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Introduction

Consider a problem where we wish to make inferences about a parameter θ given data x. In a

classical setting the data is treated as if it is random, even after it has been observed, and the

parameter is viewed as a fixed unknown constant. Consequently, no probability distribution

can be attached to the parameter. Conversely in a Bayesian approach parameters, having

not been observed, are treated as random and thus possess a probability distribution whilst

the data, having been observed, is treated as being fixed.

Example 0.1 Suppose that we perform n independent Bernoulli trials in which we observe

x, the number of times an event occurs. We are interested in making inferences about θ, the

probability of the event occurring in a single trial. Let’s consider the classical approach to

this problem.

Prior to observing the data, the probability of observing x was

P (X = x | θ) =

(
n

x

)
θx(1− θ)n−x. (1)

This is a function of the (future) x, assuming that θ is known. If we know x but don’t know θ

we could treat (1) as a function of θ, L(θ), the likelihood function. We then choose the value

which maximises this likelihood. The maximum likelihood estimate is x
n with corresponding

estimator X
n .

In the general case, the classical approach uses an estimate T (x) for θ. Justifications for the

estimate depend upon the properties of the corresponding estimator T (X) (bias, consistency,

. . . ) using its sampling distribution (given θ). That is, we treat the data as being random

even though it is known! Such an approach can lead to nonsensical answers.

Example 0.2 Suppose in the Bernoulli trials of Example 0.1 we wish to estimate θ2. The

maximum likelihood estimator1 is
(
X
n

)2
. However this is a biased estimator as

E(X2 | θ) = V ar(X | θ) + E2(X | θ)

= nθ(1− θ) + n2θ2

= nθ + n(n− 1)θ2. (2)

1Remember the invariance properties of maximum likelihood estimators. If T (X) is the maximum likeli-

hood estimator of θ then the maximum likelihood of g(θ), a function of θ, is g(T (X)).
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Noting that E(X | θ) = nθ then (2) may be rearranged as

E(X2 | θ)− E(X | θ) = n(n− 1)θ2 ⇒ E{X(X − 1) | θ} = n(n− 1)θ2.

Thus, X(X−1)
n(n−1) is an unbiased estimator of θ2. Suppose we observe x = 1. Then our estimate

of θ2 is 0: we estimate a chance as zero even though the event has occurred!

Example 0.3 Now let’s consider two different experiments, both modelled as Bernoulli tri-

als.

1. Toss a coin n times and observe x heads. Parameter θc represents the probability of

tossing a head on a single trial.

2. Toss a drawing pin n times and observe that the pin lands facing upwards on x occa-

sions. Parameter θp represents the probability of tossing a pin-up on a single trial.

The maximum likelihood estimates for θc and θp are identical and share the same properties.

Is this sensible?

I, and perhaps you do too, have lots of experience of tossing coins and these are well known

to have propensities close to 1
2 . Thus, even before I toss the coin on these n occasions, I have

some knowledge about θc. (At the very least I can say something about where I think it will

be and how confident I am in this location which could be viewed as specifying a mean and

a variance for θc.) Equally, I have little knowledge about the tossing propensities of drawing

pins - I don’t really know much about θp. Shouldn’t I take these differences into account

somehow? The classical approach provides no scope for this as θc and θp are both unknown

constants. In a Bayesian analysis2 we can reflect our prior knowledge about θc and θp by

specifying probability distributions for θc and θp.

Let’s think back to maximum likelihood estimation. We ask

“what value of θ makes the data most likely to occur?”

Isn’t this the wrong way around, what we are really interested in is

“what value of θ is most likely given the data?”

In a classical analysis this question makes no sense. However, it can be answered in a

Bayesian context. We specify a prior distribution f(θ) for θ and combine this with the

likelihood f(x | θ) to obtain the posterior distribution for θ given x using Bayes’ theorem,

f(θ |x) =
f(x | θ)f(θ)∫
f(x | θ)f(θ) dθ

∝ f(x | θ)f(θ).

Bayesian analysis is concerned with the distributions of θ and how they are changed in

the light of new information (typically data). The distribution f(x | θ) is irrelevant to the

Bayesian after X has been observed yet to the classicist it is the only distribution they can

work with.
2See Example 1.2.
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1 The Bayesian method

We shall adopt the notation f(·) (some authors use p(·)) to represent the density function,

irrespective of whether the random variable over which the distribution is specified is con-

tinuous or discrete. In general notation we shall make no distinction as to whether random

variables are univariate or multivariate. In specific examples, if necessary, we shall make the

dimension explicit.

1.1 Bayes’ theorem

Let X and Y be random variables with joint density function f(x, y). The marginal dis-

tribution of Y , f(y), is the joint density function averaged over all possible values of X,

f(y) =

∫
X

f(x, y) dx. (1.1)

For example, if Y is univariate and X = (X1, X2) where X1 and X2 are univariate then

f(y) =

∫ ∞
−∞

∫ ∞
−∞

f(x1, x2, y) dx1dx2.

The conditional distribution of Y given X = x is

f(y |x) =
f(x, y)

f(x)
(1.2)

so that by substituting (1.2) into (1.1) we have

f(y) =

∫
X

f(y |x)f(x) dx.

which is often known as the theory of total probability. X and Y are independent if and

only if

f(x, y) = f(x)f(y). (1.3)

Substituting (1.2) into (1.3) we see that an equivalent result is that

f(y |x) = f(y)

6



so that independence reflects the notion that learning the outcome of X gives us no infor-

mation about the distribution of Y (and vice versa). If Z is a third random variable then X

and Y are conditionally independent given Z if and only if

f(x, y | z) = f(x | z)f(y | z). (1.4)

Note that

f(y |x, z) =
f(x, y, z)

f(x, z)

=
f(x, y | z)f(z)

f(x | z)f(z)

=
f(x, y | z)
f(x | z)

(1.5)

so, by substituting (1.4) into (1.5), an equivalent result to (1.4) is that

f(y |x, z) = f(y | z).

Thus, conditional independence reflects the notion that having observed Z then there is no

further information about Y that can be gained by additionally observing X (and vice versa

for X and Y ).

Theorem 1.1 (Bayes’ theorem)1

For f(x) > 0,

f(y |x) =
f(x | y)f(y)

f(x)
(1.6)

=
f(x | y)f(y)∫

Y
f(x | y)f(y) dy

.

1.2 Bayes’ theorem for parametric inference

Consider a general problem in which we have data x and require inference about a parameter

θ. In a Bayesian analysis θ is unknown and viewed as a random variable. Thus, it possesses

a density function f(θ). From Bayes’ theorem2, (1.6), we have

f(θ |x) =
f(x | θ)f(θ)

f(x)

∝ f(x | θ)f(θ). (1.7)

Colloquially (1.7) is

Posterior ∝ Likelihood× Prior.

1Bayes’ theorem is named after Thomas Bayes (c1701-1761).
2Bayes’ theorem holds for any random variables. In a Bayesian analysis, θ is a random variable and so

Bayes’ theorem can be utilised for probability distributions concerning θ.
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Most commonly, both the parameter θ and data x are continuous. There are cases when θ

is continuous and x is discrete3. In exceptional cases θ could be discrete.

The Bayesian method comprises of the following principle steps

1. Prior

Obtain the prior density f(θ) which expresses our knowledge about θ prior to observing

the data.

2. Likelihood

Obtain the likelihood function f(x | θ). This step simply describes the process giving

rise to the data x in terms of θ.

3. Posterior

Apply Bayes’ theorem to derive posterior density f(θ |x) which expresses all that is

known about θ after observing the data.

4. Inference

Derive appropriate inference statements from the posterior distribution e.g. point

estimates, interval estimates, probabilities of specified hypotheses.

1.3 Sequential data updates

It is important to note that the Bayesian method can be used sequentially. Suppose we have

two sources of data x and y. Then our posterior for θ is

f(θ |x, y) ∝ f(x, y | θ)f(θ). (1.8)

Now

f(x, y | θ)f(θ) = f(x, y, θ) = f(y |x, θ)f(x, θ)

= f(y |x, θ)f(θ |x)f(x)

∝ f(y |x, θ)f(θ |x) (1.9)

Substituting (1.9) into (1.8) we have

f(θ |x, y) ∝ f(y |x, θ)f(θ |x). (1.10)

We can update first by x and then by y. Note that, in this case, f(θ |x) assumes the role of

the prior (given x) and f(y |x, θ) the likelihood (given x).

3For example, the Bernoulli trials case considered in Example 0.1.
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1.4 Conjugate Bayesian updates

Example 1.1 Beta-Binomial. Suppose that X | θ ∼ Bin(n, θ). We specify a prior dis-

tribution for θ and consider θ ∼ Beta(α, β) for α, β > 0 known4. Thus, for 0 ≤ θ ≤ 1 we

have

f(θ) =
1

B(α, β)
θα−1(1− θ)β−1 (1.11)

where B(α, β) = Γ(α)Γ(β)
Γ(α+β) is the beta function and E(θ) = α

α+β . Recall that as∫ 1

0

f(θ) dθ = 1

then

B(α, β) =

∫ 1

0

θα−1(1− θ)β−1 dθ. (1.12)

Using Bayes’ theorem, (1.7), the posterior is

f(θ |x) ∝ f(x | θ)f(θ) =

(
n

x

)
θx(1− θ)n−x × 1

B(α, β)
θα−1(1− θ)β−1

∝ θx(1− θ)n−xθα−1(1− θ)β−1

= θα+x−1(1− θ)β+n−x−1. (1.13)

So, f(θ |x) = cθα+x−1(1− θ)β+n−x−1 for some constant c not involving θ. Now∫ 1

0

f(θ |x) dθ = 1 ⇒ c−1 =

∫ 1

0

θα+x−1(1− θ)β+n−x−1 dθ.

Notice that from (1.12) we can evaluate this integral so that

c−1 =

∫ 1

0

θα+x−1(1− θ)β+n−x−1 dθ = B(α+ x, β + n− x)

whence

f(θ |x) =
1

B(α+ x, β + n− x)
θα+x−1(1− θ)β+n−x−1

i.e. θ |x ∼ Beta(α+ x, β + n− x).

Notice the tractability of this update: the prior and posterior distribution are both from the

same family of distributions, in this case the Beta family. This is an example of conjugacy.

The update is simple to perform: the number of successes observed, x, is added to α whilst

the number of failures observed, n− x, is added to β.

4It is possible to consider α and/or β to be random variables and then specify prior distributions for

them. This would be an example of a hierarchical Bayesian model.
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Definition 1.1 (Conjugate family)

A class Π of prior distributions is said to form a conjugate family with respect to a likelihood

f(x | θ) if the posterior density is in the class of Π for all x whenever the prior density is in

Π.

In Example 1.1 we showed that, with respect to the Binomial likelihood, the Beta distribution

is a conjugate family.

One major advantage of Example 1.1, and conjugacy in general, was that it was straight-

forward to calculate the constant of proportionality. In a Bayesian analysis we have f(θ |x) ∝
f(x | θ)f(θ) so that f(θ |x) = cf(x | θ)f(θ) where c is a constant not involving θ. As f(θ |x)

is a density function and thus integrates to unity we have

c−1 =

∫
θ

f(x | θ)f(θ) dθ.

In practice, it is not always straightforward to compute this integral and no closed form for

it may exist.

We will now explore the effect of the prior and the likelihood on the posterior. To ease

the comparison we will view the likelihood as a function of θ and consider the standardised

likelihood f(x | θ)∫
θ
f(x | θ) dθ , that is scaled so that the area under the curve is unity. Note that this

is only appropriate when the integral on the denominator is finite - there are instances when

this is not the case. We shall use the Beta distribution as an example. The Beta distribution

is an extremely flexible distribution on (0, 1) and, as Figure 1.1 shows, careful choice of the

parameters α, β can be used to create a wide variety of shapes for the prior density.

Example 1.2 Recall Example 0.3. We consider the two experiments.

1. Toss a coin n times and observe x heads. Parameter θc represents the probability of

tossing a head on a single trial.

2. Toss a drawing pin n times and observe that the pin lands facing upwards on x occa-

sions.

In both cases we have a Binomial likelihood and I judge that a Beta distribution can be used

to model my prior beliefs about both θc and θp. I have considerably more prior knowledge

about θc than θp. In particular, I am confident that E(θc) = 1
2 and that the distribution is

pretty concentrated around this point, so that the variance is small. If I model my beliefs

about θc with a Beta distribution then E(θc) = 1
2 implies that I must take α = β. I judge

that the Beta(20, 20) distribution adequately models my prior knowledge about θc. I have

considerably less knowledge about θp but I have no reason to think the process is unfair so

take E(θp) = 1
2 . However, I reflect my lack of knowledge about θp, compared certainly to θc,

with a large variance so that the distribution is less concentrated around the mean. I judge

that the Beta(2, 2) distribution adequately models my prior knowledge about θp.
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Figure 1.1: A plot of the Beta distribution, Beta(α, β), for varying choices of the parameters

α, β
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(a) Tossing coins. Prior θc ∼ Beta(20, 20), posterior

θc |x ∼ Beta(24, 26).
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(b) Tossing drawing pins. Prior θp ∼ Beta(2, 2),

posterior θp |x ∼ Beta(6, 8).

Figure 1.2: Prior to posterior for Bernoulli trials model, n = 10, x = 4. The likelihoods are

standardised.

Suppose that, in each case, I perform n = 10 tosses and observe x = 4 successes. We

may use Example 1.1 to compute the posterior for θc and for θp.

Prior Likelihood Posterior

θc Beta(20, 20) x = 4, n = 10 Beta(24, 26)

θp Beta(2, 2) x = 4, n = 10 Beta(6, 8)

In Figure 1.2 we plot the prior density, standardised likelihood and posterior density for

both θc and θp. Notice how in Figure 1.2(a), the strong prior information is reflected by the

posterior density closely following the prior density. The mode of the posterior is shifted to

the left of the prior, towards the mode of the likelihood,reflecting that the maximum likelihood

estimate ( 4
10) was smaller than the prior suggested. The posterior density is (slightly) taller

and narrower than the prior reflecting the new information about θc from the data. In Figure

1.2(b), the weaker prior information can be seen by the fact that the posterior density now

much more follows the (standardised) likelihood - most of our posterior knowledge about θp

is coming from the data. Notice how the posterior density is much taller and narrower than

the prior reflecting how the data resolves a lot of the initial uncertainty about θp.

