\(\newcommand{\footnotename}{footnote}\)
\(\def \LWRfootnote {1}\)
\(\newcommand {\footnote }[2][\LWRfootnote ]{{}^{\mathrm {#1}}}\)
\(\newcommand {\footnotemark }[1][\LWRfootnote ]{{}^{\mathrm {#1}}}\)
\(\let \LWRorighspace \hspace \)
\(\renewcommand {\hspace }{\ifstar \LWRorighspace \LWRorighspace }\)
\(\newcommand {\mathnormal }[1]{{#1}}\)
\(\newcommand \ensuremath [1]{#1}\)
\(\newcommand {\LWRframebox }[2][]{\fbox {#2}} \newcommand {\framebox }[1][]{\LWRframebox } \)
\(\newcommand {\setlength }[2]{}\)
\(\newcommand {\addtolength }[2]{}\)
\(\newcommand {\setcounter }[2]{}\)
\(\newcommand {\addtocounter }[2]{}\)
\(\newcommand {\arabic }[1]{}\)
\(\newcommand {\number }[1]{}\)
\(\newcommand {\noalign }[1]{\text {#1}\notag \\}\)
\(\newcommand {\cline }[1]{}\)
\(\newcommand {\directlua }[1]{\text {(directlua)}}\)
\(\newcommand {\luatexdirectlua }[1]{\text {(directlua)}}\)
\(\newcommand {\protect }{}\)
\(\def \LWRabsorbnumber #1 {}\)
\(\def \LWRabsorbquotenumber "#1 {}\)
\(\newcommand {\LWRabsorboption }[1][]{}\)
\(\newcommand {\LWRabsorbtwooptions }[1][]{\LWRabsorboption }\)
\(\def \mathchar {\ifnextchar "\LWRabsorbquotenumber \LWRabsorbnumber }\)
\(\def \mathcode #1={\mathchar }\)
\(\let \delcode \mathcode \)
\(\let \delimiter \mathchar \)
\(\let \LWRref \ref \)
\(\renewcommand {\ref }{\ifstar \LWRref \LWRref }\)
\(\newcommand {\intertext }[1]{\text {#1}\notag \\}\)
\(\let \Hat \hat \)
\(\let \Check \check \)
\(\let \Tilde \tilde \)
\(\let \Acute \acute \)
\(\let \Grave \grave \)
\(\let \Dot \dot \)
\(\let \Ddot \ddot \)
\(\let \Breve \breve \)
\(\let \Bar \bar \)
\(\let \Vec \vec \)
\( \newcommand {\multicolumn }[3]{#3}\)
\(\newcommand {\bz }{\mathbf {0}}\)
\(\newcommand {\bo }{\mathbf {1}}\)
\(\newcommand {\id }{\operatorname {id}}\)
\(\newcommand {\GL }{\operatorname {GL}}\)
\(\newcommand {\im }{\operatorname {im}}\)
\(\newcommand {\rank }{\operatorname {rank}}\)
\(\newcommand {\sol }{\operatorname {sol}}\)
\(\newcommand {\ann }{\operatorname {ann}}\)
\(\newcommand {\rO }{\operatorname {O}}\)
\(\newcommand {\rU }{\operatorname {U}}\)
\(\newcommand {\rSU }{\operatorname {SU}}\)
\(\newcommand {\ev }{\operatorname {ev}}\)
\(\newcommand {\bil }{\operatorname {Bil}}\)
\(\newcommand {\rad }{\operatorname {rad}}\)
\(\newcommand {\Span }[1]{\operatorname {span}\{#1\}}\)
\(\newcommand {\R }{\mathbb {R}}\)
\(\newcommand {\C }{\mathbb {C}}\)
\(\newcommand {\Z }{\mathbb {Z}}\)
\(\newcommand {\F }{\mathbb {F}}\)
\(\newcommand {\Q }{\mathbb {Q}}\)
\(\newcommand {\N }{\mathbb {N}}\)
\(\renewcommand {\P }{\mathbb {P}}\)
