
J. London Math. Soc. (2) 80 (2009) 35–54 C�2009 London Mathematical Society
doi:10.1112/jlms/jdp006

Approximation of definable sets by compact families, and upper
bounds on homotopy and homology

Andrei Gabrielov and Nicolai Vorobjov

Abstract

We prove new upper bounds on homotopy and homology groups of o-minimal sets in terms of
their approximations by compact o-minimal sets. In particular, we improve the known upper
bounds on Betti numbers of semialgebraic sets defined by quantifier-free formulae and obtain,
for the first time, a singly exponential bound on Betti numbers of sub-Pfaffian sets.

Introduction

We study upper bounds on the topological complexity of sets definable in o-minimal structures
over the reals. The fundamental case of algebraic sets in R

n was first considered in around
1950 by Petrovskii and Oleinik [13, 14], and then in the 1960s by Milnor [12] and Thom [17].
They gave explicit upper bounds on total Betti numbers in terms of degrees and numbers of
variables of the defining polynomials.

There are two natural approaches to generalizing and expanding these results. First, noticing
that not much of algebraic geometry is used in the proofs, one can obtain similar upper
bounds for polynomials with the ‘description complexity’ measure when that is different from
the degree, and for non-algebraic functions, such as Khovanskii’s fewnomials and Pfaffian
functions [11]. A bound for algebraic sets defined by quadratic polynomials was proved in [1].

Second, the bounds can be expanded to semialgebraic and semi-Pfaffian sets defined by
formulae more general than just conjunctions of equations. Basu [2] proved an asymptotically
tight upper bound on Betti numbers in the case of semialgebraic sets defined by conjunctions
and disjunctions of non-strict inequalities. The proof can easily be extended to special classes
of non-algebraic functions. For fewnomials and Pfaffian functions, this was done by Zell [19].
For quadratic polynomials an upper bound was proved in [3]. The principal difficulty arises
when neither the set itself nor its complement is locally closed.

Until recently, the best available upper bound for the Betti numbers of a semialgebraic set
defined by an arbitrary Boolean combination of equations and inequalities remained doubly
exponential in the number of variables. The first singly exponential upper bound was obtained
by the authors in [9] based on a construction that replaces a given semialgebraic set by a
homotopy equivalent compact semialgebraic set. This construction extends to semi-Pfaffian sets
and, more generally, to the sets defined by Boolean combinations of equations and inequalities
between continuous functions definable in an o-minimal structure over R. It cannot be applied
to sets defined by formulae with quantifiers, such as sub-Pfaffian sets, but can be used in
conjunction with effective quantifier elimination in the semialgebraic situation.

In [10] we obtained a spectral sequence converging to the homology of the projection of an
o-minimal set under the closed continuous surjective definable map. It gives an upper bound
on the Betti number of the projection that, in the semialgebraic case, is better than the one
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based on quantifier elimination. The requirement for the map to be closed can be relaxed but
not completely removed, which left the upper bound problem unresolved in the general Pfaffian
case, where quantifier elimination is not applicable.

In this paper we suggest a new construction for approximating a large class of definable sets,
including the sets defined by arbitrary Boolean combinations of equations and inequalities,
by compact sets. The construction is applicable to images of such sets under a large class
of definable maps, for example, projections. Based on this construction, we refine the results
from [9, 10] and prove similar upper bounds, individually for different Betti numbers, for
images under arbitrary continuous definable maps.

In the semialgebraic case the bound from [9] is the square of the number of different
polynomials occurring in the formula, while the bounds proved in this paper multiply the
number of polynomials by a typically smaller coefficient that does not exceed the dimension.
This is especially relevant for applications to problems of subspace arrangements, robotics,
and visualization, where the dimension and degrees usually remain small, while the number
of polynomials is very large. Applied to projections, the bounds are stronger than the ones
obtained by the effective quantifier elimination.

In the non-algebraic case, for the first time, the bounds, singly exponential in the number
of variables, are obtained for projections of semi-Pfaffian sets, as well as projections of sets
defined by Boolean formulae with polynomials from special classes.

Notation. In this paper we use the following (standard) notation. For a topological space
X, we denote by Hi(X) its singular homology group with coefficients in some fixed Abelian
group, by πi(X) we denote the homotopy group (provided that X is connected), the symbol
� denotes the homotopy equivalence, and the symbol ∼= stands for the group isomorphism. If
Y ⊂ X, then Y denotes its closure in X.

1. Main result

In what follows we fix an o-minimal structure over R and consider sets, families of sets, maps,
etc. that are definable in this structure.

Definition 1.1. Let G be a definable compact set. Consider a definable family {Sδ}δ>0

of compact subsets of G such that, for all δ′, δ ∈ (0, 1), if δ′ > δ, then Sδ′ ⊂ Sδ. We write
S :=

⋃
δ>0 Sδ.

For each δ > 0, let {Sδ,ε}δ,ε>0 be a definable family of compact subsets of G such that the
following hold:

(i) for all ε, ε′ ∈ (0, 1), if ε′ > ε, then Sδ,ε ⊂ Sδ,ε′ ;
(ii) Sδ =

⋂
ε>0 Sδ,ε;

(iii) for all δ′ > 0 sufficiently smaller than δ, and for all ε′ > 0, there exists an open in G set
U ⊂ G such that Sδ ⊂ U ⊂ Sδ′,ε′ .

We say that S is represented by the families {Sδ}δ>0 and {Sδ,ε}δ,ε>0 in G.

Let S′ be represented by {S′
δ}δ>0 and {S′

δ,ε}δ,ε>0 in G and let S′′ be represented by {S′′
δ }δ>0

and {S′′
δ,ε}δ,ε>0 in G.

Lemma 1.2. The set S′ ∩ S′′ is represented by the families {S′
δ ∩ S′′

δ }δ>0 and {S′
δ,ε ∩

S′′
δ,ε}δ,ε>0 in G, while S′ ∪ S′′ is represented by {S′

δ ∪ S′′
δ }δ>0 and {S′

δ,ε ∪ S′′
δ,ε}δ,ε>0 in G.

The proof of Lemma 1.2 follows from a straightforward checking of Definition 1.1.
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Let S be represented by {Sδ}δ>0 and {Sδ,ε}δ,ε>0 in G and let F : D → H be a continuous
definable map, where D and H are definable, S ⊂ D ⊂ G, and H is compact.

Lemma 1.3. Let D be open in G, and F be an open map. Then F (S) is represented by
the families {F (Sδ)}δ>0 and {F (Sδ,ε)}δ,ε>0 in H.

The proof follows from a straightforward checking of Definition 1.1 (openness is required for
(iii) to hold).

Consider the projections ρ1 : G × H → G and ρ2 : G × H → H. Let Γ ⊂ G × H be the graph
of F . Suppose that Γ is represented by the families {Γδ}δ>0 and {Γδ,ε}δ,ε>0 in G × H.

Lemma 1.4. The set F (S) is represented by the families

{ρ2(ρ−1
1 (Sδ) ∩ Γδ)}δ>0 and {ρ2(ρ−1

1 (Sδ,ε) ∩ Γδ,ε)}δ,ε>0

in H.

Proof. The set ρ−1
1 (S) is represented by the families

{ρ−1
1 (Sδ) ∩ Γδ}δ>0 and {ρ−1

1 (Sδ,ε) ∩ Γδ,ε}δ,ε>0

in G × H, and the projection ρ2 satisfies Lemma 1.3.

Along with this general case, we will be considering the following important particular cases.
Let S = {x | F(x)} ⊂ R

n be a bounded definable set of points satisfying a Boolean
combination F of equations of the kind h(x) = 0 and inequalities of the kind h(x) > 0, where
h : R

n → R are continuous definable functions (for example, polynomials). Here we let G be a
closed ball of a sufficiently large radius centred at 0. We now define the representing families
{Sδ} and {Sδ,ε}.

Definition 1.5. For a given finite set {h1, . . . , hk} of functions hi : R
n → R, define its sign

set as a non-empty subset in R
n of the kind

hi1 = . . . = hik1
= 0, hik1+1 > 0, . . . , hik2

> 0, hik2+1 < 0, . . . , hik
< 0,

where i1, . . . , ik1 , . . . , ik2 , . . . , ik is a permutation of 1, . . . , k.