Notice that in our calculation of f(θ |x), see (1.13), we were only interested in quantities

proportional to f(θ |x) and we identified that θ |x was a Beta distribution by recognising

the form θ“α”−1(1− θ)“β”−1.

Definition 1.2 (Kernel of a density)

For a random variable X with density function f(x) if f(x) can be expressed in the form

12



cq(x) where c is a constant, not depending upon x, then any such q(x) is a kernel of the

density f(x).

Example 1.3 If θ ∼ Beta(α, β) then θα−1(1− θ)β−1 is a kernel of the Beta(α, β) distribu-

tion.

Spotting kernels of distributions can be very useful in computing posterior distributions.

Example 1.4 In Example 1.1 we can find the posterior distribution θ |x by observing that

(1.13) is a kernel of the Beta(α+ x, β + n− x) distribution.

Example 1.5 Let X be normally distribution with unknown mean θ and known variance

σ2. It is judged that θ ∼ N(µ0, σ
2
0) where µ0 and σ2

0 are known. For the prior we have

f(θ) =
1√

2πσ0

exp

{
− 1

2σ2
0

(θ − µ0)2

}
∝ exp

{
− 1

2σ2
0

(θ − µ0)2

}
(1.14)

∝ exp

{
− 1

2σ2
0

(θ2 − 2µ0θ)

}
(1.15)

where (1.14) and (1.15) are both kernels of the normal distribution. For the likelihood we

have

f(x | θ) =
1√
2πσ

exp

{
− 1

2σ2
(x− θ)2

}
∝ exp

{
− 1

2σ2
(θ2 − 2xθ)

}
(1.16)

where, since f(x | θ) represents the likelihood, in (1.16) we are only interested in θ. For the

posterior, from (1.15) and (1.16), we have

f(θ |x) ∝ exp

{
− 1

2σ2
(θ2 − 2xθ)

}
exp

{
− 1

2σ2
0

(θ2 − 2µ0θ)

}
= exp

{
−1

2

(
1

σ2
+

1

σ2
0

)[
θ2 − 2

(
1

σ2
+

1

σ2
0

)−1(
x

σ2
+
µ0

σ2
0

)
θ

]}
(1.17)

We recognise (1.17) as a kernel of a normal distribution so that θ |x ∼ N(µ1, σ
2
1) where

σ2
1 =

(
1

σ2
+

1

σ2
0

)−1

(1.18)

µ1 =

(
1

σ2
+

1

σ2
0

)−1(
x

σ2
+
µ0

σ2
0

)
(1.19)

Notice that we can write (1.18) as

1

σ2
1

=
1

σ2
+

1

σ2
0
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so that the posterior precision5 is the sum of the data precision and the prior precision. From

(1.19) we observe that the posterior mean is a weighted average of the data and the prior

mean, weighted according to the corresponding precisions. The posterior mean will be closest

to whichever of the prior and likelihood has the stronger information. For example, if the

prior information is very weak, expressed by large σ2
0 and thus small precision, then µ1 will

be close to the data x.

We note that with respect to a normal likelihood (with known variance), the normal distri-

bution is a conjugate family.

1.5 Using the posterior for inference

Our posterior beliefs are captured by a whole distribution f(θ |x). Typically we want to

summarise this distribution. We might use

1. Graphs and plots of the shape of the distribution.

2. Measures of location such as the mean, median and mode.

3. Measures of dispersion such as the variance, quantiles e.g. quartiles, interquartile

range.

4. A region that captures most of the values of θ.

5. Other relevant summaries e.g. the posterior probability that θ is greater than some

value.

We shall focus upon the fourth of these points. In the discussion that follows we shall

assume that θ is univariate: the results and definitions simply generalise for the case when

θ is multivariate.

1.5.1 Credible intervals and highest density regions

Credible intervals (or posterior intervals) are the Bayesian analogue of confidence intervals.

A 100(1 − α)% confidence interval for a parameter θ is interpreted as meaning that with a

large number of repeated samples6, 100(1 − α)% of the corresponding confidence intervals

would contain the true value of θ. A 100(1−α)% credible interval is an actual interval that

contains the parameter θ with probability 1− α.

5The precision is the reciprocal of the variance. The lower the variance the higher the precision.
6Repeated sampling is a cornerstone of the classical statistics. There are a number of issues with this

e.g. the long-run repetitions are hypothetical, what do we do when we can only make a finite number of

realisations or an event occurs once and once only.
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Definition 1.3 (Credible interval)7

A 100(1 − α)% credible interval (θL, θU ) is an interval within which 100(1 − α)% of the

posterior distribution lies,

P (θL < θ < θU |x) =

∫ θU

θL

f(θ |x) dθ = 1− α.

Notice that there are infinitely many such intervals. Typically we fix the interval by specifying

the probability in each tail. For example, we frequently take

P (θ < θL |x) =
α

2
= P (θ > θU |x).

We can explicitly state that there is a 100(1 − α)% probability that θ is between θL and

θU . Observe that we can construct similar intervals for any (univariate) random variable, in

particular for the prior. In such a case the interval is often termed a prior credible interval.

Example 1.6 Recall Example 1.2. We construct 95% prior credible intervals and credible

intervals for the two cases of tossing coins and drawing pins. We elect to place 2.5% in each

tail. The intervals may be found using R and the command qbeta(0.025, a, b) for θL and

for θU qbeta(0.975, a, b).

Prior Prior credible Posterior (Posterior) credible

θc Beta(20, 20) (0.3478, 0.6522) Beta(24, 26) (0.3442, 0.6173)

θp Beta(2, 2) (0.0950, 0.9057) Beta(6, 8) (0.1922, 0.6842)

Notice that the prior credible interval and (posterior) credible interval for θc cover a similar

location: this is not a surprise as, from Figure 1.2(a), we observed that the prior and posterior

distributions for θc were very similar with the latter shifted slightly to the left in the direction

of the likelihood. This feature is reflected in the interval (0.3442, 0.6173) covering the left

hand side of (0.3478, 0.6522). The width of the credible interval is also narrower: 0.2731

compared to 0.3044 for the prior credible interval. This is an illustration of the data reducing

our uncertainty about θc.
8

For θp the prior credible interval has a width of 0.8107 reflecting the weak prior knowledge.

Observation of the data shrinks the width of this interval considerably to 0.4920 which is still

quite wide (wider than the initial prior credible interval for θc) which is not surprising:

we had only weak prior information and the posterior, see Figure 1.2(b), closely mirrors the

likelihood. We observed only ten tosses so we would not anticipate that the data would resolve

most, or indeed much, of the uncertainty about θp.

7The generalisation for multivariate θ is a region C contained within the probability space of θ which

contains θ with probability 1− α.
8Note that, see the solution to Question Sheet One 5(b), for generic parameter θ and data x we have

V ar(θ) = V ar(E(θ |X))+E(V ar(θ |X)) so that E(V ar(θ |X)) ≤ V ar(θ): we expect the observation of data

x to reduce our uncertainty about parameter θ.
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Figure 1.3: Credible interval (with equal tail probabilities) and highest density region for a

bimodal distribution.

Definition 1.4 (Highest density region)

The highest density region (HDR) is a region C that contains 100(1− α)% of the posterior

distribution and has the property that for all θ1 ∈ C and θ2 /∈ C,

f(θ1 |x) ≥ f(θ2 |x).

Thus, for a HDR the density insider the region is never lower than outside of the region. The

HDR is the region with 100(1−α)% probability of containing θ with the shortest total length.

For unimodal symmetric distributions the HDR and credible interval are the same. Credible

intervals are generally easier to compute (particularly if we are doing so by placing α
2 in each

tail) and are invariant to transformations of the parameters. HDRs are more complex and

there is a potential lack of invariance under parameter transformation. However, they may

be more meaningful for multinomial distributions.

Example 1.7 Figure 1.3 shows a 90% credible interval and HDR for a parameter θ whose

posterior distribution9, given by f(θ |x), is bimodal. Notice that the credible interval, see

Figure 1.3(a), is not a HDR. In particular, θ1 = 0.5 is in the credible interval and θ2 = 0.95

is not and f(0.95 |x) > f(0.5 |x). Moreover, the credible interval may not be sensible. For

example, it includes the interval (0.5, 0.6) which has a small probability of containing θ. The

HDR is shown in Figure 1.3(b). It consists of two disjoint intervals and thus captures the

9The plotted density is a mixture of a Beta(4, 12) and a Beta(16, 4) with f(θ |x) = 1
2B(4,12)

θ3(1− θ)11 +
1

2B(16,4)
θ15(1− θ)3.
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bimodality of the distribution. It has a total length of 0.61 compared to the total length of

0.78 for the credible interval.
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2 Modelling

In our work so far we have made use of the concepts of parameters, likelihoods and prior

distributions with little attention focused upon clarity or justification.

Example 2.1 Bernoulli model, different interpretation of parameter.

1. Consider tossing coins. It is natural to think about the model of independent Bernoulli

trials given θc but what exactly is θc and can we justify it? Intuitively we think of θc

as representing the ‘true probability of a head’ but what does this mean?

2. Consider an urn1 which contains balls of proportion θu of colour purple and (1 − θu)

of colour green. We sample with replacement from the urn, so a ball is drawn from the

urn, its colour noted and returned to the urn which is then shaken prior to the next

draw. Given θu we might model the draws of the balls identically to the tossing of coins

but our intuitive understanding of θc and θu are not the same. For example, we can

never determine θc but we could physically determine θu: we could smash the urn and

count the balls2.

How can we reconcile these cases? The answer lies in a judgment of exchangeability which

is the key result of this chapter.

2.1 Predictive distribution

Suppose that we want to make predictions about the values of future observations of data.

The distribution of future data Z given observed data x is the predictive distribution

f(z |x). Notice that this distribution only depends upon z and x. If we have a parametric

model then

f(z |x) =

∫
θ

f(z | θ, x)f(θ |x) dθ. (2.1)

1Urn problems are widely used as thought experiments in statistics and probability. For an initial overview

see urn problem.
2Other, more pacifistic, approaches are available e.g. just empty the urn.
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If we judge that X and Z are conditionally independent3 given θ then f(z | θ, x) = f(z | θ)
so that (2.1) becomes

f(z |x) =

∫
θ

f(z | θ)f(θ |x) dθ. (2.2)

Example 2.2 Consider a Beta-Binomial analysis, such as tossing coins. We judge that

X | θ ∼ Bin(n, θ) with θ ∼ Beta(α, β). Then, from Example 1.1, θ |x ∼ Beta(α+x, β+n−x).

For ease of notation, let a = α+x and b = β+n−x. Now consider a further random variable

Z for which we judge Z | θ ∼ Bin(m, θ) and that X and Z are conditionally independent given

θ. So, having tossed a coin n times, we consider tossing it a further m times. We seek the

predictive distribution of Z given the observed x. As X and Z are conditionally independent

given θ then, from (2.2),

f(z |x) =

∫
θ

f(z | θ)f(θ |x) dθ

=

∫ 1

0

(
m

z

)
θz(1− θ)m−z 1

B(a, b)
θa−1(1− θ)b−1 dθ

=

(
m

z

)
1

B(a, b)

∫ 1

0

θa+z−1(1− θ)b+m−z−1 dθ (2.3)

=

(
m

z

)
B(a+ z, b+m− z)

B(a, b)
. (2.4)

Notice that

B(a+ z, b+m− z)
B(a, b)

=
Γ(a+ z)Γ(b+m− z)

Γ(a+ b+m)
× Γ(a+ b)

Γ(a)Γ(b)

so that (2.4) can be expressed as

f(z |x) = c

(
m

z

)
Γ(a+ z)Γ(b+m− z)

where the constant (i.e. not depending upon z)

c =
Γ(a+ b)

Γ(a+ b+m)Γ(a)Γ(b)
.

Z |x is the Binomial-Beta distribution with parameters a, b, m.

Notice that the derivation of this predictive distribution involved, see (2.3), the identification

of a kernel of a Beta(a + z, b + m − z) distribution. This should not have been a surprise.

From (1.10) (with y = z and using the conditional independence of X and Z given θ),

f(z | θ)f(θ |x) ∝ f(θ | z, x) and, from Example 1.1, θ | z, x ∼ Beta(a+ z, b+m− z).
3See (1.4) for the definition of this.
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The predictive distribution can be difficult to calculate but predictive summaries are often

easily available. In particular we can apply generalisations of the results4 of Question Sheet

One Exercise 5 to the predictive distribution.

Lemma 2.1 If X, Z and θ are three random variables with X and Z conditionally inde-

pendent given θ then

E(Z |X) = E(E(Z | θ) |X), (2.5)

V ar(Z |X) = V ar(E(Z | θ) |X) + E(V ar(Z | θ) |X). (2.6)

Proof - From Question Sheet One Exercise 5, conditioning everywhere, we have

E(Z |X) = E(E(Z | θ,X) |X), (2.7)

V ar(Z |X) = V ar(E(Z | θ,X) |X) + E(V ar(Z | θ,X) |X). (2.8)

Now as X and Z are conditionally independent given θ then E(Z | θ,X) = E(Z | θ) and

V ar(Z | θ,X) = V ar(Z | θ). Substituting these into (2.7) and (2.8) gives (2.5) and (2.6). 2

Observe that E(Z | θ) and V ar(Z | θ) are computed using f(z | θ) and are both functions

of θ, g1(θ) and g2(θ) respectively say. We then obtain E(g1(θ) |X), V ar(g1(θ) |X) and

E(g2(θ) |X) using f(θ |x). These were also the distributions we needed, see (2.2), to compute

f(z |x). The conditional independence of X and Z given θ means that any calculation

involving X, Z and θ can be performed using calculations between X and θ only and Z

and θ only: by exploiting independence structure we can reduce the dimensionality of our

problems5.

Example 2.3 From Exercise 2.2 we consider the predictive expectation of Z given x. As

Z | θ ∼ Bin(m, θ) then E(Z | θ) = mθ whilst as θ |x ∼ Beta(a, b) then E(θ |X) = a
a+b .

Hence, we have that

E(Z |X) = E(E(Z | θ) |X)

= E(mθ |X)

= m
a

a+ b
= m

α+ x

α+ β + n
.

The modelling in Examples 2.2 and 2.3 raises an interesting question. X and Z are not

independent and nor would we expect them to be: if we don’t know θ then we expect

observing x to be informative for Z

4For random variables X and Y we have E(X) = E(E(X |Y )) and V ar(X) = V ar(E(X |Y )) +

E(V ar(X |Y )).
5This is the basis behind what is known as local computation and is often exploited in highly complex

models, specifically in Bayesian networks.
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e.g. When tossing a coin, if we don’t know whether or not the coin is fair then an

initial sequence of n tosses will be informative for a future sequence of m tosses.