\(\newcommand {\I }{\mathrm {I}}\)
\(\newcommand {\half }{\tfrac 12}\)
\(\newcommand {\rel }{\mathrel {\mathrm {rel}}}\)
\(\renewcommand {\vec }[3]{(#1_{#2},\dots ,#1_{#3})}\)
\(\newcommand {\lst }[3]{#1_{#2},\dots ,#1_{#3}}\)
\(\newcommand {\plst }[3]{#1_{#2}+\dots +#1_{#3}}\)
\(\newcommand {\oplst }[3]{#1_{#2}\oplus \dots \oplus #1_{#3}}\)
\(\newcommand {\pplst }[3]{#1_{#2}\times \dots \times #1_{#3}}\)
\(\newcommand {\dlst }[3]{\lst {#1^{*}}{#2}{#3}}\)
\(\newcommand {\dlc }[4]{\lc #1{#2^{*}}#3#4}\)
\(\newcommand {\hmg }[3]{[#1_{#2},\dots ,#1_{#3}]}\)
\(\newcommand {\rng }[2]{#1,\dots ,#2}\)
\(\newcommand {\lc }[4]{#1_{#3}#2_{#3}+\dots +#1_{#4}#2_{#4}}\)
\(\newcommand {\plus }[2]{#1+\dots +#2}\)
\(\newcommand {\set }[1]{\{#1\}}\)
\(\newcommand {\abs }[1]{\lvert #1\rvert }\)
\(\newcommand {\ip }[1]{\langle #1\rangle }\)
\(\newcommand {\norm }[1]{\|#1\|}\)
\(\newcommand {\bx }{\mathbf {x}}\)
\(\newcommand {\be }{\mathbf {e}}\)
\(\newcommand {\bq }{\mathbf {q}}\)
\(\newcommand {\bu }{\mathbf {u}}\)
\(\newcommand {\by }{\mathbf {y}}\)
\(\newcommand {\bv }{\mathbf {v}}\)
\(\newcommand {\E }{\mathbb {E}}\)
\(\newcommand {\cI }{\mathcal {I}}\)
\(\newcommand {\cB }{\mathcal {B}}\)
\(\newcommand {\sub }{\subseteq }\)
\(\newcommand {\st }{\mathrel {|}}\)
\(\newcommand {\bw }[3]{#1\leq #2\leq #3}\)
\(\newcommand {\col }[3]{(#1_{#2})_{#2\in #3}}\)
\(\newcommand {\supp }{\mathrm {supp}}\)
\(\newcommand {\restr }[1]{_{|#1}}\)
\(\newcommand {\re }{\operatorname {Re}}\)
\(\newcommand {\mathllap }[2][]{{#1#2}}\)
\(\newcommand {\mathrlap }[2][]{{#1#2}}\)
\(\newcommand {\mathclap }[2][]{{#1#2}}\)
\(\newcommand {\mathmbox }[1]{#1}\)
\(\newcommand {\clap }[1]{#1}\)
\(\newcommand {\LWRmathmakebox }[2][]{#2}\)
\(\newcommand {\mathmakebox }[1][]{\LWRmathmakebox }\)
\(\newcommand {\cramped }[2][]{{#1#2}}\)
\(\newcommand {\crampedllap }[2][]{{#1#2}}\)
\(\newcommand {\crampedrlap }[2][]{{#1#2}}\)
\(\newcommand {\crampedclap }[2][]{{#1#2}}\)
\(\newenvironment {crampedsubarray}[1]{}{}\)
\(\newcommand {\crampedsubstack }{}\)
\(\newcommand {\smashoperator }[2][]{#2\limits }\)
\(\newcommand {\adjustlimits }{}\)
\(\newcommand {\SwapAboveDisplaySkip }{}\)
\(\require {extpfeil}\)
\(\Newextarrow \xleftrightarrow {10,10}{0x2194}\)
\(\Newextarrow \xLeftarrow {10,10}{0x21d0}\)
\(\Newextarrow \xhookleftarrow {10,10}{0x21a9}\)
\(\Newextarrow \xmapsto {10,10}{0x21a6}\)
\(\Newextarrow \xRightarrow {10,10}{0x21d2}\)
\(\Newextarrow \xLeftrightarrow {10,10}{0x21d4}\)
\(\Newextarrow \xhookrightarrow {10,10}{0x21aa}\)
\(\Newextarrow \xrightharpoondown {10,10}{0x21c1}\)
