\(\newcommand{\footnotename}{footnote}\)
\(\def \LWRfootnote {1}\)
\(\newcommand {\footnote }[2][\LWRfootnote ]{{}^{\mathrm {#1}}}\)
\(\newcommand {\footnotemark }[1][\LWRfootnote ]{{}^{\mathrm {#1}}}\)
\(\let \LWRorighspace \hspace \)
\(\renewcommand {\hspace }{\ifstar \LWRorighspace \LWRorighspace }\)
\(\newcommand {\mathnormal }[1]{{#1}}\)
\(\newcommand \ensuremath [1]{#1}\)
\(\newcommand {\LWRframebox }[2][]{\fbox {#2}} \newcommand {\framebox }[1][]{\LWRframebox } \)
\(\newcommand {\setlength }[2]{}\)
\(\newcommand {\addtolength }[2]{}\)
\(\newcommand {\setcounter }[2]{}\)
\(\newcommand {\addtocounter }[2]{}\)
\(\newcommand {\arabic }[1]{}\)
\(\newcommand {\number }[1]{}\)
\(\newcommand {\noalign }[1]{\text {#1}\notag \\}\)
\(\newcommand {\cline }[1]{}\)
\(\newcommand {\directlua }[1]{\text {(directlua)}}\)
\(\newcommand {\luatexdirectlua }[1]{\text {(directlua)}}\)
\(\newcommand {\protect }{}\)
\(\def \LWRabsorbnumber #1 {}\)
\(\def \LWRabsorbquotenumber "#1 {}\)
\(\newcommand {\LWRabsorboption }[1][]{}\)
\(\newcommand {\LWRabsorbtwooptions }[1][]{\LWRabsorboption }\)
\(\def \mathchar {\ifnextchar "\LWRabsorbquotenumber \LWRabsorbnumber }\)
\(\def \mathcode #1={\mathchar }\)
\(\let \delcode \mathcode \)
\(\let \delimiter \mathchar \)
\(\let \LWRref \ref \)
\(\renewcommand {\ref }{\ifstar \LWRref \LWRref }\)
\(\newcommand {\intertext }[1]{\text {#1}\notag \\}\)
\(\let \Hat \hat \)
\(\let \Check \check \)
\(\let \Tilde \tilde \)
\(\let \Acute \acute \)
\(\let \Grave \grave \)
\(\let \Dot \dot \)
\(\let \Ddot \ddot \)
\(\let \Breve \breve \)
\(\let \Bar \bar \)
\(\let \Vec \vec \)
\( \newcommand {\multicolumn }[3]{#3}\)
\(\newcommand {\bz }{\mathbf {0}}\)
\(\newcommand {\bo }{\mathbf {1}}\)
\(\newcommand {\id }{\operatorname {id}}\)
\(\newcommand {\GL }{\operatorname {GL}}\)
\(\newcommand {\im }{\operatorname {im}}\)
\(\newcommand {\rank }{\operatorname {rank}}\)
\(\newcommand {\sol }{\operatorname {sol}}\)
\(\newcommand {\ann }{\operatorname {ann}}\)
\(\newcommand {\rO }{\operatorname {O}}\)
\(\newcommand {\rU }{\operatorname {U}}\)
\(\newcommand {\rSU }{\operatorname {SU}}\)
\(\newcommand {\ev }{\operatorname {ev}}\)
\(\newcommand {\bil }{\operatorname {Bil}}\)
\(\newcommand {\rad }{\operatorname {rad}}\)
\(\newcommand {\Span }[1]{\operatorname {span}\{#1\}}\)
\(\newcommand {\R }{\mathbb {R}}\)
\(\newcommand {\C }{\mathbb {C}}\)
\(\newcommand {\Z }{\mathbb {Z}}\)
\(\newcommand {\F }{\mathbb {F}}\)
\(\newcommand {\Q }{\mathbb {Q}}\)
\(\newcommand {\N }{\mathbb {N}}\)
\(\renewcommand {\P }{\mathbb {P}}\)
\(\newcommand {\I }{\mathrm {I}}\)
