Matthew R. I. Schrecker

Publications

    Submitted

  1. Hadzic, M., Rein, G., Schrecker, M. and Straub, C., Damping versus oscillations for a gravitational Vlasov-Poisson system, arXiv:2301.07662.
  2. Jang, J., Liu, J., Schrecker, M., On self-similar converging shock waves, arxiv:2310.18483.
  3. Alexander, C., Hadžić, M., Schrecker, M., Supersonic Gravitational Collapse for Non-Isentropic Gaseous Stars, arxiv:2311.18795.
  4. Hadzic, M., Rein, G., Schrecker, M. and Straub, C., Quantitative phase mixing for Hamiltonians with trapping, arXiv:2405.17153.
  5. Accepted

  6. Jang, J., Liu, J., Schrecker, M., Converging/diverging self-similar shock waves: from collapse to reflection, accepted to SIAM J. Math Analysis (2024), arxiv:2403.12247.
  7. Published

  8. Guerra, A., Raiţǎ, B. and Schrecker, M. R. I., Compensation phenomena for concentration effects via nonlinear elliptic estimates, Ars Inveniendi Analytica, Paper No. 1, 56 pp. (2024).
  9. Schrecker, M., Self-Similar Gravitational Collapse for Polytropic Stars, Extended Abstracts 2021/2022, ed. by Cardona, D., Restrepo, J., Ruzhansky, M, GMC 2021, Trends in Mathematics, vol 3, (Birkhäuser, Cham.).
  10. Guo, Y., Hadzic, M., Jang, J. and Schrecker, M. R. I., Gravitational collapse for polytropic gaseous stars: self-similar solutions, Arch. Ration. Mech. Anal. 246 (2022), 957–1066
  11. Guerra, A., Raiţǎ, B. and Schrecker, M. R. I., Compensated compactness: continuity in optimal weak topologies, Journal of Functional Analysis 283 (2022), 109596.
  12. Chen, G.-Q. and Schrecker, M. R. I., Global entropy solutions and Newtonian limit for the relativistic Euler equations, Annals of PDE 8, (2022), Article 10.
  13. Schrecker, M. R. I., Oblique derivative problems for elliptic equations on conical domains, J. London Math. Soc. 106 (2022), 704–733
  14. Schrecker, M.R.I. and Schulz, S., Inviscid limit of the compressible Navier-Stokes equations for asymptotically isothermal gases, J. Differential Equations 269 (2020), 8640–8685.
  15. Schrecker, M. R. I., Spherically symmetric solutions of the multidimensional, compressible, isentropic Euler equations, Trans. Amer. Math. Soc. 373 (2020), 727–746.
  16. Schrecker, M. R. I. and Schulz, S., Vanishing viscosity limit of the compressible Navier-Stokes equations with general pressure law, SIAM J. Math. Anal. 51 (2019), 2168–2205.
  17. Rupflin, M. and Schrecker, M. R. I., Analysis of boundary bubbles for almost minimal cylinders, Calc. Var. Partial Differential Equations 57 (2018), no. 5, Paper No. 121, 34 pp.
  18. Chen, G.-Q. and Schrecker, M. R. I., Vanishing viscosity approach to the compressible Euler equations for transonic nozzle and spherically symmetric flows, Arch. Ration. Mech. Anal. 229 (2018), 1239–1279.