\(\Newextarrow \xleftharpoondown {10,10}{0x21bd}\)
\(\Newextarrow \xrightleftharpoons {10,10}{0x21cc}\)
\(\Newextarrow \xrightharpoonup {10,10}{0x21c0}\)
\(\Newextarrow \xleftharpoonup {10,10}{0x21bc}\)
\(\Newextarrow \xleftrightharpoons {10,10}{0x21cb}\)
\(\newcommand {\LWRdounderbracket }[3]{\mathinner {\underset {#3}{\underline {\llcorner {#1}\lrcorner }}}}\)
\(\newcommand {\LWRunderbracket }[2][]{\LWRdounderbracket {#2}}\)
\(\newcommand {\underbracket }[1][]{\LWRunderbracket }\)
\(\newcommand {\LWRdooverbracket }[3]{\mathinner {\overset {#3}{\overline {\ulcorner {#1}\urcorner }}}}\)
\(\newcommand {\LWRoverbracket }[2][]{\LWRdooverbracket {#2}}\)
\(\newcommand {\overbracket }[1][]{\LWRoverbracket }\)
\(\newcommand {\LaTeXunderbrace }[1]{\underbrace {#1}}\)
\(\newcommand {\LaTeXoverbrace }[1]{\overbrace {#1}}\)
\(\newenvironment {matrix*}[1][]{\begin {matrix}}{\end {matrix}}\)
\(\newenvironment {pmatrix*}[1][]{\begin {pmatrix}}{\end {pmatrix}}\)
\(\newenvironment {bmatrix*}[1][]{\begin {bmatrix}}{\end {bmatrix}}\)
\(\newenvironment {Bmatrix*}[1][]{\begin {Bmatrix}}{\end {Bmatrix}}\)
\(\newenvironment {vmatrix*}[1][]{\begin {vmatrix}}{\end {vmatrix}}\)
\(\newenvironment {Vmatrix*}[1][]{\begin {Vmatrix}}{\end {Vmatrix}}\)
\(\newenvironment {smallmatrix*}[1][]{\begin {matrix}}{\end {matrix}}\)
\(\newenvironment {psmallmatrix*}[1][]{\begin {pmatrix}}{\end {pmatrix}}\)
\(\newenvironment {bsmallmatrix*}[1][]{\begin {bmatrix}}{\end {bmatrix}}\)
\(\newenvironment {Bsmallmatrix*}[1][]{\begin {Bmatrix}}{\end {Bmatrix}}\)
\(\newenvironment {vsmallmatrix*}[1][]{\begin {vmatrix}}{\end {vmatrix}}\)
\(\newenvironment {Vsmallmatrix*}[1][]{\begin {Vmatrix}}{\end {Vmatrix}}\)
\(\newenvironment {psmallmatrix}[1][]{\begin {pmatrix}}{\end {pmatrix}}\)
\(\newenvironment {bsmallmatrix}[1][]{\begin {bmatrix}}{\end {bmatrix}}\)
\(\newenvironment {Bsmallmatrix}[1][]{\begin {Bmatrix}}{\end {Bmatrix}}\)
\(\newenvironment {vsmallmatrix}[1][]{\begin {vmatrix}}{\end {vmatrix}}\)
\(\newenvironment {Vsmallmatrix}[1][]{\begin {Vmatrix}}{\end {Vmatrix}}\)
\(\newcommand {\LWRmultlined }[1][]{\begin {multline*}}\)
\(\newenvironment {multlined}[1][]{\LWRmultlined }{\end {multline*}}\)
\(\let \LWRorigshoveleft \shoveleft \)
\(\renewcommand {\shoveleft }[1][]{\LWRorigshoveleft }\)
\(\let \LWRorigshoveright \shoveright \)
\(\renewcommand {\shoveright }[1][]{\LWRorigshoveright }\)
\(\newenvironment {dcases}{\begin {cases}}{\end {cases}}\)
\(\newenvironment {dcases*}{\begin {cases}}{\end {cases}}\)
\(\newenvironment {rcases}{\begin {cases}}{\end {cases}}\)