Let {h1, . . . , hk} be the set of all functions in the Boolean formula defining S. Then S is a
disjoint union of some sign sets of {h1, . . . , hk}. The set Sδ is the result of the replacement,
independently in each sign set in this union, of all inequalities h > 0 and h < 0 by h � δ and
h � −δ, respectively. The set Sδ,ε is obtained by replacing, independently in each sign set, all
expressions h > 0, h < 0, and h = 0 by h � δ, h � −δ, and −ε � h � ε, respectively. According
to Lemma 1.2, the set S, being the union of sign sets, is represented by the families {Sδ} and
{Sδ,ε} in G.

Example 1.6. Let the closed quadrant S be defined as the union of sign sets {x > 0,
y > 0} ∪ {x > 0, y = 0} ∪ {x = 0, y > 0} ∪ {x = y = 0}. Figure 1 shows the corresponding set
Sδ,ε for ε < δ.
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Figure 1. The set Sδ,ε (right) for the closed quadrant S (left).

Now suppose that the set S ⊂ R
n, defined as above by a Boolean formula F , is not necessarily

bounded. In this case we let G be the definable one-point (Alexandrov) compactification of R
n.

Note that each function h is continuous in G \ {∞}. Define sets Sδ and Sδ,ε as in the bounded
case, replacing equations and inequalities, independently in each sign set of {h1, . . . , hk}, and
then taking the conjunction of the resulting formula with |x|2 � 1/δ. Again, S is represented by
{Sδ} and {Sδ,ε} in G, and in what follows we will refer to this instance as the constructible case.

Definition 1.7. Let P := P(ε0, . . . , ε�) be a predicate (property) over (0, 1)�+1. We say
that the property P holds for

0 < ε0 
 ε1 
 . . . 
 ε� 
 1

if there exist definable functions fk : (0, 1)�−k → (0, 1), where k = 0, . . . , � (with f� being a
positive constant), such that P holds for any sequence ε0, . . . , ε� satisfying

0 < εk < fk(εk+1, . . . , ε�) for k = 0, . . . , �.

Now we return to the general case in Definition 1.1, which we will refer to, in what follows,
as the definable case.

Definition 1.8. For a sequence ε0, δ0, ε1, δ1, . . . , εm, δm, where m � 0, introduce the
compact set

T (S) := Sδ0,ε0 ∪ Sδ1,ε1 ∪ . . . ∪ Sδm,εm
.

From Definition 1.1 it is easy to see that, for any m � 0 and for

0 < ε0 
 δ0 
 ε1 
 δ1 
 . . . 
 εm 
 δm 
 1, (1.1)

there is a surjective map C : T → S from the finite set T of all connected components of T (S)
onto the set S of all connected components of S such that, for any S′ ∈ S, we have⋃

T ′∈C−1(S′)

T ′ = T (S′).

Lemma 1.9. If m > 0 then C is bijective.

Proof. Let S be connected and m > 0. We prove that T (S) is connected. Let x,y ∈ Sδi,εi
⊂

T (S). Let xε and yε be the definable connected curves such that xεi
= x, x0 := limε↘0 xε ∈

Sδi
, yεi

= y, and y0 := limε↘0 yε ∈ Sδi
. Let Γ ⊂ S be a connected compact definable curve

containing x0 and y0. If Γ is represented by the families {Sδ ∩ Γ} and {Sδ,ε ∩ Γ} then
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T (Γ) ⊂ T (S). It is easy to see that, under the condition m > 0, the one-dimensional set T (Γ)
is connected. It follows that x and y belong to a connected definable curve in T (S).

In what follows we denote T := T (S) and let m > 0. We assume that S is connected in order
to make the homotopy groups πk(S) and πk(T ) independent of a base point.

Theorem 1.10. (i) For (1.1) and every 1 � k � m, there are epimorphisms

ψk : πk(T ) −→ πk(S),
ϕk : Hk(T ) −→ Hk(S),

and, in particular, rank Hk(S) � rank Hk(T ).
(ii) In the constructible case, for (1.1) and every 1 � k � m − 1, there are isomorphisms ψk

and ϕk, and, in particular, rank Hk(S) = rank Hk(T ). Moreover, if m � dim(S), then T � S.

The plan of the proof of Theorem 1.10 is as follows. We consider a simplicial complex R
in R

n such that it is a triangulation of G, and S is a union of some open simplices of R. For
any sequence ε0, δ0, ε1, δ1, . . . , εm, δm, we construct a subset V of the complex R, which is a
combinatorial analogy of T , and prove that there are isomorphisms of k-homotopy groups of V
and S for k � m − 1 and an epimorphism for k = m. We prove the same for homology groups.
We then show that, for (1.1), there are epimorphisms ψk : πk(T ) → πk(V ) and ϕk : Hk(T ) →
Hk(V ) for every k � m. We prove that, if the pair (R, {Sδ}δ>0) satisfies a certain ‘separability’
property (Definition 5.7), then ψk and ϕk are isomorphisms for every k < m. In particular, in
the constructible case, (R, {Sδ}δ>0) is always separable. This completes the proof.

Remark 1.11. We conjecture that, in the definable case, the statement (ii) of Theorem 1.10
is also true, that is, for (1.1) and every 1 � k � m − 1, the homomorphisms ψk and ϕk are
isomorphisms, and T � S when m � dim(S).

2. Topological background

In this section we formulate some topological definitions and statements that we will use in
further proofs.

Recall that a continuous map between topological spaces f : X → Y is called a weak
homotopy equivalence if, for every j > 0, the induced homomorphism of homotopy groups
f#j : πj(X) → πj(Y ) is an isomorphism.

Theorem 2.1 (Whitehead theorem on weak homotopy equivalence [15, 7.6.24]). A map
between connected CW-complexes is a weak homotopy equivalence if and only if it is a
homotopy equivalence.

Let f : X → Y be a continuous map between path-connected topological spaces.

Theorem 2.2 (Whitehead theorem on homotopy and homology [15, 7.5.9]). If k > 0 is
such that the induced homomorphism of homotopy groups f#j : πj(X) → πj(Y ) is an isomor-
phism for j < k and an epimorphism for j = k, then the induced homomorphism of homology
groups f∗j : Hj(X) → Hj(Y ) is an isomorphism for j < k and an epimorphism for j = k.
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Definition 2.3 [5]. A map f : P → Q, where P and Q are posets with order relations
�P and �Q, respectively, is called a poset map if, for x,y ∈ P , we have that x �P y implies
that f(x) �Q f(y). With a poset P is associated the simplicial complex Δ(P ), called the order
complex, whose simplices are chains (totally ordered subsets) of P . Each poset map f induces
the simplicial map f : Δ(P ) → Δ(Q).

Theorem 2.4 [5, Theorem 2]. Let P and Q be connected posets and f : P → Q be a
poset map. Suppose that the fibre f−1(Δ(Q�q)) is k-connected for all q ∈ Q. Then the
induced homomorphism f#j : πj(Δ(P )) → πj(Δ(Q)) is an isomorphism for all j � k and an
epimorphism for j = k + 1.

Remark 2.5. In the formulation and proof of this theorem in [5] the statement that f#k+1

is an epimorphism is missing. Here is how it follows from the proof of Theorem 2 in [5]. In
the proof, a map g : Δ(k+1)(Q) → Δ(P ) is defined, where Δ(k+1)(Q) is the (k + 1)-dimensional
skeleton of Δ(Q), such that f ◦ g : Δ(k+1)(Q) → Δ(Q) is homotopic to the identity map id.
Then the induced homomorphism

f#k+1 ◦ g#k+1 = (f ◦ g)#k+1 = id#k+1 : πk+1(Δ(k+1)(Q)) −→ πk+1(Δ(Q))

is an epimorphism, since any map of a j-dimensional sphere to Δ(Q) is homotopic to a map
of the sphere to Δ(j)(Q). It follows that f#k+1 is also an epimorphism.

Corollary 2.6 (Vietoris–Begle theorem). Let X and Y be connected simplicial complexes
and f : X → Y be a simplicial map. Then the following hold.