\(\newcommand {\half }{\tfrac 12}\)
\(\newcommand {\rel }{\mathrel {\mathrm {rel}}}\)
\(\renewcommand {\vec }[3]{(#1_{#2},\dots ,#1_{#3})}\)
\(\newcommand {\lst }[3]{#1_{#2},\dots ,#1_{#3}}\)
\(\newcommand {\plst }[3]{#1_{#2}+\dots +#1_{#3}}\)
\(\newcommand {\oplst }[3]{#1_{#2}\oplus \dots \oplus #1_{#3}}\)
\(\newcommand {\pplst }[3]{#1_{#2}\times \dots \times #1_{#3}}\)
\(\newcommand {\dlst }[3]{\lst {#1^{*}}{#2}{#3}}\)
\(\newcommand {\dlc }[4]{\lc #1{#2^{*}}#3#4}\)
\(\newcommand {\hmg }[3]{[#1_{#2},\dots ,#1_{#3}]}\)
\(\newcommand {\rng }[2]{#1,\dots ,#2}\)
\(\newcommand {\lc }[4]{#1_{#3}#2_{#3}+\dots +#1_{#4}#2_{#4}}\)
\(\newcommand {\plus }[2]{#1+\dots +#2}\)
\(\newcommand {\set }[1]{\{#1\}}\)
\(\newcommand {\abs }[1]{\lvert #1\rvert }\)
\(\newcommand {\ip }[1]{\langle #1\rangle }\)
\(\newcommand {\norm }[1]{\|#1\|}\)
\(\newcommand {\bx }{\mathbf {x}}\)
\(\newcommand {\be }{\mathbf {e}}\)
\(\newcommand {\bq }{\mathbf {q}}\)
\(\newcommand {\bu }{\mathbf {u}}\)
\(\newcommand {\by }{\mathbf {y}}\)
\(\newcommand {\bv }{\mathbf {v}}\)
\(\newcommand {\E }{\mathbb {E}}\)
\(\newcommand {\cI }{\mathcal {I}}\)
\(\newcommand {\cB }{\mathcal {B}}\)
\(\newcommand {\sub }{\subseteq }\)
\(\newcommand {\st }{\mathrel {|}}\)
\(\newcommand {\bw }[3]{#1\leq #2\leq #3}\)
\(\newcommand {\col }[3]{(#1_{#2})_{#2\in #3}}\)
\(\newcommand {\supp }{\mathrm {supp}}\)
\(\newcommand {\restr }[1]{_{|#1}}\)
\(\newcommand {\re }{\operatorname {Re}}\)
\(\newcommand {\mathllap }[2][]{{#1#2}}\)
\(\newcommand {\mathrlap }[2][]{{#1#2}}\)
\(\newcommand {\mathclap }[2][]{{#1#2}}\)
\(\newcommand {\mathmbox }[1]{#1}\)
\(\newcommand {\clap }[1]{#1}\)
\(\newcommand {\LWRmathmakebox }[2][]{#2}\)
\(\newcommand {\mathmakebox }[1][]{\LWRmathmakebox }\)
\(\newcommand {\cramped }[2][]{{#1#2}}\)
\(\newcommand {\crampedllap }[2][]{{#1#2}}\)
\(\newcommand {\crampedrlap }[2][]{{#1#2}}\)
\(\newcommand {\crampedclap }[2][]{{#1#2}}\)
\(\newenvironment {crampedsubarray}[1]{}{}\)
\(\newcommand {\crampedsubstack }{}\)
\(\newcommand {\smashoperator }[2][]{#2\limits }\)
\(\newcommand {\adjustlimits }{}\)
\(\newcommand {\SwapAboveDisplaySkip }{}\)
\(\require {extpfeil}\)
\(\Newextarrow \xleftrightarrow {10,10}{0x2194}\)
\(\Newextarrow \xLeftarrow {10,10}{0x21d0}\)
\(\Newextarrow \xhookleftarrow {10,10}{0x21a9}\)
\(\Newextarrow \xmapsto {10,10}{0x21a6}\)
\(\Newextarrow \xRightarrow {10,10}{0x21d2}\)
\(\Newextarrow \xLeftrightarrow {10,10}{0x21d4}\)
\(\Newextarrow \xhookrightarrow {10,10}{0x21aa}\)
\(\Newextarrow \xrightharpoondown {10,10}{0x21c1}\)
\(\Newextarrow \xleftharpoondown {10,10}{0x21bd}\)
