Job Title: Professor Emeritus, University of Bath
E-mail Address: masnnvATbath.ac.uk
Some recent papers and preprints:
1. Complexity of computations with Pfaffian and Noetherian functions,
PDF
by
A. Gabrielov and N. Vorobjov, in: Normal Forms, Bifurcations and
Finiteness Problems in Differential Equations, 211-250, Kluwer, 2004.
2. Betti numbers of semialgebraic and sub-Pfaffian sets,
PDF
by
A. Gabrielov, N. Vorobjov, and T. Zell, J. London Math. Soc.,
69, part 1, 2004, 27-43.
3. Betti numbers of semialgebraic sets defined by quantifier-free
formulae,
PDF
by
A. Gabrielov and N. Vorobjov, Discrete Comput. Geom., 33, 3, 2005,
395-401.
4. On the number of homotopy types of fibres of a definable map,
PDF
by
S. Basu and N. Vorobjov,
J. London Math. Soc., 76, part 3, 2007, 757-776,
5. Bounds on sizes of finite
bisimulations of Pfaffian dynamical systems,
PDF
by
M. Korovina and N. Vorobjov, Theory Comput. Systems, 43, 2008, 498-515.
6. Approximation of definable sets by compact families, and
upper bounds on homotopy and homology,
PDF
by
A. Gabrielov and N. Vorobjov, J. London Math. Soc., 80, 2, 2009, 35-54.
7. Semi-monotone sets,
PDF
by
S. Basu, A. Gabrielov, and N. Vorobjov,
J. European Math. Soc., 15, 2, 2013, 635-657. DOI 10.4171/JEMS/369
8. Monotone functions and maps,
PDF
by
S. Basu, A. Gabrielov, and N. Vorobjov,
Revista de la Real Academia de Ciencias Exactas, Fisicas y
Naturales. Serie A. Matematicas (RACSAM),
107, 1, 2013, 5-33. DOI 10.1007/s13398-012-0076-4
9. A Helly-type theorem for semi-monotone sets and monotone maps,
arXiv
by
S. Basu, A. Gabrielov, and N. Vorobjov,
Discrete and Computational Geometry, 50, 4, 2013, 857-864. DOI 10.1007/s00454-013-9540-y
10. Toric cubes are closed balls,
arXiv
by
S. Basu, A. Gabrielov, and N. Vorobjov, arXiv:1202.5572.v1 [math.AG] 24 Feb 2012
(this paper is now Section 6 in [8]).
11. Triangulations of monotone families I:
two-dimensional families,
arXiv
by
S. Basu, A. Gabrielov, and N. Vorobjov,
Proc. London Math. Soc., 111, 5, 2015, 1013-1051. DOI 10.1112/plms/pdv052
12. On topological lower bounds for algebraic computation trees,
PDF
by
A. Gabrielov and N. Vorobjov,
Foundations of Computational Mathematics, 17, 1, 2017, 61-72.
DOI 10.1007/s10208-015-9283-7
View-only version via
Springer Nature Sharing
13. Topological lower bounds for arithmetic networks,
arXiv
by
A. Gabrielov and N. Vorobjov, Computational Complexity, 26, 3, 2017, 687-715.
DOI 10.1007/s00037-016-0145-8
View-only version via
Springer Nature Sharing
14. On irreducible components of real exponential hypersurfaces,
arXiv
by
C. Riener and N. Vorobjov,
Arnold Mathematical Journal, 3, 3, 2017, 423-443. DOI 10.1007/s40598-017-0073-y
View-only version via
Springer Nature Sharing
15. Upper bounds on Betti numbers of tropical prevarieties,
arXiv
by
D. Grigoriev and N. Vorobjov,
Arnold Mathematical Journal, 4, 1, 2018, 127-136. DOI 10.1007/s40598-018-0086-1
View-only version via
Springer Nature Sharing
16. Complexity of deciding whether a tropical linear prevariety is a tropical variety,
arXiv
by
D. Grigoriev and N. Vorobjov,
Appl. Algebra Engrg. Comm. Comput., 32, 2, 2021, 157-174. DOI 10.1007/s00200-019-00407-w
Online First
Extended abstract in: CASC 2018, LNCS 11077, 187-196. DOI 10.1007/978-3
-319-99639-4_13
2021 AAECC Best Paper Award
17. Effective cylindrical cell decompositions for restricted sub-Pfaffian sets,
arXiv
by
G. Binyamini and N. Vorobjov,
International Mathematics Research Notices, 2022, 5, 3493-3510. DOI 10.1093/imrn/rnaa285
Article
18. Lecture notes on complexity of quantifier elimination over
the reals,
arXiv
by N. Vorobjov, arXiv:2112.00456 [math.HO]
A. A. Markov
Naive Set Theory.
Notes of lectures given at Leningrad State University, 1947
N. A Shanin
Logic.
Notes of lectures given at Leningrad State University, 1977-78