(i) If the fibre f−1(B) is k-connected for every closed simplex B in Y , then the induced
homomorphism f#j : πj(X) → πj(Y ) is an isomorphism for all j � k and an epimorphism for
j = k + 1.

(ii) If the fibre f−1(B) is contractible, then X � Y .

Proof. (i) Consider the barycentric subdivisions X̂ and Ŷ of complexes X and Y ,
respectively. Note that X̂ = Δ(P ) and Ŷ = Δ(Q), where P and Q are simplex posets of X
and Y , respectively (that is, closed simplices ordered by containment). For a closed simplex
B ∈ Q the subcomplex Δ(Q�B) of Ŷ is the union of all simplices of the barycentric subdivision
of B. Now (i) follows from Theorem 2.4.

(ii) Since the fibre f−1(B) is contractible, according to (i), the induced homomorphisms
f#j are isomorphisms for all j > 0, and hence, by the Whitehead theorem on weak homotopy
equivalence (Theorem 2.1), f induces the homotopy equivalence X � Y .

Definition 2.7. Let Δ be a simplicial complex and X be a topological space. A map C
taking simplices B to subspaces C(B) of X is called carrier if C(B) ⊂ C(K) for all simplices
B and K in Δ such that B is a subsimplex of K, and a continuous map f : Δ → X is carried
by C if f(B) ⊂ C(B) for all simplices B in Δ.

Theorem 2.8 (Carrier lemma [5, Lemma 1]). Fix k � 0, and let Δ(k) be the k-skeleton
of Δ. Then the following hold.

(i) If C(B) is dim(B)-connected for all simplices B in Δ(k), then every two maps f, g :
|Δ(k)| → X that are both carried by C are homotopic, f ∼ g.

(ii) If C(B) is (dim(B) − 1)-connected for all simplices B in Δ(k), then there exists a map
|Δ(k)| → X carried by C.
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Definition 2.9. The nerve of a family {Xi}i∈I of sets is the (abstract) simplicial complex
N defined on the vertex set I so that a simplex σ ⊂ I is in N if and only if

⋂
i∈σ Xi = ∅.

Let X be a connected regular CW-complex and {Xi}i∈I be a family of its subcomplexes
such that X =

⋃
i∈I Xi. Let |N | denote the geometric realization of the nerve N of {Xi}i∈I .

Theorem 2.10 (Nerve theorem, [5, Theorem 6]). The following statements hold.

(i) If every non-empty finite intersection Xi1 ∩ . . . ∩ Xit
, where t � 1, is (k − t + 1)-

connected, then there is a map f : X → |N| such that the induced homomorphism f#j :
πj(X) → πj(|N |) is an isomorphism for all j � k and an epimorphism for j = k + 1.

(ii) If every non-empty finite intersection Xi1 ∩ . . . ∩ Xit
, where t � 1, is contractible, then

X � |N |.

Remark 2.11. As with Theorem 2.4, in the formulation and proof of this theorem in [5]
the statement that f#k+1 is an epimorphism is missing. This statement follows from the proof
of Theorem 6 in [5] by the same argument as described in Remark 2.5.

Remark 2.12. Let X be a connected triangulated set, {Xi}i∈I be a family of all of its
(open) simplices, and the nerve NX is defined on the index set I so that a simplex σ ⊂ I is in NX

if and only if the family {Xi}i∈σ, after a suitable ordering, forms a |σ|-flag (see Definition 3.1).
For this version of the nerve, Theorem 2.10 also holds true. Indeed, it is applicable to the union
X ′ :=

⋃
i Xi of simplices Xi in X that are contained in X with their closures (hence X ′ may

be a proper subset of X). Since X ′ � X and |NX′ | � |NX |, Theorem 2.10 is also applicable to
X and {Xi}i∈I .

Definition 2.13. For two continuous maps f1 : X1 → Y and f2 : X2 → Y, the fibre
product is defined as

X1 ×Y X2 := {(x1,x2) ∈ X1 × X2 | f1(x1) = f2(x2)}.

Theorem 2.14 [10, Theorem 1]. Let f : X → Y be a continuous closed surjective
o-minimal map. Then there is a spectral sequence Er

p,q converging to H∗(Y ) with E1
p,q =

Hq(Wp), where

Wp := X ×Y . . . ×Y X︸ ︷︷ ︸
p+1 times

.

Corollary 2.15. For f : X → Y as in Theorem 2.14 and for any k � 0, we have

bk(Y ) �
∑

p+q=k

bq(Wp),

where bk := rankHk is the kth Betti number.

3. Simplicial construction

Since G and S are definable, they are triangulable [6, Theorem 4.4], that is, there exists a finite
simplicial complex R = {Δj} and a definable homeomorphism Φ : |R| → G, where |R| is the
geometric realization of R, such that S is a union of images under Φ of some simplices of R.
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By a simplex we always mean an open simplex. If Δ is a simplex, then Δ denotes its closure.
In what follows we will ignore the distinction between simplices of |R| and their images in G.

Definition 3.1. For a simplex Δ of S, its subsimplex is a simplex Δ′ = Δ such that
Δ′ ⊂ Δ. A k-flag of simplices of R is a sequence Δi0 , . . . ,Δik

such that Δiν
is a subsimplex of

Δiν−1 for ν = 1, . . . , k.

Definition 3.2. The set S is marked if, for every pair (Δ′,Δ) of simplices of S such that
Δ′ is a subsimplex of Δ, the simplex Δ′ is classified as either a hard or soft subsimplex of Δ.
If Δ′ is not in S, then it is always soft.

In what follows we assume that S is marked.
Let R̂ be the barycentric subdivision of R. Then each vertex vj of R̂ is the centre of a simplex

Δj of R. Let B = B(j0, . . . , jk) be a k-simplex of R̂ having vertices vj0 , . . . , vjk
. Assume that

the vertices of B are ordered so that dim Δj0 > . . . > dim Δjk
. Then B corresponds to a k-flag

Δj0 , . . . ,Δjk
of simplices of R. Let Ŝ be the set of simplices of R̂ that belong to S. Then S is

the union of all simplices of Ŝ.

Definition 3.3. The core C(B) of a simplex B = B(j0, . . . , jk) of Ŝ is the maximal subset
{j0, . . . , jp} of the set {j0, . . . , jk} such that Δjν

is a hard subsimplex of Δjμ
for all μ < ν � p.

Note that j0 is always in C(B), and, in particular, C(B) = ∅. Assume that, for a simplex B
not in Ŝ, the core C(B) is empty.

Lemma 3.4. Let B = B(i0, . . . , ik) be a simplex in Ŝ and K = K(j0, . . . , j�) be a simplex
in R̂, with B ⊂ K, that is, I = {i0, . . . , ik} ⊂ J = {j0, . . . , j�}. Then I \ C(B) ⊂ J \ C(K).

The proof of this lemma is a straightforward consequence of the definitions.

Definition 3.5. For two simplices B and B′ of Ŝ, let B′ � B if either B′ is a subsimplex
of B (reverse inclusion) and C(B′) ∩ C(B) = ∅, or B′ = B. If B′ � B and B′ = B, then we
write B′ � B. Lemma 3.4 implies that � is a partial order on the set of all simplices of Ŝ. The
rank r(Ŝ) of Ŝ is the maximal length r of a chain Δ0 � . . . � Δr of simplices in Ŝ. Let B be
a simplex in Ŝ. The set SB of simplices B′ ⊂ B ∩ Ŝ is a poset with partial order induced from
(Ŝ,�). The rank r(SB) of SB is the maximal length of its chain.

Definition 3.6. Let simplices B and K be as in Lemma 3.4. For 0 < δ < 1, define

B(δ) :=

{ ∑
iν∈I

tiν
viν

∈ B(i0, . . . , ik)

∣∣∣∣∣ ∑
iν∈C(B)

tiν
> δ

}
.

