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Outline
Aims of the talk:
» Put some of the current deep-inference research in the wider
context of proof complexity.

» State a surprising result on cut elimination being at most
quasipolynomial in deep inference (instead of exponential).

» Provide an introduction for the following talk by Tom, who
will get into some details of quasipolynomial cut elimination.
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Overview of (Some!)
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» NP = class of problems that are verifiable in polynomial time.

» SAT = 'Is a propositional formula satisfiable?’ (Yes: here is a
satisfying assignment.)

» co-N'P = class of problems that are disqualifiable in
polynomial time.

» VAL = ‘Is a propositional formula valid?' (No: here is a
falsifying assignment.)

» P = class of problems that can be solved in polynomial time.

> NP # co-NP implies P # NP.



Proof Systems
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» Proof complexity = proof size.

» Proof system = algorithm that verifies proofs in polynomial
time on their size.

» Important question: What is the relation between size of
tautologies and size of minimal proofs?



Example of Proof System: Frege

AD(BDA),

Axioms: (AD(B>C))D>((ADB)D(ADC)),
(-BD>-A)D((-BD>A)DB),

A ADB

Modus ponens, or cut, rule:

Example:
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Robustness: all Frege systems are polynomially equivalent.



Example of Proof System: Gentzen Sequent Calculus

One axiom, many rules.

Example:
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This is a special case of Frege, important because it admits
complete and analytic proof systems (i.e., cut-free proof systems,
by which consistency proofs can be obtained).

Frege and Gentzen systems are polynomially equivalent.



Example of Proof System: Deep Inference

Proofs can be composed by the same operators as formulae.

Example:

This is a generalisation of Frege, which admits complete and local
proof systems (i.e., where steps can be verified in constant time).

Frege and deep-inference systems are polynomially equivalent.

The calculus of structures (CoS) is now a completely developed
deep inference formalism.



Proof Complexity and the NP Vs. co-NP Problem

» Theorem [Cook & Reckhow(1974)]:

There exists an efficient proof system
iff
NP =co-NP

where ‘efficient’ = admitting proofs that are verifiable in
polynomial time over the size of the proved formula.

» Is there an always efficient proof system? Probably not, and
this is, obviously, hard.

» Is there an optimal proof system? (in the sense that it
polynomially simulates all others.) We don't know, and this is
perhaps feasible.



Compressing Proofs 1

Thus, an important question is:
How can we make proofs smaller?

These are known mechanisms:
1. Use higher orders (for example, second order propositional, for
propositional formulae).
N A
2. Add substitution: sub—.
Ao
3. Add Tseitin extension: p < A (where p is a fresh atom).

4. Use the same sub-proof many times, via the cut rule.
5. Use the same sub-proof many times, in dag-ness, or
cocontraction.

Only 5 is allowed in analytic proof systems.
4 is the most studied form of compression, and the main topic of
this talk, together with 5.



Compressing Proofs 2

Some facts:

>

Substitution and extension are equivalent when added to
Frege and to deep inference (not a trivial result).

Any of these systems is usually called EF (for Extended Frege)
and is considered the most interesting candidate as optimal
proof system.

Deep inference has the best representation for EF (the
equivalence between extension and substitution becomes
almost trivial).

The EF compression in deep inference leads to a
bureaucracy-free formalism (but this is a topic for another
talk).



Proof Complexity and Deep Inference
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Deep inference has as small proofs as the best systems (2,3,4,5,%)
and

it has a normalisation theory

and

its analytic proof systems are more powerful than Gentzen ones (1)
and

cut elimination is n©(log "), i.e., quasipolynomial (instead of
exponential).

(See [Jefabek(2009), Bruscoli & Guglielmi(2009),

Bruscoli et al.(2009)Bruscoli, Guglielmi, Gundersen, & Parigot]).



(Proof) System SKS
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identity weakening contraction
» Atomic rules:
ana a
aif aw] — ac
aha
cut coweakening cocontraction
Byl @ B)v(rrd)
» Linear rules: s(aAIB)V}/ aVy [BvS]
switch medial
» Plus an ‘=" linear rule (associativity, commutativity, units).
» Rules are applied anywhere inside formulae.
» Negation on atoms only.
» Cut is atomic.
» SKS is complete and implicationally complete for

propositional logic.



(Atomic) Flows
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Below derivations, their (atomic) flows are shown.

Only structural information is retained in flows.

Logical information is lost.

vV v v Yy

Flow size is polynomially related to derivation size.




Flow Reductions: (Co)Weakening (1)

Consider these flow reductions:

aw/|-ac]: KTz/l — |12 acl-awt: fl\z -
aw]-aif: LLl — |1 aij-awT: Fl — |1

aw|-aw]: I N

aw]-acl: 1/1\2 - 1T TZ ac|-awf: I\I/Z — Il Lz

Each of them corresponds to a correct derivation reduction.

1,2




Flow Reductions: (Co)Weakening (2)

For example, ail-aw(: (R, specifies that
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We can operate on flow reductions instead than on derivations: it
is much easier and we get natural, syntax-independent induction
measures.



Flow Reductions: (Co)Contraction

Consider these flow reductions:

2 s 1 2 3
cl-iT: I — il-cT: 112 3
1 2 3
1 2

» They conserve the number and length of paths.
» Note that they can blow up a derivation exponentially.

» It's a good thing: cocontraction is a new compression
mechanism (sharing?).

» Open problem: does cocontraction provide exponential
compression? Conjecture: yes.



Normalisation SANNETRIC GENERALISATION
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» None of these methods existed before atomic flows, none of
them requires permutations or other syntactic devices.

» Quasipolynomial procedures are surprising.
» Conjecture: polynomial normalisation is possible.

(1) [Guglielmi & Gundersen(2008)]; (2,4) forthcoming; (3)
[Bruscoli et al.(2009)Bruscoli, Guglielmi, Gundersen, & Parigot].



Cut Elimination (on Proofs) by ‘Experiments’
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Simple, exponential cut elimination; proof generates 2"
experiments. (No use of cocontraction!)



Quasipolynomial
Cut Elimination

by

Threshold Functions

Only n+ 1 copies of the proof are stitched together. It's
complicated, Tom will explain, but note local cocontraction (=
better sharing, not available in Gentzen).



Some Comments

(that don't all follow from what precedes)

>
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(Exponential) normalisation does not depend on logical rules.
It only depends on structural information, i.e., geometry.
Normalisation is extremely robust.

Deep inference's locality is key.

Complexity-wise, deep inference is as powerful as the best
formalisms,

» and more powerful if analiticity is requested.

» Deep inference is the continuation of Girard politics with

other means.

In my opinion, much of the future of structural proof theory is in
geometric methods: we have to free ourselves from the tyranny of
syntax (so, war to bureaucracy!).
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