Z curlp; | = ny Z u; curl ;. (6.11)
=1

ZeNT ZieNT FieN

Now, since the functions ; are piecewise linear w.r.t. T, 5 is piecewise constant. We denote
the values of u locally, at the nodes of each triangle 7 € Ty, by Uxw(r); Uns(r)s Usw(r), if T is
above the diagonal, and uyg(r), Usw(r) Use(r), if 7 is below the diagonal, where NW, NE, SW
and SE stand for north-west, north-east, south-west and south-east, respectively. Recall that
h =1/m. Then it is easily seen that

777? (uNW(T) — Usw(r) s Unw(r) — uNE(T))T if 7 is above the diagonal,
qnlr = ™ - (6.12)
n (uNE(T) — Ugp(r) » Usw(r) — uSE(T)) if 7 is below the diagonal.

It turns out that implicitly, in the divergence-free reduction, we have already computed the
FE approximation kegp(w) := [, qn1(%; w)dZ of the effective permeability ke

Proposition 6 Let 1y, be as defined in (6.7). Then kegp = 1p .

Proof. For any i € {0,...,m} define g (i) := fol qn,1(th, z2) dza. Then, since g, is (discrete)
divergence-free in the Raviart—Thomas case, i.e., fT ﬁmj'h dZ = 0 for all 7 € 7T, and since g, 2 = 0
at the top and bottom boundary (cf. (6.2)), it follows from the Divergence Theorem, applied
elementwise on the rectangle (ih, jh) x (0,1), that

1(5) —th(i):/ V.G di =0, forall 0<i<j<m. (6.13)
’ ’ (ih,jR) % (0,1)
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Thus Gy, 1 (7) is constant (as a function of i) and so [, qu,1 AT = fol qn.1(0, x2) dzo. Hence, using
the first part of (6.12)
Nh
kein = b Y g, Unw(r) = Usw(r) = Ma(1—0).

7: TNl #0 0

To recover the coefficients of the piecewise constant approximation of the pressure pj, via
(6.4), we need a complementary basis {Uj41,...,Tn,} C V3 to {¥1,...,03} in (6.5). Since
ny, — N = Ny, we need exactly one basis function per element 7 € 7. It turns out that these
can be chosen from amongst the standard set of basis functions for Raviart—Thomas elements
associated with edges of 7. Let us order the elements 71,...,7,, € 7} as depicted in Figure
4 (left), i.e., starting with the bottom row, numbering the elements from left to right and then
proceeding with the second row, etc. For each triangle 7, we also choose a distinguished edge
e¢ as shown, i.e., the vertical edge for ¢ odd and the diagonal edge for ¢ even. The standard
Raviart-Thomas basis function o4¢ € V, associated with edge ey is uniquely defined by

[ Unye - Tl ds = Oper for all edges €’ of Ty, , (6.14)

where 77,/ is the unit normal on edge €’ chosen to lie in {# : 1 > 0} U {(0,1)T}. Tt can be
shown that with this set of complementary basis functions, the functions vy, ..., #,, are linearly
independent and thus form a basis for V}, (cf. [40, 41] for details). Thus, with the usual basis
{we} of W}, given by the characteristic functions of the elements 7y of 7p, it follows from the
divergence theorem and (6.14) that

1, ifl=s,
Biis0 = b(we, Tpqs) = —/ V- UpasdZ =< —1, if £ =5s—1and 7, Nsupp(this) # 0,
i 0 otherwise.

Similarly )
1, if7sNTin #0,

0 otherwise.

9n+s = G(’@H—s) = _/

s 140(E) = {
1—‘in

Substituting these last two equations into (6.4) we get the simple recursion formula

{1 — AP, if Ny #0,
Py =

P,y — AP,, otherwise, (6.15)

where AP, := (M Q)ste. It turns out that each AP, can be computed in a simple way from
(6.12) on the two elements adjacent to edge e,. We omit the details. Since pp, is piecewise
constant with respect to the triangulation 7, its value is not defined on any of the vertices or
edges of the triangulation. In §7 we will study the expected value of the pressure at the center
of the flow cell, and so we simply extend the definition of p; to all of D by averaging:
Pr(%) if Z €int(r), 7€ 7T,  (interior of elements),
pr(Z) = I3 zerpulr i FENN\OD (interior vertices), (6.16)
> .ze-Pulr  for all other ¥ € D (interior edges).