\(\Newextarrow \xrightleftharpoons {10,10}{0x21cc}\)
\(\Newextarrow \xrightharpoonup {10,10}{0x21c0}\)
\(\Newextarrow \xleftharpoonup {10,10}{0x21bc}\)
\(\Newextarrow \xleftrightharpoons {10,10}{0x21cb}\)
\(\newcommand {\LWRdounderbracket }[3]{\mathinner {\underset {#3}{\underline {\llcorner {#1}\lrcorner }}}}\)
\(\newcommand {\LWRunderbracket }[2][]{\LWRdounderbracket {#2}}\)
\(\newcommand {\underbracket }[1][]{\LWRunderbracket }\)
\(\newcommand {\LWRdooverbracket }[3]{\mathinner {\overset {#3}{\overline {\ulcorner {#1}\urcorner }}}}\)
\(\newcommand {\LWRoverbracket }[2][]{\LWRdooverbracket {#2}}\)
\(\newcommand {\overbracket }[1][]{\LWRoverbracket }\)
\(\newcommand {\LaTeXunderbrace }[1]{\underbrace {#1}}\)
\(\newcommand {\LaTeXoverbrace }[1]{\overbrace {#1}}\)
\(\newenvironment {matrix*}[1][]{\begin {matrix}}{\end {matrix}}\)
\(\newenvironment {pmatrix*}[1][]{\begin {pmatrix}}{\end {pmatrix}}\)
\(\newenvironment {bmatrix*}[1][]{\begin {bmatrix}}{\end {bmatrix}}\)
\(\newenvironment {Bmatrix*}[1][]{\begin {Bmatrix}}{\end {Bmatrix}}\)
\(\newenvironment {vmatrix*}[1][]{\begin {vmatrix}}{\end {vmatrix}}\)
\(\newenvironment {Vmatrix*}[1][]{\begin {Vmatrix}}{\end {Vmatrix}}\)
\(\newenvironment {smallmatrix*}[1][]{\begin {matrix}}{\end {matrix}}\)
\(\newenvironment {psmallmatrix*}[1][]{\begin {pmatrix}}{\end {pmatrix}}\)
\(\newenvironment {bsmallmatrix*}[1][]{\begin {bmatrix}}{\end {bmatrix}}\)
\(\newenvironment {Bsmallmatrix*}[1][]{\begin {Bmatrix}}{\end {Bmatrix}}\)
\(\newenvironment {vsmallmatrix*}[1][]{\begin {vmatrix}}{\end {vmatrix}}\)
\(\newenvironment {Vsmallmatrix*}[1][]{\begin {Vmatrix}}{\end {Vmatrix}}\)
\(\newenvironment {psmallmatrix}[1][]{\begin {pmatrix}}{\end {pmatrix}}\)
\(\newenvironment {bsmallmatrix}[1][]{\begin {bmatrix}}{\end {bmatrix}}\)
\(\newenvironment {Bsmallmatrix}[1][]{\begin {Bmatrix}}{\end {Bmatrix}}\)
\(\newenvironment {vsmallmatrix}[1][]{\begin {vmatrix}}{\end {vmatrix}}\)
\(\newenvironment {Vsmallmatrix}[1][]{\begin {Vmatrix}}{\end {Vmatrix}}\)
\(\newcommand {\LWRmultlined }[1][]{\begin {multline*}}\)
\(\newenvironment {multlined}[1][]{\LWRmultlined }{\end {multline*}}\)
\(\let \LWRorigshoveleft \shoveleft \)
\(\renewcommand {\shoveleft }[1][]{\LWRorigshoveleft }\)
\(\let \LWRorigshoveright \shoveright \)
\(\renewcommand {\shoveright }[1][]{\LWRorigshoveright }\)
\(\newenvironment {dcases}{\begin {cases}}{\end {cases}}\)
\(\newenvironment {dcases*}{\begin {cases}}{\end {cases}}\)
\(\newenvironment {rcases}{\begin {cases}}{\end {cases}}\)
\(\newenvironment {rcases*}{\begin {cases}}{\end {cases}}\)
\(\newenvironment {drcases}{\begin {cases}}{\end {cases}}\)