Consider such a model from a classical perspective6 We would view X and Z as comprising

a random sample and of being independent and identically distributed. As we can see from

the prediction of Z given x this is a slightly misleading statement: they are only independent

conditional on the parameter θ.

2.2 Exchangeability

The concept of exchangeability, introduced by Bruno de Finetti7 in the 1930s, is the basic

modelling tool within Bayesian statistics. One of the key differences between the classical

and Bayesian schools is that observations that are former would treat as independent are

treated as exchangeable by the latter.

Definition 2.1 (Finite exchangeability)

The random variables X1, . . . , Xn are judged to be finitely exchangeable if their joint density

function satisfies

f(x1, . . . , xn) = f(xπ(1), . . . , xπ(n))

for all permutations π defined on the set {1, . . . , n}.

Example 2.4 X1 and X2 are finitely exchangeable if f(x1, x2) = f(x2, x1). X1, X2 and

X3 are finitely exchangeable if f(x1, x2, x3) = f(x1, x3, x2) = f(x2, x1, x3) = f(x2, x3, x1) =

f(x3, x1, x2) = f(x3, x2, x1).

In essence, exchangeability captures the notion that only the values of the observations mat-

ter and not the order in which they were obtained. The labels are uninformative. Exchange-

ability is a stronger statement than identically distributed but weaker than independence.

Independent observations are exchangeable as

f(x1, . . . , xn) =

n∏
i=1

f(xi).

However, exchangeable observations need not be independent.

Example 2.5 Suppose that X1 and X2 have the joint density function

f(x1, x2) =
3

2
(x2

1 + x2
2)

for 0 < x1 < 1 and 0 < x2 < 1. Then X1 and X2 are (finitely) exchangeable but they are

not independent.
6There is an interesting side question as to how to perform prediction in this case as f(z |x) does not

explicitly depend upon any parameter θ.
7Bruno de Finetti (1906-1985).
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Definition 2.2 (Infinite exchangeability)

The infinite sequence of random variables X1, X2, . . . are judged to be infinitely exchangeable

if every finite subsequence is judged finitely exchangeable.

A natural question is whether every finitely exchangeable sequence can be embedded into,

or extended, to an infinitely exchangeable sequence.

Example 2.6 Suppose that X1, X2, X3 are three finitely exchangeable8 events with

P (X1 = 0, X2 = 1, X3 = 1) = P (X1 = 1, X2 = 0, X3 = 1)

= P (X1 = 1, X2 = 1, X3 = 0) = 1
3 (2.9)

with all other combinations having probability 0. Is there an X4 such that X1, X2, X3, X4

are finitely exchangeable? If there is then, for example,

P (X1 = 0, X2 = 1, X3 = 1, X4 = 0) = P (X1 = 0, X2 = 0, X3 = 1, X4 = 1). (2.10)

Now, assuming X1, X2, X3, X4 are finitely exchangeable,

P (X1 = 0, X2 = 1, X3 = 1, X4 = 0)

= P (X1 = 0, X2 = 1, X3 = 1)− P (X1 = 0, X2 = 1, X3 = 1, X4 = 1)

=
1

3
− P (X1 = 0, X2 = 1, X3 = 1, X4 = 1) (2.11)

=
1

3
− P (X1 = 1, X2 = 1, X3 = 1, X4 = 0) (2.12)

where (2.11) follows from (2.9) and (2.12) from finite exchangeability. Note that

P (X1 = 1, X2 = 1, X3 = 1, X4 = 0)

= P (X1 = 1, X2 = 1, X3 = 1)− P (X1 = 1, X2 = 1, X3 = 1, X4 = 1)

≤ P (X1 = 1, X2 = 1, X3 = 1) = 0. (2.13)

Substituting (2.13) into (2.12) gives

P (X1 = 0, X2 = 1, X3 = 1, X4 = 0) =
1

3
. (2.14)

However,

P (X1 = 0, X2 = 0, X3 = 1, X4 = 1)

= P (X1 = 0, X2 = 0, X3 = 1)− P (X1 = 0, X2 = 0, X3 = 1, X4 = 0)

≤ P (X1 = 0, X2 = 0, X3 = 1) = 0. (2.15)

So, from (2.14) and (2.15) we observe that (2.10) does not hold: a contradiction to the

assumption of finite exchangeability of X1, X2, X3, X4.

8It is common notation to often just term a sequence as exchangeable and leave it to context as to whether

this means finitely or infinitely exchangeable.
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Example 2.5 thus shows that a finitely exchangeable sequence can not necessarily even be

embedded into a larger finitely exchangeable sequence let alone an infinitely exchangeable

one.

Theorem 2.1 (Representation theorem for 0-1 random variables9)

Let X1, X2, . . . be a sequence of infinitely exchangeable 0-1 random variables (i.e. events).

Then the joint distribution of X1, . . . , Xn has an integral representation of the form

f(x1, . . . , xn) =

∫ 1

0

{
n∏
i=1

θxi(1− θ)1−xi

}
f(θ) dθ

with yn =
∑n
i=1 xi and θ = limn→∞

yn
n .

The interpretation of this theorem is of profound significance. It is as if

1. Conditional upon a random variable θ, the Xi are judged to be independent Bernoulli

random variables.

2. θ itself is assigned a probability distribution f(θ).

3. θ = limn→∞
yn
n so that f(θ) represents beliefs about the limiting value of the mean of

the Xis.

So, conditional upon θ, X1, . . . , Xn are a random sample from a Bernoulli distribution with

parameter θ generating a parametrised joint sampling distribution

f(x1, . . . , xn | θ) =

n∏
i=1

f(xi | θ)

=

n∏
i=1

θxi(1− θ)1−xi

= θyn(1− θ)n−yn

where the parameter is assigned a prior distribution f(θ).

Theorem 2.1 provides a justification for the Bayesian approach of combining a

likelihood and a prior.

Notice that θ is provided with a formal definition and the sentence “the true value of θ” has

a well-defined meaning.

Theorem 2.2 (General representation theorem - simplified form)

If X1, X2. . . . is an infinitely exchangeable sequence of random variables then the joint dis-

tribution of X1, . . . , Xn has an integral representation of the form

f(x1, . . . , xn) =

∫
θ

{
n∏
i=1

f(xi | θ)

}
f(θ) dθ

9This is often termed de Finetti’s theorem.
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where θ is the limit as n→∞ of some function of the observations x1, . . . , xn and f(θ) is a

distribution over θ.

Points to note.

1. In full generality θ is an unknown distribution function10 (cdf) in the infinite dimen-

sional space of all possible distribution functions so is, in effect, an infinite dimensional

parameter.

2. Typically we put probability 1 to the event that θ lies in a family of distributions to

obtain the familiar representation above.

3. The representation theorem is an existence theorem: it generally does not specify the

model11 f(xi | θ) and it never specifies the prior f(θ).

The crux is that infinitely exchangeable random variables (and not just events)

may be viewed as being conditionally independent given a parameter θ and pro-

vide a justification for the Bayesian approach.

Example 2.7 An extension of Example 1.5. Let X1, . . . , Xn be a finite subset of a sequence

of infinitely exchangeable random variables12 which are normally distributed with unknown

mean θ and known variance σ2. Thus, from Theorem 2.2, we can assume that Xi | θ ∼
N(θ, σ2) and that, conditional upon θ, the Xi are independent. Hence, specification of a

prior distribution for θ will allow us to obtain the joint distribution of X1, . . . , Xn. Suppose

that our prior beliefs about θ can be expressed by θ ∼ N(µ0, σ
2
0) for known constants µ0 and

σ2
0. We compute the posterior distribution of θ given x = (x1, . . . , xn). The likelihood is

f(x | θ) =

n∏
i=1

1√
2πσ

exp

{
− 1

2σ2
(xi − θ)2

}

∝
n∏
i=1

exp

{
− 1

2σ2
(θ2 − 2xiθ)

}
= exp

{
− n

2σ2
(θ2 − 2x̄θ)

}
. (2.16)

Notice that, when viewed as a function of θ, (2.16) has the form of a normal kernel (a kernel

of the N(x̄, σ
2

n )). The prior

f(θ)) ∝ exp

{
− 1

2σ2
0

(θ2 − 2µ0θ)

}
10Attempts to model θ in this way are closely related to the vibrant research area of Bayesian nonpara-

metrics.
11Theorem 2.1 provides an example when the model is specified.
12This rather wordy description is often just shortened to ‘exchangeable’.

24



so that the posterior

f(θ |x) ∝ exp
{
− n

2σ2
(θ2 − 2x̄θ)

}
exp

{
− 1

2σ2
0

(θ2 − 2µ0θ)

}
= exp

{
−1

2

(
n

σ2
+

1

σ2
0

)[
θ2 − 2

(
n

σ2
+

1

σ2
0

)−1(
n

σ2
x̄+

1

σ2
0

µ0

)
θ

]}
.(2.17)

We recognise (2.17) as the kernel of a Normal density so that θ |x ∼ N(µn, σ
2
n) where

1

σ2
n

=
n

σ2
+

1

σ2
0

, (2.18)

µn =

(
n

σ2
+

1

σ2
0

)−1(
n

σ2
x̄+

1

σ2
0

µ0

)
. (2.19)

Notice the similarity of these values with those in Example 1.5, (1.18) and (1.19). The

posterior precision, V ar−1(θ |X), is the sum of the data precision, V ar−1(X̄ | θ), and the

prior precision, V ar−1(θ). The posterior mean, E(θ |X), is a weighted average of the data

mean, x̄, and the prior mean, E(θ), weighted according to the corresponding precisions.

Observe that weak prior information is represented by a large prior variance. Letting σ2
0 →∞

we note that µn → x̄ and σ2
n → σ2

n : the familiar classical model.

2.3 Sufficiency, exponential families and conjugacy

Definition 2.3 (Sufficiency)

A statistic t(X) is said to be sufficient for X for learning about θ if we can write

f(x | θ) = g(t, θ)h(x) (2.20)

where g(t, θ) depends upon t(x) and θ and h(x) does not depend upon θ but may depend upon

x.

Equivalent statements to (2.20) are

1. f(x | t, θ) does not depend upon θ so that f(x | t, θ) = f(x | t).

2. f(θ |x, t) does not depend upon x so that f(θ |x, t) = f(θ | t).

Sufficiency represents the notion that given t(x) nothing further can be learnt about θ from

additionally observing x: θ and x are conditionally independent given t.

Example 2.8 In Example 2.7, we have, from (2.16) and reinstalling the constants of pro-

portionality,

f(x | θ) = exp
{
− n

2σ2
(θ2 − 2x̄θ)

}
×
(

1√
2πσ

)n
exp

{
− 1

2σ2

n∑
i=1

x2
i

}
= g(x̄, θ)h(x).

Hence, X̄ is sufficient for X = (X1, . . . , Xn) for learning about θ.
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Definition 2.4 (k-parameter exponential family)

A probability density f(x | θ), θ = (θ1, . . . , θk), is said to belong to the k-parameter exponential

family if it is of the form13

f(x | θ) = Efk(x | g, h, u, φ, θ)

= exp


k∑
j=1

φj(θ)uj(x) + g(θ) + h(x)

 (2.21)

where φ(θ) = (φ1(θ), . . . , φk(θ)) and u(x) = (u1(x), . . . , uk(x)). The family is regular if the

sample space of X does not depend upon θ, otherwise it is non-regular14.

Example 2.9 Suppose that X | θ ∼ Bernoulli(θ). Then

f(x | θ) = θx(1− θ)1−x

= exp {x log θ + (1− x) log(1− θ)}

= exp

{(
log

θ

1− θ

)
x+ log(1− θ)

}
Hence, this is the 1-parameter regular exponential family with φ1(θ) = log θ

1−θ , u1(x) = x,

g(θ) = log(1− θ) and h(x) = 0.

Proposition 2.1 If X1, . . . , Xn is an exchangeable sequence such that, given a regular k-

parameter exponential family Efk(· | ·),

f(x1, . . . , xn) =

∫
θ

{
n∏
i=1

Efk(xi | g, h, u, φ, θ)

}
f(θ) dθ

then tn = tn(X1, . . . , Xn) = [n,
∑n
i=1 u1(Xi), . . . ,

∑n
i=1 uk(Xi)], n = 1, 2, . . . is a sequence of

sufficient statistics.

Proof - From the representation, we have

f(x | θ) =

n∏
i=1

Efk(xi | g, h, u, φ, θ)

=

n∏
i=1

exp


k∑
j=1

φj(θ)uj(xi) + g(θ) + h(xi)


= exp


k∑
j=1

φj(θ)

(
n∑
i=1

uj(xi)

)
+ ng(θ) +

n∑
i=1

h(xi)


= exp


k∑
j=1

φj(θ)

(
n∑
i=1

uj(xi)

)
+ ng(θ)

× exp

{
n∑
i=1

h(xi)

}
= g̃(tn, θ)h̃(x)

13This will prove to be the most useful form for our purposes. In MA40092 you saw it expressed as

f(x | θ) = g̃(θ)h̃(x) exp
{∑k

j=1 φj(θ)uj(x)
}

where g̃(θ) = exp{g(θ)} and h̃(x) = exp{h(x)}.
14An example of this is the Uniform distribution, see Question 4 of Question Sheet Three.
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where g̃(tn, θ) is a function of tn and θ and h̃(x) a function of x. Hence tn is sufficient for

X = (X1, . . . , Xn) for learning about θ. 2

Example 2.10 Let X1, . . . , Xn be an exchangeable sequence with Xi | θ ∼ Bernoulli(θ).

Then, from Example 2.9, with x = (x1, . . . , xn)

f(x | θ) =

n∏
i=1

exp

{(
log

θ

1− θ

)
xi + log(1− θ)

}
.

For this 1-parameter exponential family we have u1(xi) = xi and
∑n
i=1 u1(xi) =

∑n
i=1 xi so

that, from Proposition 2.1, tn = (n,
∑n
i=1Xi) is sufficient for X1, . . . , Xn for learning about

θ.

