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(Proof) System SKS
[Brünnler & Tiu(2001)]

I Atomic rules:
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instances of α and β, respectively, generates an (inference) step
ξ {γ}
ρ
ξ {δ}, for each context

ξ { }. A derivation, Φ, from α (premiss) toβ (conclusion) is a chain of inference steps with

α at the top and β at the bottom, and is usually indicated by
α

Φ ‖‖ "
β

, where " is the name

of the proof system or a set of inference rules (we might omit Φ and " ); a proof, often
denoted by Π, is a derivation with premiss t; besides Φ, we denote derivations with Ψ.
Sometimes we group n ! 0 inference steps of the same rule ρ together into one step, and
we label the step with n ·ρ.

The size |α| of a formula α, and the size |Φ| of a derivation Φ, is the number of unit
and atom occurrences appearing in it.

By α{a1/β1, . . . ,ah/βh}, we denote the operation of simultaneously substituting for-
mulae β1, . . . , βh into all the occurrences of the atoms a1, . . . , ah in the formula α,
respectively; note that the occurrences of ā1, . . . , āh are not automatically substituted.
Often, we only substitute certain occurrences of atoms, and these are indicated with su-
perscripts that establish a relation with atomic flows. As a matter of fact, we extend the
notion of substitution to derivations in the natural way, but this requires a certain care.
The issue is clarified in Section 3 (see, in particular, Notations 3 and 5 and Proposition 4).

System SKS is a CoS proof system, defined by the following structural inference rules:

t
ai↓

a ∨ ā
f

aw↓
a

a ∨ a
ac↓

a
identity weakening contraction

a ∧ ā
ai↑

f

a
aw↑

t

a
ac↑

a ∧ a
cut coweakening cocontraction

,

and by the following two logical inference rules:

α ∧ [β ∨ γ ]
s
(α ∧β) ∨ γ

(α ∧β) ∨ (γ ∧δ)
m
[α ∨ γ ] ∧ [β ∨δ]

switch medial
.

In addition to these rules, there is a rule
γ

=
δ

, such that γ and δ are opposite sides in one
of the following equations:

(1)

α ∨β=β ∨α α ∨ f = α
α ∧β=β ∧α α ∧ t= α

[α ∨β] ∨ γ = α ∨ [β ∨ γ ] t ∨ t= t

(α ∧β) ∧ γ = α ∧ (β ∧ γ ) f ∧ f = f

.

We do not always show the instances of rule =, and when we do show them, we gather
several contiguous instances into one. We consider the= rule as implicitly present in all
systems. The first row in Figure 2 shows some SKS example derivations.

The equality relation = on formulae is defined by closing the equations in (1) by
reflexivity, symmetry, transitivity and by stipulating that α = β implies ξ {α} = ξ {β};
to indicate literal equality of the formulae α and β we adopt the notation α≡β.

A cut-free derivation is a derivation where ai↑ is not used, i.e., a derivation in SKS \
{ai↑}. Of special importance in this paper is the following proof system:

Definition 1. Analytic SKS is the system aSKS= SKS \ {ai↑,aw↑}.

I Linear rules:
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instances of A and B , respectively, generates an (inference) step
ξ {C }
ρ−−−−−−−−
ξ {D}, for each context

ξ { }. A derivation, Φ, from A (premiss) to B (conclusion) is a chain of inference steps with

A at the top and B at the bottom, and is usually indicated by
A
Φ
�����
B

, where � is the name

of the proof system or a set of inference rules (we might omit Φ and � ); a proof, often
denoted by Π, is a derivation with premiss t; besides Φ, we denote derivations with Ψ.
Sometimes we group n � 0 inference steps of the same rule ρ together into one step, and
we label the step with n ·ρ.

The size |A| of a formula A, and the size |Φ| of a derivation Φ, is the number of unit
and atom occurrences appearing in it.

By A{a1/B1, . . . ,ah/Bh}, we denote the operation of simultaneously substituting for-
mulae B1, . . . , Bh into all the occurrences of the atoms a1, . . . , ah in the formula A,
respectively; note that the occurrences of ā1, . . . , āh are not automatically substituted.
Often, we only substitute certain occurrences of atoms, and these are indicated with su-
perscripts that establish a relation with atomic flows. As a matter of fact, we extend the
notion of substitution to derivations in the natural way, but this requires a certain care.
The issue is clarified in Section 3 (see, in particular, Notations 3 and 5 and Proposition 4).

System SKS is a CoS proof system, defined by the following structural inference rules:

t
ai↓ −−−−−−

a ∨ ā
f

aw↓ −−−
a

a ∨ a
ac↓ −−−−−−

a
identity weakening contraction

a ∧ ā
ai↑ −−−−−−

f

a
aw↑ −−−

t

a
ac↑ −−−−−−

a ∧ a
cut coweakening cocontraction

,

and by the following two logical inference rules:

A∧ [B ∨C ]
s−−−−−−−−−−−−−−−−
(A∧B) ∨C

(A∧B) ∨ (C ∧D)
m−−−−−−−−−−−−−−−−−−−−−−−−−
[A∨C ] ∧ [B ∨D]

switch medial
.

In addition to these rules, there is a rule
C

=−−−
D

, such that C and D are opposite sides in one
of the following equations:

(1)

A∨B = B ∨A A∨ f =A
A∧B = B ∧A A∧ t=A

[A∨B] ∨C =A∨ [B ∨C ] t ∨ t= t

(A∧B) ∧C =A∧ (B ∧C ) f ∧ f = f

.

We do not always show the instances of rule =, and when we do show them, we gather
several contiguous instances into one. We consider the = rule as implicitly present in all
systems. The first row in Figure 2 shows some SKS example derivations.

The equality relation = on formulae is defined by closing the equations in (1) by
reflexivity, symmetry, transitivity and by stipulating that A= B implies ξ {A} = ξ {B};
to indicate literal equality of the formulae A and B we adopt the notation A≡ B .

A cut-free derivation is a derivation where ai↑ is not used, i.e., a derivation in SKS \
{ai↑}. Of special importance in this paper is the following proof system:

Definition 1. Analytic SKS is the system aSKS= SKS \ {ai↑,aw↑}.
The notion of analyticity in deep inference has similarities and differences with an-

alyticity in Gentzen formalisms. The similarities mainly reside in the normalisation

I Plus an ‘=’ linear rule (associativity, commutativity, units).
I Rules are applied anywhere inside formulae.
I Negation on atoms only.
I Cut is atomic.
I SKS is complete and implicationally complete for

propositional logic.