\(\newenvironment {rcases*}{\begin {cases}}{\end {cases}}\)
\(\newenvironment {drcases}{\begin {cases}}{\end {cases}}\)
\(\newenvironment {drcases*}{\begin {cases}}{\end {cases}}\)
\(\newenvironment {cases*}{\begin {cases}}{\end {cases}}\)
\(\newcommand {\MoveEqLeft }[1][]{}\)
\(\def \LWRAboxed #1!|!{\fbox {\(#1\)}&\fbox {\(#2\)}} \newcommand {\Aboxed }[1]{\LWRAboxed #1&&!|!} \)
\( \newcommand {\LWRABLines }[1][\Updownarrow ]{#1 \notag \\}\newcommand {\ArrowBetweenLines }{\ifstar \LWRABLines \LWRABLines } \)
\(\newcommand {\shortintertext }[1]{\text {#1}\notag \\}\)
\(\newcommand {\vdotswithin }[1]{\hspace {.5em}\vdots }\)
\(\newcommand {\LWRshortvdotswithinstar }[1]{\vdots \hspace {.5em} & \\}\)
\(\newcommand {\LWRshortvdotswithinnostar }[1]{& \hspace {.5em}\vdots \\}\)
\(\newcommand {\shortvdotswithin }{\ifstar \LWRshortvdotswithinstar \LWRshortvdotswithinnostar }\)
\(\newcommand {\MTFlushSpaceAbove }{}\)
\(\newcommand {\MTFlushSpaceBelow }{\\}\)
\(\newcommand \lparen {(}\)
\(\newcommand \rparen {)}\)
\(\newcommand {\ordinarycolon }{:}\)
\(\newcommand {\vcentcolon }{\mathrel {\unicode {x2236}}}\)
\(\newcommand \dblcolon {\mathrel {\unicode {x2237}}}\)
\(\newcommand \coloneqq {\mathrel {\unicode {x2236}\!=}}\)
\(\newcommand \Coloneqq {\mathrel {\unicode {x2237}\!=}}\)
\(\newcommand \coloneq {\mathrel {\unicode {x2236}-}}\)
\(\newcommand \Coloneq {\mathrel {\unicode {x2237}-}}\)
\(\newcommand \eqqcolon {\mathrel {=\!\unicode {x2236}}}\)
\(\newcommand \Eqqcolon {\mathrel {=\!\unicode {x2237}}}\)
\(\newcommand \eqcolon {\mathrel {-\unicode {x2236}}}\)
\(\newcommand \Eqcolon {\mathrel {-\unicode {x2237}}}\)
\(\newcommand \colonapprox {\mathrel {\unicode {x2236}\!\approx }}\)
\(\newcommand \Colonapprox {\mathrel {\unicode {x2237}\!\approx }}\)
\(\newcommand \colonsim {\mathrel {\unicode {x2236}\!\sim }}\)
\(\newcommand \Colonsim {\mathrel {\unicode {x2237}\!\sim }}\)
\(\newcommand {\nuparrow }{\mathrel {\cancel {\uparrow }}}\)
\(\newcommand {\ndownarrow }{\mathrel {\cancel {\downarrow }}}\)
\(\newcommand {\bigtimes }{\mathop {\Large \times }\limits }\)
\(\newcommand {\prescript }[3]{{}^{#1}_{#2}#3}\)
\(\newenvironment {lgathered}{\begin {gathered}}{\end {gathered}}\)
\(\newenvironment {rgathered}{\begin {gathered}}{\end {gathered}}\)
\(\newcommand {\splitfrac }[2]{{}^{#1}_{#2}}\)
\(\let \splitdfrac \splitfrac \)
MA22020: Exercise sheet 4
Warmup questions
-
1. Write down matrices \(A\in M_n(\R )\) of the following forms:
-
(a) \(A_1\oplus A_2\oplus A_3\) with each \(A_i\in M_2(\R )\).