\(\newenvironment {drcases*}{\begin {cases}}{\end {cases}}\)
\(\newenvironment {cases*}{\begin {cases}}{\end {cases}}\)
\(\newcommand {\MoveEqLeft }[1][]{}\)
\(\def \LWRAboxed #1!|!{\fbox {\(#1\)}&\fbox {\(#2\)}} \newcommand {\Aboxed }[1]{\LWRAboxed #1&&!|!} \)
\( \newcommand {\LWRABLines }[1][\Updownarrow ]{#1 \notag \\}\newcommand {\ArrowBetweenLines }{\ifstar \LWRABLines \LWRABLines } \)
\(\newcommand {\shortintertext }[1]{\text {#1}\notag \\}\)
\(\newcommand {\vdotswithin }[1]{\hspace {.5em}\vdots }\)
\(\newcommand {\LWRshortvdotswithinstar }[1]{\vdots \hspace {.5em} & \\}\)
\(\newcommand {\LWRshortvdotswithinnostar }[1]{& \hspace {.5em}\vdots \\}\)
\(\newcommand {\shortvdotswithin }{\ifstar \LWRshortvdotswithinstar \LWRshortvdotswithinnostar }\)
\(\newcommand {\MTFlushSpaceAbove }{}\)
\(\newcommand {\MTFlushSpaceBelow }{\\}\)
\(\newcommand \lparen {(}\)
\(\newcommand \rparen {)}\)
\(\newcommand {\ordinarycolon }{:}\)
\(\newcommand {\vcentcolon }{\mathrel {\unicode {x2236}}}\)
\(\newcommand \dblcolon {\mathrel {\unicode {x2237}}}\)
\(\newcommand \coloneqq {\mathrel {\unicode {x2236}\!=}}\)
\(\newcommand \Coloneqq {\mathrel {\unicode {x2237}\!=}}\)
\(\newcommand \coloneq {\mathrel {\unicode {x2236}-}}\)
\(\newcommand \Coloneq {\mathrel {\unicode {x2237}-}}\)
\(\newcommand \eqqcolon {\mathrel {=\!\unicode {x2236}}}\)
\(\newcommand \Eqqcolon {\mathrel {=\!\unicode {x2237}}}\)
\(\newcommand \eqcolon {\mathrel {-\unicode {x2236}}}\)
\(\newcommand \Eqcolon {\mathrel {-\unicode {x2237}}}\)
\(\newcommand \colonapprox {\mathrel {\unicode {x2236}\!\approx }}\)
\(\newcommand \Colonapprox {\mathrel {\unicode {x2237}\!\approx }}\)
\(\newcommand \colonsim {\mathrel {\unicode {x2236}\!\sim }}\)
\(\newcommand \Colonsim {\mathrel {\unicode {x2237}\!\sim }}\)
\(\newcommand {\nuparrow }{\mathrel {\cancel {\uparrow }}}\)
\(\newcommand {\ndownarrow }{\mathrel {\cancel {\downarrow }}}\)
\(\newcommand {\bigtimes }{\mathop {\Large \times }\limits }\)
\(\newcommand {\prescript }[3]{{}^{#1}_{#2}#3}\)
\(\newenvironment {lgathered}{\begin {gathered}}{\end {gathered}}\)
\(\newenvironment {rgathered}{\begin {gathered}}{\end {gathered}}\)
\(\newcommand {\splitfrac }[2]{{}^{#1}_{#2}}\)
\(\let \splitdfrac \splitfrac \)
MA22020: Exercise sheet 3
Warmup questions
-
1. Let \(p,q\in \R [x]\) be given by \(p=x^2-2x-3\), \(q=x^3-2x^2+2x-5\).
Let \(A\in M_2(\R )\) and \(B\in M_3(\R )\) be given by
\(\seteqnumber{0}{}{0}\)
\begin{equation*}
A= \begin{pmatrix*}[r] 1&2\\2&1 \end {pmatrix*}\qquad B= \begin{pmatrix*}[r] 1&2&1\\-2&0&1\\2&1&1 \end {pmatrix*}.