Example 1

I In the calculus of structures (CoS):
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t
ai↓

a ∨ ā
=
(a ∧ t) ∨ (t ∧ ā)

m
[a ∨ t] ∧ [t ∨ ā]

=
[a ∨ t] ∧ [ā ∨ t]

s
([a ∨ t] ∧ ā) ∨ t

=
(ā ∧ [a ∨ t]) ∨ t

s
[(ā ∧ a) ∨ t] ∨ t

=
(a ∧ ā) ∨ t

ai↑
f ∨ t

=
t

(a ∧ [ā ∨ t]) ∧ ā
ai↓
(a ∧ [ā ∨ [ā ∨ a]]) ∧ ā

=
(a ∧ [[ā ∨ ā] ∨ a]) ∧ ā

s
[(a ∧ [ā ∨ ā]) ∨ a] ∧ ā

ac↓
[(a ∧ ā) ∨ a] ∧ ā

ai↑
[f ∨ a] ∧ ā

=
a ∧ ā

ac↑
(a ∧ a) ∧ ā

=
a ∧ (a ∧ ā)

ai↑
a ∧ f

[a ∨ b] ∧ a
ac↑
[(a ∧ a) ∨ b] ∧ a

ac↑
[(a ∧ a) ∨ (b ∧ b )] ∧ a

ac↑
[(a ∧ a) ∨ (b ∧ b )] ∧ (a ∧ a)

m
([a ∨ b] ∧ [a ∨ b]) ∧ (a ∧ a)

=
([a ∨ b] ∧ a) ∧ ([a ∨ b] ∧ a)

t

a ∨ ā
m
[a ∨ t] ∧ [t ∨ ā]

s

[a ∨ t] ∧ ā

s
a ∧ ā

f
∨ t

∨ t







a ∧
*

ā ∨
t

ā ∨ a

+

s

a ∧
ā ∨ ā

ā
f

∨
a

a ∧ a

∧ ā




=

a ∧
a ∧ ā

f

a
a ∧ a

∨
b

b ∧ b
m
[a ∨ b] ∧ [a ∨ b]

∧
a

a ∧ a

FIGURE 2. Examples of derivations in CoS and Formalism A notation,
and associated atomic flows.

the right flow cannot:

φ
,

ψ ψ′
and .

The flow at the right cannot represent flow (2) because it has the wrong number of lower
edges and because a necessary cut vertex is not allowed by the labelling of the boxes. As
just shown, we sometimes label boxes with the name of the flow they represent. For
example, flow φ above could represent flow (2), and, if the centre flow stands for (2),
then flows ψ and ψ′ are, respectively,

and .

When no vertex labels appear on a box, we assume that the vertices in the corresponding
flow can be any (so, it does not mean that there are no vertices in the flow).

I In ‘Formalism A’:
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t
ai↓

a ∨ ā
=
(a ∧ t) ∨ (t ∧ ā)

m
[a ∨ t] ∧ [t ∨ ā]

=
[a ∨ t] ∧ [ā ∨ t]

s
([a ∨ t] ∧ ā) ∨ t

=
(ā ∧ [a ∨ t]) ∨ t

s
[(ā ∧ a) ∨ t] ∨ t

=
(a ∧ ā) ∨ t

ai↑
f ∨ t

=
t

(a ∧ [ā ∨ t]) ∧ ā
ai↓
(a ∧ [ā ∨ [ā ∨ a]]) ∧ ā

=
(a ∧ [[ā ∨ ā] ∨ a]) ∧ ā

s
[(a ∧ [ā ∨ ā]) ∨ a] ∧ ā

ac↓
[(a ∧ ā) ∨ a] ∧ ā

ai↑
[f ∨ a] ∧ ā

=
a ∧ ā

ac↑
(a ∧ a) ∧ ā

=
a ∧ (a ∧ ā)

ai↑
a ∧ f

[a ∨ b] ∧ a
ac↑
[(a ∧ a) ∨ b] ∧ a

ac↑
[(a ∧ a) ∨ (b ∧ b )] ∧ a

ac↑
[(a ∧ a) ∨ (b ∧ b )] ∧ (a ∧ a)

m
([a ∨ b] ∧ [a ∨ b]) ∧ (a ∧ a)

=
([a ∨ b] ∧ a) ∧ ([a ∨ b] ∧ a)

t

a ∨ ā
m
[a ∨ t] ∧ [t ∨ ā]

s

[a ∨ t] ∧ ā

s
a ∧ ā

f
∨ t

∨ t







a ∧
*

ā ∨
t

ā ∨ a

+

s

a ∧
ā ∨ ā

ā
f

∨
a

a ∧ a

∧ ā




=

a ∧
a ∧ ā

f

a
a ∧ a

∨
b

b ∧ b
m
[a ∨ b] ∧ [a ∨ b]

∧
a

a ∧ a

FIGURE 2. Examples of derivations in CoS and Formalism A notation,
and associated atomic flows.

the right flow cannot:

φ
,

ψ ψ′
and .

The flow at the right cannot represent flow (2) because it has the wrong number of lower
edges and because a necessary cut vertex is not allowed by the labelling of the boxes. As
just shown, we sometimes label boxes with the name of the flow they represent. For
example, flow φ above could represent flow (2), and, if the centre flow stands for (2),
then flows ψ and ψ′ are, respectively,

and .

When no vertex labels appear on a box, we assume that the vertices in the corresponding
flow can be any (so, it does not mean that there are no vertices in the flow).

Top-down symmetry: so inference steps can be made atomic
(the medial rule, m, is impossible in the sequent calculus).



Example 2

I In CoS:
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t
ai↓

a ∨ ā
=
(a ∧ t) ∨ (t ∧ ā)

m
[a ∨ t] ∧ [t ∨ ā]

=
[a ∨ t] ∧ [ā ∨ t]

s
([a ∨ t] ∧ ā) ∨ t

=
(ā ∧ [a ∨ t]) ∨ t

s
[(ā ∧ a) ∨ t] ∨ t

=
(a ∧ ā) ∨ t

ai↑
f ∨ t

=
t

(a ∧ [ā ∨ t]) ∧ ā
ai↓
(a ∧ [ā ∨ [ā ∨ a]]) ∧ ā

=
(a ∧ [[ā ∨ ā] ∨ a]) ∧ ā

s
[(a ∧ [ā ∨ ā]) ∨ a] ∧ ā

ac↓
[(a ∧ ā) ∨ a] ∧ ā

ai↑
[f ∨ a] ∧ ā

=
a ∧ ā

ac↑
(a ∧ a) ∧ ā

=
a ∧ (a ∧ ā)

ai↑
a ∧ f

[a ∨ b] ∧ a
ac↑
[(a ∧ a) ∨ b] ∧ a

ac↑
[(a ∧ a) ∨ (b ∧ b )] ∧ a

ac↑
[(a ∧ a) ∨ (b ∧ b )] ∧ (a ∧ a)

m
([a ∨ b] ∧ [a ∨ b]) ∧ (a ∧ a)

=
([a ∨ b] ∧ a) ∧ ([a ∨ b] ∧ a)

t

a ∨ ā
m
[a ∨ t] ∧ [t ∨ ā]

s

[a ∨ t] ∧ ā

s
a ∧ ā

f
∨ t

∨ t







a ∧
*

ā ∨
t

ā ∨ a

+

s

a ∧
ā ∨ ā

ā
f

∨
a

a ∧ a

∧ ā




=

a ∧
a ∧ ā

f

a
a ∧ a

∨
b

b ∧ b
m
[a ∨ b] ∧ [a ∨ b]

∧
a

a ∧ a

FIGURE 2. Examples of derivations in CoS and Formalism A notation,
and associated atomic flows.

the right flow cannot:

φ
,

ψ ψ′
and .

The flow at the right cannot represent flow (2) because it has the wrong number of lower
edges and because a necessary cut vertex is not allowed by the labelling of the boxes. As
just shown, we sometimes label boxes with the name of the flow they represent. For
example, flow φ above could represent flow (2), and, if the centre flow stands for (2),
then flows ψ and ψ′ are, respectively,

and .