For 0 < ε < 1 and 0 < δ < 1, define

KB(δ, ε) :=

{ ∑
jν∈J

tjν
vjν

∈ K(j0, . . . , j�)

∣∣∣∣∣ ∑
iν∈C(B)

tiν
> δ,

∑
iν∈I

tiν
> 1 − ε, ∀iν ∈ I ∀jμ ∈ (J \ I) (tiν

> tjμ
)

}
.
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Definition 3.7. Let B be a simplex in Ŝ. Fix some m � 0 and a sequence
ε0, δ0, ε1, δ1, . . . , εm, δm. Define VB as the union of sets KB′(δi, εi) over all simplices B′ ∈ SB,
all simplices K of R̂ such that B ⊂ K, and for i = 0, . . . ,m. Define V as the union of the sets
VB over all simplices B of Ŝ.

4. Topological relations between V and S

Lemma 4.1. Let B = B(i0, . . . , ik) be a simplex in Ŝ and K = K(j0, . . . , j�) be a all simplex
in R̂, with B ⊂ K. Then

KB(δ, ε) ∩ KB(δ′, ε′) = KB(max{δ, δ′},min{ε, ε′})

for all 0 < δ, ε, δ′, ε′ < 1.

The proof of this lemma is a straightforward consequence of the definitions.

Lemma 4.2. For any two simplices B and B′ of Ŝ, a simplex K of R̂ such that B and B′

are subsimplices of K, and all 0 < δ, ε, δ′, ε′ < 1, the following hold:
(i) if KB(δ, ε) ∩ KB′(δ′, ε′) = ∅, then either B ⊂ B′ or B′ ⊂ B;
(ii) KB(δ, ε) ∩ KB′(δ′, ε′) is convex.

The proof of this lemma is a straightforward consequence of the definitions.

Lemma 4.3. Let K be a simplex of R̂ and let B0, . . . , Bk be a flag of simplices of Ŝ,
with B0 ⊂ K. Then for (1.1) and a sequence i0, j0, . . . , ik, jk of integers in {0, 1, . . . ,m}, the
intersection

ZK(i0, j0, . . . , ik, jk) := KB0(δi0 , εj0) ∩ . . . ∩ KBk
(δik

, εjk
)

is non-empty if and only if Bμ � Bν implies that jμ > iν for any μ, ν ∈ {0, 1, . . . , k}.

Proof. The necessity of the condition is straightforward. To show that it is sufficient we
will construct a point v :=

∑
tjvj , where the sum is taken over all vertices vj of K, such that

v ∈ ZK(i0, j0, . . . , ik, jk). This will be done in three steps.
(a) Define �ν as the last index in C(Bν) (that is, v�ν

is the centre of the smallest simplex Δj

of R such that j ∈ C(Bν)); set t�ν
:= δiν

. If �ν is the same index for several ν, then set t�ν
to

be the maximum of the corresponding δiν
.

(b) Fix a sequence γ0, . . . , γk+1 such that 0 < γ0 < . . . < γk+1 
 ε0. For a vertex vj of Bν−1

that is not one of the v�μ
and not a vertex of Bν , set tj := γν + max δiμ

, where the maximum
is taken over all μ such that Bν � Bμ (or equals 0 if there is no such μ). For any vertex vj of
K that does not belong to B0, set tj := γ0. For a vertex vj of Bk that is not one of the v�ν

, set
tj := γk+1 + max δiμ

, where the maximum is taken over μ = 0, . . . , k.
(c) For the last vertex vω of Bk, set tω := 1 −

∑
vj

tj , where the sum is taken over all vertices
vj of K other than vω. If ω = �k, then this overrides the setting in (a). If ω = �k, then this
overrides the setting in (b).

It is easy to check that v ∈ ZK(i0, j0, . . . , ik, jk).

Lemma 4.4. Let B0, . . . , Bk be a flag of simplices of Ŝ, and i0, j0, . . . , ik, jk be a sequence of
integers in {0, 1, . . . ,m}. For (1.1), if Bμ � Bν implies that jμ > iν for any μ, ν ∈ {0, 1, . . . , k},
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then the set

Z(i0, j0, . . . , ik, jk) :=
⋃
K

ZK(i0, j0, . . . , ik, jk),

where the union is taken over all simplices K of R̂ with B0 ⊂ K, is an open contractible subset
of G. Otherwise, Z(i0, j0, . . . , ik, jk) = ∅.

Proof. By Lemma 4.3, Z(i0, j0, . . . , ik, jk) = ∅ if and only if Bμ � Bν implies that jμ >
iν for any μ, ν ∈ {0, 1, . . . , k}. So, suppose that Z(i0, j0, . . . , ik, jk) = ∅, and consider two
simplices K and K ′ such that B0 ⊂ K ′ ⊂ K. Then the intersection of the closure of the
complement in K of ZK(i0, j0, . . . , ik, jk) with K ′ coincides with the complement in K ′

of ZK′(i0, j0, . . . , ik, jk). Hence, ZK′(i0, j0, . . . , ik, jk) ∪ ZK(i0, j0, . . . , ik, jk) is open in K. It
follows that Z(i0, j0, . . . , ik, jk) is open in G and has a closed covering by convex sets
ZK(i0, j0, . . . , ik, jk) ∩ Z(i0, j0, . . . , ik, jk) over all simplices K of R̂. This covering has the same
nerve as the star of B0 in the complex R̂, and this star is contractible. An intersection of any
number of elements of the covering of Z(i0, j0, . . . , ik, jk) is convex, and therefore contractible.
By the nerve theorem (Theorem 2.10(ii)), both Z(i0, j0, . . . , ik, jk) and the star are homotopy
equivalent to the geometric realization of the nerve, and hence also homotopy equivalent to
one another. It follows that Z(i0, j0, . . . , ik, jk) is contractible.

Lemma 4.5. For (1.1) and for each simplex B in Ŝ and for every m � 1, the set VB (see
Definition 3.7) is open in G and (m − 1)-connected.

Proof. For every simplex B′ ∈ SB , consider the set UB′,i :=
⋃

K KB′(δi, εi), where the
union is taken over all simplices K of R̂ with B ⊂ K. Obviously, the family {UB′,i | B′ ∈ SB,
0 � i � m} is an open covering of VB. Let MB denote the nerve of this covering. From
Lemmas 4.1, and 4.4, MB is the simplicial complex whose k-simplices can be identified with
all sequences of the kind ((p0, i0), . . . , (pk, ik)), where pν are indices of the simplices B′

pν
∈ SB,

such that the following hold:
(a) B′

pν
⊂ B′

pν−1
;

(b) 0 � iν � m;
(c) if B′

pμ
� B′

pν
and μ > ν, then iμ > iν .

By Lemma 4.4, any non-empty intersection of sets UB′,i is contractible. Therefore, by the nerve
theorem (Theorem 2.10(ii)), VB is homotopy equivalent to MB , and in order to prove that VB is
(m − 1)-connected it is sufficient to show that MB is an (m − 1)-connected simplicial complex.
This follows from Proposition 4.6 below.

Let � be a poset on {0, . . . , N} such that, if p � q and p = q, then p > q. For each p ∈
{0, . . . , N}, let r(p) be the maximal length of a poset chain with the maximal element p (that
is, the rank of the order ideal generated by p). Let m0, . . . ,mN be non-negative integers.
Let M(m0, . . . ,mN ) be the simplicial complex containing all k-simplices ((p0, i0), . . . , (pk, ik))
such that the following hold:

(a) pν ∈ {0, . . . , N}, where p0 � . . . � pk;
(b) iν ∈ {0, . . . , mν};
(c) if pμ � pν and μ > ν, then iμ > iν .

Let m := min{m1, . . . ,mN}.
An example of the complex M(2, 2) with 1 � 0 is shown in Figure 2.

Proposition 4.6. The simplicial complex M(m0, . . . ,mN ) is (m − 1)-connected.
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Figure 2. The complex M(2, 2) with 1 � 0.

Proof. Let ΔN be the N -simplex and ΔN (m) be the m-dimensional skeleton of its closure.
There is a natural simplicial map

ρ : M(m0, . . . ,mN ) −→ ΔN ,
(p, i) �−→ p.

It is easy to see that ΔN (m) ⊂ ρ(M(m0, . . . ,mN )), and hence ρ(M(m0, . . . ,mN )) is
(m − 1)-connected.

