Some News on the Proof Complexity of Deep Inference

Alessio Guglielmi

University of Bath and LORIA & INRIA Nancy-Grand Est

11 November 2009

This talk is available at http://cs.bath.ac.uk/ag/t/dipc.pdf

Outline

Aims of the talk:

- Put some of the current deep-inference research in the wider context of proof complexity.
- State a surprising result on cut elimination being at most quasipolynomial in deep inference (instead of exponential).
- Provide an introduction for the following talk by Tom, who will get into some details of quasipolynomial cut elimination.

Contents:

Overview of Complexity Classes

Proof Systems

Compressing Proofs

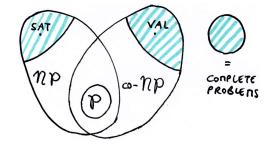
Deep Inference

Atomic Flows

Cut Elimination

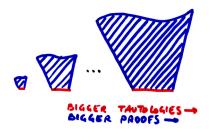
Concluding Remarks

Overview of (Some!) Complexity Classes



- $ightharpoonup \mathcal{NP}=$ class of problems that are verifiable in polynomial time.
- SAT = 'Is a propositional formula satisfiable?' (Yes: here is a satisfying assignment.)
- ightharpoonup co- $\mathcal{NP}=$ class of problems that are disqualifiable in polynomial time.
- VAL = 'Is a propositional formula valid?' (No: here is a falsifying assignment.)
- $ightharpoonup \mathcal{P} = \text{class of problems that can be solved in polynomial time.}$
- ▶ $\mathcal{NP} \neq \text{co-}\mathcal{NP}$ implies $\mathcal{P} \neq \mathcal{NP}$.

Proof Systems



- Proof complexity = proof size.
- Proof system = algorithm that verifies proofs in polynomial time on their size.
- ► Important question: What is the relation between size of tautologies and size of minimal proofs?

Example of Proof System: Frege

$$A\supset (B\supset A),$$

Axioms: $(A \supset (B \supset C)) \supset ((A \supset B) \supset (A \supset C)),$

 $(\neg B\supset \neg A)\supset ((\neg B\supset A)\supset B),$

Modus ponens, or cut, rule: $\frac{A \quad A \supset B}{B}$.

Example:

Robustness: all Frege systems are polynomially equivalent.

Example of Proof System: Gentzen Sequent Calculus

One axiom, many rules.

Example:

$$\bigvee_{\mathsf{NL}} \frac{a \vdash a}{\frac{a \vdash a \lor (a \supset \bot)}{a \vdash a \lor (a \supset \bot)}} \underbrace{a, \bot \vdash \bot}_{\mathsf{NR}} \underbrace{\frac{a \vdash a \lor \bot, a \vdash \bot}{a \supset \bot \vdash a \supset \bot}}_{\mathsf{NR}} \underbrace{\frac{a \vdash a \lor \bot, a \vdash \bot}{a \supset \bot \vdash a \supset \bot}}_{\mathsf{NR}} \underbrace{\frac{a \lor \bot \lor \bot}{a \supset \bot \vdash a \lor (a \supset \bot)}}_{\mathsf{NR}} \underbrace{a \lor \bot \lor \bot}_{\mathsf{NR}} \underbrace{\frac{a \lor \bot \lor \bot}{a \supset \bot, (a \lor (a \supset \bot)) \supset \bot \vdash \bot}}_{\mathsf{NR}}}_{\mathsf{NR}} \underbrace{\frac{a \lor (a \supset \bot), (a \lor (a \supset \bot)) \supset \bot \vdash \bot}{a \supset \bot, (a \lor (a \supset \bot)) \supset \bot \vdash \bot}}_{\mathsf{NR}}}_{\mathsf{NR}}$$

This is a special case of Frege, important because it admits complete and analytic proof systems (*i.e.*, cut-free proof systems, by which consistency proofs can be obtained).

Frege and Gentzen systems are polynomially equivalent.

Example of Proof System: Deep Inference

Proofs can be composed by the same operators as formulae.

Example:

$$=\frac{\begin{pmatrix} a \wedge \left[\bar{a} \vee \frac{t}{\bar{a} \vee a}\right] \\ s & \frac{\bar{a} \vee \bar{a}}{a \wedge \frac{\bar{a}}{\bar{a}}} \vee \frac{a}{a \wedge a} \\ & \frac{a \wedge \bar{a}}{f} \end{pmatrix}}{a \wedge \frac{a \wedge \bar{a}}{f}}$$

This is a generalisation of Frege, which admits complete and local proof systems (*i.e.*, where steps can be verified in constant time).

Frege and deep-inference systems are polynomially equivalent.

The calculus of structures (CoS) is now a completely developed deep inference formalism.