When no vertex labels appear on a box, we assume that the vertices in the corresponding
flow can be any (so, it does not mean that there are no vertices in the flow).

I In ‘Formalism A’:
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t
ai↓

a ∨ ā
=
(a ∧ t) ∨ (t ∧ ā)

m
[a ∨ t] ∧ [t ∨ ā]

=
[a ∨ t] ∧ [ā ∨ t]

s
([a ∨ t] ∧ ā) ∨ t

=
(ā ∧ [a ∨ t]) ∨ t

s
[(ā ∧ a) ∨ t] ∨ t

=
(a ∧ ā) ∨ t

ai↑
f ∨ t

=
t

(a ∧ [ā ∨ t]) ∧ ā
ai↓
(a ∧ [ā ∨ [ā ∨ a]]) ∧ ā

=
(a ∧ [[ā ∨ ā] ∨ a]) ∧ ā

s
[(a ∧ [ā ∨ ā]) ∨ a] ∧ ā

ac↓
[(a ∧ ā) ∨ a] ∧ ā

ai↑
[f ∨ a] ∧ ā

=
a ∧ ā

ac↑
(a ∧ a) ∧ ā

=
a ∧ (a ∧ ā)

ai↑
a ∧ f

[a ∨ b] ∧ a
ac↑
[(a ∧ a) ∨ b] ∧ a

ac↑
[(a ∧ a) ∨ (b ∧ b )] ∧ a

ac↑
[(a ∧ a) ∨ (b ∧ b )] ∧ (a ∧ a)

m
([a ∨ b] ∧ [a ∨ b]) ∧ (a ∧ a)

=
([a ∨ b] ∧ a) ∧ ([a ∨ b] ∧ a)

t

a ∨ ā
m
[a ∨ t] ∧ [t ∨ ā]

s

[a ∨ t] ∧ ā

s
a ∧ ā

f
∨ t

∨ t







a ∧
*

ā ∨
t

ā ∨ a

+

s

a ∧
ā ∨ ā

ā
f

∨
a

a ∧ a

∧ ā




=

a ∧
a ∧ ā

f

a
a ∧ a

∨
b

b ∧ b
m
[a ∨ b] ∧ [a ∨ b]

∧
a

a ∧ a

FIGURE 2. Examples of derivations in CoS and Formalism A notation,
and associated atomic flows.

the right flow cannot:

φ
,

ψ ψ′
and .

The flow at the right cannot represent flow (2) because it has the wrong number of lower
edges and because a necessary cut vertex is not allowed by the labelling of the boxes. As
just shown, we sometimes label boxes with the name of the flow they represent. For
example, flow φ above could represent flow (2), and, if the centre flow stands for (2),
then flows ψ and ψ′ are, respectively,

and .

When no vertex labels appear on a box, we assume that the vertices in the corresponding
flow can be any (so, it does not mean that there are no vertices in the flow).



Locality

I Deep inference allows locality,

I i.e., inference steps can be checked in constant time (so,
inference steps are small).

Example, atomic cocontraction:
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t
ai↓

a ∨ ā
=
(a ∧ t) ∨ (t ∧ ā)

m
[a ∨ t] ∧ [t ∨ ā]

=
[a ∨ t] ∧ [ā ∨ t]

s
([a ∨ t] ∧ ā) ∨ t

=
(ā ∧ [a ∨ t]) ∨ t

s
[(ā ∧ a) ∨ t] ∨ t

=
(a ∧ ā) ∨ t

ai↑
f ∨ t

=
t

(a ∧ [ā ∨ t]) ∧ ā
ai↓
(a ∧ [ā ∨ [ā ∨ a]]) ∧ ā

=
(a ∧ [[ā ∨ ā] ∨ a]) ∧ ā

s
[(a ∧ [ā ∨ ā]) ∨ a] ∧ ā

ac↓
[(a ∧ ā) ∨ a] ∧ ā

ai↑
[f ∨ a] ∧ ā

=
a ∧ ā

ac↑
(a ∧ a) ∧ ā

=
a ∧ (a ∧ ā)

ai↑
a ∧ f

[a ∨ b] ∧ a
ac↑
[(a ∧ a) ∨ b] ∧ a

ac↑
[(a ∧ a) ∨ (b ∧ b )] ∧ a

ac↑
[(a ∧ a) ∨ (b ∧ b )] ∧ (a ∧ a)

m
([a ∨ b] ∧ [a ∨ b]) ∧ (a ∧ a)

=
([a ∨ b] ∧ a) ∧ ([a ∨ b] ∧ a)

t

a ∨ ā
m
[a ∨ t] ∧ [t ∨ ā]

s

[a ∨ t] ∧ ā

s
a ∧ ā

f
∨ t

∨ t







a ∧
*

ā ∨
t

ā ∨ a

+

s

a ∧
ā ∨ ā

ā
f

∨
a

a ∧ a

∧ ā




=

a ∧
a ∧ ā

f

a
a ∧ a

∨
b

b ∧ b
m
[a ∨ b] ∧ [a ∨ b]

∧
a

a ∧ a

FIGURE 2. Examples of derivations in CoS and Formalism A notation,
and associated atomic flows.

the right flow cannot:

φ
,

ψ ψ′
and .

The flow at the right cannot represent flow (2) because it has the wrong number of lower
edges and because a necessary cut vertex is not allowed by the labelling of the boxes. As
just shown, we sometimes label boxes with the name of the flow they represent. For
example, flow φ above could represent flow (2), and, if the centre flow stands for (2),
then flows ψ and ψ′ are, respectively,

and .

When no vertex labels appear on a box, we assume that the vertices in the corresponding
flow can be any (so, it does not mean that there are no vertices in the flow).

Note: the sequent calculus

I does not allow locality in contraction (counterexample in
[Brünnler(2004)]), and

I does not allow local reduction of cut into atomic form.



Goal of This Talk

To illustrate the slogans:

I Deep inference = locality (+ symmetry).

I Locality = linearity + atomicity.

I Geometry = syntax independence (elimination of
bureaucracy).

I Locality → geometry → semantics of proofs (Lamarche dixit).

This is a path towards solving the problem of proof identity, i.e.,
determining when two proofs are the same (Hilbert’s ‘24th
problem’).

To show that:

I We can normalise in a somewhat syntax-independent way.

I Normalisation is a very robust phenomenon.

I Perhaps traditional proof theory is prejudiced on analyticity
and complexity: analyticity is much cheaper than exponential!



What Do We Need to Solve the Proof Identity Problem?

A finer representation of proofs, achieving locality.

This yields:

I more proofs to choose representatives from, and especially

I bureaucracy-free proofs;

I nice geometric models [Guiraud(2006)];

I smaller proofs, but

I not as small as proof nets [Lamarche & Straßburger(2005)];

I more manipulation possibilities, viz., for normalisation (focus
of this talk, and where we got surprises).



Elimination of Bureaucracy

I Propositional logic.

I Proof system ≈ proofs can be checked in polytime.

I Normalisation = mainly, but not only!, cut elimination.

I Objective: eliminate bureaucracy, i.e., find ‘something’ at the
boundary.



What About Proof Complexity?