2.3.1 Exponential families and conjugate priors

If f(x | θ) is a member of a k-parameter exponential family, it is easy to observe that a

conjugate prior can be found in the (k+1)-parameter exponential family. Regarding f(x | θ)
as a function of θ, notice that we can express (2.21) as

f(x | θ) = exp


k∑
j=1

uj(x)φj(θ) + g(θ) + h(x)

 (2.22)

which can be viewed as an exponential family over θ. If we take as our prior the following

(k + 1)-parameter exponential family over θ

f(θ) = exp


k∑
j=1

ajφj(θ) + dg(θ) + c(a, d)

 (2.23)

where a = (a1, . . . , ak) and c(a, d) is a normalising constant so that,

c(a, d) = − log

∫
θ

exp


k∑
j=1

ajφj(θ) + dg(θ)

 dθ, (2.24)

then, from (2.22) and (2.23), our posterior is

f(θ |x) = exp


k∑
j=1

uj(x)φj(θ) + g(θ) + h(x)

 exp


k∑
j=1

ajφj(θ) + dg(θ) + c(a, d)


∝ exp


k∑
j=1

[aj + uj(x)]φj(θ) + (d+ 1)g(θ)

 (2.25)

Notice that, up to constants of proportionality, (2.25) has the same form as (2.23). Indeed

if we let ãj = aj + uj(x) and d̃ = d+ 1 then we can express the posterior distribution as

f(θ |x) = exp


k∑
j=1

ãjφj(θ) + d̃g(θ) + c(ã, d̃)

 (2.26)
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where ã = (ã1, . . . , ãk) and c(ã, d̃) is a normalising constant, equivalent to (2.24) but with

ãj for aj and d̃ for d. Thus, we have that the (k + 1)-parameter exponential family is a

conjugate family with respect to the k-parameter exponential family likelihood15. In this

case, we talk about the natural conjugate prior.

Example 2.11 We find the natural conjugate prior for X | θ ∼ Bernoulli(θ). From Exam-

ple 2.9 we have that

f(x | θ) = exp

{(
x log

θ

1− θ

)
+ log(1− θ)

}
so that we take a prior of the form

f(θ) ∝ exp

{(
a log

θ

1− θ

)
+ d log(1− θ)

}
=

(
θ

1− θ

)a
(1− θ)d

= θa(1− θ)d−a

which is a kernel of a Beta distribution. To obtain the familiar parametrisation we take

a = a(α, β) = α − 1 and d = d(α, β) = β + α − 2. The likelihood has one parameter, θ, so

the natural conjugate prior has two parameters, α and β.

We term the (k+1)-parameter exponential family as being the natural conjugate prior to the

k-parameter exponential family likelihood as the (k + 1 + s)-parameter exponential family

f(θ) = exp


k∑
j=1

ajφj(θ) + dg(θ) +

s∑
r=1

erEr(θ) + c(a, d, e)

 ,

where e = (e1, . . . , es) and c(a, d, e) is the normalising constant, is also conjugate to the

k-parameter exponential family likelihood.

From Example 2.11, we noted that the natural conjugate to the Bernoulli likelihood has two

parameters α and β, the different possible values of these parameters indexing the specific

member of the Beta family chosen as the prior distribution. In order to distinguish the

parameters indexing the family of prior distributions from the parameters θ about which we

wish to make inference we term the former hyperparameters. Thus, in the Bernoulli case,

α and β are the hyperparameters. The general (k + 1 + s)-parameter exponential family

conjugate prior has k + 1 + s hyperparameters.

Conjugate priors are useful for a number of reasons. Firstly, they ease the inferential process

following the observation of data in that the posterior is straightforward to calculate: we

15It should be clear, using a similar approach to Proposition 2.1, that this result is easily obtained for the

case when X1, . . . , Xn is exchangeable with Xi | θ a member of the k-parameter exponential family.
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only need to update the hyperparameters16. Secondly, they ease the burden on the prior

specification: specifying the prior distribution reduces to specifying the hyperparameters.

This can be done by specifying either the hyperparameters directly or through a series of

distributional summaries from which they can be inferred. For example, which can infer

the two hyperparameters of a Beta prior from specifying the mean and the variance of the

prior17.

Notice that in order for a conjugate family to exist, the likelihood
∏n
i=1 f(xi | θ) must involve

only a finite number of different functions of x = (x1, . . . , xn) for n arbitrarily large. Thus, the

likelihood must contains a finite number of sufficient statistics which implies (given regularity

conditions) that the likelihood is a member of a regular exponential family18. Thus, (subject

to these regularity conditions), only regular exponential families exhibit conjugacy19.

2.4 Noninformative prior distributions

The posterior distribution combines the information provided by the data with the prior

information. In many situations, the available prior information may be too vague to be

formalised as a probability distribution or too subjective to be used in public decision making.

There has been a desire for prior distributions that are guaranteed to play a minimal

part in the posterior distribution. Such priors are sometimes called ‘reference priors’ and

the prior density is said be ‘flat’ or ‘noninformative’. The argument proposed is to “let the

data speak for themselves”.

Example 2.12 Suppose that X | θ ∼ Bin(n, θ) so that

f(x | θ) =

(
n

x

)
θx(1− θ)n−x.

The natural conjugate prior is the Beta(α, β) distribution. If the hyperparameters α and β

and chosen so that α = β = 1 then the prior is Unif(0, 1) so that

f(θ) = 1, 0 ≤ θ ≤ 1.

The prior suggests that we judge that θ is equally likely to be anywhere between 0 and 1 and

can be viewed as a judgement of ignorance. The use of this uniform prior distribution is

16In the majority of cases, from Proposition 2.1 and (2.25), this will involve simple adjustments using the

sufficient statistics of the likelihood.
17A further example of this is given in Question 2 of Question Sheet Three.
18This is the Pitman-Koopman-Darmois theorem.
19An example that breaks the regulatory conditions is the non-regular exponential family likelihood given

by U(0, θ). From Question 4 of Question Sheet Three we find that this has a conjugate prior given by the

Pareto distribution.
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often referred to as Bayes’ postulate. The posterior is

f(θ |x) ∝ f(x | θ)f(θ)

= f(x | θ).

The posterior density is thus

f(θ |x) =
f(x | θ)∫

θ
f(x | θ) dθ

which is the scaled likelihood. In this case, we have θ |x ∼ Beta(x+ 1, n− x+ 1).

The basic idea is to represent ignorance using uniform prior distributions. However, if the

possible values of θ do not lie in interval for which both endpoints are finite then no such

proper distribution (i.e. one that integrates to unity) exists. However, this may not be a

problem if the scaled likelihood has a finite integral over θ.

Definition 2.5 (Improper prior)

The specification f(θ) = f∗(θ) is said to be an improper prior if∫
θ

f∗(θ) dθ = ∞.

Example 2.13 Recall Example 2.7. For an exchangeable collection X = (X1, . . . , Xn) let

Xi | θ ∼ N(θ, σ2) where σ2 is known and θ ∼ N(µ0, σ
2
0) for known constants µ0 and σ2

0. The

posterior is θ |x ∼ N(µn, σ
2
n) where

1

σ2
n

=
n

σ2
+

1

σ2
0

,

µn =

(
n

σ2
+

1

σ2
0

)−1(
n

σ2
x̄+

1

σ2
0

µ0

)
.

Recall that, in Example 2.7, as σ2
0 →∞ then µn → x̄ and σ2

n → σ2

n which matches the scaled

likelihood. As σ2
0 →∞ the prior density f(θ) becomes flatter and flatter which we could view

as becoming more and more uniform. Notice that we could obtain N(x̄, σ
2

n ) as our posterior

distribution using the improper prior f(θ) ∝ 1.

2.4.1 Jeffreys’ prior

Suppose we take f(θ) ∝ 1 to represent ignorance about a parameter θ. If we consider the

parameter λ = 1
θ then f(λ) ∝ 1

λ2 which is not uniform. Although we attempt to express

ignorance about θ we do not have ignorance about 1
θ !

Can we calculate prior distributions that are invariant to the choice of parame-

terisation?
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The answer is yes if we use Jeffreys’ prior,20

f(θ) ∝ |I(θ)| 12 (2.27)

where I(θ) is the Fisher information matrix and | · | represents the determinant of a

matrix. Recall that if θ = (θ1, . . . , θk) is a k-dimensional parameter then I(θ) is the k × k
matrix with (i, j)th entry

(I(θ))ij = E

{
∂

∂θi
log f(x | θ) ∂

∂θj
log f(x | θ)

∣∣∣∣ θ}
= −E

{
∂2

∂θi∂θj
log f(x | θ)

∣∣∣∣ θ}

Example 2.14 For an exchangeable collection X = (X1, . . . , Xn) let Xi | θ ∼ N(θ, σ2) where

σ2 is known. We find Jeffreys’ prior for θ.

f(x | θ) =

n∏
i=1

1√
2πσ

exp

{
− 1

2σ2
(xi − θ)2

}

= (2πσ2)−
n
2 exp

{
− 1

2σ2

n∑
i=1

(xi − θ)2

}
.

Hence, as θ is univariate,

∂2

∂θ2
log f(x | θ) =

∂

∂θ

{
∂

∂θ
log f(x | θ)

}
=

∂

∂θ

{
∂

∂θ

(
−n

2
log 2πσ − 1

2σ2

n∑
i=1

(xi − θ)2

)}

=
∂

∂θ

{
1

σ2

n∑
i=1

(xi − θ)

}
= − n

σ2

so that the Fisher information is

I(θ) = −E
(
− n

σ2
| θ
)

=
n

σ2
. (2.28)

Substituting (2.28) into (2.27) we see that, in this case, Jeffreys’ prior is

f(θ) =

√
n

σ2
= ∝ 1

which is the improper prior we suggested in Example 2.13.

20Jeffreys’ prior is named after Harold Jeffreys (1891-1989).
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Recall how to transform the distribution of random variables. If X = (X1, . . . , Xp) is a

p-dimensional random variable with density function fX(x) and Y = (Y1, . . . , Yp) is a p-

dimensional random variable with density function fY (y) then if Y = g(X)

fY (y) = |det J(x, y)|fX(g−1(y))

where J(x, y) is the p× p Jacobian matrix with (i, j)th element

(J(x, y))ij =
∂xi
∂yj

where we write xi = hi(y) and yj = gj(x), det J(x, y) the determinant of the Jacobian21 and

| · | denotes the modulus.

Example 2.15 (Not given in lectures but just to remind you how to transform variables)

Consider X = (X1, X2) denoting Cartesian coordinates and Y = (Y1, Y2) denoting polar co-

ordinates. We have that Y = (
√
X2

1 +X2
2 , tan−1(X2

X1
)). We wish to find the density fY (y) by

transforming the density fX(x). We have y1 = g1(x) =
√
x2

1 + x2
2, y2 = g2(x) = tan−1(x2

x1
).

The inverse transformation is

x1 = h1(y) = y1 cos y2,

x2 = h2(y) = y1 sin y2.

Thus, the Jacobian

J(x, y) =

(
∂x1

∂y1
∂x1

∂y2
∂x2

∂y1
∂x2

∂y2

)
=

(
cos y2 −y1 sin y2

sin y2 y1 cos y2

)

with det J(x, y) = y1. Hence,

fY (y) = |det J(x, y)|fX(g−1(y)) = y1fX(y1 cos y2, y1 sin y2).

Let’s consider transformations of Jeffreys’ prior. For simplicity of exposition we’ll consider

the univariate case22. For a univariate parameter θ, Jeffreys’ prior fθ(θ) ∝
√
I(θ). Consider

a univariate transformation φ = g(θ) (e.g. φ = log θ, φ = 1
θ , . . .). There are two possible

ways to obtain Jeffreys’ prior for φ.

1. Obtain Jeffreys’ prior for θ and transform fθ(θ) to fφ(φ).

2. Transform the data immediately and obtain fφ(φ) using Jeffreys’ prior for φ.

We’ll show the two approaches are identical. Transforming fθ(θ) to fφ(φ) we have

fφ(φ) =

∣∣∣∣ ∂θ∂φ
∣∣∣∣ fθ(g−1(φ)) ∝

∣∣∣∣ ∂θ∂φ
∣∣∣∣√I(θ). (2.29)

21This is often called the Jacobian determinant or even just the Jacobian.
22The multivariate case is similar, only, for φ and θ multivariate, (2.30) becomes I(φ) = J(θ, φ)I(θ)J(θ, φ)T

so that |I(φ)| = |J(θ, φ)|2|I(θ)| and the result follows.

32

https://en.wikipedia.org/wiki/Jacobian-matrix_and_determinant


(e.g. φ = log θ gives θ = eφ, ∂θ∂φ = eφ so that fφ(φ) = eφfθ(e
φ); φ = 1

θ gives θ = 1
φ , ∂θ∂φ = − 1

φ2

so that fφ(φ) = 1
φ2 fθ(

1
φ ).) We now consider finding Jeffreys’ prior for φ directly. We have

I(φ) = E

{(
∂

∂φ
log f(x |φ)

)2
∣∣∣∣∣φ
}

= E

{(
∂θ

∂φ

∂

∂θ
log f(x | θ)

)2
∣∣∣∣∣ θ
}

=

(
∂θ

∂φ

)2

E

{(
∂

∂θ
log f(x | θ)

)2
∣∣∣∣∣ θ
}

=

(
∂θ

∂φ

)2

I(θ). (2.30)

Hence, Jeffreys prior for φ is

fφ(φ) ∝
√
I(φ) =

∣∣∣∣ ∂θ∂φ
∣∣∣∣√I(θ) (2.31)

so that (2.29) and (2.31) are identical. Jeffreys’ prior has the property that the prior is

invariant in that, whatever scale we choose to measure the unknown parameter the same

prior results when the scale is transformed. To quote Jeffreys23

any arbitrariness in the choice of parameters could make no difference to the

results.

2.4.2 Some final remarks about noninformative priors

A number of objections can be made to noninformative priors. One major objection to Jef-

freys’ prior is that it depends upon the form of the data whereas the prior should only reflect

the prior information and not by influenced by what data are to be collected. For example,

on Question 4 of Question Sheet Four we show that Jeffreys’ priors for the binomial and

negative binomial likelihoods are different which leads to the violation of the likelihood prin-

ciple24. The likelihood principle states that the likelihood contains all the information about

the data x so that two likelihoods contain the same information if they are proportional.

The use of improper priors may appear as a convenient tool to minimise the role of the

prior distribution. However, the posterior is not always guaranteed to be proper. This is

particularly the case if the likelihood, viewed as a function of θ, does not have a non-zero

finite integral when integrated over θ.