-
(b) \(\oplst {A}15\) with each \(A_i\in M_1(\R )\).
-
(c) \(A\in M_3(\R )\) such that \(A\) is not of the form \(\oplst {A}1k\) with \(k>1\).
-
2. Let \(\lst {V}1k\leq V\) and \(\phi _i\in L(V_i)\), \(\bw 1ik\). Suppose that \(V=\oplst {V}1k\) and set \(\phi =\oplst \phi 1k\).
-
(a) If \(U_i\leq V_i\), \(\bw 1ik\), show that the sum \(\plst {U}1k\) is direct.
-
(b) Prove that \(\im \phi =\oplst {\im \phi }1k\).
-
3. In the situation of Question 2, prove:
-
(a) \(m_{\phi _i}\) divides \(m_{\phi }\), for each \(\bw 1ik\).
-
(b) If each \(m_{\phi _i}\) divides \(p\in \F [x]\), then \(p(\phi )=0\).
Thus \(m_{\phi }\) is the monic polynomial of smallest degree divided by each \(m_{\phi _i}\). Otherwise said, \(m_{\phi }\) is the least common multiple of \(m_{\phi _1},\dots ,m_{\phi _k}\).
-
4. Let \(\phi =\phi _A\in L(\C ^3)\) where \(A\) is given by
\(\seteqnumber{0}{}{0}\)
\begin{equation*}
\begin{pmatrix*} 0&0&0\\4&0&0\\0&0&5 \end {pmatrix*}.
\end{equation*}
Homework questions
-
5. Let \(\phi \in L(V)\) be a linear operator on a vector space \(V\).
Prove that \(\im \phi ^{k}\geq \im \phi ^{k+1}\), for all \(k\in \N \). Moreover, if \(\im \phi ^{k}=\im \phi ^{k+1}\) then \(\im \phi ^k=\im \phi ^{k+n}\), for all \(n\in \N \).
-
6. Let \(\phi =\phi _A\in L(\C ^3)\) where \(A\) is given by
\(\seteqnumber{0}{}{0}\)
\begin{equation*}
\begin{pmatrix*}[r] 0&1&-1\\-10&-2&5\\-6&2&1 \end {pmatrix*}.
\end{equation*}
Please hand in at 4W level 1 by NOON on Thursday 28th November
MA22020: Exercise sheet 4—Solutions
-
1. There are a gazillion possibilities.
-
(a)
\(\seteqnumber{0}{}{0}\)
\begin{equation*}
\begin{pmatrix} 1&2&0&0&0&0\\ 2&4&0&0&0&0\\ 0&0&5&6&0&0\\ 0&0&7&8&0&0\\ 0&0&0&0&9&0\\
0&0&0&0&1&2 \end {pmatrix}= \begin{pmatrix} 1&2\\3&4 \end {pmatrix}\oplus \begin{pmatrix} 5&6\\7&8 \end {pmatrix}\oplus \begin{pmatrix} 9&0\\1&2 \end {pmatrix}.
\end{equation*}
-
(b) Any \(5\times 5\) diagonal matrix will do:
\(\seteqnumber{0}{}{0}\)
\begin{equation*}
\begin{pmatrix} \lambda _1&0&0&0&0\\ 0&\lambda _2&0&0&0\\ 0&0&\lambda _3&0&0\\ 0&0&0&\lambda _4&0\\ 0&0&0&0&\lambda _5 \end {pmatrix}=
(\lambda _1)\oplus \dots \oplus (\lambda _5).
\end{equation*}
-
(c) Any block matrix with more than one block will have zeros so
\(\seteqnumber{0}{}{0}\)
\begin{equation*}
A= \begin{pmatrix} 1&1&1\\ 1&1&1\\ 1&1&1 \end {pmatrix}
\end{equation*}
cannot be written \(\oplst {A}1k\) with \(k>1\).