ON THE PROOF COMPLEXITY OF DEEP INFERENCE

PAOLA BRUSCOLI AND ALESSIO GUGLIELMI

ABSTRACT. We obtain two results about the proof complexity of deep inference: 1)
deep-inference proof systems are as powerful as Frege ones, even when both are extended
with the Tseitin extension rule or with the substitution rule; 2) there are analytic deep-
inference proof systems that exhibit an exponential speedup over analytic Gentzen proof
systems that they polynomially simulate.

1. INTRODUCTION

Deep inference is a relatively new methodology in proof theory, consisting in dealing
with proof systems whose inference rules are applicable at any depth inside formulae
[Gug07b]. We obtain two results about the proof complexity of deep inference:
• deep-inference proof systems are as powerful as Frege ones, even when both are

extended with the Tseitin extension rule or with the substitution rule;
• there are analytic deep-inference proof systems that exhibit an exponential speed-

up over analytic Gentzen proof systems that they polynomially simulate.
These results are established for the calculus of structures, or CoS, the simplest formal-
ism in deep inference [Gug07b], and in particular for its proof system SKS, introduced
by Brünnler in [Brü04] and then extensively studied [Brü03a, Brü03b, Brü06a, Brü06d,
BG04, BT01].

Our contributions fit in the following picture.

CoS +
extension

CoS +
substitution

Frege +
extension

Frege +
substitution

!

4

3

Krajíček-Pudlák ’89

!5

Cook-Reckhow ’79

Frege

CoS

Gentzen

open

2

Cook-
Reckhow ’74

analytic
CoS

analytic
Gentzen

Brünnler
’041×

Statman ’78×

open

The notation " # indicates that formalism " polynomially simulates formalism
# ; the notation" #× indicates that it is known that this does not happen.

The left side of the picture represents, in part, the following. Analytic Gentzen sys-
tems, i.e., Gentzen proof systems without the cut rule, can only prove certain formulae,
which we call ‘Statman tautologies’, with proofs that grow exponentially in the size of
the formulae. On the contrary, Gentzen systems with the cut rule can prove Statman
tautologies by polynomially growing proofs. So, Gentzen systems p-simulate analytic
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Deep inference has as small proofs as the best proof systems
and
it has a normalisation theory
and
its analytic proof systems are more powerful than Gentzen ones
and
cut elimination is quasipolynomial (instead of exponential).
(See [Jěrábek(2009), Bruscoli & Guglielmi(2009),
Bruscoli et al.(2009)Bruscoli, Guglielmi, Gundersen, & Parigot]).



(Atomic) Flows
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t
ai↓

a ∨ ā
=
(a ∧ t) ∨ (t ∧ ā)

m
[a ∨ t] ∧ [t ∨ ā]

=
[a ∨ t] ∧ [ā ∨ t]

s
([a ∨ t] ∧ ā) ∨ t

=
(ā ∧ [a ∨ t]) ∨ t

s
[(ā ∧ a) ∨ t] ∨ t

=
(a ∧ ā) ∨ t

ai↑
f ∨ t

=
t

(a ∧ [ā ∨ t]) ∧ ā
ai↓
(a ∧ [ā ∨ [ā ∨ a]]) ∧ ā

=
(a ∧ [[ā ∨ ā] ∨ a]) ∧ ā

s
[(a ∧ [ā ∨ ā]) ∨ a] ∧ ā

ac↓
[(a ∧ ā) ∨ a] ∧ ā

ai↑
[f ∨ a] ∧ ā

=
a ∧ ā

ac↑
(a ∧ a) ∧ ā

=
a ∧ (a ∧ ā)

ai↑
a ∧ f

[a ∨ b] ∧ a
ac↑
[(a ∧ a) ∨ b] ∧ a

ac↑
[(a ∧ a) ∨ (b ∧ b )] ∧ a

ac↑
[(a ∧ a) ∨ (b ∧ b )] ∧ (a ∧ a)

m
([a ∨ b] ∧ [a ∨ b]) ∧ (a ∧ a)

=
([a ∨ b] ∧ a) ∧ ([a ∨ b] ∧ a)

t

a ∨ ā
m
[a ∨ t] ∧ [t ∨ ā]

s

[a ∨ t] ∧ ā

s
a ∧ ā

f
∨ t

∨ t







a ∧
*

ā ∨
t

ā ∨ a

+

s

a ∧
ā ∨ ā

ā
f

∨
a

a ∧ a

∧ ā




=

a ∧
a ∧ ā

f

a
a ∧ a

∨
b

b ∧ b
m
[a ∨ b] ∧ [a ∨ b]

∧
a

a ∧ a

FIGURE 2. Examples of derivations in CoS and Formalism A notation,
and associated atomic flows.

the right flow cannot:

φ
,

ψ ψ′
and .

The flow at the right cannot represent flow (2) because it has the wrong number of lower
edges and because a necessary cut vertex is not allowed by the labelling of the boxes. As
just shown, we sometimes label boxes with the name of the flow they represent. For
example, flow φ above could represent flow (2), and, if the centre flow stands for (2),
then flows ψ and ψ′ are, respectively,

and .

When no vertex labels appear on a box, we assume that the vertices in the corresponding
flow can be any (so, it does not mean that there are no vertices in the flow).

I Below derivations, their (atomic) flows are shown.

I Only structural information is retained in flows.

I Logical information is lost.

I Flow size is polynomially related to derivation size.



Flow Reductions: (Co)Weakening (1)
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aw↓-ac↓ : 1

2
→ 1,2 ac↑-aw↑ :

2

1 → 1,2

aw↓-ai↑ : 1 → 1 ai↓-aw↑ : 1 → 1

aw↓-aw↑ : →

aw↓-ac↑ :
1 2

→
1 2

ac↓-aw↑ : 1 2 → 1 2

FIGURE 6. Weakening and coweakening atomic-flow reductions.

The process terminates in linear time on the size ofΠ′ because each transformation elim-
inates some atom occurrences. The final proof is in aSKS. !

The transformations described in the proof of Theorem 27 are the minimal ones nec-
essary to produce a proof in aSKS. However, it is possible to further reduce the proof
so obtained. The transformations in the proof of Theorem 27, together with the one
mentioned in Step (1) in the proof of Theorem 12, all belong to the class of weakening
and coweakening reductions studied in [GG08]. In the rest of this section, we quickly
outline a possible, further transformation of the analytic form produced by those reduc-
tions, and refer the reader to [GG08] for a more thorough explanation.

It is advantageous to describe the weakening and coweakening transformations di-
rectly as atomic-flow reduction rules. These are special graph rewriting rules for atomic
flows, that are known to correspond to sound derivation transformations, in the follow-
ing sense. If Φ is a derivation with flowφ, andφ can be transformed intoψ by one of the
atomic-flow reduction rules, then there exists a derivation Ψ whose flow is ψ and such
that it has the same premiss and conclusion as Φ. Moreover, Ψ can be obtained from Φ
by instantiating some atoms and changing some rule instances, in linear time.

The weakening and coweakening atomic-flow reduction rules are shown in Figure 6.
The reduction rule labelled aw↓-ai↑ is employed in Step (1) in the proof of Theorem 12.
The reduction rules labelled ac↑-aw↑, ai↓-aw↑, aw↓-aw↑ and ac↓-aw↑ are employed in the
proof of Theorem 27, respectively as Case (4), (1), (2) and (3). If we apply the full set of
weakening and coweakening reductions until possible, starting from a proof in cut-free
form, we obtain a proof of the same formula and whose flow has shape

.