Consider any face ΔL of ΔN , that L � N , that has a non-empty pre-image under ρ. Without
loss of generality, assume that its vertices are 0, . . . , L. Let M(m0, . . . ,mL) be the simplicial
complex defined over the poset on {0, . . . , L} induced by �. We prove inductively on L that,
for any point x ∈ ΔL, the fibre ρ−1(x) is contractible. The proposition then follows from
the Vietoris–Begle theorem (Corollary 2.6(ii)). The base of induction, for L = 0, is obvious.
Assume that the statement is true for L − 1. For any simplex K = ((p0, i0), . . . , (pk, ik)) of
M(m0, . . . ,mL) that projects surjectively onto ΔL, if pν = L then iν � r(L). Let s = i� be the
minimal of these iν in K, so that pν < L for ν < �, while p� = L. Then ((p0, i0), . . . , (p�−1, i�−1))
is a simplex of the simplicial complex M(s) := M(m′

0, . . . ,m
′
L−1), defined over the poset on

{0, . . . , L − 1} induced by �, where m′
p := min{mp, r(p) + s − r(L)} if L � p, and m′

p := mp if
L is incomparable with p. It follows that K is a simplex of the join of M(s) and ΔmL−s, where
ΔmL−s is the simplex with vertices s, . . . ,mL. Since the complex M(s) is contractible by the
induction hypothesis, its join with ΔmL−s has a contractible fibre over any x ∈ ΔL. The fibre
over x of M(m0, . . . ,mL) is the union of these contractible fibres for s = r(N), . . . , mL. The
intersection of any number of these fibres is non-empty and contractible, being a fibre of the
join of Mmin and ΔmL−smax . By the nerve theorem (Theorem 2.10(ii)), their union is homotopy
equivalent to its nerve, a simplex, and thus is contractible.

Corollary 4.7. In the definition of the simplicial complex M(m0, . . . ,mN ) assume
additionally that mj � r(j) for every j = 0, . . . , N . Then M(m0, . . . ,mN ) is contractible.

Proof. The condition mj � r(j) guarantees that the map ρ is surjective, and hence
ρ(M(m0, . . . ,mN )) is contractible.

Theorem 4.8. For (1.1), there are homomorphisms χk : Hk(V ) → Hk(S) and τk : πk(V ) →
πk(S) such that χk and τk are isomorphisms for every k � m − 1, and χm and τm are
epimorphisms. Moreover, if m � dim(S), then V � S.

Proof. By Lemma 4.2(i), for any three simplices B0, B1, and B2 in Ŝ, the equality B0 =
B1 ∩ B2 is equivalent to VB0 = VB1 ∩ VB2 . Hence, a non-empty intersection of any number of
sets VB is a set of the same type, and therefore is (m − 1)-connected. Moreover, there is an
isomorphism ξ : |NV | → |NŜ | between the geometric realization of the nerve NŜ of the covering
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of Ŝ by its simplices and the geometric realization of the nerve NV of the open covering of V
by sets VB.

Since intersections of any number of elements of the covering of Ŝ (that is, simplices) are
contractible if non-empty, the nerve theorem (Theorem 2.10(ii) and Remark 2.12) implies
that Ŝ � |NŜ |, that is, there is a continuous map ψŜ : Ŝ → |NŜ | that induces isomorphisms of
homotopy groups ψŜ# : πk(Ŝ) → πk(|NŜ |) for all integers k � 0.

On the other hand, by the nerve theorem (Theorem 2.10(i)), there is a continuous map
ψV : V → |NV | inducing isomorphisms of homotopy groups ψV # : πk(V ) → πk(|NV |) for every
k � m − 1 and an epimorphism ψV # : πm(V ) → πm(|NV |). Here, we let τk be

ψ−1

Ŝ#
◦ ξ ◦ ψV # : πk(V ) −→ πk(Ŝ).

By the Whitehead theorem on homotopy and homology (Theorem 2.2), ψŜ induces
isomorphisms of homology groups ψŜ∗ : Hk(Ŝ) → Hk(|NŜ |) for all k � 0, while ψV induces
isomorphisms of homology groups ψV ∗ : Hk(V ) → Hk(|NV |) for every k � m − 1, and an
epimorphism ψV ∗ : Hm(V ) → Hm(|NV |). We let χk be

ψ−1

Ŝ∗ ◦ ξ ◦ ψV ∗ : Hk(V ) −→ Hk(Ŝ).

If m � dim(S) then, by Corollary 4.7, a non-empty intersection of any number of sets VB is
contractible. Then, according to the nerve theorem, the sets V and Ŝ are homotopy equivalent
to geometric realizations of the respective nerves and therefore V � S.

5. Proof of Theorem 1.10

We now need to re-define the simplicial complex R so that it will satisfy additional properties.
Recall that definable functions are triangulable [6, Theorem 4.5]. Consider a finite simplicial
complex R′ such that R′ is a triangulation of the projection

ρ : G × [0, 1] −→ [0, 1],

and R′ is compatible with ⋃
δ∈(0,1)

(Sδ, δ) ⊂ G × [0, 1].

Define R as the triangulation induced by R′ on the fibre ρ−1(0).

Definition 5.1. Along with the sequence ε0, . . . , δm, consider another sequence
ε′0, δ

′
0, ε

′
1, δ

′
1, . . . , ε

′
m, δ′m. Let T ′ be the set defined as in Definition 1.8 replacing all δi and

εi by δ′i and ε′i, respectively. Let V ′ be the set defined as in Definition 3.7 replacing all δi and
εi by δ′i and ε′i, respectively.

5.1. Definable case

In the definable case we specify the hard–soft relation for the set V ′ as follows. For any pair
(Δ1,Δ2) of S such that Δ1 is a subsimplex of Δ2, we assume that Δ1 is soft in Δ2.

Definition 5.2. Let B and K be as in Lemma 3.4. For 0 < ε < 1, define

KB(ε) :=

{ ∑
jν∈J

tjν
vjν

∈ K(j0, . . . , j�)

∣∣∣∣∣ ∑
iν∈I

tiν
> 1 − ε, ∀iν ∈ I ∀jμ ∈ (J \ I) (tiν

> tjμ
)

}
.
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Introduce a new parameter ε′′ and define V ′′ as the union of KB(ε′′) over all simplices B of
Ŝ, and all simplices K of R̂ such that B ⊂ K.

In each of the following Lemmas 5.3–5.6, the statement holds for

0 < ε′0 
 . . . 
 ε′i 
 εi 
 δi 
 δ′i 
 . . . 
 δ′m 
 ε′′ (i = 0, . . . , m).

Lemma 5.3. We have S � V ′′.

Proof. Let B be a simplex of Ŝ and let UB :=
⋃

KB(ε′′), where the union is taken over all
simplices K of R̂ such that B ⊂ K. Then the family of all sets UB forms an open covering of V ′′

whose nerve we denote by NV ′′ . Each UB is contractible, since B is a deformation retract of UB.
Any intersection U := UB0 ∩ . . . ∩ UBk

is non-empty if and only if, after the suitable reordering,
the sequence Bi1 , . . . , Bik

is a k-flag of simplices. If U = ∅, then Bik
is its deformation retract,

and hence U is contractible. By the nerve theorem (Theorem 2.10(ii)), we have V ′′ � |NV ′′ |.
On the other hand, the simplices of Ŝ form a covering of S with nerve NS (in the sense of
Remark 2.12), and therefore S � |NS | by the nerve theorem. Then S � V ′′, since the nerves
NV ′′ and NS are isomorphic.

Lemma 5.4. We have V ′ ⊂ T ⊂ V ′′.

