References

Aldous, David J. 1989. Probability Approximations via the Poisson Clumping Heuristic. Vol. 77. Applied Mathematical Sciences. New York: Springer-Verlag.
Aldous, David J., and James A. Fill. 2001. Reversible Markov Chains and Random Walks on Graphs. Unpublished. http://www.stat.berkeley.edu/~aldous/RWG/book.html.
Cox, D. R., and H. D. Miller. 1965. The Theory of Stochastic Processes. New York: John Wiley & Sons Inc.
Doyle, Peter G., and J. Laurie Snell. 1984. Random Walks and Electric Networks. Vol. 22. Carus Mathematical Monographs. Washington, DC: Mathematical Association of America.
Gardner, Martin. 1996. “Word Ladders: Lewis Carroll’s Doublets.” The Mathematical Gazette 80 (487): 195–98. http://www.jstor.org/stable/3620349.
Grimmett, Geoffrey R., and David R. Stirzaker. 2001. Probability and Random Processes. Third. New York: Oxford University Press.
Häggström, Olle. 2002. Finite Markov Chains and Algorithmic Applications. Vol. 52. London Mathematical Society Student Texts. Cambridge: Cambridge University Press.
Kelly, Frank P. 1979. Reversibility and Stochastic Networks. Chichester: John Wiley & Sons Ltd.
Kindermann, Ross, and J. Laurie Snell. 1980. Markov Random Fields and Their Applications. Vol. 1. Contemporary Mathematics. Providence, R.I.: American Mathematical Society. http://www.ams.org/online_bks/conm1/.
Kingman, J. F. C. 1993. Poisson Processes. Vol. 3. Oxford Studies in Probability. New York: The Clarendon Press Oxford University Press.
Knuth, Donald E. 1993. The Stanford GraphBase: A Platform for Combinatorial Computing. New York, NY, USA: ACM.
Lindvall, Torgny. 1992. Lectures on the coupling method. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. New York: John Wiley & Sons Inc.
Meyn, S. P., and R. L. Tweedie. 1993. Markov Chains and Stochastic Stability. Communications and Control Engineering Series. London: Springer-Verlag London Ltd. http://probability.ca/MT/.
Norris, J. R. 1998. Markov Chains. Vol. 2. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge: Cambridge University Press.
Steele, J. Michael. 2004. The Cauchy-Schwarz Master Class. MAA Problem Books Series. Washington, DC: Mathematical Association of America.
Stoyan, D., W. S. Kendall, and J. Mecke. 1987. Stochastic Geometry and Its Applications. Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics. Chichester: John Wiley & Sons Ltd.
Williams, David. 1991. Probability with Martingales. Cambridge Mathematical Textbooks. Cambridge: Cambridge University Press.
Øksendal, Bernt. 2003. Stochastic Differential Equations. Sixth. Universitext. Berlin: Springer-Verlag.