Note that the graph rewriting system consisting of the reductions in Figure 6 is confluent.

8. FINAL COMMENTS

System aSKS is not a minimal complete system for propositional logic, because the
atomic cocontraction rule ac↑ is admissible (via ac↓, ai↑ and s). Removing ac↑ from
aSKS yields system KS. A natural question is whether quasipolynomial normalisation
holds for KS as well. We do not know, and all indications and intuition point to an
essential role being played by cocontraction in keeping the complexity low. Analysing
Figure 5 shows how cocontraction provides for a typical ‘dag-like’ speed-up over the
corresponding ‘tree-like’ expansion consisting in generating some sort of Gentzen tree.
However, we are aware that in the past this kind of intuition has been fallacious.

Each of them corresponds to a correct derivation reduction.



Flow Reductions: (Co)Weakening (2)

For example,
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aw↓-ac↓ : 1

2
→ 1,2 ac↑-aw↑ :

2

1 → 1,2

aw↓-ai↑ : 1 → 1 ai↓-aw↑ : 1 → 1

aw↓-aw↑ : →

aw↓-ac↑ :
1 2

→
1 2

ac↓-aw↑ : 1 2 → 1 2

FIGURE 6. Weakening and coweakening atomic-flow reductions.

The process terminates in linear time on the size ofΠ′ because each transformation elim-
inates some atom occurrences. The final proof is in aSKS. !

The transformations described in the proof of Theorem 27 are the minimal ones nec-
essary to produce a proof in aSKS. However, it is possible to further reduce the proof
so obtained. The transformations in the proof of Theorem 27, together with the one
mentioned in Step (1) in the proof of Theorem 12, all belong to the class of weakening
and coweakening reductions studied in [GG08]. In the rest of this section, we quickly
outline a possible, further transformation of the analytic form produced by those reduc-
tions, and refer the reader to [GG08] for a more thorough explanation.

It is advantageous to describe the weakening and coweakening transformations di-
rectly as atomic-flow reduction rules. These are special graph rewriting rules for atomic
flows, that are known to correspond to sound derivation transformations, in the follow-
ing sense. If Φ is a derivation with flowφ, andφ can be transformed intoψ by one of the
atomic-flow reduction rules, then there exists a derivation Ψ whose flow is ψ and such
that it has the same premiss and conclusion as Φ. Moreover, Ψ can be obtained from Φ
by instantiating some atoms and changing some rule instances, in linear time.

The weakening and coweakening atomic-flow reduction rules are shown in Figure 6.
The reduction rule labelled aw↓-ai↑ is employed in Step (1) in the proof of Theorem 12.
The reduction rules labelled ac↑-aw↑, ai↓-aw↑, aw↓-aw↑ and ac↓-aw↑ are employed in the
proof of Theorem 27, respectively as Case (4), (1), (2) and (3). If we apply the full set of
weakening and coweakening reductions until possible, starting from a proof in cut-free
form, we obtain a proof of the same formula and whose flow has shape

.

Note that the graph rewriting system consisting of the reductions in Figure 6 is confluent.

8. FINAL COMMENTS

System aSKS is not a minimal complete system for propositional logic, because the
atomic cocontraction rule ac↑ is admissible (via ac↓, ai↑ and s). Removing ac↑ from
aSKS yields system KS. A natural question is whether quasipolynomial normalisation
holds for KS as well. We do not know, and all indications and intuition point to an
essential role being played by cocontraction in keeping the complexity low. Analysing
Figure 5 shows how cocontraction provides for a typical ‘dag-like’ speed-up over the
corresponding ‘tree-like’ expansion consisting in generating some sort of Gentzen tree.
However, we are aware that in the past this kind of intuition has been fallacious.

specifies that
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Proof. By Theorem 25, we can obtain, from Π, a cut-free proof Π′ of the same formula,
in quasipolynomial time in the size of Π. We associate Π′ with its atomic flow φ, so that
we have a way to identify the atom occurrences inΠ′ associated with each edge ofφ, and

substitute over them. We repeatedly examine each coweakening instance
aε

aw↑
t

in Π′, for

some edge ε of φ, and we perform one transformation out of the following exhaustive
list of cases, for some Π′′, Φ, Ψ, ξ { } and ζ { }:

(1)
−

Π′′ ‖‖

ξ

!
t

aε ∨ ā

"

Φ ‖‖

ζ

!
aε

t

"

Ψ ‖‖
α

becomes

−
Π′′ ‖‖

ξ

#
t ∨

f

ā

$

Φ{aε/t} ‖‖
ζ {t}
Ψ ‖‖
α

;

(2)
−

Π′′ ‖‖

ξ

!
f

aε

"

Φ ‖‖

ζ

!
aε

t

"

Ψ ‖‖
α

becomes

−
Π′′ ‖‖

ξ

!
f ∧ [t ∨ t]

s
(f ∧ t) ∨ t

"

Φ{aε/t} ‖‖
ζ {t}
Ψ ‖‖
α

;

(3)
−

Π′′ ‖‖

ξ

!
a ∨ a
aε

"

Φ ‖‖

ζ

!
aε

t

"

Ψ ‖‖
α

becomes

−
Π′′ ‖‖

ξ

#
a
t
∨

a
t

$

Φ{aε/t} ‖‖
ζ {t}
Ψ ‖‖
α

;

(4)
−

Π′′ ‖‖

ξ

!
a

aε ∧ a

"

Φ ‖‖

ζ

!
aε

t

"

Ψ ‖‖
α

becomes

−
Π′′ ‖‖
ξ {a}

Φ{aε/t} ‖‖
ζ {t}
Ψ ‖‖
α

.

We can operate on flow reductions instead than on derivations: it
is much easier and we get natural, syntax-independent induction
measures.



Relation With Interaction Combinators?

Lots of coincidences, but also differences: no apparent logical
meaning for two ‘contractions’:
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Codes: 2136 Signs: 1318 . Length: 52 pic 10 pts, 222 mm

8 b8&1
=id7$ . In that case, it is easy to see that each 8(:) is necessarily of the

following form,

where :$ is a symbol of 7$ and _ is a permutation. In other words, 8 is given by

a renaming of the symbols and a permutation of the auxiliary ports of each symbol.

Assume that some interaction system is given for 7 and similarly for 7$. One says

that 8 is a translation of interaction system if it is compatible with reduction. This

is expressed by the following property:

The �* stands for a reduction of arbitrary length, possibly 0. Remember that &i, j
is supposed to be reduced, and so is 8(&i, j) by Proposition 3. Therefore, if 8 is

strict, the left member is not reduced, and the reduction cannot be of length 0.

Similarly, if 8 is invertible, the reduction must be of length 1. In general, let L
(resp. M) be the minimal (resp. the maximal) length of all those reductions. By the

above remark, L>0 if 8 is strict, and L=M=1 if 8 is invertible. Obviously, one

has:

Proposition 4. If + is a net built with symbols of 7 which reduces in n steps
to &, then 8(+) reduces in n$ steps to 8(&), with Ln�n$�Mn.