-
2.
-
(a) Let \(u\in \plst {U}1k\) so we can write \(u=\plst {u}1k\), with \(u_i\in U_i\leq V_i\). However, since the sum of the \(V_i\) is direct, there is only one way to write \(u\) as a sum of elements of the \(V_i\) and so, in particular, as a
sum of elements of the \(U_i\). Thus the sum of the \(U_i\) is direct.
-
(b) Let \(v\in \im \phi \) so that \(v=\phi (w)\), for some \(w\in V\). Then, writing \(w=\plst {w}1k\) with each \(w_i\in V_i\), we have
\(\seteqnumber{0}{}{0}\)
\begin{equation*}
v=\phi (w)=\phi _1(w_1)+\dots +\phi _k(w_k)\in \oplst {\im \phi }1k.
\end{equation*}
Thus \(\im \phi \leq \oplst {\im \phi }1k\).
For the converse, let \(v\in \oplst {\im \phi }1k\) so that \(v=\phi _1(w_1)+\dots +\phi _k(w_k)\) with \(w_i\in V_i\), \(\bw 1ik\). Since each \(\phi _i=\phi \restr {V_i}\), this reads
\(\seteqnumber{0}{}{0}\)
\begin{equation*}
v=\phi (w_1)+\dots +\phi (w_k)=\phi (\plst {w}1k)\in \im \phi .
\end{equation*}
Thus \(\oplst {\im \phi }1k\leq \im \phi \) and we are done.
-
3.
-
(a) We have that \(m_{\phi }(\phi )=0\) so that \(0=m_{\phi }(\phi )\restr {V_i}=m_{\phi }(\phi _i)\). It follows that \(m_{\phi _i}\) divides \(m_{\phi }\).
-
(b) Since \(m_{\phi _i}\) divides \(p\), \(p(\phi _i)=0\) for each \(i\). But then
\(\seteqnumber{0}{}{0}\)
\begin{equation*}
p(\phi )=p(\phi _1)\oplus \dots \oplus p(\phi _k)=0
\end{equation*}
so that \(m_{\phi }\) divides \(p\).
-
4.
-
(a) Since \(A\) is lower triangular, we immediately see that \(\Delta _{\phi }=\Delta _A=x^{2}(x-5)\). So the only possibilities for \(m_{\phi }=x(x-5)\) and \(x^2(x-5)\). However
\(\seteqnumber{0}{}{0}\)
\begin{equation*}
A-5I_3= \begin{pmatrix*}[r] -5&0&0\\4&-5&0\\0&0&0 \end {pmatrix*}
\end{equation*}
so that
\(\seteqnumber{0}{}{0}\)
\begin{equation*}
A(A-5I_3)= \begin{pmatrix*}[r] 0&0&0\\-20&0&0\\0&0&0 \end {pmatrix*}\neq 0.
\end{equation*}
We conclude that \(m_{\phi }=x^2(x-5)\).
Alternatively, \(A\) is block diagonal:
\(\seteqnumber{0}{}{0}\)
\begin{equation*}
A= \begin{pmatrix} 0&0\\4&0 \end {pmatrix}\oplus \begin{pmatrix} 5 \end {pmatrix}
\end{equation*}
and the summands clearly have minimum polynomials \(x^2\) and \(x-5\) respectively. It follows question 3 that \(m_{\phi }=x^2(x-5)\).
-
(b) We have \(E_{\phi }(5)=G_{\phi }(5)=\Span {(0,0,1)}\), \(E_{\phi }(0)=\ker A=\Span {(0,1,0)}\) and finally \(G_{\phi }(0)=\ker A^2=\Span {(1,0,0),(0,1,0)}\) since
\(\seteqnumber{0}{}{0}\)
\begin{equation*}
A^{2}= \begin{pmatrix} 0&0&0\\ 0&0&0\\ 0&0&25 \end {pmatrix}.