\end{equation*}
Compute \(p(A),p(B),q(A),q(B)\).
-
2. Compute the characteristic polynomials of \(A\) and \(B\), from question 1.
What do you notice?
-
3. Let \(\F =\Z _2\), the field of two elements and let \(p=x^2+x\in \F [x]\).
Show that \(p(t)=0\), for all \(t\in \F \).
-
4. Let \(\phi \in L(V)\) be an operator on a finite-dimensional vector space over \(\F \). Show that \(\phi \) is invertible if and only if \(m_{\phi }\) has non-zero constant term.
Homework questions
-
5. Compute the minimum polynomial of \(A\in M_5(\R )\) given by
\(\seteqnumber{0}{}{0}\)
\begin{equation*}
\begin{pmatrix*}[r] 0&0&0&0&-3\\1&0&0&0&6\\0&1&0&0&0\\0&0&1&0&0\\0&0&0&1&0 \end {pmatrix*}.
\end{equation*}
-
6. Compute the characteristic and minimum polynomials of
\(\seteqnumber{0}{}{0}\)
\begin{equation*}
A= \begin{pmatrix*}[r] 1&-5&-7\\1&4&2\\0&1&4 \end {pmatrix*}.
\end{equation*}
Please hand in at 4W level 1 by NOON on Thursday 14th November
MA22020: Exercise sheet 3—Solutions
-
1. We just compute:
\(\seteqnumber{0}{}{0}\)
\begin{equation*}
A^{2}= \begin{pmatrix*}[r] 5&4\\4&5 \end {pmatrix*},\qquad A^3= \begin{pmatrix*}[r] 13&14\\14&13 \end {pmatrix*}
\end{equation*}
so that
\(\seteqnumber{0}{}{0}\)
\begin{align*}
p(A)&=A^2-2A-3I_2=\begin{pmatrix*}[r] 5&4\\4&5 \end {pmatrix*}-2\begin{pmatrix*}[r] 1&2\\2&1 \end {pmatrix*}-3 \begin{pmatrix*}[r] 1&0\\0&1 \end {pmatrix*}= \begin{pmatrix*}[r]
0&0\\0&0 \end {pmatrix*}\\ q(A)&=A^{3}-2A^2+2A-5I_{3}=\begin{pmatrix*}[r] 13&14\\14&13 \end {pmatrix*}-2\begin{pmatrix*}[r] 5&4\\4&5 \end {pmatrix*}+2\begin{pmatrix*}[r] 1&2\\2&1
\end {pmatrix*}-5\begin{pmatrix*}[r] 1&0\\0&1 \end {pmatrix*}= \begin{pmatrix*}[r] 0&10\\10&0 \end {pmatrix*}.
\end{align*}
Similarly,
\(\seteqnumber{0}{}{0}\)
\begin{align*}
p(B)&= \begin{pmatrix*}[r] -6&-1&2\\4&-6&-3\\-2&3&-1 \end {pmatrix*},\\ q(B)&= \begin{pmatrix*}[r] 0&0&0\\ 0&0&0\\ 0&0&0 \end {pmatrix*}.
\end{align*}
-
2. Again, we just compute:
\(\seteqnumber{0}{}{0}\)
\begin{equation*}
\Delta _A= \begin{vmatrix} 1-x&2\\2&1-x \end {vmatrix}=(1-x)^2-4=x^2-2x-3.
