Names of the members (past and present) of the Bath 2D Crystals group are in bold.

[31] D. J. Leech, J. J. P. Thompson, M. Mucha-Kruczyński, Negative differential resistance in Van der Waals heterostructures due to moiré-induced spectral reconstruction, submitted to Physical Review Applied (preprint available at: arXiv:1802.08100).

[30] C. Chen, J. Avila, H. Arezki, V. L. Nguyen, J. Shen, M. Mucha-Kruczyński, F. Yao, M. Boutchich, Y. Chen, Y. H. Lee, and M. C. Asensio, Large local lattice expansion in graphene adlayers grown on copper, Nature Materials 17, 450 (2018).

[29] S. M. Gunasekera, D. Wolverson, L. S. Hart, and M. Mucha-Kruczyński, Electronic band structure of rhenium dichalcogenides, Journal of Electronic Materials (preprint available at: arXiv:1801.02933).

[28] A. García-Ruiz, M. Mucha-Kruczyński, and V. I. Fal'ko, Superconductivity-induced features in electronic Raman spectrum of monolayer graphene, Physical Review B 97, 155405 (2018) (preprint available at: arXiv:1712.09459).

[27] C. Chen, J. Avila, S. Wang, Y. Wang, M. Mucha-Kruczynski, C. Shen, R. Yang, B. Nosarzewski, T. P. Devereaux, G. Zhang, and M. C. Asensio, Emergence of interfacial polarons from electron-phonon coupling in graphene/h-BN van der Waals heterostructures, Nano Letters 18, 1082 (2018) (preprint available at: arXiv:1707.00184).

[26] J. Jung, E. Laksono, A. M. DaSilva, A. H. MacDonald, M. Mucha-Kruczynski, and S. Adam, Moiré bands model and band gaps of graphene on hexagonal boron nitride, Physical Review B 96, 085442 (2017) (preprint available at: arXiv:1706.06016).

[25] L. S. Hart, J. L. Webb, S. Dale, S. J. Bending, M. Mucha-Kruczyński, D. Wolverson, C. Chen, J. Avila, and M.-C. Asensio, Electronic band structure and van der Waals coupling of ReSe2 revealed by high-resolution angle-resolved photoemission spectroscopy, Scientific Reports 7, 5145 (2017) (preprint available at: arXiv:1704.00175).

[24] D. J. Leech and M. Mucha-Kruczyński, Controlled formation of isolated miniband in bilayer graphene on almost commensurate 3x3 substrate, Physical Review B 94, 165437 (2016) (preprint available at: arXiv:1607.03710).

[23] X. Chen, J. R. Wallbank, M. Mucha-Kruczyński, E. McCann, and V. I. Fal'ko, Zero-energy modes and valley asymmetry in the Hofstadter spectrum of bilayer graphene van der Waals heterostructures with hBN, Physical Review B 94, 045442 (2016) (preprint available at: arXiv:1603.02035).

[22] M. Mucha-Kruczyński, J. R. Wallbank, and V. I. Fal'ko, Moiré miniband features in the angle-resolved photoemission spectra of graphene/hBN heterostructures, Physical Review B 93, 085409 (2016) (preprint available at: arXiv:1511.00880).

[21] A. Varlet, M. Mucha-Kruczyński, D. Bischoff, P. Simonet, T. Taniguchi, K. Watanabe, V. I. Fal'ko, T. Ihn, and K. Ensslin, Tunable Fermi surface topology and Lifshitz transition in bilayer graphene, Synthetic Metals 210, 19 (2015) (preprint available at: arXiv:1508.02922).

[20] D. S. L. Abergel and M. Mucha-Kruczyński, Infrared absorption of closely aligned heterostructures of monolayer and bilayer graphene with hexagonal boron nitride, Physical Review B 92, 115430 (2015) (preprint available at: arXiv:1507.03813).

[19] J. R. Wallbank, M. Mucha-Kruczyński, X. Chen, and V. I. Fal'ko, Moiré superlattice effects in graphene/boron-nitride van der Waals heterostructures, Annalen der Physik 527, 359 (2015) (preprint available at: arXiv:1411.1235).

[18] D. A. Cosma, M. Mucha-Kruczyński, H. Schomerus, and V. I. Fal'ko, Strain-induced modifications of transport in gated graphene nanoribbons, Physical Review B 90, 245409 (2014) (preprint available at: arXiv:1409.6666).

[17] A. Varlet, D. Bischoff, P. Simonet, K. Watanabe, T. Taniguchi, T. Ihn, K. Ensslin, M. Mucha-Kruczyński, and V. I. Fal'ko, Anomalous Sequence of Quantum Hall Liquids Revealing a Tunable Lifshitz Transition in Bilayer Graphene, Physical Review Letters 113, 116602 (2014) (preprint available at: arXiv:1403.3244).