Example 2.16 Consider X | θ ∼ Bin(n, θ) and the improper prior f(θ) ∝ θ−1(1− θ)−1. In

this case, θ is often said to have the improper Beta(0, 0) density. The posterior is

f(θ |x) ∝ θx(1− θ)n−x × θ−1(1− θ)−1 = θx−1(1− θ)n−x−1

23see Jeffreys, H.D. (1961). Theory of Probability, 3rd ed. Oxford: University Press.
24The adoption of the likelihood principle is controversial and has caused much debate. Classical statistics

violates the likelihood principle but Bayesian statistics (using proper prior distributions) does not.

33

https://en.wikipedia.org/wiki/Likelihood_principle


which looks like a kernel of a Beta(x, n − x) density so that θ |x ∼ Beta(x, n − x). Notice

that, in this case, we have

E(θ |x) =
x

n

so that the posterior mean is equal to the maximum likelihood estimate which provides a

motivation for the use of this improper prior. However, if x = 0 (or n = 1) then the

posterior is improper.
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3 Computation

Practical implementation of Bayesian methods requires substantial computation. This is

required, essentially, to calculate summaries of the posterior distribution. So far, we have

worked with prior distributions and likelihoods of a sufficiently convenient form to simplify

the construction of the posterior. In practice,

1. we need to be able to work with much more complex models which actually relate to

real life problems.

2. A “good” Bayesian will specify prior distributions that accurately reflect the prior

information rather than use a prior of a mathematically convenient form.

The Bayesian needs computational tools to calculate a variety of posterior summaries from

distributions that are

1. mathematically complex

2. often high-dimensional

Typically, we shall be concerned with focusing on the posterior

f(θ |x) = cg(θ)

where g(θ) = f(x | θ)f(θ) and c is the normalising constant. In many cases c will be unknown

because the integral cannot be carried out analytically.

Example 3.1 Suppose that X | θ ∼ N(θ, σ2) where σ2 is a known constant and the prior

for θ is judged to follow a t-distribution with ν degrees of freedom. Hence,

f(θ) =
1

√
νB( 1

2 ,
1
2ν)

(
1 +

θ2

ν

)− (ν+1)
2

The posterior distribution for θ |x is

f(θ |x) =
c√

2πσνB( 1
2 ,

1
2ν)

(
1 +

θ2

ν

)− (ν+1)
2

exp

{
− 1

2σ2
(x− θ)2

}
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where

c−1 =

∫ ∞
−∞

1√
2πσνB( 1

2 ,
1
2ν)

(
1 +

θ2

ν

)− (ν+1)
2

exp

{
− 1

2σ2
(x− θ)2

}
dθ. (3.1)

However, we can not perform the integral in (3.1) analytically.

In practice, many computational techniques do not explicitly require c but compute sum-

maries of f(θ |x) from g(θ).

3.1 Normal approximations

We consider approximating the posterior distribution by a normal distribution. The ap-

proach utilises a Taylor series expansion of log f(θ |x) about the mode θ̃. The approximation

is most reasonable when f(θ |x) is unimodal and roughly symmetric.

Assume that θ is univariate. The one-dimensional Taylor series for a generic function

h(θ) about θ0 is

h(θ) = h(θ0) + (θ − θ0)
∂

∂θ
h(θ)

∣∣∣∣
θ=θ0

+ · · ·+ (θ − θ0)r

r!

∂r

∂θr
h(θ)

∣∣∣∣
θ=θ0

+ · · ·

Taking h(θ) = log f(θ |x) and θ0 = θ̃ we have

log f(θ |x) = log f(θ̃ |x) + (θ − θ̃) ∂

∂θ
log f(θ |x)

∣∣∣∣
θ=θ̃

+
(θ − θ̃)2

2

∂2

∂θ2
log f(θ |x)

∣∣∣∣
θ=θ̃

+ h.o.t. (3.2)

where h.o.t. denotes higher order terms. Now as θ̃ is the mode of f(θ |x) then it is a

maximum of log f(θ |x) so that

∂

∂θ
log f(θ |x)

∣∣∣∣
θ=θ̃

= 0. (3.3)

Letting

I(θ |x) = − ∂2

∂θ2
log f(θ |x)

denote the observed information1 then, using this and (3.3), (3.2) becomes

log f(θ |x) = log f(θ̃ |x)− I(θ̃ |x)

2
(θ − θ̃)2 + h.o.t.

Hence, approximately,

f(θ |x) ∝ exp

{
−I(θ̃ |x)

2
(θ − θ̃)2

}
1Note that as θ̃ is a maximum of log f(θ |x) then I(θ̃ |x) is positive.
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which is a kernel of a N(θ̃, I−1(θ̃ |x)) density so that, approximately, θ |x ∼ N(θ̃, I−1(θ̃ |x)).

The approximation can be generalised for the case when θ is multivariate. Suppose that θ

is the p × 1 vector (θ1, . . . , θp)
T with posterior density f(θ |x). Let the posterior mode be

θ̃ = (θ̃1, . . . , θ̃p)
T and the p× p observed information matrix be I(θ |x) where

(I(θ |x))ij −
∂2

∂θi∂θj
log f(θ |x)

then, approximately, θ |x ∼ Np(θ̃, I
−1(θ̃ |x)), the multivariate normal distribution (of di-

mension p) with

f(θ |x) =
1

(2π)
p
2 |I−1(θ̃ |x)| 12

exp

{
−1

2
(θ − θ̃)T I−1(θ̃ |x)(θ − θ̃)

}
.

Example 3.2 Suppose that X1, . . . , Xn are exchangeable and Xi | θ ∼ Po(θ). Find a Normal

approximation to the posterior distribution when we judge a uniform (improper) prior is

appropriate for θ.

We take f(θ) ∝ 1 so that

f(θ |x) ∝
n∏
i=1

θxie−θ = θnx̄e−nθ

which we recognise as a kernel of a Gamma(nx̄+1, n) distribution thus θ |x ∼ Gamma(nx̄+

1, n). A Gamma(α, β) distribution has mode equal to α−1
β so that the mode of θ |x is θ̃ =

nx̄+1−1
n = x̄. The observed information is

I(θ |x) = − ∂2

∂θ2

{
nx̄ log θ − nθ + log

nnx̄+1

Γ(nx̄+ 1)

}
=

nx̄

θ2

so that I(θ̃ |x) = I(x̄ |x) = n
x̄ . Thus, approximately, θ |x ∼ N(x̄, x̄n ).

3.2 Posterior sampling

If we can draw a sample of values from the posterior distribution then we can use the

properties of the sample (e.g. mean, variance, quantiles, . . . ) to estimate properties of the

posterior distribution.

3.2.1 Monte Carlo integration

Suppose that we wish to estimate E{g(X)} for some function g(x) with respect to a density

f(x). Thus,

E{g(X)} =

∫
X

g(x)f(x) dx. (3.4)
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For example, to compute the posterior mean of θ |x we have

E(θ |X) =

∫
θ

θf(θ |x) dθ.

Monte Carlo2 integration involves the following:

1. sample N values x1, . . . , xN independently3 from f(x)

2. calculate g(xi) for each xi

3. estimate E{g(X)} by the sample mean of the g(xi),

gN (x) =
1

N

N∑
i=1

g(xi).

Note that the corresponding estimator gN (X) is an unbiased estimator of E{g(X)} as

E{gN (X)} =
1

N

N∑
i=1

E{g(Xi)}

=

N∑
i=1

E{g(X)} = E{g(X)}.

The variance of the estimator is

V ar{gN (X)} =
1

N2

N∑
i=1

V ar{g(Xi)}

=
1

N2

N∑
i=1

V ar{g(X)} =
1

N
V ar{g(X)}.

3.2.2 Importance sampling

Suppose that we can not sample from f(x) but can generate samples from some other

distribution q(x) which is an approximation to f(x).

e.g. q(x) might be the approximation to f(x) obtained by a Normal approxima-

tion about the mode.

We can use samples from q(x) using the method of importance sampling. Let us consider

the problem of estimating E{g(X)} for some function g(x) with respect to a density f(x).

Then we may rewrite (3.4) as

E{g(X)} =

∫
X

g(x)f(x)

q(x)
q(x) dx

= E

{
g(X)f(X)

q(X)

∣∣∣∣ X ∼ q(x)

}
(3.5)

2The term Monte Carlo was introduced by John von Neumann (1903-1957) and

Stanis law Ulam (1909-1984)) as a code word for the simulation work they were doing for the

Manhattan Project during World War II.
3We shall later see how obtaining an independent sample can be difficult.
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where (3.5) makes clear that the expectation is calculation with respect to the density q(x).

If we draw a random sample x1, . . . , xN from q(x) then we may approximate E{g(X)} by

Î =
1

N

N∑
i=1

g(xi)f(xi)

q(xi)
.

Notice that

E(Î |X ∼ q(x)) =
1

N

N∑
i=1

E

(
g(Xi)f(Xi)

q(Xi)

∣∣∣∣ X ∼ q(x)

)

=
1

N

N∑
i=1

E

(
g(X)f(X)

q(X)

∣∣∣∣ X ∼ q(x)

)
= E{g(X)}

so that Î is an unbiased estimator of E{g(X)}. In a similar fashion we obtain that

V ar(Î |X ∼ q(x)) =
1

N
V ar

(
g(X)f(X)

q(X)

∣∣∣∣ X ∼ q(x)

)
.

Hence, the variance of Î will depend both on the choice of N and the approximation q(x).

Given a choice of approximating distributions from which we can sample we might choose

the approximation which minimises the variance of Î.

3.3 Markov chain Monte Carlo (MCMC)

Markov chain Monte Carlo (MCMC) is a general technique that has revolutionised practical

Bayesian statistics. It is a tool that generates samples from complex multi-dimensional

posterior distributions in cases where the distribution is analytically intractable.

A Markov chain is a random process with the property that, conditional upon its current

value, future values are independent of the past. Under certain conditions such a chain will

converge to a stationary distribution so that eventually values may be treated as a sample

from the stationary distribution.

The basic idea behind MCMC techniques for Bayesian statistics is:

1. Construct a Markov chain that has the required posterior distribution as its stationary

distribution. This is sometimes referred to as the target distribution.

2. From some starting point, generate sequential values from the chain until (approxi-

mate) convergence. (One of the difficulties of the approach is knowing when this has

occurred.)

3. Continue generating values from the chain which are now viewed as a sample of values

from the posterior distribution. (As the chain has converged, we are now sampling

from the stationary distribution.)
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4. Use the resulting sample (from the stationary distribution) to estimate properties of

the posterior distribution.

3.3.1 Useful results for Markov chains

We will consider only discrete time Markov chains (simulation is itself discrete) and sum-

marise only the important definitions required for MCMC.

A Markov chain is a discrete time stochastic process {X0, X1, . . .} with the property that

the distribution of Xt given all previous values of the process only depends upon Xt−1. That

is,

P (Xt ∈ A |X0 = x0, X1 = x1, . . . , Xt−1 = xt−1) = P (Xt ∈ A |Xt−1 = xt−1)

for any set A.

The probability of a transition, or jump, from xt−1 at time t− 1 to Xt at time t is given

by the transition kernel. If Xt is discrete then the transition kernel is a transition matrix

with (i, j)th element

Pij = P (Xt = j |Xt−1 = i) (3.6)

which represents the probability of moving from state i to state j. In the continuous case, if

P (Xt ∈ A |Xt−1 = xt−1) =

∫
A

q(x |xt−1) dx (3.7)

then the transition kernel is q(x |xt−1). Notice that it is common to see the transition kernel

written as q(xt−1, x) to indicate the transition from xt−1 to x; q(xt−1, x) does not represent

the joint density of xt−1 and x.

Definition 3.1 (Irreducible)

A Markov chain is said to be irreducible if for every i, j there exists k such that

P (Xt+k = j |Xt = i) > 0

that is, all states can be reached from any other state in a finite number of moves.

Definition 3.2 (Periodic/Aperiodic)

A state i is said to be periodic with period di if starting from state i the chain returns to it

within a fixed number of steps di or a multiple of di.

di = gcd{t : P (Xt = i |X0 = i) > 0}

where gcd is the greatest common divisor. If di = 1 then the state i is said to be aperiodic.

Irreducible Markov chains have the property that all states have the same period. A Markov

chain is called aperiodic if some (and hence all) states are aperiodic.
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Definition 3.3 (Recurrent/Positive Recurrent)

Let τii be the time of the first return to state i

tii = min{t > 0 : Xt = i |X0 = i}

A state i is recurrent if P (τii <∞) = 1 and positive recurrent if E(τii) <∞.

Thus, a state i is recurrent if the chain will return to state i with probability 1 and positive

recurrent if, with probability 1, it will return in a finite time. An irreducible Markov chain

is positive recurrent if some (and hence all) states i are positive recurrent.

Definition 3.4 (Ergodic)

A state is said to be ergodic if it is aperiodic and positive recurrent. A Markov chain is

ergodic if all of its states are ergodic.

Definition 3.5 (Stationary)

A distribution π is said to be a stationary distribution of a Markov chain with transition

probabilities Pij, see (3.6), if ∑
i∈S

πiPij = πj ∀j ∈ S

where S denotes the state space.

In matrix notation if P is the matrix of transition probabilities and π the vector with ith

entry πi then the stationary distribution satisfies

π = πP

These definitions have assumed that the state space of the chain is discrete. They are

naturally generalised to the case when the state space is continuous. For example if q(x |xt−1)

denotes the transition kernel, see (3.7), then the stationary distribution π of the Markov chain

must satisfy

π(x) =

∫
π(xt−1)q(x |xt−1) dxt−1

Theorem 3.1 (Existence and uniqueness)

Each irreducible and aperiodic Markov chain has a unique stationary distribution π.

Theorem 3.2 (Convergence)

Let Xt be an irreducible and aperiodic Markov chain with stationary distribution π and

arbitrary initial value X0 = x0. Then

P (Xt = x |X0 = x0) → π(x)

as t→∞.
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Theorem 3.3 (Ergodic)

Let Xt be an ergodic Markov chain with limiting distribution π. If E{g(X) |X ∼ π(x)} <∞
then the sample mean converges to the expectation of g(X) under π,

P

{
1

N

N∑
i=1

g(Xi)→ E{g(X) |X ∼ π(x)}

}
= 1.

Consequence of these theorems:

If we can construct an ergodic Markov chain θt which has the posterior distri-

bution f(θ |x) as the stationary distribution π(θ) then, starting from an initial

point θ0, if we run the Markov chain for long enough, we will sample from the

posterior.