\end{equation*}
Similarly,
\(\seteqnumber{0}{}{0}\)
\begin{equation*}
\begin{split} \Delta _B= \begin{vmatrix} 1-x&2&1\\-2&-x&1\\2&1&1-x \end {vmatrix}=(1-x)\bigl (x(x-1)-1\bigr ) -2\bigl (2(x-1)-2\bigr ) +(-2+2x)\\ =(-x^3+2x^2-1)-4x+8+2x-2=-x^3+2x^2-2x+5.
\end {split}
\end{equation*}
We notice that, with \(p,q\) as in question 1, \(p=\Delta _A\) and \(q=-\Delta _B\) and so, again from question 1,
\(\seteqnumber{0}{}{0}\)
\begin{equation*}
\Delta _A(A)=\Delta _B(B)=0.
\end{equation*}
This is the Cayley–Hamilton theorem in action.
-
3. We recall that \(\Z _2=\set {\bz ,\bo }\) with addition and multiplication given by
\(\seteqnumber{0}{}{0}\)
\begin{align*}
\bz &=\bz +\bz =\bo +\bo &\bo &=\bz +\bo =\bo +\bz \\ \bz &=\bz \bz =\bz \bo =\bo \bz &\bo &=\bo \bo .
\end{align*}
We immediately conclude that \(\bo ^{2}+\bo =\bz =\bz ^2+\bz \) so that \(p(t)=\bz \), for both \(t\in \F \).
-
4. \(\phi \) is invertible if and only if \(\phi \) is injective if and only if zero is not an eigenvalue if and only if (thanks to the corollary to the Cayley–Hamilton theorem) zero is not a root of \(m_{\phi }\) if and only if \(m_{\phi }\) has non-zero
constant term.
-
5. Let us compute the first few powers of \(A\):
\(\seteqnumber{0}{}{0}\)
\begin{gather*}
A^2= \begin{pmatrix*}[r] 0&0&0&-3&0\\0&0&0&6&-3\\1&0&0&0&6\\0&1&0&0&0\\0&0&1&0&0 \end {pmatrix*}\quad A^3= \begin{pmatrix*}[r]
0&0&-3&0&0\\0&0&6&-3&0\\0&0&0&6&-3\\1&0&0&0&6\\0&1&0&0&0 \end {pmatrix*}\quad A^4= \begin{pmatrix*}[r]
0&-3&0&0&0\\0&6&-3&0&0\\0&0&6&-3&0\\0&0&0&6&-3\\1&0&0&0&6 \end {pmatrix*}\\ A^{5}= \begin{pmatrix*}[r]
-3&0&0&0&-18\\6&-3&0&0&36\\0&6&-3&0&0\\0&0&6&-3&0\\0&0&0&6&-3 \end {pmatrix*}
\end{gather*}
Stare at the top row to see that there can be no monic polynomial \(p=a_0\plus {}{x^{k}}\) with \(k\leq 4\) with \(p(A)=0\): the \(-3\) on the top row of the leading term would give \(a_0\plus 0{a_{k-1}}0-3=0\). On the other hand, we
readily see that \(A^{5}-6A+3I_{5}=0\) so that \(m_A=x^5-6x+3\).
-
6. We compute the characteristic polynomial of \(A\) to be
\(\seteqnumber{0}{}{0}\)
\begin{equation*}
\Delta _A=-x^3+9x^2-27x+27=-(x-3)^3.
\end{equation*}
We learn from the Cayley–Hamilton theorem that \(m_A=(x-3)^k\), for some \(k\) with \(\bw {k}13\). Clearly \(k=1\) is out, since \(A\) is not diagonal, so we try \(k=2\):
\(\seteqnumber{0}{}{0}\)
\begin{equation*}
(A-3I)^2= \begin{pmatrix*}[r] -2&-5&-7\\1&1&2\\0&1&1 \end {pmatrix*} \begin{pmatrix*}[r] -2&-5&-7\\1&1&2\\0&1&1 \end {pmatrix*} = \begin{pmatrix*}[r]
-1&-2&-3\\ -1&-2&-3\\ 1&2&3 \end {pmatrix*},
\end{equation*}
which is non-zero. This means we must have \(m_A=(x-3)^3\).