The following proposition shows an exactness result for the mean pressure which turns out
to be useful in §7 for checking the performance of our code.

Proposition 7 Let D = (0,1)? and consider the problem (2.1)—(2.2) subject to (6.1)—(6.2), with
finite element approximation as described in §2.2. Then

E(pa(@: ) = E(p@ ;) = 1/2, when & =(1/2,1/2)7.
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Proof. Introduce the bijection v(Z) := (1—x1,1—22)T on D, and define k,(7; w) = k(y(Z) ; w),
¢ (75 w) = q(v(F); w) and py(T; w) =1 — p(7(Z); w). Then (G, p,) satisfy (2.1)~(2.2) with
random field k. instead of k but with the same boundary conditions (6.1)—(6.2). Since k = log Z
and Z is a mean-zero Gaussian random field with a covariance function r(Z, %) that is invariant
under the transformation & — v(Z), we can deduce that k, is equal in law to k and thus

E(p(Z;-)) = E(py(7;-) = E(1—-p(y(@);-) = 1-E(pH(); ),

and putting & = &* yields E(p(*; -)) = 1/2.
To complete the proof note that the grid 7y, is invariant under the transformation & — ~(Z).

Hence, we can as in the continuous case define FE functions ¢, ,(Z; w) := ¢n(7(Z); w) and
Ph~(Z; w) :=1—pp(7(Z); w) that solve the mixed FE system (2.11) with k, instead of k, and
deduce in a similar way that E(p,(2*; -)) = 1/2. O

We make use of Proposition 7 in §7, when we study the error in expected value of pressure at
(1/2,1/2)7, since in this special case there is no discretization error and so we can study the
convergence of the QMC methods in isolation.

Since ¢ is piecewise constant w.r.t. T, particle paths and travel times can trivially be
computed in an element by element fashion (cf. Figure 4, right). In particular, if a particle
enters a triangle 7 € T, through edge e™ at point 2, the travel time to any of the other two
edges €/ C T is

dist(Z™, )
(Th : ﬁT‘e/ .
Since ¢ has continuous normal components across all edges e of Ty, the travel time to one of
the two edges ¢/ # €™ has to be positive. If the travel time to both edges is positive, then the
actual travel time in 7 is the minimum of the two. If they are equal, the particle exits 7 through
a vertex and we arbitrarily choose one of the edges.

Again the travel time of a particle in 7 and the position of the point where it leaves 7 depend
only on the terms on the right hand side of (6.12), as well as on some geometric considerations.
By following the particle path from element to element through the domain D and summing up
the travel times in each element, it follows that the finite element approximation T}, (w) of the
breakthrough time 7'(w) is just some nonlinear function of the differences of the values of u at
neighboring grid points.

7 Numerical results

In this section we examine in detail the performance of the MC and randomized QMC methods
for computing the expected value of each of the three physical quantities defined in §6, namely,
pressure head at the point * = (1/2,1/2)7, effective permeability, and breakthrough time. The
algorithms for computing these quantities using the mixed finite element (FE) method were
described in §6, but for convenience we sample the random field Z at the midpoints of the
diagonal edges of the grid and use a different quadrature rule in the assembly of M in (2.15),
namely the hypothenuse rule such that here k, := exp(Z(ni, ; w)) in (2.15) with 773, being the
midpoint of the diagonal edge of 7. We use the FFTW package [16] for the circulant embedding
technique and the AMGI1RS5 code [39] to solve the large, ill-conditioned linear equation systems
(6.8) for each individual realization. We take digitally shifted Sobol’ points as our representative
for randomized QMC methods. To generate Sobol’ points we use the parameters from [23]
obtained using the search criterion D), see http://www.maths.unsw.edu.au/~fkuo/sobol/,
which provided parameters up to dimension 21201. For those dimensions beyond 21201, the
parameters are generated randomly subject to the required condition to yield a Sobol’ sequence.
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Case 1 Case 2 Case 3 Case 4 Case 5
c?=1,A=1|02=1,A=03|02=1,A=01]0?>=3,A=1]0?>=3, A=0.1

Table 1: Five choices of A and o which we consider (difficulty goes from left to right).