2. INTERACTION COMBINATORS

This section is the heart of the paper. It is entirely devoted to the universality of

the system of interaction combinators.

FIG. 2. Interaction rules for the combinators.

81INTERACTION COMBINATORS



Flow Reductions: (Co)Contraction

Consider these flow reductions:
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w↓-c↓ :
1

2
→ 1,2 c↑-w↑ :

2

1 → 1,2

w↓-i↑ : 1 → 1 i↓-w↑ : 1 → 1

w↓-w↑ : →

w↓-c↑ :
1 2

→
1 2

c↓-w↑ :
1 2 → 1 2

c↓-i↑ :
31 2 →

31 2

i↓-c↑ :
31 2

→
31 2

c↓-c↑ :

1 2

3 4

→

1 2

3 4

Figure 2: Atomic-flow reduction rules.

We would like to use the reductions in Figure 2 as rules for rewriting inside generic
atomic flows. To do so, in general, we should have matching upper and lower edges in
the flows that participate in the reduction, and the reductions in the figure clearly do so.
However, we also have to pay attention to polarities, not to disrupt atomic flows. In fact,
consider the following example.

Example 4.2. The ‘reduction’ on the left, when used inside a larger atomic flow, might
create a situation as on the right:

→
+

+ +

+

→ + ?

+

,

where the graph at the right is not an atomic flow, for lack of a polarity assignment.

This prompts us to define reduction rules and reductions for atomic flows as follows.

Definition 4.3. An (atomic-flow) reduction rule r from flow A to flow B is a quadruple
(A,B, f, g) such that:

(1) f is a one-to-one map from the upper edges of A to the upper edges of B,

I They conserve the number and length of paths.

I Note that they can blow up a derivation exponentially.

I It’s a good thing: cocontraction is a new compression
mechanism (sharing?).

I Open problem: does cocontraction provide exponential
compression? Conjecture: yes.



Normalisation
Overview

I None of these methods existed before atomic flows, none of
them requires permutations or other syntactic devices.

I Quasipolynomial procedures are surprising.

(1) [Guglielmi & Gundersen(2008)]; (2) LICS 2010 submission; (3)
[Bruscoli et al.(2009)Bruscoli, Guglielmi, Gundersen, & Parigot].



Cut Elimination (on Proofs) by ‘Experiments’

Experiment:

We do:

Simple, exponential cut elimination; proof generates 2n

experiments.



Generalising the Cut-Free Form

I Normalised proof:

26 PAOLA BRUSCOLI, ALESSIO GUGLIELMI, TOM GUNDERSEN, AND MICHEL PARIGOT

aw↓-ac↓ : 1

2
→ 1,2 ac↑-aw↑ :

2

1 → 1,2

aw↓-ai↑ : 1 → 1 ai↓-aw↑ : 1 → 1

aw↓-aw↑ : →

aw↓-ac↑ :
1 2

→
1 2

ac↓-aw↑ : 1 2 → 1 2

FIGURE 6. Weakening and coweakening atomic-flow reductions.

The process terminates in linear time on the size ofΠ′ because each transformation elim-
inates some atom occurrences. The final proof is in aSKS. !

The transformations described in the proof of Theorem 27 are the minimal ones nec-
essary to produce a proof in aSKS. However, it is possible to further reduce the proof
so obtained. The transformations in the proof of Theorem 27, together with the one
mentioned in Step (1) in the proof of Theorem 12, all belong to the class of weakening
and coweakening reductions studied in [GG08]. In the rest of this section, we quickly
outline a possible, further transformation of the analytic form produced by those reduc-
tions, and refer the reader to [GG08] for a more thorough explanation.

It is advantageous to describe the weakening and coweakening transformations di-
rectly as atomic-flow reduction rules. These are special graph rewriting rules for atomic
flows, that are known to correspond to sound derivation transformations, in the follow-
ing sense. If Φ is a derivation with flowφ, andφ can be transformed intoψ by one of the
atomic-flow reduction rules, then there exists a derivation Ψ whose flow is ψ and such
that it has the same premiss and conclusion as Φ. Moreover, Ψ can be obtained from Φ
by instantiating some atoms and changing some rule instances, in linear time.

The weakening and coweakening atomic-flow reduction rules are shown in Figure 6.
The reduction rule labelled aw↓-ai↑ is employed in Step (1) in the proof of Theorem 12.
The reduction rules labelled ac↑-aw↑, ai↓-aw↑, aw↓-aw↑ and ac↓-aw↑ are employed in the
proof of Theorem 27, respectively as Case (4), (1), (2) and (3). If we apply the full set of
weakening and coweakening reductions until possible, starting from a proof in cut-free
form, we obtain a proof of the same formula and whose flow has shape

.

Note that the graph rewriting system consisting of the reductions in Figure 6 is confluent.

8. FINAL COMMENTS

System aSKS is not a minimal complete system for propositional logic, because the
atomic cocontraction rule ac↑ is admissible (via ac↓, ai↑ and s). Removing ac↑ from
aSKS yields system KS. A natural question is whether quasipolynomial normalisation
holds for KS as well. We do not know, and all indications and intuition point to an
essential role being played by cocontraction in keeping the complexity low. Analysing
Figure 5 shows how cocontraction provides for a typical ‘dag-like’ speed-up over the
corresponding ‘tree-like’ expansion consisting in generating some sort of Gentzen tree.
However, we are aware that in the past this kind of intuition has been fallacious.

I Normalised derivation:
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Considering atomic flows modulo associativity of contraction should be uncontrover-
sial, as we could instead have transformed all the derivations and their associated atomic
flows to a canonical form.

We observe that the flow of every SKS derivation can always be represented as a col-
lection of m ! 0 connected components as follows:

φ1 ψ1 · · ·
φm ψm

,

such that each edge in flow φi is associated with some occurrence of some atom ai , and
each edge in flow ψi is associated with some occurrence of atom āi . Note that it might
happen that for i != j we have ai ≡ aj . If we do not insist on dealing with connected
components, we can adopt the same representation as above and stipulate that i != j
implies ai !≡ aj , ā j . This would mean that the derivation only contains occurrences of
atoms a1, . . . , am , such that these atoms and their dual are all mutually distinct.

Given a derivation Φ where the atom a occurs, we say that the atomic flow associated
with a in Φ is the smallest subflow of the atomic flow associated with Φ containing all
the edges mapped to from occurrences of a and ā.

In the following, when informally dealing with derivations, we freely transfer to them
notions defined for their flows. For example, we can say that an atom occurrence is
negative for a given polarity assignment (if the edge associated with the atom occurrence
maps to −) or that two atom occurrences are connected (if the associated edges belong to
the same connected component). In fact, one of the advantages of working with flows is
that they provide us with convenient geometrical notions.

4. STREAMLINING

We know that the cut rule is admissible for derivations with premiss t (proofs) and,
dually, that the identity rule is admissible for derivations with conclusion f (refutations).
However, neither the cut nor the identity are admissible for generic derivations, which
motivated the definition of ‘streamlining’. Streamlining is a generalisation of both cut
and identity elimination to derivations with no restrictions on their premiss or conclu-
sion.

