Contacts

Anticipated timetable

\[\begin{eqnarray*} \begin{array}{|c|c|c|c|} \hline \mbox{Week} & \begin{array}{c} \mbox{Tuesday 15:15} \\ \mbox{1W3.107} \end{array} & \begin{array}{c} \mbox{Thursday 11:15} \\ \mbox{8W2.5} \end{array} & \begin{array}{c} \mbox{Thursday 17:15} \\ \mbox{1W2.03} \end{array} \\ \hline \mbox{19 (05 Feb 24)} & \mbox{Lecture 1} & \mbox{Lecture 2} & \begin{array}{c} \ \\ \ \end{array}\mbox{Problems Class}\begin{array}{c} \ \\ \ \end{array} \\ \hline \mbox{20 (12 Feb 24)} & \mbox{Lecture 3} & \mbox{Lecture 4} & \begin{array}{c} \mbox{Problems Class} \\ \mbox{Question Sheet One out} \end{array} \\ \hline \mbox{21 (19 Feb 24)} & \mbox{Lecture 5} & \mbox{Lecture 6} & \begin{array}{c} \mbox{Problems Class} \\ \mbox{Question Sheet One in} \\ \mbox{Question Sheet Two out} \end{array} \\ \hline \mbox{22 (26 Feb 24)} & \mbox{Lecture 7} & \mbox{Lecture 8} & \begin{array}{c} \mbox{Problems Class} \\ \mbox{Question Sheet Two in} \\ \mbox{Question Sheet Three out} \end{array} \\ \hline \mbox{23 (04 Mar 24)} & \mbox{Lecture 9} & \mbox{Lecture 10} & \begin{array}{c} \mbox{Problems Class} \\ \mbox{Question Sheet Three in} \\ \mbox{Question Sheet Four out}\end{array} \\ \hline \mbox{24 (11 Mar 24)} & \mbox{Lecture 11} &\mbox{Lecture 12} & \begin{array}{c} \mbox{Problems Class} \\ \mbox{Question Sheet Four in} \\ \mbox{Question Sheet Five out} \end{array} \\ \hline \mbox{25 (18 Mar 24)} & \mbox{Lecture 13} &\mbox{Lecture 14} & \begin{array}{c} \mbox{Problems Class} \\ \mbox{Question Sheet Five in} \\ \mbox{Question Sheet Six out}\end{array} \\ \hline \mbox{26 (25 Mar 24)} & \mbox{Lecture 15} &\mbox{Lecture 16} & \begin{array}{c} \mbox{Problems Class} \\ \mbox{Question Sheet Six in} \\ \mbox{Question Sheet Seven out} \end{array} \\ \hline \mbox{29 (15 Apr 24)} & \mbox{Lecture 17} &\mbox{Lecture 18} & \begin{array}{c} \mbox{Problems Class} \\ \mbox{Question Sheet Seven in} \\ \mbox{Question Sheet Eight out} \end{array} \\ \hline \mbox{30 (22 Apr 24)} & \mbox{Lecture 19} & \mbox{Lecture 20} & \begin{array}{c} \mbox{Problems Class} \\ \mbox{Question Sheet Eight in} \\ \mbox{Question Sheet Nine out}\end{array} \\ \hline \mbox{31 (29 Apr 24)} & \mbox{Lecture 21} & \mbox{Lecture 22} & \mbox{Revision class?} \\ \hline \end{array} \end{eqnarray*}\]

Feedback and assessment

Syllabus

Credits: 6
Level: Masters
Period: Semester 2
Assessment: Examination 100%
Other work: There will be weekly question sheets. These will be set and handed in during problems classes.
Requisites: Before taking this unit you must take MA40092.
Description: Aims & Learning Objectives:
  Aims:
  To introduce students to the ideas and techniques that underpin the theory and practice of the Bayesian approach to statistics.
  Objectives:
  Students should be able to formulate the Bayesian treatment and analysis of many familiar statistical problems.
  Content:
  Bayesian methods provide an alternative approach to data analysis, which has the ability to incorporate prior knowledge about a parameter of interest into the statistical model. The prior knowledge takes the form of a prior (to sampling) distribution on the parameter space, which is updated to a posterior distribution via Bayes’ Theorem, using the data. Summaries about the parameter are described using the posterior distribution. The Bayesian Paradigm; decision theory; utility theory; exchangeability; Representation Theorem; prior, posterior and predictive distributions; conjugate priors. Tools to undertake a Bayesian statistical analysis will also be introduced. Simulation based methods such as Markov Chain Monte Carlo and importance sampling for use when analytical methods fail.