Our numerical results are all in 2D, for the covariance function (2.6) with “l-norm” (p =1)
and “2-norm” (p = 2). We study a range of parameters ¢ and A in (2.6). These are given in
Table 1, where generally the cases on the right are more difficult than those on the left.

In each case we are computing expected values of our quantities of interest of the general form
(3.8), approximated using mixed FEs on a uniform grid with m subdivisions in each coordinate
direction. Again we set h = 1/m. The resulting high-dimensional integral is transformed to the
domain [0, 1]¢. The transformed integrand and its dimensionality d both depend on m, typically
d = O(m?). The largest dimension considered is d ~ 2 x 10° . To be more precise, referring
to the notation in §5.2, we have taken m; = my = m, subdivided the domain D into m? equal
squares and then divided these into triangles by drawing the diagonals from bottom left to top
right. The field Z is sampled at the m? centers of these squares. The dimension of the matrix
Ris M = m?, and the dimension of the matrix C is d = 4(m — 1)? when no padding is used.

There are in general two main contributions to the error: the discretization error, caused by
the FE discretization in space, and the quadrature error of the MC or the randomized QMC
method. To estimate the MC quadrature error we use the standard error estimate sy, see (4.4),
with increasing number of samples N. To estimate the randomized QMC quadrature error we
use the standard error estimate sy, see (4.6), with v = 16 random digital shifts for Sobol’
points. Here N is the total number of sample points, i.e., the number of QMC points multiplied
by 16. To estimate the discretization error we apply our method on a sequence of grids of
decreasing mesh width h, using a sufficiently large value of N, and deduce empirically an error
estimate from these results via linear regression.

It is easy to envisage an extension of our current algorithm which would allow (adaptive)
control of the finite element error as well. However we do not implement this method here in
order to keep the paper from becoming too long. For example, a very simple strategy to estimate
the FE error adaptively would be to compute Gop(Z), as well as Gy (Z), for each realization
of the permeabilty field at the modest additional cost of 0.25 times the cost of computing
Gr(Z) alone. This would allow us to compute not only an estimate for E(Gy(Z)), but also for
E(|Gh(Z) — Gon(Z)]) via QMC, the latter being a good indicator for the finite element error in

E(Gn(2)).

7.1 Timing tests

We start by looking at the computational cost. There is some initial cost to factorize the
circulant matrix C' but this only requires one FFT application and is negligible (less than 1%
of the total time for more than 30 samples, even on our finest mesh, see Table 2). For each
individual sample the computational time is made up of one FFT application, one application of
the (vectorized) inverse @;1 of the cumulative standard normal distribution function, and one
linear solve with AMG1R5. In Table 2 we give timings for the individual parts for 1000 samples
for Case 1. All the CPU-times quoted in this section were obtained on a standard 2 GHz Intel
T7300 processor with 2 GByte RAM.

We see that the majority of the cost comes from the linear solves (~ 75%). The cost of the
linear solve and the application of ‘I’;l grow like O(m?) as the mesh is refined, which is optimal.
The FFT part grows like O(m?logm?), but even on the finest mesh which we consider its cost
is the smallest of the three (~ 8%). The cost for our MC implementation is identical to that of
randomized QMC. It could be slightly reduced if the normal variates are generated directly to
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m d Setup  Applying & FFT AMG Total
33 | 4096 | 0.00 1.0 (17%) 0.22 (4%) 4.5 (76%) 5.9
65 | 16384 | 0.01 3.9 (17%) 1.2 (5%) 165 (75%) 22
129 | 65536 | 0.06 15 (16%) 5.1 (6%) 67 (73%) 92
957 | 262144 | 0.15 62 (16%) 31 (8%) 200 (73%) 400
513 | 1048576 | 0.6 258 (15%) 145 (8%) 1280 (73%) | 1750
O(m?) | O(m?) O(m?) O(m?logm?) ~ O(m?) | ~O(m?)

