
Removing Cycles from Proofs∗.
Andrea Aler Tubella1, Alessio Guglielmi2, and Benjamin Ralph3

1 IRIF, CNRS et Université Paris Diderot, Paris, France
Andrea.Aler@irif.fr

2 Department of Computer Science, University of Bath, Bath, UK
a.guglielmi@bath.ac.uk

3 Department of Computer Science, University of Bath, Bath, UK
b.d.ralph@bath.ac.uk

Abstract
If we track atom occurrences in classical propositional proofs in deep inference, we see that they
can form cyclic structures between cuts and identity steps. These cycles are an obstacle to
a very natural form of normalisation, that simply unfolds all the contractions in a proof. This
mechanism, which we call ‘decomposition’, has many points of contact with explicit substitutions
in lambda calculi. In the presence of cycles, decomposition does not terminate, and this is
an obvious drawback if we want to interpret proofs computationally. One way of eliminating
cycles is eliminating cuts. However, we could ask ourselves whether it is possible to eliminate
cycles independently of (general) cut elimination. This paper shows an efficient way to do so,
therefore establishing the independence of decomposition from cut elimination. In other words,
cut elimination in propositional logic can be separated into three separate procedures: 1) cycle
elimination, 2) unfolding of contractions, 3) elimination of cuts in the linear fragment.

1998 ACM Subject Classification F.4.1 Mathematical Logic

Keywords and phrases proof theory, deep inference, proof complexity

Digital Object Identifier 10.4230/LIPIcs.CSL.2017.9

1 Introduction

It is well known, in classical and other logics, that cuts compress proofs. Conversely,
eliminating cuts, i.e., normalising, expands proofs, and normalisation can be interpreted
computationally. While this is a general phenomenon, there is a special case where the
situation is not so clear. In [4], Buss introduces the concept of ‘logical flow graph’ as a
useful tool to analyse the complexity of proofs. A logical flow graph is a graph obtained
by tracking subformulae in a proof, and the topological information that it exposes can be
directly connected to the complexity of the proof. In [5], Buss notes that it is possible to
form cycles in the flow graphs of classical logic proofs, where a cycle is essentially a loop
involving cuts and identity axioms. In that paper, Buss states the problem of determining
whether using cuts in cycles helps to compress a proof significantly, or not, and he offers
examples where the cycles can be eliminated at no cost. In [6], Carbone proves that n cycles
can be eliminated from a classical propositional proof of k lines to give an acyclic proof of
O(kn+1) lines. All those results apply to the sequent calculus. This paper contributes some
results concerning essentially the same problem for deep-inference classical propositional
proofs [1] and provides a procedure that eliminates cycles.

∗ This research has been supported by EPSRC Project EP/K018868/1 Efficient and Natural Proof Systems
and ANR project FISP ANR-15-CE25-0014-01

© Andrea Aler Tubella, Alessio Guglielmi, and Benjamin Ralph;
licensed under Creative Commons License CC-BY

26th EACSL Annual Conference on Computer Science Logic (CSL 2017).
Editors: Valentin Goranko and Mads Dam; Article No. 9; pp. 9:1–9:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2017.9
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


9:2 Removing Cycles from Proofs

Let us first introduce the wider context of the present work. Normalisation in deep
inference allows a finer control over complexity than Gentzen’s theory does, in particular,
because it separates two composition mechanisms that in the normalisation of the sequent
calculus are conflated: cut and contraction. The notion of logical flow graph becomes much
simpler, because, in deep inference, we can reduce all the structural rules to their atomic
variants. These simplified flow graphs are called ‘atomic flows’ [8, 10]. It turns out that
we can control normalisation directly from atomic flows because every operation on the
graphs can be mimicked by a corresponding operation on inference steps of minimal (atomic)
granularity. In deep inference, we have atomic cuts, atomic identities, atomic contractions
and atomic cocontractions; inference steps of these kinds can all be moved and normalised
upon separately, which is not possible in Gentzen theory. The finer control on complexity
that we obtain this way leads to the surprising result that eliminating cuts in propositional
logic only has a quasipolynomial cost (as opposed to exponential in Gentzen’s theory) [2, 12].
This development depends, crucially, on the use of contractions as a sharing mechanism
in a structure that we call a ‘sausage’. It is an open problem whether sausages can be, in
turn, removed at polynomial cost or not [7]. In other words, in deep inference, part of the
complexity that in Gentzen’s theory is controlled by cuts has been isolated into contractions.