• for large t, θt ∼ π(θ) = f(θ |x)

• for each s > t, θs ∼ π(θ) = f(θ |x)

• the ergodic averages converge to the desired expectations under the target

distribution.

3.3.2 The Metropolis-Hastings algorithm

Suppose that our goal is to draw samples from some distribution f(θ |x) = cg(θ) where

c is the normalising constant which may not be known or very difficult to compute. The

Metropolis-Hastings4 algorithm provides a way of sampling from f(θ |x)5 without requiring

us to know c.

Let q(φ | θ) be an arbitrary transition kernel: that is the probability of moving, or jump-

ing, from current state θ to proposed new state φ, see (3.7). This is sometimes called the

proposal distribution. The following algorithm will generate a sequence of values θ(1),

θ(2), . . . which form a Markov chain with stationary distribution given by f(θ |x).

Algorithm 3.1 The Metropolis-Hastings Algorithm.

1. Choose an arbitrary starting point θ(0) for which f(θ(0) |x) > 0.

2. At time t

(a) Sample a candidate point or proposal, θ∗, from q(θ∗ | θ(t−1)), the proposal

distribution.

4The original algorithm was developed by Nicholas Metropolis (1915-1999) in 1953 and generalised by

W. Keith Hastings (1930-2016)) in 1970. Metropolis, aided by the likes of Mary Tsingou (1928-) and

Klára Dan von Neumann (1911-1963), was involved in the design and build of the MANIAC I computer.
5The algorithm can be used to sample from any distribution f(θ). In this course, our interest centres

upon sampling from the posterior distribution.
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(b) Calculate the acceptance probability

α(θ(t−1), θ∗) = min

(
1,

f(θ∗ |x)q(θ(t−1) | θ∗)
f(θ(t−1) |x)q(θ∗ | θ(t−1))

)
. (3.8)

(c) Generate U ∼ U(0, 1).

(d) If U ≤ α(θ(t−1), θ∗) accept the proposal and set θ(t) = θ∗. Otherwise, reject

the proposal and set θ(t) = θ(t−1). (We thus accept the proposal with probability

α(θ(t−1), θ∗).)

3. Repeat step 2.

Notice that if f(θ |x) = cg(θ) then, from (3.8),

α(θ(t−1), θ∗) = min

(
1,

cg(θ∗)q(θ(t−1) | θ∗)
cg(θ(t−1))q(θ∗ | θ(t−1))

)
= min

(
1,

g(θ∗)q(θ(t−1) | θ∗)
g(θ(t−1))q(θ∗ | θ(t−1))

)
so that we do not need to know the value of c in order to compute α(θ(t−1), θ∗) and hence

utilise the Metropolis-Hastings algorithm to sample from f(θ |x).

If the proposal distribution is symmetric, so q(φ | θ) = q(θ |φ) for all possible φ, θ, then, in

particular, we have q(θ(t−1) | θ∗) = q(θ∗ | θ(t−1)) so that the acceptance probability (3.8) is

given by

α(θ(t−1), θ∗) = min

(
1,

f(θ∗ |x)

f(θ(t−1) |x)

)
. (3.9)

The Metropolis-Hastings algorithm with acceptance probability (3.8) replaced by (3.9) is

the Metropolis algorithm and was the initial version of this MCMC approach before

later being generalised by Hastings. In this context it is straightforward to interpret the

acceptance/rejection rule.

1. If the proposal increases the posterior density, that is f(θ∗ |x) > f(θ(t−1) |x), we

always move to the new point θ∗.

2. If the proposal decreases the posterior density, that is f(θ∗ |x) < f(θ(t−1) |x), then

we move to the new point θ∗ with probability equal to the ratio of the new to current

posterior density.

Example 3.3 Suppose that we want to sample from θ |x ∼ N(0, 1) using the Metropolis-

Hastings algorithm and we let the proposal distribution q(φ | θ) be the density of the N(θ, σ2)

for some σ2. Thus,

q(φ | θ) =
1√
2πσ

exp

{
− 1

2σ2
(φ− θ)2

}
=

1√
2πσ

exp

{
− 1

2σ2
(θ − φ)2

}
= q(θ |φ).
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The proposal distribution is symmetric and so the Metropolis-Hastings algorithm reduces to

the Metropolis algorithm. The algorithm is performed as follows.

1. Choose a starting point θ(0) for which f(θ(0) |x) > 0. As θ |x ∼ N(0, 1) this will hold

for any θ(0) ∈ (−∞,∞).

2. At time t

(a) Sample θ∗ ∼ N(θ(t−1), σ2).

(b) Calculate the acceptance probability

α(θ(t−1), θ∗) = min

(
1,

f(θ∗ |x)

f(θ(t−1) |x)

)
= min

(
1,

(2π)−
1
2 exp{− 1

2 (θ∗)2}
(2π)−

1
2 exp{− 1

2 (θ(t−1))2}

)
.

(c) Generate U ∼ U(0, 1).

(d) If U ≤ α(θ(t−1), θ∗) accept the move, θ(t) = θ∗. Otherwise reject the move,

θ(t) = θ(t−1).

3. Repeat step 2.

Example 3.4 We shall now illustrate the results of Example 3.3 using a simulation exer-

cise in R. The function metropolis (courtesy of Ruth Salway) uses the Metropolis-Hastings

algorithm to sample from N(mu.p, sig.p2) with the proposal N(theta[t-1], sig.q2).

metropolis = function (start=1, n=100, sig.q=1, mu.p=0, sig.p=1) {

#starting value theta_0 = start

#run for n iterations

#set up vector theta[] for the samples

theta=rep(NA,n)

theta[1]=start

#count the number of accepted proposals

accept=0

#Main loop

for (t in 2:n) {

#pick a candidate value theta* from N(theta[t-1], sig.q)

theta.star = rnorm(1, theta[t-1], sqrt(sig.q))
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#generate a random number between 0 and 1:

u = runif(1)

# calculate acceptance probability:

r = (dnorm(theta.star,mu.p,sig.p)) / (dnorm(theta[t-1],mu.p,sig.p) )

a=min(r,1)

#if u<a we accept the proposal; otherwise we reject

if (u<a) {

#accept

accept=accept+1

theta[t] = theta.star

}

else {

#reject

theta[t] = theta[t-1]

}

#end loop

}

We illustrate two example runs from of the algorithm. Firstly, in Figures 3.1 - 3.3, for

θ |x ∼ N(0, 1) where the proposal distribution is normal with mean θ and chosen variance

σ2 = 1 and the starting point is θ(0) = 1 and secondly, in Figures 3.4 - 3.6, for θ |x ∼ N(0, 1)

where the proposal distribution is normal with mean θ and chosen variance σ2 = 0.36 and

the starting point is θ(0) = 1. In each case we look at the results for nine, 100 and 5000

iterations from the sampler.
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Figure 3.1: Nine iterations from a Metropolis-Hastings sampler for θ |x ∼ N(0, 1) where the

proposal distribution is normal with mean θ and chosen variance σ2 = 1 and the starting

point is θ(0) = 1. The top plot shows the target distribution, N(0, 1), the proposal distri-

bution for θ(9) which is N(−0.216, 1), the proposal θ∗ = −1.779 and the current observed

density. The move is rejected; the bottom plot is the trace plot of θ(t).

The following table summarises the stages of the algorithm for the iterations given in

Figure 3.1.

t 1 2 3 4 5 6 7 8 9

θ∗ 1.319 −0.118 0.392 −1.089 −1.947 −0.716 −0.251 −0.216 −1.779

Accept/Reject? Accept Accept Accept Accept Reject Accept Accept Accept Reject

θ(t) 1.319 −0.118 0.392 −1.089 −1.089 −0.716 −0.251 −0.216 −0.216
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Figure 3.2: 100 iterations from a Metropolis-Hastings sampler for θ |x ∼ N(0, 1) where the

proposal distribution is normal with mean θ and chosen variance σ2 = 1 and the starting

point is θ(0) = 1. The first plot shows the trace plot of θ(t), the second the observed

density against the target density and the third the autocorrelation plot. The sample mean

is 0.3435006 and the sample variance is 0.5720027. 3% of points were observed to be greater

than 1.96 and the acceptance rate is 0.66.
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Figure 3.3: 5000 iterations from a Metropolis-Hastings sampler for θ |x ∼ N(0, 1) where the

proposal distribution is normal with mean θ and chosen variance σ2 = 1 and the starting

point is θ(0) = 1. The first plot shows the trace plot of θ(t), the second the observed density

against the target density and the third the autocorrelation plot. The sample mean is

0.01340934 and the sample variance is 0.984014. 2.76% of points were observed to be greater

than 1.96 and the acceptance rate is 0.7038.
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Figure 3.4: Nine iterations from a Metropolis-Hastings sampler for θ |x ∼ N(0, 1) where

the proposal distribution is normal with mean θ and chosen variance σ2 = 0.36 and the

starting point is θ(0) = 1. The top plot shows the target distribution, N(0, 1), the proposal

distribution for θ(9) which is N(−0.416, 0.36), the proposal θ∗ = 0.923 and the current

observed density. The move is accepted; the bottom plot is the trace plot of θ(t).

The following table summarises the stages of the algorithm for the iterations given in

Figure 3.4.

t 1 2 3 4 5 6 7 8 9

θ∗ 0.786 −0.280 −1.092 −0.335 −1.169 −0.987 0.234 −0.416 0.923

Accept/Reject? Accept Accept Reject Accept Reject Accept Accept Accept Accept

θ(t) 0.786 −0.280 −0.280 −0.335 −0.335 −0.987 0.234 −0.416 0.923
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Figure 3.5: 100 iterations from a Metropolis-Hastings sampler for θ |x ∼ N(0, 1) where

the proposal distribution is normal with mean θ and chosen variance σ2 = 0.36 and the

starting point is θ(0) = 1. The first plot shows the trace plot of θ(t), the second the observed

density against the target density and the third the autocorrelation plot. The sample mean

is −0.04438661 and the sample variance is 0.5414882. 0% of points were observed to be

greater than 1.96 and the acceptance rate is 0.83. Notice that, by comparing with Figure

3.2, reducing σ2, that is we are proposing smaller jumps, increases the acceptance rate but

reduces the mixing.
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Figure 3.6: 5000 iterations from a Metropolis-Hastings sampler for θ |x ∼ N(0, 1) where

the proposal distribution is normal with mean θ and chosen variance σ2 = 0.36 and the

starting point is θ(0) = 1. The first plot shows the trace plot of θ(t), the second the observed

density against the target density and the third the autocorrelation plot. The sample mean

is −0.008158827 and the sample variance is 0.9792388. 2.42% of points were observed to be

greater than 1.96 and the acceptance rate is 0.7894. Notice that, by comparing with Figure

3.3, reducing σ2, that is we are proposing smaller jumps, increases the acceptance rate but

reduces the mixing.
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3.3.3 Gibbs sampler

The aim of the Gibbs6 sampler is to make sampling from a high-dimensional distribution

more tractable by sampling from a collection of more manageable smaller dimensional dis-

tributions.

Gibbs sampling is a MCMC scheme where the transition kernel is formed by the full con-

ditional distributions. Assume that the distribution of interest is π(θ) where θ = (θ1, . . . , θd).

Note that

1. Typically we will want π(θ) = f(θ |x).

2. The components θi can be a scalar, a vector or a matrix. For simplicity of exposition

you may regard them as scalars.

Let θ−i denote the set θ \ θi and suppose that the full conditional distributions πi(θi) =

π(θi | θ−i) i = 1, . . . , d are available and can be sampled from.

Algorithm 3.2 The Gibbs sampler.

1. Choose an arbitrary starting point θ(0) = (θ
(0)
1 , . . . , θ

(0)
d ) for which π(θ(0)) > 0.

2. • Obtain θ
(t)
1 from conditional distribution π(θ1 | θ(t−1)

2 , . . . , θ
(t−1)
d )

• Obtain θ
(t)
2 from conditional distribution π(θ2 | θ(t)

1 , θ
(t−1)
3 , . . . , θ

(t−1)
d )

...

• Obtain θ
(t)
p from conditional distribution π(θp | θ(t)

1 , . . . , θ
(t)
p−1, θ

(t−1)
p+1 , . . . , θ

(t−1)
d )

...

• Obtain θ
(t)
d from conditional distribution π(θd | θ(t)

1 , . . . , θ
(t)
d−1)

3. Repeat step 2.

The algorithm is run until convergence is reached7. When convergence is reached, the re-

sulting value θ(j) is a realisation (or draw) from π(θ).

Example 3.5 Suppose that the joint distribution of θ = (θ1, θ2) is given by

f(θ1, θ2) ∝

(
n

θ1

)
θθ1+α−1

2 (1− θ2)n−θ1+β−1

for θ1 ∈ [0, 1, . . . , n] and 0 ≤ θ2 ≤ 1. Hence, θ1 is discrete and θ2 is continuous. Suppose

that we are interested in calculating some characteristic of the marginal distribution of θ1.

The Gibbs sampler will allow us to generate a sample from this marginal distribution in the

following way.

6Josiah Willard Gibbs (1839-1903).
7We’ll look at more detail into strategies for judging this in a couple of lectures time.
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The conditional distributions are

θ1 | θ2 ∼ Bin(n, θ2)

θ2 | θ1 ∼ Beta(θ1 + α, n− θ1 + β)

Assuming the hyperparameters n, α and β are known then it is straightforward to sample

from these distributions and we now generate a “Gibbs sequence” of random variables.

• Step 1: Specify an initial value θ
(0)
1 and either specify an initial θ

(0)
2 or sample it8

from π(θ2 | θ(0)
1 ), the Beta(θ

(0)
1 + α, n− θ(0)

1 + β) distribution, to obtain θ
(0)
2 .

• Step 2.1.(a): Obtain θ
(1)
1 from sampling from π(θ1 | θ(0)

2 ), the Bin(n, θ
(0)
2 ) distribu-

tion.

• Step 2.1.(b): Obtain θ
(1)
2 from sampling from π(θ2 | θ(1)

1 ), the Beta(θ
(1)
1 +α, n−θ(1)

1 +

β) distribution.

• Step 2.2.(a): Obtain θ
(2)
1 from sampling from π(θ1 | θ(1)

2 ), the Bin(n, θ
(1)
2 ) distribu-

tion.