Proof. Let Vδ,ε be the union of sets KB(δ, ε) over all simplices K of R̂ and simplices B of
Ŝ such that B ⊂ K. We first show that Vδ′,ε′ ⊂ Sδ,ε, which immediately implies that V ′ ⊂ T .
Fix δ′, and let xε′ ∈ Vδ′,ε′ be a definable curve. Then x0 := limε′↘0 xε′ ∈ B(δ′), where B is a
simplex in Ŝ (this follows from Definition 3.6). Let Δ be the simplex in S containing x0. Since
every subsimplex of Δ is soft in Δ, then x0 ∈ Sδ for δ 
 δ′. Also, an open neighbourhood of
x0 in G, whose size is independent of ε′, is contained in Sδ,ε for ε 
 δ 
 δ′. Hence xε′ ∈ Sδ,ε

for ε′ 
 ε 
 δ 
 δ′.
Next, we show that Sδ,ε ⊂ V ′′, and therefore T ⊂ V ′′. Fix δ, and let xε ∈ Sδ,ε be a definable

curve. Then x0 := limε↘0 xε ∈ Sδ. Hence x0 belongs to a simplex B of Ŝ. According to
Definition 5.2, an open neighbourhood of x0 of radius larger than ε is contained in KB(ε′′) for
any simplex K of R̂ such that B ⊂ K. In particular, xε ∈ KB(ε′′), and therefore xε ∈ V ′′.

Lemma 5.5. The inclusion map ι : V ′ ↪→ V ′′ induces isomorphisms of homotopy groups
ιk# : πk(V ′) → πk(V ′′) for every k � m − 1, and an epimorphism ιm#.

Proof. Recall that V ′ admits an open covering by sets of the kind V ′
B := VB (Definition 3.7)

over all simplices B in Ŝ such that every non-empty intersection of the sets V ′
B is (m − 1)-

connected (Lemma 4.5). Similarly, the set V ′′ has an open covering by the sets V ′′
B , where V ′′

B is
the union of the sets KB′(ε′′) over all simplices B′ ∈ SB , and simplices K of R̂ such that B ⊂ K.
Every non-empty intersection of the sets V ′′

B is contractible (cf. the proof of Lemma 5.3).
The inclusion relation V ′

B ⊂ V ′′
B implies that these two coverings have the same nerve N , up

to isomorphism. Let N (m) be the m-skeleton of N . Following the proof of Theorem 6 in [5],
we now describe a carrier (see Definition 2.7) C ′ assigning certain intersections of the sets V ′

B

to simplices σ of the barycentric subdivision of N (m).
Let Q be the face poset of N (m) (that is, simplices ordered by a subsimplex relation) and

Δ(Q) be its order complex (see Definition 2.3). Then Δ(Q) is homeomorphic to |N (m)|, being



48 ANDREI GABRIELOV AND NICOLAI VOROBJOV

its barycentric subdivision. For σ in Δ(Q), let

C ′(σ) =
⋂

V ′
B∈min σ

V ′
B .

In a similar way a carrier C ′′ from simplices in the barycentric subdivision of N to
intersections of sets V ′′

B is defined.
According to the carrier lemma (ii) (Theorem 2.8(ii)), there exist continuous maps g′ :

N (m) → V ′ and g′′ : N → V ′′ such that g′ is carried by C ′ and g′′ is carried by C ′′. On the
other hand, g′ is also carried by C ′′ because V ′

B ⊂ V ′′
B implies that g′(σ) ⊂ C ′(σ) ⊂ C ′′(σ).

Since all non-empty intersections of V ′′
B are contractible, and in particular, m-connected, the

carrier lemma (i) implies that

ι ◦ g′ ∼ g′′|N (m) . (5.1)

By the nerve theorem (Theorem 2.10(ii); details in [5]), g′′ is a homotopy equivalence.
Passing to homomorphisms of homotopy groups, we have that g′′#k : πk(N ) → πk(V ′′) is an
isomorphism for all k. Hence, by (5.1), ι#k is an epimorphism for all k � m. According to the
nerve theorem, g′#k : πk(N (m)) → πk(V ′′) is an isomorphism for k � m − 1, and thus ι#k is
also a monomorphism for k � m − 1.

Lemma 5.6. For every k � m, there are epimorphisms ζk : πk(T ) → πk(V ′′) and ηk :
Hk(T ) → Hk(V ′′).

Proof. By Lemmas 5.4 and 5.5, we have

V ′ p
↪→ T

q
↪→ V ′′,

where ↪→ are the inclusion maps and q ◦ p induces isomorphisms (q ◦ p)# = q# ◦ p# of homo-
topy groups πk(V ′) ∼= πk(V ′′) for every k � m − 1, and an epimorphism πm(V ′) → πm(V ′′).
Then ζk := q# is an epimorphism for every k � m.

By the Whitehead theorem on homotopy and homology (Theorem 2.2), q ◦ p also induces
isomorphisms (q ◦ p)∗ = q∗ ◦ p∗ of homology groups Hk(V ′) ∼= Hk(V ′′) for every k � m − 1, and
an epimorphism Hk(V ′) → Hk(V ′′). Hence, ηk := q∗ is an epimorphism for every k � m.

Theorem 1.10(i) immediately follows from Lemmas 5.3 and 5.6.

5.2. Separability and constructible case

Definition 5.7. For the simplicial complex R and the family {Sδ}δ>0, we call the pair
(R, {Sδ}δ>0) separable if, for any pair (Δ1,Δ2) of simplices of S such that Δ1 is a subsimplex of
Δ2, the equality Δ2 ∩ Sδ ∩ Δ1 = ∅ is equivalent to the inclusion Δ1 ⊂ Δ2 \ Sδ for all sufficiently
small δ > 0.

Recall that, in the constructible case, we assume that S is defined by a Boolean combination
of equations and inequalities with continuous definable functions, and the set Sδ is defined
using sign sets of these functions (see Section 1).

Lemma 5.8. In the constructible case, (R, {Sδ}δ>0) is separable.

Proof. Observe that R is compatible with the sign set decomposition of S.
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Consider a pair (Δ1,Δ2) of simplices of S such that Δ1 is a subsimplex of Δ2. If both Δ1

and Δ2 lie in the same sign set, then Δ2 ∩ Sδ ∩ Δ1 = Δ1 ∩ Sδ = ∅ and Δ1 ⊂ Δ2 \ Sδ.
If Δ1 and Δ2 lie in two different sign sets, then there is a function h in the Boolean

combination defining S such that h(x) = 0 for every point x ∈ Δ1, while h(y) satisfies
a strict inequality, say h(y) > 0, for every point y ∈ Δ2. Then Δ2 ∩ Sδ ⊂ Δ2 ∩ {h � δ}
and Δ2 ∩ {h � δ} ∩ {h = 0} = ∅. Hence Δ2 ∩ Sδ ∩ Δ1 = ∅. On the other hand, Δ2 \ Sδ ⊃
Δ2 ∩ {h < δ} ⊃ Δ2 ∩ {h = 0} ⊃ Δ1.

Now we return to the general definable case and assume, in the rest of this section, that
(R, {Sδ}) is separable. For any pair (Δ1,Δ2) of simplices of S such that Δ1 is a subsimplex of
Δ2, we assume that Δ1 is soft in Δ2 if Δ2 ∩ Sδ ∩ Δ1 = ∅ (equivalently, Δ1 ⊂ Δ2 \ Sδ) for all
sufficiently small δ > 0. Otherwise, Δ1 is hard in Δ2.

Lemma 5.9. If Δ1 is hard in Δ2, then, for every x ∈ Δ1, there is a neighbourhood Ux of
x in Δ2 such that, for all sufficiently small δ ∈ (0, 1), we have Ux ⊂ Δ2 ∩ Sδ.

Proof. Suppose that, contrary to the claim, for some x ∈ Δ1, we have Ux \ Δ2 ∩ Sδ = ∅ for
any neighbourhood Ux of x in Δ1, for arbitrarily small δ > 0.

Since the set Sδ grows (with respect to inclusion) as δ ↘ 0, and Δ1 is hard in Δ2, the
intersection Δ2 ∩ Sδ ∩ Δ1 is non-empty and also grows. If, for any neighbourhood Wx of x in
Δ1, we have Wx ⊂ Δ2 ∩ Sδ ∩ Δ1 for arbitrarily small δ > 0, then the limits of both Δ2 ∩ Sδ ∩
Δ1 and its complement in Δ1, as δ ↘ 0, have non-empty intersections with Δ1. This contradicts
the assumption that Δ1 is a simplex in the complex R compatible with R′, and thus there is a
neighbourhood Wx in Δ1 such that Wx ⊂ Δ2 ∩ Sδ ∩ Δ1 for sufficiently small δ > 0. It follows
that Ux \ Δ2 ∩ Sδ ⊂ Δ2. Since x ∈ Δ2 \ Sδ, and again using the compatibility of the complex
R with R′, we conclude that Δ1 ⊂ Δ2 \ Sδ, that is, Δ1 is soft in Δ2, which is a contradiction.