Proof Complexity and the \mathcal{NP} Vs. co- \mathcal{NP} Problem

► Theorem [Cook & Reckhow(1974)]:

There exists an efficient proof system
$$\textit{iff} \\ \mathcal{NP} = \text{co-}\mathcal{NP}$$

where 'efficient' = admitting proofs that are verifiable in polynomial time over the size of the proved formula.

- ▶ Is there an always efficient proof system? Probably not, and this is, obviously, hard.
- ▶ Is there an optimal proof system? (in the sense that it polynomially simulates all others.) We don't know, and this is perhaps feasible.

Compressing Proofs 1

Thus, an important question is: How can we make proofs smaller?

These are known mechanisms:

- 1. Use higher orders (for example, second order propositional, for propositional formulae).
- 2. Add substitution: $sub \frac{A}{A\sigma}$.
- 3. Add Tseitin extension: $p \leftrightarrow A$ (where p is a fresh atom).
- 4. Use the same sub-proof many times, via the cut rule.
- Use the same sub-proof many times, in dag-ness, or cocontraction.

Only 5 is allowed in analytic proof systems.

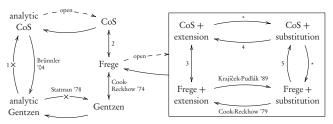
4 is the most studied form of compression, and the main topic of this talk, together with 5.

Compressing Proofs 2

Some facts:

- ► Substitution and extension are equivalent when added to Frege and to deep inference (not a trivial result).
- Any of these systems is usually called EF (for Extended Frege) and is considered the most interesting candidate as optimal proof system.
- Deep inference has the best representation for EF (the equivalence between extension and substitution becomes almost trivial).
- ► The EF compression in deep inference leads to a bureaucracy-free formalism (but this is a topic for another talk).

Proof Complexity and Deep Inference



Deep inference has as small proofs as the best systems (2,3,4,5,*) and

it has a normalisation theory

and

its analytic proof systems are more powerful than Gentzen ones (1) and

cut elimination is $n^{O(\log n)}$, *i.e.*, quasipolynomial (instead of exponential).

(See [Jeřábek(2009), Bruscoli & Guglielmi(2009), Bruscoli et al.(2009)Bruscoli, Guglielmi, Gundersen, & Parigot]).

(Proof) System SKS [Brünnler & Tiu(2001)]

Atomic rules:

$ \begin{array}{c} t \\ a \lor \bar{a} \\ identity \end{array} $	aw↓ f a weakening	$ \begin{array}{c} a \lor a \\ \hline a \end{array} $ contraction
$a \wedge \bar{a}$	$aw \uparrow \frac{a}{t}$	$ac\uparrow \frac{a}{a \wedge a}$
cut	coweakening	cocontraction

► Linear rules:

$$\begin{vmatrix}
\alpha \wedge [\beta \vee \gamma] \\
(\alpha \wedge \beta) \vee \gamma
\end{vmatrix} \qquad \text{m} \frac{(\alpha \wedge \beta) \vee (\gamma \wedge \delta)}{[\alpha \vee \gamma] \wedge [\beta \vee \delta]}$$
switch $medial$

- ▶ Plus an '=' linear rule (associativity, commutativity, units).
- ▶ Rules are applied anywhere inside formulae.
- Negation on atoms only.
- Cut is atomic.
- SKS is complete and implicationally complete for propositional logic.

(Atomic) Flows

$$\frac{\frac{t}{a \vee \bar{a}}}{s} = \frac{\left[\frac{a \wedge \left[\bar{a} \vee \frac{t}{\bar{a} \vee a}\right]}{s \sqrt{a} \wedge \bar{a}} \wedge \bar{a}\right]}{\left[\frac{s (a \vee t) \wedge \bar{a}}{s \sqrt{a}} \vee t\right]} = \frac{\left[\frac{a \wedge \left[\bar{a} \vee \frac{t}{\bar{a} \vee a}\right]}{s \sqrt{a} \wedge a} \wedge \bar{a}\right]}{a \wedge \frac{a \wedge \bar{a}}{f}} = \frac{\frac{a \wedge \bar{a}}{a \wedge a} \vee \frac{b}{b \wedge b}}{a \wedge a \wedge a} \wedge \frac{a}{a \wedge a} \wedge \bar{a}$$

- ▶ Below derivations, their (atomic) flows are shown.
- Only structural information is retained in flows.
- Logical information is lost.
- Flow size is polynomially related to derivation size.

Flow Reductions: (Co)Weakening (1)

Consider these flow reductions:

Each of them corresponds to a correct derivation reduction.