• Step 2.2.(b): Obtain θ
(2)
2 from sampling from π(θ2 | θ(2)

1 ), the Beta(θ
(2)
1 +α, n−θ(2)

1 +

β) distribution.

We continue run through the algorithm to obtain the sequence of values

θ
(0)
1 , θ

(0)
2 , θ

(1)
1 , θ

(1)
2 , θ

(2)
1 , θ

(2)
2 , . . . , θ

(k)
1 , θ

(k)
2

which may be expressed as θ(0), θ(1), θ(2), . . . , θ(k) where θ(t) = (θ
(t)
1 , θ

(t)
2 ). The sequence is

such that the distribution of θ
(k)
1 tends to f(θ1) as k →∞ and, similarly, the distribution of

θ
(k)
2 tends to f(θ2) as k →∞.

To allow the sequence to converge to the stationary distribution, we first remove what

are termed the “burn-in” samples. Suppose we judge this to be after time b then we discard

{θ(t)
1 , θ

(t)
2 : t ≤ b} and the values {θ(t)

1 , θ
(t)
2 : t > b} may be considered a sample from the

required distribution. So, for summaries of θ1 we use the sample {θ(t)
1 : t > b}.

Example 3.6 We shall now illustrate the results of Example 3.5 using a simulation exercise

in R. The function gibbs uses the Gibbs sampler to sample from the conditionals x1 |x2 ∼
Bin(n, x2), x2 |x1 ∼ Beta(x1 + α, n− x1 + β).

gibbs = function(n=1000 , m=10 , a = 1, b= 1, start1=5 , start2=0.5 )

{

hbreaks <- c(0:(m +1)) - 0.5

xpos <- c(0:m)

8We can do this because we have d = 2 variables. In the general case, we could specify θ
(0)
1 , . . . , θ

(0)
d−1 and

then sample θ
(0)
d from π(θd | θ

(0)
1 , . . . , θ

(0)
d−1).
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ypos <- c(0:m)

for (i in 1:(m+1))

{

ypos[i] <- choose(m, xpos[i])*beta(xpos[i]+a, m-xpos[i]+b)/beta(a,b)

}

x <- seq(0,1,length=100)

y <- dbeta(x,a,b)

x1 <- c(1:n)

x2 <- c(1:n)

x1[1] <- start1

x2[1] <- start2

par( mfrow=c( 3,2 ) )

for ( i in 2:n )

{

x1[i] <- rbinom( 1 , m, x2[i-1])

x2[i] <- rbeta(1, a + x1[i], m - x1[i] + b)

plot( x1[1:i] , type="l" , xlab="Iteration" ,xlim=c(1,n),ylab="x1",

main="Trace plot for x1")

plot( x2[1:i] , type="l" , xlab="Iteration",xlim=c(1,n),ylab="x2",

main="Trace plot for x2" )

plot( x1[1:i] , x2[1:i] , type="p" , pch="." ,cex=2,xlab="x1",ylab="x2",

main="Plot of each (x1,x2)")

plot( x1[1:i] , x2[1:i] , type="l" ,col="red",xlab="x1",ylab="x2",

main = "Component-by-component updating")

hist(x1[1:i],prob=T,breaks=hbreaks,xlab="x1",

main="Histogram of x1 with target density")

lines(xpos,ypos)

hist(x2[1:i],prob=T,xlab="x2",main="Histogram of x2 with target density")

lines(x,y,col="black")

}

}

We illustrate two example runs from of the algorithm. Firstly, in Figures 3.7 - 3.8, for

n = 10 and α = β = 1 and secondly, in Figures 3.9 - 3.10, for n = 10 and α = 2 and β = 3

In each case we look at the results for fifty and 1500 iterations from the sampler.

Notice that the Gibbs sampler for θ = (θ1, . . . , θd) can be viewed as a special case of the

Metropolis-Hastings algorithm where each iteration t consists of d Metropolis-Hastings steps

each with an acceptance probability of 1. We shall show this in question 4 of Question Sheet
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Figure 3.7: Fifty iterations from a Gibbs sampler for x1 |x2 ∼ Bin(n, x2), x2 | x1 ∼
Beta(x1 + α, n − x1 + β) where n = 10 and α = β = 1. The marginal distributions are

x1 ∼ Beta − binomial(n, α, β) and x2 ∼ Beta(α, β). For α = β = 1, x1 is the discrete

uniform on {0, 1, . . . , n} and x2 ∼ U(0, 1).
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Figure 3.8: 1500 iterations from a Gibbs sampler for x1 |x2 ∼ Bin(n, x2), x2 | x1 ∼
Beta(x1 + α, n − x1 + β) where n = 10 and α = β = 1. The marginal distributions are

x1 ∼ Beta − binomial(n, α, β) and x2 ∼ Beta(α, β). For α = β = 1, x1 is the discrete

uniform on {0, 1, . . . , n} and x2 ∼ U(0, 1).
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Figure 3.9: Fifty iterations from a Gibbs sampler for x1 |x2 ∼ Bin(n, x2), x2 | x1 ∼
Beta(x1 + α, n − x1 + β) where n = 10, α = 2 and β = 3. The marginal distributions

are x1 ∼ Beta− binomial(n, α, β) and x2 ∼ Beta(α, β).
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Figure 3.10: 1500 iterations from a Gibbs sampler for x1 |x2 ∼ Bin(n, x2), x2 | x1 ∼
Beta(x1 + α, n − x1 + β) where n = 10, α = 2 and β = 3. The marginal distributions

are x1 ∼ Beta− binomial(n, α, β) and x2 ∼ Beta(α, β).
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Eight.

3.3.4 A brief insight into why the Metropolis-Hastings algorithm

works

A topic of major importance when studying Markov chains is determining the conditions

under which there exists a stationary distribution and what that stationary distribution is.

In MCMC methods, the reverse approach is taken. We have a stationary distribution π

(typically a posterior distribution from which we wish to sample) and we want to find the

transition probabilities of a Markov chain which has π as the stationary distribution.

In this section we shall motivate why the Metropolis-Hastings works. For ease of under-

standing we shall work in the discrete setting. The case when the state space of the Markov

chain is continuous follows very similarly, largely by the usual approach of replacing sums

by integrals.

Consider a discrete Markov chain Xt with transition probabilities, see (3.6),

Pθφ = P (Xt = φ |Xt−1 = θ)

for all θ, φ ∈ S, the state space of the chain. To make the link between the discrete and

continuous case more explicit we shall let

Pθφ = q1(φ | θ).

Suppose that the chain has a stationary distribution, for example from Theorem 3.1 a suf-

ficient condition is that the chain is irreducible and aperiodic, π. From Definition 3.59, the

stationary distribution π = {π(θ) : θ ∈ S} satisfies

π(φ) =
∑
θ∈S

π(θ)q1(φ | θ). (3.10)

In the continuous case we have

π(φ) =

∫
θ

π(θ)q1(φ | θ) dθ

highlighting the replacement of sums by integrals.

Notice that, as the chain must move somewhere,∑
φ∈S

q1(φ | θ) = 1. (3.11)

If the equation

π(θ)q1(φ | θ) = π(φ)q1(θ |φ) (3.12)

9Think of πi = π(θ), πj = π(φ) and Pij = Pθφ = q1(φ | θ).
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is satisfied for all θ, φ then the q1(φ | θ) satisfy time reversibility or detailed balance.

If (3.12) holds then the q1(φ | θ) are the transition probabilities of a Markov chain with

stationary distribution π since∑
θ∈S

π(θ)q1(φ | θ) =
∑
θ∈S

π(φ)q1(θ |φ) (3.13)

= π(φ)
∑
θ∈S

q1(θ |φ)

= π(φ) (3.14)

which is (3.10), where (3.13) follows from (3.12) and (3.14) from (3.11).

We now demonstrate how, by considering detailed balance, we can derive the Metropolis-

Hastings algorithm. Let q(φ | θ) denote the proposal density of a scheme where we wish to

sample from π(θ). Typically, q(·) will be easy to sample from and the sufficient conditions for

the existence of a stationary distribution (aperiodicity and irreducibility), π(θ), are mopped

up in q(·). In a Bayesian context, we will usually wish to sample from the posterior so that

π(θ) = f(θ |x). We propose a move from θ to φ with probability

α(θ, φ) = min

(
1,
π(φ)q(θ |φ)

π(θ)q(φ | θ)

)
.

The transition probabilities of the Markov chain created using the Metropolis-Hastings al-

gorithm are

q1(φ | θ) =

{
q(φ | θ)α(θ, φ) φ 6= θ

1−
∑
φ6=θ q(φ | θ)α(θ, φ) φ = θ.

(There are two ways for q1(θ | θ): either we reject a proposed move to φ 6= θ or we sample

θ = φ.) We now show that q1(φ | θ) satisfies detailed balance. For φ 6= θ we have

π(θ)q1(φ | θ) = π(θ)q(φ | θ)α(θ, φ)

= π(θ)q(φ | θ) min

(
1,
π(φ)q(θ |φ)

π(θ)q(φ | θ)

)
= min (π(θ)q(φ | θ), π(φ)q(θ |φ))

= π(φ)q(θ |φ) min

(
1,
π(θ)q(φ | θ)
π(φ)q(θ |φ)

)
= π(φ)q(θ |φ)α(φ, θ)

= π(φ)q1(θ |φ).

Thus, using (3.12), π(θ) is the stationary distribution of the Markov chain created using the

Metropolis-Hastings algorithm with proposal distribution q(φ | θ).

3.3.5 Using the sample for inference

The early values of a chain, before convergence, are called the burn-in. The length of

burn-in will depend upon the rate of convergence of the Markov chain and how close to
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the posterior we need to be. In general, it is difficult to obtain estimates of the rate of

convergence and so analytically determining the length of burn-in required is not feasible. A

practitioner uses times series plots of the chain as a way of judging convergence. Suppose that

we judge convergence to have been reached after b iterations of an MCMC algorithm have

been performed. We discard the observations θ(1), . . . , θ(b) and work with the observations

{θ(t) : t > b} which are viewed as being a sample from the stationary distribution of the

Markov chain which is typically the posterior distribution.

3.3.6 Efficiency of the algorithms

The efficiency of the Metropolis-Hastings algorithm depends upon a “good” choice of pro-

posal density q(φ | θ). In practice we want

1. A high acceptance probability: we don’t want to repeatedly sample points we reject.

Practical experience suggests that a “good” q(φ | θ) will be close to f(θ |x) but slightly

heavier in the tails.

2. To explore the whole distribution: we want a good coverage of all possible values of θ

and not to spend too long in only a small area of the distribution.

A chain that does not move around very quickly is said to be slow mixing.

The Gibbs sampler accepts all new points so we don’t need to worry about the acceptance

probability. However, we may experience slow mixing if the parameters are highly correlated.

Ideally we want the parameters to be as close to independence as possible as sampling from

conditionals reduces to sampling directly from the desired marginals.

Example 3.7 Suppose that we want to use a Gibbs sampler to sampler from the posterior

f(θ |x) where θ = (θ1, . . . , θd). For the Gibbs sampler we sample from the conditionals

f(θi | θ−i, x) for i = 1, . . . , d where θ−i = θ \ θi. If the θi are independent then

f(θ |x) =

d∏
i=1

f(θi |x)

and f(θi | θ−i, x) = f(θi |x). The Gibbs sampler will sample from the posterior marginal

densities.

In some cases, it may be worthwhile to deal with reparameterisations of θ, for example using

a reparameterisation which makes the parameters close to independent.
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4 Decision theory

Any situation in which choices are to made amongst two or more possible alternative courses

of action is a decision problem. If we are certain of the consequences of these choices, or

actions, then making a decision is relatively straightforward. You can simply write down

all of the possible options and choose the decision which you like the best. When the

consequences are uncertain then the problem is much less straightforward and consequently

much more interesting. We study how decisions ought1 to be made in these circumstances,

in short what is the optimal decision?

Let D be the class of possible decisions. For each d ∈ D let Θ be the set of relevant events

which affect the result of choosing d. It is often helpful to think of each θ ∈ Θ as describing

a state of nature so the actual value denotes the “true state of nature”.

Having chosen d we need a way of assessing the consequence of how good or bad the

choice of decision d was under the event θ. This measurement is called your utility.

We will largely restrict our attention to statistical decision theory where we regard in-

ference as a decision problem. We can typically think of each d as representing a method of

estimating θ so that the utility measures how good or bad the estimation procedure is.

It is clear that the utility will depend upon context. For example, in some cases it may

be much worse to overestimate a parameter θ than to underestimate it whilst in others in

may be equally serious to under or over estimate the parameter. Thus, the optimal decision

will also depend upon context.

4.1 Utility

You can think about the pair (θ, d) as defining your status, S, and denote the utility for this

status by u(S). We now consider how such a utility can be obtained.

Suppose that S1, . . . , Sn constitute a collection of n statuses. We shall assume that you

can compare these statuses. So, for any two statuses Si, Sj we write

• Sj ≺? Si, you prefer Si to Sj , if you would pay an amount of money (however small)

in order to swap Sj for Si.

1The approach is prescriptive (that is how people should behave rationally in making decisions which

satisfy some criteria) rather than descriptive (that is, studying decisions that people actually make).
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• Sj ∼? Si, you are indifferent between Si and Sj , if neither Sj ≺? Si or Si ≺? Sj hold.

• Sj �? Si, Si is at least as good as Sj , if one of Sj ≺? Si or Sj ∼? Si holds.

Notice that this gives us a framework for comparing anything.

Example 4.1 A bakery has five types of cake available and I assert that

fruit cake ≺? carrot cake ≺? banana cake ≺? chocolate cake ≺? cheese cake.

Thus, I would be willing to pay to exchange a fruit cake for a carrot cake and then pay again

to exchange the carrot cake for a banana cake and so on.

We make two assumptions about our preferences over statuses. Suppose that S1, S2, . . . , Sn

constitute a collection of n statuses. We assume

1. (COMPARABILITY) For any Si, Sj exactly one of Si ≺? Sj , Sj ≺? Si, Si ∼? Sj
holds.

2. (COHERENCE) If Si ≺? Sj and Sj ≺? Sk then Si ≺? Sk.

Comparability ensures that we can express a preference between any two rewards.

Example 4.2 Suppose that I didn’t have coherence over my preferences for cakes. For ex-

ample, consider that I assert carrot cake ≺? banana cake and banana cake ≺? chocolate cake

but that chocolate cake ≺? carrot cake. Then I would pay money to swap from carrot cake

to banana cake and then from banana cake to chocolate cake. I am then are willing to pay

to switch the chocolate cake for a carrot cake. I am back in my original position, but I have

spent money to maintain this status quo. I am a money pump.