In each of the following Lemmas 5.10 and 5.11 and Theorem 5.12 the statement holds for

0 < ε′0 
 . . . 
 ε′i 
 εi 
 δi 
 δ′i 
 . . . 
 δ′m 
 1 (i = 0, . . . ,m). (5.2)

Lemma 5.10. We have T ′ ⊂ V and V ′ ⊂ T .

Proof. We show first that Sδ′,ε′ ⊂ Vδ,ε for ε′ 
 ε 
 δ 
 δ′, where Vδ,ε is the union of
KB(δ, ε) over all simplices K of R̂ and simplices B of Ŝ such that B ⊂ K.

Let us fix δ′, and let xε′ ∈ Sδ′,ε′ be any definable curve. It is enough to show that xε′ ∈ Vδ,ε

for ε′ 
 ε 
 δ 
 δ′. Clearly, x0 =: limε′↘0 xε′ belongs to Sδ′ . Hence x0 belongs to a simplex
B = B(j0, . . . , j�) of Ŝ. Suppose that x0 ∈ B(δ). Let x0,δ ∈ B \ B(δ) be a definable curve.
Then x0,0 =: limδ↘0 x0,δ belongs to a subsimplex B′ = B(i0, . . . , ik) of B. It follows that x0,0 ∈
Δj0 ∩ Sδ′ ∩ Δi0 , and therefore Δi0 is hard in Δj0 . On the other hand, by the definition of B(δ)
(Definition 3.6), Δi0 is soft in Δj0 . This contradiction shows that x0 ∈ B(δ).

For ε′ 
 ε, the distance from xε′ to x0 ∈ Sδ′ ∩ B is much smaller than ε. From Definition 3.6,
for ε 
 δ 
 δ′, the union of KB(δ, ε) over all simplices K of R̂ such that B ⊂ K contains an
open in G neighbourhood of x0 ∈ B whose size is independent of ε′. Hence xε′ ∈ Vδ,ε for
ε′ 
 ε 
 δ 
 δ′.

Next, we want to show that Vδ′,ε′ ⊂ Sδ,ε. As before, fix δ′. Let xε′ ∈ Vδ′,ε′ be a definable curve.
Then x0 := limε′↘0 xε′ ∈ B(δ′), where B = B(j0, . . . , j�) is a simplex in Ŝ (this follows from
Definition 3.6). Suppose that, if x0 ∈ Sδ, then x0 ∈ B \ Sδ. Let x0,δ ∈ B \ Sδ be a definable
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curve. Therefore x0,0 := limδ↘0 x0,δ belongs to a subsimplex B′ = B(i0, . . . , ik) of B. Then, by
Lemma 5.9, Δi0 is soft in Δj0 , and thus x0,0 ∈ Vδ′,ε′ . The same is true for xε′ as well, namely
xε′ ∈ Vδ′,ε′ for ε′ 
 δ 
 δ′. This contradiction shows that x0 ∈ Sδ.

Since x0 ∈ S, an open neighbourhood of x0 in G, whose size is independent of ε′, is contained
in Sδ,ε for ε 
 δ 
 δ′. Hence xε′ ∈ Sδ,ε for ε′ 
 ε 
 δ 
 δ′.

Lemma 5.11. The inclusion maps T ′ ↪→ T and V ′ ↪→ V are homotopy equivalences.

Proof. Proofs of homotopy equivalences are similar for both the inclusions, and so we will
consider only the case T ′ ↪→ T .

Consider ε0, δ0, . . . , εm, δm as variables. Then T ⊂ R
n+2m+2. From the o-minimal version

of Hardt’s triviality, applied to the projection ρ : T → R
2m+2 on the subspace of coordinates

ε0, δ0, . . . , εm, δm, there follows the existence of a partition of R
2m+2 into a finite number of

connected definable sets {Ai} such that T is definably trivial over each Ai, that is, for any
point (ε̄, δ̄) := (ε0, δ0, . . . , εm, δm) ∈ Ai the pre-image ρ−1(Ai) is definably homeomorphic to
ρ−1(ε̄, δ̄) × Ai by a fibre-preserving homeomorphism.

There exists an element Ai0 of the partition that is an open connected set in R
2m+2 and

contains both the points (ε̄, δ̄) and (ε̄′, δ̄′) for (5.2). Let γ : [0, 1] → Ai0 be a definable simple
curve such that γ(0) = (ε̄, δ̄) and γ(1) = (ε̄′, δ̄′). Then ρ−1(γ(0)) = T , ρ−1(γ(1)) = T ′, and
ρ−1(γ([0, 1])) is definably homeomorphic to T × γ([0, 1]). Let Φt,t′ : ρ−1(γ(t′)) → ρ−1(γ(t)) for
0 � t � t′ � 1 be the homeomorphism of fibres. Replacing if necessary (ε̄, δ̄) by a point closer to
(ε̄′, δ̄′) along the curve γ, we can assume that ρ−1(γ(t′)) ⊂ ρ−1(γ(t)) for all 0 � t � t′ � 1. Then
T ′ is a strong deformation retract of T defined by the homotopy F : T × [0, 1] → T as follows.
If x ∈ ρ−1(γ(t′)) for some t′ � t and x ∈ ρ−1(γ(t′′)) for any t′′ > t′, then F (x, t) = Φt′, t(x). If
x ∈ ρ−1(γ(t′)) with t′ > t, then F (x, t) = x.

Theorem 5.12. We have T � V .

Proof. Consider the four sequences (ε(j), δ(j)) := (ε(j)
0 , δj

0, . . . , ε
(j)
m , δ

(j)
m ), where 1 � j � 4.

Let T (ε(j), δ(j)) and V (ε(j), δ(j)) be the sets defined as in Definitions 1.8 and 3.7, respectively,
replacing all δi by δ

(j)
i and all εi by ε

(j)
i .

By Lemma 5.10, the following chain of inclusions holds:

T (ε(1), δ(1))
p

↪→ V (ε(2), δ(2))
q

↪→ T (ε(3), δ(3))
r

↪→ V (ε(4), δ(4))

for

0 < ε
(j)
0 
 δ

(j)
0 
 . . . 
 ε(j)

m 
 δ(j)
m 
 1,

where

δ
(j−1)
i−1 
 ε

(j−1)
i 
 ε

(j)
i 
 δ

(j)
i 
 δ

(j−1)
i

for all i = 1, . . . ,m and j = 2, 3, 4.
According to Lemma 5.11, q ◦ p and r ◦ q are homotopy equivalences. Passing to induced

homomorphisms of homotopy groups, we have that (q ◦ p)# = q# ◦ p# is an isomorphism, and
hence q# is an epimorphism. Similarly, since (r ◦ q)# = r# ◦ q# is an isomorphism, q# is a
monomorphism. It follows that q# is an isomorphism, and therefore T � V by the Whitehead
theorem on weak homotopy equivalence (Theorem 2.1).

Theorem 1.10(ii) immediately follows from Theorems 5.12 and 4.8.
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6. Upper bounds on Betti numbers

The method described in this section can be applied to obtain upper bounds on Betti numbers
for sets defined by Boolean formulae with functions from various classes that admit a natural
measure of ‘description complexity’ and a suitable version of the ‘Bezout theorem’, most notably
for semialgebraic and semi- and sub-Pfaffian sets (see, for example, [8]). We give detailed proofs
for the semialgebraic case. The proofs can be extended to the Pfaffian case straightforwardly.

Definition 6.1. Let f, g, h : N
� → N be three functions, let n ∈ N. The expression

f � O(g)n means that there exists c ∈ N such that f � (cg)n everywhere on N
�. The expression

f � gO(h) means that there exists c ∈ N such that f � gch everywhere on N
�.

6.1. Semialgebraic sets defined by quantifier-free formulae

Consider the constructible case with S = {x | F(x)} ⊂ R
n, where F is a Boolean combination

of polynomial equations and inequalities of the kind h(x) = 0 or h(x) > 0, where h ∈
R[x1, . . . , xn]. Suppose that the number of different polynomials h is s and that their degrees
do not exceed d. The following upper bounds on the total Betti number b(S) of the set S
originate from the classic works of [12–14, 17]. Their proofs can be found in [4].