[16] X. Chen, J. R. Wallbank, A. A. Patel, M. Mucha-Kruczyński, E. McCann, and V. I. Fal'ko, Dirac edges of fractal magnetic minibands in graphene with hexagonal moiré superlattices, Physical Review B 89, 075401 (2014) (preprint available at: arXiv:1310.8578).

[15] D. S. L. Abergel, J. R. Wallbank, X. Chen, M. Mucha-Kruczyński, and V. I. Fal'ko, Infrared absorption by graphene-hBN heterostructures, New Journal of Physics 15, 123009 (2013) (preprint available at: arXiv:1309.2292).

[14] M. Mucha-Kruczyński, J. R. Wallbank, and V. I. Fal'ko, Heterostructure bilayer graphene-hBN: Interplay between misalignment, interlayer asymmetry, and trigonal warping, Physical Review B 88, 205418 (2013) (preprint available at: arXiv:1304.1734).

[13] J. R. Wallbank, M. Mucha-Kruczyński, and V. I. Fal'ko, Moiré minibands in graphene heterostructures with almost commensurate 3x3 hexagonal crystals, Physical Review B 88, 155415 (2013) (preprint available at: arXiv:1306.4341).

[12] D. A. Gradinar, M. Mucha-Kruczyński, H. Schomerus, and V. I. Fal'ko, Transport signatures of pseudo-magnetic Landau levels in strained graphene ribbons, Physical Review Letters 110, 266801 (2013) (preprint available at: arXiv:1303.3140).

[11] L. A. Ponomarenko, R. V. Gorbachev, G. L. Yu, D. C. Elias, R. Jalil, A. A. Patel, A. Mishchenko, A. S. Mayorov, C. R. Woods, J. R. Wallbank, M. Mucha-Kruczyński, B. A. Piot, M. Potemski, I. V. Grigorieva, K. S. Novoselov, F. Guinea, V. I. Fal'ko, and A. K. Geim, Cloning of Dirac fermions in graphene superlattices, Nature 497, 594 (2013) (preprint available at: arXiv:1212.5012).

[10] J. R. Wallbank, A. A. Patel, M. Mucha-Kruczyński, A. K. Geim, and V. I. Fal'ko, Generic miniband structure of graphene on a hexagonal substrate, Physical Review B 87, 245408 (2013) (preprint available at: arXiv:1211.4711).

[9] M. Mucha-Kruczyński and V. I. Fal'ko, Pseudo-magnetic field distribution and pseudo-Landau levels in suspended graphene flakes, Solid State Communications 152, 1442 (2012) (preprint available at: arXiv:1207.1807).

[8] A. S. Mayorov, D. C. Elias, M. Mucha-Kruczyński, R. V. Gorbachev, T. Tudorovskiy, A. Zhukov, S. V. Morozov, V. I. Fal'ko, M. I. Katsnelson, A. K. Geim, and K. S. Novoselov, Interaction-Driven Spectrum Reconstruction in Bilayer Graphene, Science 333, 860 (2011) (preprint available at: arXiv:1108.1742).

[7] M. Mucha-Kruczyński, I. L. Aleiner, and V. I. Fal'ko, Landau levels in deformed bilayer graphene at low magnetic fields, Solid State Communications 151, 1088 (2011) (preprint available at: arXiv:1109.3348).

[6] M. Mucha-Kruczyński, I. L. Aleiner, and V. I. Fal'ko, Strained bilayer graphene: Band structure topology and Landau level spectrum, Physical Review B 84, 041404 (2011) (preprint available at: arXiv:1104.5029).

[5] M. Mucha-Kruczyński, O. Kashuba, and V. I. Fal'ko, Spectral features due to inter-Landau-level transitions in the Raman spectrum of bilayer graphene, Physical Review B 82, 045405 (2010) (preprint available at: arXiv:1001.3370).

[4] M. Mucha-Kruczyński, E. McCann, and V. I. Fal'ko, Electron-hole asymmetry and energy gaps in bilayer graphene, Semiconductor Science & Technology 25, 033001 (2010).

[3] M. Mucha-Kruczyński, E. McCann, and V. I. Fal'ko, The influence of interlayer asymmetry on magneto-spectroscopy of bilayer graphene, Solid State Communications 149, 1111 (2009) (preprint available at: arXiv:0901.1245).

[2] M. Mucha-Kruczyński, D. S. L. Abergel, E. McCann, and V. I. Fal'ko, On spectral properties of bilayer graphene: The effect of an SiC substrate and infrared magneto-spectroscopy, Journal of Physics: Condensed Matter 21, 344206 (2009).

[1] M. Mucha-Kruczyński, O. Tsyplyatyev, A. Grishin, E. McCann, V. I. Fal'ko, A. Bostwick, and E. Rotenberg, Characterization of graphene through anisotropy of constant-energy maps in angle-resolved photoemission, Physical Review B 77, 195403 (2008) (preprint available at: arXiv:0711.1129).