Table 2: Timings (in seconds) for 1000 samples in our randomized QMC implementation on a
standard 2 GHz Intel T7300 processor with 2 GByte RAM for Case 1 with 1-norm covariance
function. (Percents of the total time in brackets.)

avoid the application of <I>671, but the cost of the linear solve, which is the dominant part, would
always remain the same.

Let us study the effect of changing A and o2. The cost of applying @Jl as well as the FFT
are not affected. The cost for AMG grows slightly with 02 — oo and with A — 0, but even in
the hardest case that we study here (i.e., Case 5) it only grows by 40-50%. For example, the
corresponding times in Table 2 for Case 5 with m = 257 are tsetyp = 0.13, tq,; = 64, tprr = 31,
tama = 440 and tio1a = 550.

Changing from the 1-norm to the 2-norm covariance function does have a substantial effect
for correlation lengths A > 0.2, since it is necessary in that case to introduce padding to ensure
the circulant embedding is positive definite (see §5; padding is not necessary for the 1-norm
covariance). As a consequence the dimension d may be substantially larger in the 2-norm case.
For example, with A = 1 and m = 65 we need d ~ 5.6 x 10°, and the corresponding times in
Table 2 are t(I);l = 132 and tppr = 75, while tanmg = 16 as in the 1-norm case. For A < 0.2 no
padding is necessary even in the 2-norm case and the timings are similar to those in Table 2.

7.2 Pressure head at center

We now analyze the convergence for the expected value of the pressure head at 7* = (1/2,1/2)7.
This is an ideal test case to study the convergence of the quadrature error as IV increases, since
E(pn(Z*)) = E(p(z*)) = 0.5 for any h and the discretization error is 0 (see Proposition 7).

In Figure 5 we plot the standard error estimates sy and sy (for MC and randomized
QMC, respectively) when approximating E(pp,(Z*)) in each of the Cases 1-5. In all graphs
the QMC results are marked by (blue) stars while the (magenta) crosses are the MC results.
The two triangles illustrate O(N~!) and O(N~/?) convergence. We see clearly the superior
performance of the QMC method over the MC method. The convergence rates above each
graph are computed by linear regression. As expected, MC converges with a rate of O(N -1/ 2)
throughout. The convergence rate of QMC is clearly better than that of MC, even though it
does degenerate somewhat in the harder cases (i.e., when A is smaller or o2 larger). As we
see from the bottom four plots in Figure 5, the mesh size m and hence the dimension d of the
quadrature domain does not seem to have any influence on the convergence rates.

In absolute terms the increased convergence rate of QMC means that in Case 4, for example,
for m = 129 to achieve an error of 1073 we only require N = 2400 samples in QMC while
N = 45000 samples are necessary in MC. In CPU-time this difference equates to 220 seconds
versus 70 minutes. The difference is even more dramatic if we seek an error of 10~%: for m = 129,
while N = 38000 samples suffice in QMC, more than 4.5 million samples are necessary in MC,
which equates to less than 1 hour for QMC versus almost 5 days for MC.
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Case 1 (m=257) Rates: —0.85 (QMC) -0.50 (MC) Case 3 (m=257) Rates: -0.66 (QMC) -0.50 (MC)
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Figure 5: Standard errors sy and sy,16 of expected pressure at center for the 1-norm covariance
function (i.e., p = 1 in (2.6)): Cases 1, 3, 4, 5 (above, with m = 257) and Case 2 (below, for
various values of m).
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7.3 Effective permeability

Analogous plots for the standard errors in the expected value of the effective permeability
E(kes,n) are given in Figure 6. Again the QMC convergence rate decreases slightly as the
problem becomes harder, but, as in the case of the pressure head, QMC requires many fewer
samples than MC to achieve a desired accuracy. For example taking again Case 4 with m = 129,
it suffices to choose N = 300000 to achieve an accuracy of 1073 in QMC, while MC would require
almost 24 million samples, which is 7.5 hours versus about 25 days. Again the convergence rates
do not seem to be influenced by the dimension d.