Intuitively, a derivation is streamlined if every maximal path in the atomic flow asso-
ciated with the derivation starts at the top or ends at the bottom of the flow. We recall
the definition from [GG08]:

Definition 4.1. A derivation is streamlined if its associated atomic flow can be repre-
sented as

.

Note that an atomic flow associated with a proof has no upper edges, so the top left
and the two bottom left boxes in the above atomic flow would be empty. Hence, a
streamlined proof is cut free and, dually, a streamlined refutation is identity free.

I The symmetric form is called streamlined.

I Cut elimination is a corollary of streamlining.



Removal of a ‘Simple Edge’

Remove identity and cut:

22 ALESSIO GUGLIELMI AND TOM GUNDERSEN

Definition 5.1. We define the reduction →se (where se stands for simple edge) as follows,
for every atomic flow A:

ε1 · · · εh 2

A

ε′
1 · · · ε′

k 3 1

→se ε̂1 · · · ε̂h 2̂

Â

ε̂′
1 · · · ε̂′

k

ε̃1 · · · ε̃h

Ã

ε̃′
1 · · · ε̃′

k3̃

2̃

· · ·ε1 εh

3̂

ε′
1 ε′

k· · ·

,

where h, k ≥ 0, edges have been renamed with ˆ and ˜ accents, flows Ã and Â are both
isomorphic to A, and edges 2̂ and 3̃ are identified.

A simple inspection of the definition of →se suffices to prove the following statement,
about →se not introducing any ai-cycles.

Proposition 5.2. If atomic flow B is cycle-free and B →se C, then C is cycle-free.

Theorem 5.3. Reduction →se is sound.

Proof. Let Φ be a derivation with flow B, such that B →se C. We show that there exists a
derivation Ψ with flow C and with the same premiss and conclusion as Φ. In the following,
we refer to the figure in Definition 5.1. We assume that Φ has premiss ξ{t•} and conclusion
ζ{f•}, where the evidenced and labelled t• and f• can be traced to the interaction and
cointeraction vertices eliminated by →se, respectively (this can always be done by using
switches and unit equations). Intuitively, we can think of t• and f• as mapping to special
‘unit edges’, which can be substituted just like normal edges. So, we assume that Φ is

ξ{t•}
Φ1

‖
‖

ξ′{t•}
ai↓

ξ′{ā2 ∨ a1}
Φ2

‖
‖

ζ ′{ā3 ∧ a1}
ai↑

ζ ′{f•}
Φ3

‖
‖

ζ{f•}

.

I We can do so on simple edges, like 1 above.

I The procedure requires a strategy, not to loop.

I The chunks to be copied can be small.

I Open: computational interpretation?



Composition of Simple Edge Removal
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1 3· · ·
A

· · · 2 4

→bc

3 1· · ·

1

A

· · · 3 4 · · · 2

A

· · · 2 4

· · ·

· · ·

3 1 · · ·
A

1 · · · 3 4 · · ·
A

2

· · ·2 4

Figure 5: Example of a two-step →bc (or →ex) reduction.

where h, k ≥ 0, and let

B′ =

ε̃1 · · · ε̃h

3̃

Ã

ε̃′
1 · · · ε̃′

k

2̃

and B′′ =

ε̂1 · · · ε̂h 2̂

Â

ε̂′
1 · · · ε̂′

k 3̂

,

where the correspondence of edges has been indicated by adding accents to their labels. We
have that:

• if 1 is an edge belonging to an ai-cycle, B′ →bc D′ and B′′ →bc D′′ then B →bc C;
• if 1 is an extremal simple edge, B′ →ex D′ and B′′ →ex D′′ then B →ex C.

Example 5.7. Consider the atomic flow to the left in Figure 5. Assuming that the two
evidenced simple edges both belong to ai-cycles and that the box A stands for a cycle-free
flow, then the atomic flow on the right is the result of a →bc reduction. Similarly, if the
two evidenced simple edges are extremal simple edges, and the box stands for a flow that
contains no simple edges, then the atomic flow on the right is the result of a →ex reduction.

Notice that the flow in Figure 5 represents the ‘external’ shape of any flow after elimi-
nating any two simple edges. Eliminating more simple edges would follow the same pattern.

Remark 5.8. It is possible to generalise the construction in Figure 5 to any number n of
simple edges: for any n, there is an atomic flow of the same nature as the one at the right



How to Obtain a Simple Edge?

I By moving away (co)contractions by way of their reductions:
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w↓-c↓ :
1

2
→ 1,2 c↑-w↑ :

2

1 → 1,2

w↓-i↑ : 1 → 1 i↓-w↑ : 1 → 1

w↓-w↑ : →

w↓-c↑ :
1 2

→
1 2

c↓-w↑ :
1 2 → 1 2

c↓-i↑ :
31 2 →

31 2

i↓-c↑ :
31 2

→
31 2

c↓-c↑ :

1 2

3 4

→

1 2

3 4

Figure 2: Atomic-flow reduction rules.

We would like to use the reductions in Figure 2 as rules for rewriting inside generic
atomic flows. To do so, in general, we should have matching upper and lower edges in
the flows that participate in the reduction, and the reductions in the figure clearly do so.
However, we also have to pay attention to polarities, not to disrupt atomic flows. In fact,
consider the following example.

Example 4.2. The ‘reduction’ on the left, when used inside a larger atomic flow, might
create a situation as on the right:

→
+

+ +

+

→ + ?

+

,

where the graph at the right is not an atomic flow, for lack of a polarity assignment.

This prompts us to define reduction rules and reductions for atomic flows as follows.

Definition 4.3. An (atomic-flow) reduction rule r from flow A to flow B is a quadruple
(A,B, f, g) such that:

(1) f is a one-to-one map from the upper edges of A to the upper edges of B,

I But beware of loops:

NORMALISATION CONTROL IN DEEP INFERENCE VIA ATOMIC FLOWS 19

Theorem 4.12. Flow rewriting system w is terminating.

Proof. At every reduction, either the number of vertices decreases, or it stays the same but
the number of contraction and cocontraction vertices decreases.

Remark 4.13. If flow A is normal for w, then there is no ai-path from a weakening or
coweakening vertex to another vertex in A.

Since reducing by w does not introduce new edges, we have:

Proposition 4.14. If A is cycle-free and A →!
w B then B is cycle-free.

4.3. Contraction and Cocontraction. The reduction rules for contraction and cocon-
traction are much less ‘friendly’ than weakening/coweakening ones, mainly because they
create infinite reduction chains. A judicious use of these rules is the key to success for our
normalisation methods.

Definition 4.15. The following flow rewriting system is called c:

{ c↓-i↑ , i↓-c↑ , c↓-c↑ } .

Remark 4.16. Flow rewriting system c is not terminating:

+ −
+ →c

− +

+
→c + + − →c · · · .

We see that if a contraction vertex belongs to an ai-cycle, reductions by c make it ‘bounce’
in the ai-cycle and create a trail; while bouncing, the vertex alternates between contraction
and cocontraction; if we assign a polarity to the flow, the vertex alternates between being
positive and negative.

Through a simple argument by contradiction, we have:

Proposition 4.17. If A is cycle-free and A →!
c B then B is cycle-free.

Again, reasoning by contradiction, we have:

Proposition 4.18. If an atomic flow is normal for c then all its ai-paths are clean paths.