Flow Reductions: (Co)Weakening (2)

For example,
$$ai \downarrow -aw \uparrow$$
: $\sqrt{1} \rightarrow \sqrt{1}$ specifies that

$$\begin{array}{ccc}
\Pi'' \parallel & & & \Pi'' \parallel \\
\xi \left\{ \frac{t}{a^{\epsilon} \vee \bar{a}} \right\} & & \xi \left[t \vee \frac{f}{\bar{a}} \right] \\
\Phi \parallel & & \text{becomes} & \Phi_{\{a^{\epsilon}/t\}} \parallel \\
\zeta \left\{ \frac{a^{\epsilon}}{t} \right\} & & \psi \parallel \\
\alpha
\end{array}$$

We can operate on flow reductions instead than on derivations: it is much easier and we get natural, syntax-independent induction measures.

Flow Reductions: (Co)Contraction

Consider these flow reductions:

- They conserve the number and length of paths.
- Note that they can blow up a derivation exponentially.
- ► It's a good thing: cocontraction is a new compression mechanism (sharing?).
- ▶ Open problem: does cocontraction provide exponential compression? Conjecture: yes.

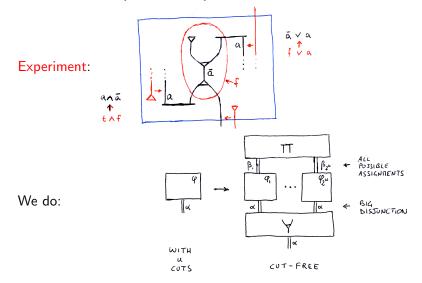
Normalisation Overview

SONNETRIC GENERALISATION

CUT ELIRINATION		STREATILINING
Exponential	- SITPLE EXPERIMENTS	- 'OPTIMIABLE' PROCEDURE - BY THE 'NORNALISER'
QUASI ACLIMORIAL	By 'THRESHOLD FUNCTIONS'	- BY 'THRESHOLD PUNCTIONS'

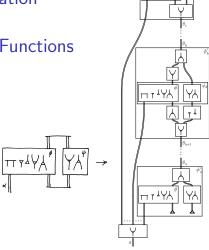
- ▶ None of these methods existed before atomic flows, none of them requires permutations or other syntactic devices.
- Quasipolynomial procedures are surprising.
- ► Conjecture: polynomial normalisation is possible.
- (1) [Guglielmi & Gundersen(2008)]; (2,4) forthcoming; (3) [Bruscoli et al.(2009)Bruscoli, Guglielmi, Gundersen, & Parigot].

Cut Elimination (on Proofs) by 'Experiments'



Simple, exponential cut elimination; proof generates 2^n experiments. (No use of cocontraction!)

Quasipolynomial
Cut Elimination
by
Threshold Functions



Only n+1 copies of the proof are stitched together. It's complicated, Tom will explain, but note local cocontraction (= better sharing, not available in Gentzen).

Some Comments

(that don't all follow from what precedes)

- ► (Exponential) normalisation does not depend on logical rules.
- ▶ It only depends on structural information, *i.e.*, geometry.
- Normalisation is extremely robust.
- ▶ Deep inference's locality is key.
- Complexity-wise, deep inference is as powerful as the best formalisms,
- and more powerful if analiticity is requested.
- Deep inference is the continuation of Girard politics with other means.

In my opinion, much of the future of structural proof theory is in geometric methods: we have to free ourselves from the tyranny of syntax (so, war to bureaucracy!).

References

Brünnler, K., & Tiu, A. F. (2001).

A local system for classical logic.

In R. Nieuwenhuis, & A. Voronkov (Eds.) LPAR 2001, vol. 2250 of Lecture Notes in Computer Science, (pp. 347–361). Springer-Verlag.

http://www.iam.unibe.ch/~kai/Papers/lcl-lpar.pdf.

Bruscoli, P., & Guglielmi, A. (2009).

On the proof complexity of deep inference.

ACM Transactions on Computational Logic, 10(2), 1-34. Article 14. http://cs.bath.ac.uk/ag/p/PrComplDI.pdf

Bruscoli, P., Guglielmi, A., Gundersen, T., & Parigot, M. (2009).

Quasipolynomial normalisation in deep inference via atomic flows and threshold formulae. Submitted. http://cs.bath.ac.uk/ag/p/QuasiPolNormDI.pdf.

Cook, S., & Reckhow, R. (1974).

On the lengths of proofs in the propositional calculus (preliminary version).

In Proceedings of the 6th annual ACM Symposium on Theory of Computing, (pp. 135-148). ACM Press.

Guglielmi, A., & Gundersen, T. (2008).

Normalisation control in deep inference via atomic flows. Logical Methods in Computer Science, 4(1:9), 1–36.

http://www.lmcs-online.org/ojs/viewarticle.php?id=341.

Jeřábek, E. (2009).

Proof complexity of the cut-free calculus of structures.

Journal of Logic and Computation, 19(2), 323-339. http://www.math.cas.cz/~jerabek/papers/cos.pdf.