However, in contrast to the pressure head computations, the expected value of keg j, varies as
h changes due to discretization error. To quantify the discretization error and to decide, given a
required tolerance ¢, which mesh size to use, we estimate E(keq 1) as accurately as possible using
QMC with N = 2.1 million samples on a sequence of grids with & — 0. Estimates for E(keg n),
together with 95% confidence intervals (obtained by +1.96 sy 16), in Cases 1, 2, 3 and 5 are
presented in Table 3.

1/h Case 1 Case 2 Case 3 Case 5

33 | 1.314971 £ 3.1[-5] | 1.097454 +2.6[-5] | 1.000944 4+ 1.8[-5] | 1.022458 4 8.9[-5]
65 | 1.315102+3.9[-5] | 1.099467 +2.5[-5] | 1.011069 £ 2.9[-5] | 1.045114 & 1.1[-4]
129 | 1.315171 +£4.1[-5] | 1.100231 +4.7[-5] | 1.015417 +2.2[-5] | 1.055456 4 7.5[-5]
257 | 1.315240 4+ 3.6[-5] | 1.100459 + 2.2[-5] | 1.016981 £ 2.8]-5] | 1.059626 + 1.3[-4]
513 | 1.315191 £4.0[-5] | 1.100533 £ 2.4[-5] | 1.017530 & 1.6[-5] | 1.061022 % 1.1[-4]
0o | 1.315221 £4.0[-5] | 1.100711 £ 9.3[-5] | 1.018029 & 1.5[-4] | 1.061839 + 8.1[-4]

Table 3: Estimates for E(keg ) computed with QMC (with N ~ 2.1 x 10%). The confidence
intervals are estimated using 16 random shifts. In the last row we give estimates for the exact
value of E(keg) obtained via linear regression.

If we make an assumption that the discretization error for E(keg ) decays like O(h?), then
the value of 8 and the exact value E(keg) can be estimated numerically via linear regression.
Numerical experimentation shows that the optimal S is about 1.35 in each of the cases. The
estimate for E(keg) using 5 = 1.35 (with its 95% confidence interval) is given in the last row of
Table 3 for each case. In Table 4 we list our estimates for the discretization error for Cases 1,
2, 3 and 5. Note that the behavior of the error is indeed very close to O(h!3%).

1/h Case 1 Case 2 Case 3 Case 5

33 | 0.000250 £5.1[-5] | 0.003258 +9.6[-5] | 0.017084 + 1.5[-4] | 0.039381 £ 8.2]-4]
65 | 0.000119 £+ 5.6[-5] | 0.001245 4+ 9.6[-5] | 0.006959 4+ 1.5[-4] | 0.016726 + 8.2[-4]
129 | 0.000050 £ 5.8]-5] | 0.000480 £ 1.0[-4] | 0.002612+1.5[-4] | 0.006384 =+ 8.2]-4]
257 | 0.000019 £ 6.0[-5] | 0.000252 +9.5[-5] | 0.001047 £ 1.5[-4] | 0.002213 + 8.2[-4]
513 | 0.000030 +5.7]-5] | 0.000179 +9.6]-5] | 0.000498 + 1.5[-4] | 0.000818 + 8.2]-4]

Table 4: Estimates for E(keg — kesr ) computed by linear regression using § = 1.35.

We can also see from Table 4 that in each of the cases we can expect an accuracy of at most
O(10™%) for E(keg ) on any computationally feasible mesh. Recall that 1000 samples on a grid
with mesh size h = 1/513 require about 30 minutes on a single processor (see Table 2). The
mesh size grows very rapidly with A — 0, and so for Cases 3 and 5 where A\ = 0.1, only an
accuracy of about O(1073) is possible.