The previous proposition could be rephrased by saying that if an atomic flow is normal
for c then all its ai-connections are simple edges.

Since reducing by w does not introduce new vertices, we have:

Proposition 4.19. If A is normal for c and A →!
w B then B is normal for c.

By contradiction and a simple case analysis, we have:

Proposition 4.20. If A is normal for w and A →!
c B then B is normal for w.

Maximal ai-paths provide for a measure when dealing with the termination of c.

Remark 4.21. A simple inspection to the reduction rules of c convinces us that reducing
by c does not change the number and length of the maximal ai-paths of a flow. The same
holds for the maximal ai-paths to or from vertices that are not involved in a given reduction.

Theorem 4.22. Flow rewriting system c is terminating on the set of cycle-free atomic
flows.

I This and more is in [Guglielmi & Gundersen(2008)].



How Do We Break Paths Without ‘Preprocessing’?

With the path breaker (Lutz Straßburger contributed here):

4 Local Flow Transformations

We denote by the rewrite relation on atomic flows
generated by the rules shown in Figure 3.

Proposition 4.1. The rewrite relation is locally conflu-
ent.

Proof. The result follows from a case analysis on the criti-
cal peaks, which are:

and

and their duals.

However, in general the reduction is not terminating.
This can easily be seen by the following example:

The reason is that there can be cycles composed of paths
connecting instances of the and generators. The pur-
pose of the notion “weakly streamlined” (Definition 2.9) is
precisely to avoid such a situation.

Theorem 4.2. Every weakly streamlined atomic flow has
a unique normal form with respect to , and this normal
form is strongly streamlined.

Proof. We do not show the proof of termination here since
it can be found in [9]. We only note that the crucial point
is Proposition 2.10. Then, by Proposition 4.1, we have
uniqueness of the normal form. Since preserves the prop-
erty of being weakly streamlined, and in the normal form
there are no more redexes for , there is no generator ,

, above a generator , , .

5 Global Flow Transformations

The purpose of this section is to present a method for
transforming an atomic flow into a weakly streamlined one.
Since, eventually, we want to lift this operation to proofs in
a deductive system, we have to find a way to break paths
in the flow without breaking any edge. This is achieved
with the following construction, that can considered to be
the heart of this paper.

Figure 3. Local rewrite rules

Definition 5.1. Let be an atomic flow of the shape

(5)

where the wires of the selected and generators carry
the same atomic types, as indicated in (5), and let be the
flow

. (6)

Then we call a path breaker of with respect to , and
write .

Lemma 5.2. Let and be given with , and let
be any atomic type. If is weakly streamlined with respect
to , then so is .
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Even if there is a path between identity and cut on the left, there
is none on the right.



We Can Do This on Derivations, of Course

Proof. Let with and be given. By
repeatedly applying (9) we get the derivation

,

with , from which we can obtain a derivation

,

whose flow is as shown in (8).

Lemma 7.6. The relation can be lifted to .

Proof. Let with and be given. By
applying (9) we have a derivation

,

with . We also have

and

That we call and , respectively. We can now build

,

whose atomic flow is as shown in (6).

Theorem 7.7. The relation can be lifted to .

Proof. Immediate from Lemmas 7.5 and 7.6.

Proof Theorem 7.1. For every -derivation
there exists a weakly-streamlined -derivation
by Theorem 5.7 and Theorem 7.7; for every weakly-

streamlined -derivation there exists a
strongly streamlined -derivation by Theo-
rem 4.2 and Theorem 7.3.
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[1] K. Brünnler. Deep Inference and Symmetry for Classical
Proofs. PhD thesis, Technische Universität Dresden, 2003.
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I We can compose this as many times as there are paths
between identities and cut.

I We obtain a family of normalisers that only depends on n.

I The construction is exponential.

I Note: finding something like this is unthinkable without flows.



Example for n = 2
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Example 4.20. Given a derivationΦwhere the atoms a and b occur, such that the atomic
flow associated with Φ is

φ1 φ2 ψ
,

whereφ1 is the atomic flow associated with a,φ2 is the atomic flow associated with b and
a and b are the only non-weakly-streamlined atoms inΦ, then the atomic flow associated
with Norm2(a, b ,Core(Φ)) is

φ1

φ1

φ1

φ1

φ1

φ1

φ1

φ1

φ1

→
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φ2 φ2 φ2

φ2 φ2 φ2

φ2 φ2 φ2



Quasipolynomial
Cut Elimination
by
Threshold Functions
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θk
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φ

φ′n

θn

...

· · · · · ·

α

FIGURE 5. Atomic flow of a proof in cut-free form.

where ψ is the union of flows φ1, . . . , φn , and where we denote by α the edges corre-
sponding to the atom occurrences appearing in the conclusion α ofΠ. We then have that,
for 0< k < n, the flow of Φk is φ�k , as in Figure 5, where ψk is the flow of the derivation
Ψk . The flows of Φ0 and Φn are, respectively, φ�0 and φ�n .

7. NORMALISATION STEP 3: ANALYTIC FORM

In this section, we show that we can get proofs in analytic SKS, i.e., system aSKS, in
quasipolynomial time from proofs in SKS.

Transforming a proof in cut-free form into an analytic one requires eliminating co-
weakening rule instances. This can be done by transformations that are the dual of those
over weakening instances, employed in Step (1) of the proof of Theorem 12.

Theorem 27. Given any proof Π of α in SKS, we can construct a proof of α in aSKS in
time quasipolynomial in the size of Π.

Only n + 1 copies of the proof are stitched together. It’s
complicated, but note local cocontraction (= better sharing, not
available in Gentzen).



Handwaving Explanation of Threshold Functions

I θi = there are at least i atoms that are true (out of given n).

I For example, for n = 2, we have θ1 = a ∨ b and θ2 = a ∧ b.

I Each θi can be kind of projected into each atom to provide its
pseudocomplement, for example the pseudocomplement of a
in θ1 is b.

I The atom and the pseudocomplement fit into the scheme of
the previous slide, and you can get, for example, θ2 from θ1.

I Stitch derivations together until you get θn+1 = f.

I The complexity is dominated by the complexity of the θ’s,
which is nO(log n).

The difficulty is in defining the θ’s and in finding proofs that stitch
them together (this theory comes from circuit complexity and it
had been applied to the monotone sequent calculus, which is
weaker than propositional logic).



Conjecture 1

We can normalise in polynomial time, because:

I polynomial threshold function representations exist;

I deep inference is flexible.



Conjecture 2

I We think that (*) might make for a proof system (see also
recent work by Straßburger).

I This means that there should exist a polynomial algorithm to
check the correctness of (*).

I If this is true, we have an excellent bureaucracy-free
formalism.

I Note: if such a thing existed for proof nets, then coNP = NP.



Conclusion

I Normalisation does not depend on logical rules.

I It only depends on structural information, i.e., geometry.

I Normalisation is extremely robust.

I Deep inference’s locality is key.

I Complexity-wise, deep inference is as powerful as the best
formalisms,

I and more powerful if analiticity is requested.

I Deep inference is the continuation of Girard politics with
other means.

In my opinion, much of the future of structural proof theory is in
‘geometric methods’.

This talk is available at http://cs.bath.ac.uk/ag/t/NAF.pdf

http://cs.bath.ac.uk/ag/t/NAF.pdf
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