(a) If F is a conjunction of any number equations, then b(S) � d(2d − 1)n−1.
(b) If F is a conjunction of s non-strict inequalities, then b(S) � (sd + 1)n.
(c) If F is a conjunction of s equations and strict inequalities, then b(S) � O(sd)n.
The following statement applies to more general semialgebraic sets.

Theorem 6.2 [2, Theorem 1; 4, Theorem 7.38]. If F is a monotone Boolean combination
(that is, exclusively the connectives ∧ and ∨ are used, with no negations) of only strict or only
non-strict inequalities, then b(S) � O(sd)n.

In [9, Theorem 1], the authors proved the bound b(S) � O(s2d)n for an arbitrary Boolean
formula F . Theorem 1.10 implies the following refinement of this bound.

Theorem 6.3. Let ν := min{k + 1, n − k, s}. Then the kth Betti number satisfies

bk(S) � O(νsd)n.

Proof. Assume first that k > 0. For m = k, construct T (S) in the compactification of R
n,

as described in Section 1. The set T (S) is a compact set defined by a Boolean formula with
4(k + 1)s polynomials in R[x1, . . . , xn] of the kind h + δi, h − δi, h + εi, or h − εi, where 0 �
i � k, having degrees at most d. According to Lemma 1.9, there is a bijection C from the
set T of all connected components of T (S) to the set S of all connected components of S
such that C−1(S′) = T (S′) for every S′ ∈ S. By Theorem 1.10(i), bk(S′) � bk(T (S′)). It follows
that

bk(S) =
∑
S′∈S

bk(S′) �
∑
S′∈S

bk(T (S′)) = bk(T (S)).

Then, applying the bound from Theorem 6.2 to T (S), we have

bk(S) � bk(T (S)) � O((k + 1)sd)n. (6.1)

On the other hand, since T (S) is compact, bk(T (S)) = bn−k−1(Rn \ T (S)) by Alexander’s
duality. The semialgebraic set R

n \ T (S) is defined by a monotone Boolean combination of
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only strict inequalities, and hence, by Theorem 6.2, we have

bk(S) � bn−k−1(Rn \ T (S)) � O((n − k)sd)n. (6.2)

The theorem now follows from (6.1) and (6.2) and the bound b(S) � O(s2d)n from [9].
In the case k = 0, we have b0(S) � b0(T (S)) since the map C is surjective. Hence, by

Theorem 6.2, we obtain
b0(S) � b0(T (S)) � O(sd)n.

6.2. Projections of semialgebraic sets

Let ρ : R
n+r → R

n be the projection map and S = {(x,y) | F(x,y)} ⊂ R
n+r be a semialge-

braic set, where F is a Boolean combination of polynomial equations and inequalities of the
kind h(x,y) = 0 or h(x,y) > 0, where h ∈ R[x1, . . . , xn, y1, . . . , yr]. Suppose that the number
of different polynomials h is s and that their degrees do not exceed d.

An effective quantifier elimination algorithm [4, Chapter 14] produces a Boolean combination
Fρ of polynomial equations and inequalities, with polynomials in R[x1, . . . , xn], defining the
projection ρ(S). The number of different polynomials in Fρ is (sd)O(nr) and their degrees are
bounded by dO(r). Then Theorem 6.3 (or [9, Theorem 1]) implies that

bk(ρ(S)) � (sd)O(n2r) (6.3)

for any k � 0. We now improve this bound as follows.

Theorem 6.4. The kth Betti number of ρ(S) satisfies the inequality

bk(ρ(S)) �
∑

0�p�k

O((p + 1)(k + 1)sd)n+(p+1)r � ((k + 1)sd)O(n+kr).

Proof. For k = 0, the bound immediately follows from Theorem 6.3. So assume that k > 0.
The set S is represented by the families {Sδ}δ and {Sδ,ε}δ,ε in the compactification of R

n+r

as described in Section 1. According to Lemma 1.3, the projection ρ(S) is represented by
the families {ρ(Sδ)}δ and {ρ(Sδ,ε)}δ,ε in the compactification of R

n. Fix m = k. Then the set
T (ρ(S)) = ρ(T (S)) is defined. According to Corollary 2.15, we have

bk(ρ(T (S))) �
∑

p+q=k

bq(Wp),

where
Wp = T (S) ×ρ(T (S)) . . . ×ρ(T (S)) T (S)︸ ︷︷ ︸

p+1times

.

The fibre product Wp ⊂ R
n+(p+1)r is definable by a Boolean formula with

4(p + 1)(k + 1)s

polynomials of degrees not exceeding d. Hence, by Theorem 6.2, we have

bq(Wp) � O((p + 1)(k + 1)sd)n+(p+1)r.

It follows that

bk(T (ρ(S))) �
∑

0�p�k

O((p + 1)(k + 1)sd)n+(p+1)r � ((k + 1)sd)O(n+kr). (6.4)

Finally, by Theorem 1.10(i), bk(ρ(S)) � bk(T (ρ(S))), which, in conjunction with (6.4),
completes the proof.
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6.3. Semi- and sub-Pfaffian sets

Necessary definitions regarding semi-Pfaffian and sub-Pfaffian sets can be found in [7, 8] (see
also [11]).

According to [16, 18], R admits an o-minimal expansion P(R) in which sub-Pfaffian sets
are definable. In what follows we adopt P(R) as the o-minimal structure containing all
S, Sδ, and Sδ,ε.

Let S = {x | F(x)} ⊂ (0, 1)n be a semi-Pfaffian set, where F is a Boolean combination of
equations and inequalities with s different Pfaffian functions (here and in what follows (0, 1)
can be replaced by any, bounded or unbounded, interval). Assume that all functions are defined
in (0, 1)n, have a common Pfaffian chain of order �, and have degree (α, β). A straightforward
generalization of Theorem 6.2 gives the following upper bound.

Theorem 6.5 [8, Theorem 3.4; 19, Theorem 1]. If F is a monotone Boolean combination
of only strict or only non-strict inequalities such that S ⊂ (0, 1)n, then

b(S) � sn2�(�−1)/2O(nβ + min{n, �}α)n+�.

In conjunction with Theorem 1.10, this implies the following bound for the set S defined by
an arbitrary Boolean formula F .

Theorem 6.6. Let ν := min{k + 1, n − k, s}. Then the kth Betti number

bk(S) � (νs)n2�(�−1)/2O(nβ + min{n, �}α)n+�.

The proof of the theorem is analogous to the proof of Theorem 6.3.

Remark 6.7. Unlike Theorem 6.5, the condition S ⊂ (0, 1)n is not required in Theorem 6.6,
since taking the conjunction of inequalities 0 < xi < 1, for i = 1, . . . , n, with F guarantees that
the closed set T (S) ⊂ (0, 1)n.

Now we consider the sub-Pfaffian case. Let ρ : R
n+r → R

n be the projection map and S =
{(x,y) | F(x,y)} ⊂ (0, 1)n+r be a semi-Pfaffian set, where F is a Boolean combination of
Pfaffian equations and inequalities. Suppose that all different Pfaffian functions occurring in F
are defined in (0, 1)n+r, have a common Pfaffian chain of order �, their number is s, and their
degree is (α, β). Since the Pfaffian o-minimal structure does not admit quantifier elimination
(that is, the projection of a semi-Pfaffian set may not be semi-Pfaffian; see [8]), it is not possible
to apply in the Pfaffian case the same method that we used to obtain the bound (6.4). On
the other hand, the method employed in the proof of Theorem 6.4 extends straightforwardly
to projections of semi-Pfaffian sets and produces the following first general singly exponential
upper bound for Betti numbers of sub-Pfaffian sets.

Theorem 6.8. The kth Betti number of ρ(S) satisfies the inequality

bk(ρ(S)) � (ks)O(n+(k+1)r)2O(k�)2((n + (k + 1)r)(α + β))n+(k+1)r+k�.

The proof of the theorem is analogous to the proof of Theorem 6.4.
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