In Table 5 we list the mesh sizes necessary to attain a discretization error smaller than 1073
in Cases 1, 2, 3 and 5, together with the number of samples necessary for QMC or MC to ensure
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that the 95% confidence level of E(keg ) (i-e., 1.96 sy,16 for QMC and 1.96 s for MC) is also
smaller than 1073, The number of samples necessary to achieve a fixed tolerance decreases with
A — 0 (Cases 1-3) for this quantity of interest, since its variance decreases due to the increased
ergodicity. However, this is offset by the larger discretization error for smaller A, so that Cases
2 and 3 are indeed harder than Case 1 when measured in CPU time (see Table 5). As expected
case 5 is the hardest. We see that o2 not only influences the discretization error (see Table 4),
it also influences the standard error for QMC and MC, and so a substantially larger number of
samples is required in Case 5 than in Case 4. Again we see clearly the advantage of QMC over
MC, with a computational time of 26 minutes versus one day in Case 2, and similar speedups
in the other cases.

# Samples N CPU Time
Case | 1/h | QMC MC QMC MC E(kef 1)
1 17 | 56000 | 4250000 | 80 sec | 100 min | 1.3147
2 129 | 17100 | 983000 | 26 min 1 day 1.1003
3 513 5480 | 142000 | 160 min 70 h 1.0182
5 1025 | 45000 | 540000 | 4 days | 47 days | 1.0614

Table 5: Mesh sizes at which a discretization error of 1073 is attained for E(kesr,n), as well as
numbers of QMC or MC samples and CPU-time (2GHz Intel T7300) necessary to obtain a 95%
confidence level that is also < 1073. The last column shows the corresponding estimates for
E(keg 1) in each case.

7.4 Breakthrough time

For the breakthrough time 7'(w), the advantage of QMC over MC is less pronounced as we can
see in Figure 7, but it still outperforms MC consistently with convergence rates of about N =055,
and a significantly smaller constant. The discretization error is similar to that of E(keg ) for
the cases where 02 = 1, but for 0 = 3 it is substantially larger. Concentrating only on Cases 2
and 5 and proceeding as above we obtain the results in Table 6 (with 8 = 1.35).

Estimates for E(T},) Estimates for E(T — T},)

1/h Case 2 Case 5 Case 2 Case 5

33 | 1.307324 = 3.3[-4] | 1.572380 £ 9.6]-4] | 0.004464 = 3.7[-4] | 0.065529 % 1.1[-3]
65 | 1.304471+5.2[-4] | 1.533218 £ 1.5[-3] | 0.001612 £ 5.5[-4] | 0.026367 + 1.6[-3]
129 | 1.303485 £ 5.0[-4] | 1.516558 = 7.3[-4] | 0.000626 = 5.3]-4] | 0.009708 = 0.9]-4]
257 | 1.303120 +3.6[-4] | 1.510651 +9.3[-4] | 0.000261 £ 4.0]-4] | 0.003801 + 1.1[-3]
513 | 1.303053 % 6.3[-4] | 1.508738 = 1.2[-3] | 0.000194 £ 6.5[-4] | 0.001887 + 1.4[-3]
0o | 1.302859 £ 1.7[-4] | 1.506851 = 5.5[-4]

Table 6: Estimates for E(7},) computed with QMC (with N ~ 2.1 million). The confidence
intervals are estimated using 16 random shifts. The values in the last row are estimates for
the exact value of E(T"). The values in the last two columns are estimates of E(T" — T}), each
obtained via linear regression (with g = 1.35).