The consequence of these assumptions is that, for a collection of n statuses S1, S2, . . . , Sn,

there is a labelling S(1), S(2), . . . , S(n) such that

S(1) �? S(2) �? · · · �? S(n).

This is termed a preference ordering for the statuses. In particular, there is a worst state

S(1) and a best state S(n). Notice that these need not necessary be unique.

In many situations, we are not certain as to which state will occur. This can be viewed as a

gamble. We write

G = p1S1 +g p2S2 +g · · ·+g pnSn

for the gamble that returns S1 with probability p1, S2 with probability p2, . . ., Sn with prob-

ability pn. We make two assumptions to ensure that our gambles are coherently compared.

1. If Sj �? Si, p < q then pSi +g (1− p)Sj �? qSi +g (1− q)Sj .
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2. If Sj �? Si then pSj +g (1− p)Sk �? pSi +g (1− p)Sk for any Sk.

Gambles provide the link between probability, preference and utility.

Definition 4.1 (Utility)

A utility function u(·) on gambles G = p1S1+gp2S2+g · · ·+gpnSn over statuses S1, S2, . . . , Sn

assigns a real number u(G) to each G subject to the following conditions

1. Let Gi, Gj be any two gambles. If Gj ≺? Gi then u(Gj) < u(Gi), and if Gj ∼? Gi
then u(Gj) = u(Gi).

2. For any p ∈ [0, 1] and any statuses A, B,

u(pA+g (1− p)B) = pu(A) + (1− p)u(B).

• Condition 1. says that utilities agree with preferences, so you choose the gamble with

the highest utility.

• Condition 2. says that, for the generic gamble G = p1S1 +g p2S2 +g · · · +g pnSn,

u(G) = p1u(S1) + p2u(S2) + · · ·+ pnu(Sn). Hence, u(G) = E{u(G)}.

i.e. Expected utility of a gamble = Actual utility of that gamble.

• Conditions 1. and 2. combined imply that we choose the gamble with the highest

expected utility. So, if we can specify a utility function over statuses, we can solve

any decision problem by choosing the decision which maximises expected utility.

Notice that a utility function over an ordered set of statuses S(1) �? S(2) �? · · · �? S(n) is

often constructed by setting u(S(1)) = 0 and u(S(n)) = 1 and, for each 1 < i < n, defining

u(S(i)) to be the probability p such that

S(i) ∼? (1− p)S(1) +g pS(n).

Thus, p is the probability where you are indifferent between a guaranteed status of S(i) and

a gamble with gives status S(n) with probability p and S(1) with probability (1 − p). p is

often termed the indifference probability for status S(i). A utility function is unique up to a

positive linear transformation.

4.2 Statistical decision theory

In statistical decision theory we consider inference about a parameter θ as a decision problem.

For any parameter value θ ∈ Θ, where Θ is the parameter space, and decision d ∈ D, where

D is the decision space, we have u(θ, d), the utility of choosing d when θ is the true value.

We shall define loss to be

L(θ, d) = −u(θ, d). (4.1)

The three main types of inference about θ are:
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1. point estimation,

2. set estimation,

3. hypothesis testing.

It is a great conceptual and practical simplification that statistical decision theory distin-

guishes between these three types simply according to their decision spaces, which are:

Type of inference Decision space D
Point estimation The parameter space, Θ.

Set estimation A set of subsets of Θ.

Hypothesis testing A specified partition of Θ, denoted H.

In examples, we’ll typically focus on point estimation and so specify a single value d as an

estimate of θ.

A statistical decision has a number of ingredients.

1. The possible values of the parameter: Θ, the parameter space.

2. The set of possible decisions: D, the decision space.

3. The probability distribution on Θ, π(θ). For example,

(a) this could be a prior distribution, π(θ) = f(θ).

(b) this could be a posterior distribution, π(θ) = f(θ |x) following the receipt of some

data x.

(c) this could be a posterior distribution π(θ) = f(θ |x, y) following the receipt of

some data x, y.

4. The loss function L(θ, d).

From (4.1), the decision which maximises the expected utility is the one which minimises

the expected loss. Thus, we choose d to minimise

ρ(π, d) =

∫
θ

L(θ, d)π(θ) dθ (4.2)

the risk of d under π(θ). The decision problem is completely specified by [Θ,D, π(θ), L(θ, d)].

Definition 4.2 (Bayes rule and Bayes risk)

The Bayes risk ρ∗(π) minimises the expected loss,

ρ∗(π) = inf
d∈D

ρ(π, d)

with respect to π(θ). A decision d∗ ∈ D for which ρ(π, d∗) = ρ∗(π) is a Bayes (decision) rule

against π(θ).
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The Bayes rule may not be unique, and in weird cases it might not exist. Typically, we solve

[Θ,D, π(θ), L(θ, d)] by finding ρ∗(π) and (at least one) d∗.

Example 4.3 Quadratic Loss. We consider the loss function

L(θ, d) = (θ − d)2.

From (4.2), the risk of decision d is

ρ(π, d) = E{L(θ, d) | θ ∼ π(θ)}

= E(π){(θ − d)2}

= E(π)(θ
2)− 2dE(π)(θ) + d2,

where E(π)(·) is a notational device to define the expectation computed using the distribution

π(θ). Differentiating with respect to d we have

∂

∂d
ρ(π, d) = −2E(π)(θ) + 2d.

So, the Bayes rule d∗ = E(π)(θ). The corresponding Bayes risk is

ρ∗(π) = ρ(π, d∗) = E(π)(θ
2)− 2d∗E(π)(θ) + (d∗)2

= E(π)(θ
2)− 2E2

(π)(θ) + E2
(π)(θ)

= E(π)(θ
2)− E2

(π)(θ)

= V ar(π)(θ)

where V ar(π)(θ) is the variance of θ computed using the distribution π(θ).

1. If π(θ) = f(θ), a prior for θ, then the Bayes rule of an immediate decision is d∗ = E(θ)

with corresponding Bayes risk ρ∗ = V ar(θ).

2. If we observe sample data x then the Bayes rule given this sample information is

d∗ = E(θ |X) with corresponding Bayes risk ρ∗ = V ar(θ |X) as π(θ) = f(θ |x).

Typically we can solve [Θ,D, f(θ), L(θ, d)], the immediate decision problem, and solve [Θ,D,

f(θ |x), L(θ, d)], the decision problem after sample information. Often, we may be interested

in the risk of the sampling procedure, before observing the sample, to decide whether or not

to sample. For each possible sample, we need to specify which decision to make. We have a

decision function

δ : X → D

where X is the data or sample information. Let ∆ be the collection of all decision functions,
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so δ ∈ ∆⇒ δ(x) ∈ D ∀x ∈ X. The risk of decision function δ is

ρ(f(θ), δ) =

∫
x

∫
θ

L(θ, δ(x))f(θ, x) dθdx

=

∫
x

∫
θ

L(θ, δ(x))f(θ |x)f(x) dθdx

=

∫
x

{∫
θ

L(θ, δ(x))f(θ |x) dθ

}
f(x) dx

=

∫
x

E{L(θ, δ(x)) |X}f(x) dx (4.3)

where, from (4.2), E{L(θ, δ(x)) |X} = ρ(f(θ |x), δ(x)), the posterior risk. We want to find

the Bayes decision function δ∗ for which

ρ(f(θ), δ∗) = inf
δ∈∆

ρ(f(θ), δ).

From (4.3), as f(x) ≥ 0, δ∗ may equivalently be found as

ρ(f(θ), δ∗) = inf
δ∈∆

E{L(θ, δ(x)) |X}, (4.4)

the posterior risk. The corresponding risk of the sampling procedure is

ρ∗n = E[E{L(θ, δ∗(x)) |X}]. (4.5)

So, from (4.4), the Bayes decision function is the Bayes rule of the decision problem [Θ,D,

f(θ |x), L(θ, d)] considered as a function of (random) x whilst, from (4.5), the Bayes risk of

the sampling procedure is the expected value of the Bayes risk of the decision problem [Θ,D,

f(θ |x), L(θ, d)] considered as a function of (random) x.

Example 4.4 Suppose that we wish to estimate the parameter, θ, of a Poisson distribution.

Our prior for θ is Gamma(α, β). The loss function, for estimate d and value θ, is

L(θ, d) = θ(θ − d)2.

1. Find the Bayes rule and Bayes risk of an immediate decision.

2. Find the Bayes rule and Bayes risk if we take a sample of size n.

3. Find the Bayes risk of the sampling procedure.

We consider the decision problem [Θ,D, π(θ), L(θ, d)]. Relative to distribution π the expected

loss is

E(π){L(θ, d)} = E(π){θ(θ − d)2}

= E(π)(θ
3 − 2dθ2 + d2θ)

= E(π)(θ
3)− 2dE(π)(θ

2) + d2E(π)(θ)
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Differentiating with respect to d we find

∂

∂d
E(π){L(θ, d)} = −2E(π)(θ

2) + 2dE(π)(θ)

so that the Bayes rule is

d∗ =
E(π)(θ

2)

E(π)(θ)
(4.6)

with corresponding Bayes risk

ρ∗(π) = E(π)(θ
3)− 2d∗E(π)(θ

2) + (d∗)2E(π)(θ)

= E(π)(θ
3)− 2

E(π)(θ
2)

E(π)(θ)
E(π)(θ

2) +

{
E(π)(θ

2)

E(π)(θ)

}2

E(π)(θ)

= E(π)(θ
3)−

E2
(π)(θ

2)

E(π)(θ)
. (4.7)

We now consider the immediate decision by solving the decision problem [Θ,D, f(θ), L(θ, d)].

As θ ∼ Gamma(α, β) then

E(θk) =

∫ ∞
0

θk
βα

Γ(α)
θα−1e−βθ dθ

=
Γ(α+ k)

Γ(α)
× βα

βα+k

∫ ∞
0

βα+k

Γ(α+ k)
θα+k−1e−βθ dθ (4.8)

=
Γ(α+ k)

Γ(α)
× βα

βα+k
(4.9)

provided that α+ k > 0 so that the integral in (4.8) is of the density of a Gamma(α+ k, β)

distribution. Now, from (4.9), for k = 1, 2, 3,

E(θ) =
Γ(α+ 1)βα

Γ(α)βα+1
=

αΓ(α)

βΓ(α)
=

α

β
(4.10)

E(θ2) =
Γ(α+ 2)βα

Γ(α)βα+2
=

(α+ 1)αΓ(α)

β2Γ(α)
=

(α+ 1)α

β2
(4.11)

E(θ3) =
Γ(α+ 3)βα

Γ(α)βα+3
=

(α+ 2)(α+ 1)αΓ(α)

β3Γ(α)
=

(α+ 2)(α+ 1)α

β3
(4.12)

Substituting (4.10) and (4.11) into (4.6), the Bayes rule of the immediate decision is

d∗ =
(α+ 1)α

β2
× β

α
=

α+ 1

β
. (4.13)

Substituting (4.10)- (4.12) into (4.7), the Bayes risk of the immediate decision is

ρ∗(f(θ)) =
(α+ 2)(α+ 1)α

β3
− (α+ 1)α

β2
× α+ 1

β
=

α(α+ 1)

β3
. (4.14)

We now consider the problem after observing a sample of size n by solving [Θ,D, f(θ |x),

L(θ, d)] where x = (x1, . . . , xn). As θ ∼ Gamma(α, β) and Xi | θ ∼ Po(θ) then2 θ |x ∼
2See, for example, Question Sheet Three Exercise 1.(b).
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Gamma(α +
∑n
i=1 xi, β + n). We can exploit this conjugacy to observe that the Bayes rule

and Bayes risk after sampling can be found from substituting α +
∑n
i=1 xi for α and β + n

for β in (4.13) and (4.14) to obtain

d∗ =
α+

∑n
i=1 xi + 1

β + n
(4.15)

as the Bayes rule after observing a sample of size n with corresponding Bayes risk

ρ∗(f(θ |x)) =
(α+

∑n
i=1 xi)(α+

∑n
i=1 xi + 1)

(β + n)3
. (4.16)

We now consider the risk of the sampling procedure. From (4.4) the Bayes decision function

is (4.15) viewed as a random variable, that is

δ∗ =
α+

∑n
i=1Xi + 1

β + n

From (4.5), the risk of the sampling procedure, ρ∗n, is the expected value of (4.16) when viewed

as a random variable,

ρ∗n = E

{
(α+

∑n
i=1Xi)(α+

∑n
i=1Xi + 1)

(β + n)3

}
=

α(α+ 1) + (2α+ 1)E(
∑n
i=1Xi) + E{(

∑n
i=1Xi)

2}
(β + n)3

(4.17)

Now, we utilise the tower property of expectations3 to find E(
∑n
i=1Xi) and E{(

∑n
i=1Xi)

2}.
We have that

E

(
n∑
i=1

Xi

)
= E

{
E

(
n∑
i=1

Xi

∣∣∣∣∣ θ
)}

= E

{
n∑
i=1

E(Xi | θ)

}

=

n∑
i=1

E(θ) =
nα

β
; (4.18)

E


(

n∑
i=1

Xi

)2
 = E

E

(

n∑
i=1

Xi

)2
∣∣∣∣∣∣ θ



= E

{
V ar

(
n∑
i=1

Xi

∣∣∣∣∣ θ
)

+ E2

(
n∑
i=1

Xi

∣∣∣∣∣ θ
)}

= E(nθ + n2θ2) =
nα

β
+
n2α(α+ 1)

β2
. (4.19)

Notice that we have exploited the independence of the Xi given θ and that Xi | θ ∼ Po(θ)

with θ ∼ Gamma(α, β). A slightly quicker, though less general, approach is to note that

3See Question Sheet One Exercise 5.
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∑n
i=1Xi | θ ∼ Po(nθ). Substituting (4.18) and (4.19) into (4.17) gives

ρ∗n =
1

(β + n)3

{
α(α+ 1) + (2α+ 1)

nα

β
+
nα

β
+
n2α(α+ 1)

β2

}
=

α(α+ 1)

β2(β + n)3

{
β2 + 2βn+ n2

}
=

α(α+ 1)

β2(β + n)
.

Notice that when n = 0, ρ∗n=0 = α(α+1)
β3 = ρ∗(f(θ)), the Bayes risk of the immediate decision.

As n increases then ρ∗n decreases.
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