3.5 The Cayley–Hamilton theorem

  • Theorem 3.12 (Cayley–Hamilton1 Theorem). Let \(\phi \in L(V)\) be a linear operator on a finite-dimensional vector space over a field \(\F \).

    Then \(\Delta _{\phi }(\phi )=0\).

    Equivalently, for any \(A\in M_n(\F )\), \(\Delta _A(A)=0\).

1 Arthur Cayley, 1821–1895; William Rowan Hamilton, 1805–1865.
  • Corollary 3.13. Let \(\phi \in L(V)\) be a linear operator on a finite-dimensional vector space over a field \(\F \).

    • (1) \(m_{\phi }\) divides \(\Delta _{\phi }\). Equivalently, \(m_A\) divides \(\Delta _A\), for any \(A\in M_n(\F )\).

    • (2) The roots of \(m_{\phi }\) are exactly the eigenvalues of \(\phi \).