Thus, to get a discretization error of less than 2 x 1073 in each case, mesh sizes of h = 1/65
and of h = 1/513 are necessary, respectively. The numbers of samples necessary for the 95%
confidence level of E(7},) to be also less than 2 x 1073 in Case 2 are Nouc = 156800 for QMC
and Nyc = 815000 for MC. In Case 5, Nqmc = 1.1 million and Nyc = 2.1 million samples
are necessary, respectively. As noted above, the advantage of QMC is less pronounced for this
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quantity of interest, but we still obtain a speedup of about 5 in Case 2 and about 2 in Case 5.
The speedup is more pronounced if we require a higher accuracy. The FE error is less than 1073
for m = 129 in Case 2. To obtain a similar accuracy with QMC and MC, Nqmc = 160000 and
Nyvce = 3280000 samples are necessary, and so QMC is more than 20 times faster than MC in
that case (4h versus 3.5 days). To increase the accuracy for the breakthrough time to 10~ is not
really feasible in Case 5 (even with QMC and using a multiprocessor machine). It would require
a mesh size of h ~ 1073 and over 3 million samples, i.e. more than 260 days of CPU-time.

7.5 2-norm results

We finish by giving some results with the 2-norm covariance function, i.e., choosing p = 2 in
(2.6) instead of p = 1. The convergence behavior of QMC is similar to the 1-norm case and we
only present the pressure head in Case 2 and the effective permeability in Case 5 in Figure 8.
However, interestingly the FE error behaves differently with a typical convergence rate of g < 1.
This may be down to the fact that the coefficient function is not grid aligned anymore in the case
of the 2-norm covariance. Table 7 shows the behavior of the FE error in the expected value of the
effective permeability for Cases 2 and 5. The behavior for the FE error in the breakthrough time
is similar. Note that padding is required for Case 2, but not required for Case 5. The amount of
padding required in Case 2 for m = 33, 65, 129, 257, 513, is J = 3, 21, 72, 202, 519, leading
to a dimensionality of d = 5184, 29584, 161604, 842724, 4260096, respectively.

Estimates for E(keg ) Estimates for E(keg — kef,p)
1/h Case 2 Case 5 Case 2 Case 5
33 | 1.118660 £+ 3.9[-5] | 1.001897 £+ 8.9[-5] | 0.015557 +3.9[-4] | 0.091788 + 2.4]-3]
65 | 1.125158 +3.3[-5] | 1.035637 4+ 1.1[-4] | 0.009058 4 3.9[-4] | 0.058048 + 2.4[-3]
129 | 1.128965 £ 5.8[-5] | 1.059369 £ 1.2[-4] | 0.005252 +4.0[-4] | 0.034317 £ 2.4]-3]
957 | 1.130087 £ 6.2[-5] | 1.073952+ 1.3[-4] | 0.003230 £ 4.0[-4] | 0.019733 = 2.4[-3]
513 | 1.132099 &+ 7.6[-5] | 1.082351 +1.4[-4] | 0.002118 £4.0[-4] | 0.011334 £+ 2.4[-3]
0o | 1.134217 % 3.4[-4] | 1.093685 + 2.4[-3]

Table 7: Estimates for E(keg ) computed with QMC (with N ~ 2.1 x 10°) for the 2-norm
covariance function (i.e., p = 2in (2.6)). The confidence intervals are estimated using 16 random
shifts. The values in the last row are estimates for the exact value of E(keg). The values in the
last two columns are estimates of E(keg — keg,5,) Obtained via linear regression (with 5 = 0.75).

We see from Table 7 that the accuracy obtained for a fixed grid size is significantly poorer
in the case of the 2-norm covariance compared to the 1-norm covariance. To obtain a FE error
of about 1072, mesh sizes of h = 1/65 and 1/513 are necessary respectively in Cases 2 and 5.
The numbers of samples necessary to achieve a similar accuracy for the 95% confidence level of
the QMC and of the MC results are Nomc = 1090 and Nyc = 13300 in Case 2, i.e., a factor of
about 13.In Case 5 the corresponding numbers of samples are Nomc = 1630 and Ny = 8420.
If we use h = 1/513 for Case 2 instead, we get a FE error of about 2 x 1073, and Nqomce = 8860
and Nyc = 351000 samples are necessary to achieve a similar accuracy in the quadrature,
respectively (i.e., about 40 times less for QMC). So as before the advantage of QMC is more
pronounced, if we require a higher accuracy.
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