\end{equation*}
-
5. Let \(v\in \im \phi ^{k+1}\) so that \(v=\phi ^{k+1}(w)\), for some \(w\in V\). Then \(v=\phi ^k(\phi (w))\in \im \phi ^k\). Thus \(\im \phi ^{k}\geq \im \phi ^{k+1}\).
Suppose now that \(\im \phi ^k=\im \phi ^{k+1}\). We prove that \(\im \phi ^k=\im \phi ^{k+n}\) by induction on \(n\). We are given that this holds for \(n=1\) so we suppose this holds for some \(n\) (\(\im \phi ^k=\im \phi ^{k+n}\))
and prove it then holds for \(n+1\). Thus, let \(v\in \im \phi ^{k}=\im \phi ^{k+1}\) so that \(v=\phi (\phi ^k(w))\), for some \(w\in V\). Then \(\phi ^k(w)\in \im \phi ^k=\im \phi ^{k+n}\), by the induction hypothesis, so that
\(\phi ^k(w)=\phi ^{k+n}(u)\), some \(u\in V\), whence \(v=\phi (\phi ^{k+n}(u))=\phi ^{k+n+1}(u)\in \im \phi ^{k+n+1}\). We conclude that \(\im \phi ^k\leq \im \phi ^{k+n+1}\). The converse inclusion always holds so we have
equality. Induction now bakes the cake.
-
6.
-
(a) We compute the characteristic polynomial: \(\Delta _{\phi }=\Delta _A=-x^{3}-x^{2}+8x+12=(3-x)(x+2)^{2}\). Consequently, \(m_{\phi }\) is either \((x-3)(x+2)^{2}\) or \((x-3)(x+2)\). We try the latter:
\(\seteqnumber{0}{}{0}\)
\begin{align*}
A-3I_3&= \begin{pmatrix*}[r] -3&1&-1\\-10&-5&5\\-6&2&-2 \end {pmatrix*}& A+2I_{3}&= \begin{pmatrix*}[r] 2&1&-1\\-10&0&5\\-6&2&3 \end {pmatrix*}
\end{align*}
so that
\(\seteqnumber{0}{}{0}\)
\begin{equation*}
(A-3I_3)(A+2I_3)= \begin{pmatrix*}[r] -10&-5&5\\0&0&0\\-20&-10&10 \end {pmatrix*}\neq 0.
\end{equation*}
Thus \(m_{\phi }=m_A=(x-3)(x+2)^2\).
-
(b) We deduce that \(G_{\phi }(3)=E_{\phi }(3)=\ker (A-3I_3)\) while \(E_{\phi }(-2)=\ker (A+2I_3)\) and \(G_{\phi }(-2)=\ker (A+2I_3)^2\). We compute these: an eigenvector \(x\) with eigenvalue 3 solves
\(\seteqnumber{0}{}{0}\)
\begin{align*}
-3x_1+x_3-x_3&=0\\ -2x_1-x_2+x_3&=0
\end{align*}
which rapidly yields \(x_1=0\) and \(x_2=x_3\). Thus the \(3\)-eigenspace is spanned by \((0,1,1)\).
An eigenvector \(x\) with eigenvalue \(2\) solves
\(\seteqnumber{0}{}{0}\)
\begin{align*}
2x_1+x_2-x_3&=0\\ -2x_1+0x_2+x_3&=0
\end{align*}
giving \(x_2=0\) and \(2x_1=x_3\) so the eigenspace is spanned by \((1,0,2)\).
Finally,
\(\seteqnumber{0}{}{0}\)
\begin{equation*}
(A+2I_3)^{2}= \begin{pmatrix*}[r] 0&0&0\\-50&0&25\\-50&0&25 \end {pmatrix*}
\end{equation*}
with kernel spanned by \((1,0,2)\) and \((0,1,0)\).
To summarise:
\(\seteqnumber{0}{}{0}\)
\begin{align*}
E_{\phi }(3)=G_{\phi }(3)&=\Span {(0,1,1)}\\ E_{\phi }(-2)&=\Span {(1,0,2)}\\ G_{\phi }(-2)&=\Span {(1,0,2),(0,1,0)}.
\end{align*}