What about cycles in deep inference? Can they (and their cuts) be eliminated at a lower
cost than general cut elimination? This paper makes some progress towards answering that
question, in the first place by providing a cycle elimination procedure (independent from
general cut elimination) and secondarily by confining the creation of most proof complexity
in one specific step of the procedure. As one could expect, again, some of the complexity
that was controlled by cuts is shifted to contractions: our procedure produces sausages.
However, what is totally unexpected is the way sausages are created. This happens only via
normalising through associativity steps, i.e., complexity is created in inference steps that
have no logical content in terms of deduction. Why is it so? Is it just an artefact of our
procedure? At present, we are unable to devise a procedure that avoids the problem, but we
also are unable to design proofs with cycles where the use of the offending associativity is
crucial. In other words, it seems possible to enhance our procedure in such a way that some
preprocessing of the given proof would avoid the creation of sausages.

Apart from the progress in dealing with proof complexity, cycle elimination helps normal-
isation theory in general, essentially because it provides a simple induction measure. The
experience of a decade of work with atomic flows (and almost three decades with logical flow
graphs) shows that paths in proofs play a crucial role in understanding where the pieces
of proofs move during normalisation. Typically, subproofs move along paths; for example,
contractions move along atomic flows, in a process called ‘decomposition’ in the deep inference
literature. The absence of cycles allows us to use the length of paths as a straightforward
induction measure for decomposition. Therefore we expect applications of this research in
computational interpretations. A further benefit should be in the development of a proof
semantics that takes into consideration proof complexity. More generally, this result fits in a
wider ongoing research on separating the various compression mechanisms of proofs. For
example, and thanks to this result, cut elimination in propositional logic can be separated
into three separate procedures: 1) cycle elimination, 2) decomposition, 3) elimination of cuts
in the linear fragment (a process called ‘splitting’ in the linear logic literature). Finally, we
note that the technique employed in this paper is not restricted to classical logic, and, in
fact, can be generalised to a wide class of logics [13].

As is well known, the issues of compression and circularity pop up everywhere in compu-
tational logic, so, at a superficial level, our work could be deemed to have connections to



A. Aler Tubella, A. Guglielmi, and B. Ralph 9:3

t
ai↓
a ∨ ā

f
aw↓

a

a ∨ a
ac↓

a

A ∧ [B ∨ C]
s
(A ∧B) ∨ C

a ∧ ā
ai↑

f
a

aw↑
t

a
ac↑

a ∧ a

(A ∧B) ∨ (C ∧D)
m

[A ∨ C] ∧ [B ∨D]

Figure 1 The six structural rules and two logical rules of SKS. The structural rules are shown
with their respective atomic flow vertices [3, 11].

several other investigations. On the other hand, it seems that our cycle-elimination procedure
only makes sense in proof systems where the full descriptive power of atomic flows can be
exploited. This basically means that we need to work on fully localised proof systems, i.e.,
proof systems where the cost of checking a rule instance is bounded by a constant. This is a
feature that (to the best of our knowledge) is only achievable in deep inference.

There is no way that this paper can be made self-contained because of the limitations of
the conference format. Luckily, good papers exist on the fundamentals of deep inference. On
the other hand, we made some effort towards making the paper self-explanatory regarding
atomic flows. In other words, while the reader who does not know deep inference needs to
refer to the cited literature, there is no need to study atomic flows elsewhere.

2 Preliminaries on Deep Inference and Atomic Flows

In this paper, we will be working in the deep inference system SKS for classical propositional
logic, using the formalism open deduction [9]. We will assume a working knowledge of this
proof system, a full exposition of which can be found in [7]. The structural and logical
rules of SKS can be found in Figure 1. We do not include the equality (associativity and
commutativity of connectives) and unit rules. We will sometimes use the non-atomic versions
of the six structural rules (denoted without the ‘a’). Each non-atomic structural rule ρ can
be thought of as abbreviating a derivation using the rules aρ, s and m [3].

2.1 Atomic Flows

An (atomic) flow is a geometric invariant of an SKS derivation that follows the occurrences
of atoms. They can be seen as composite diagrams that are freely generated from a set of six
elementary diagrams, or as labelled directed graphs, where the six possible labels for the
vertices are given in Figure 1. We can associate an atomic flow to every derivation in SKS
in a natural way: every edge follows the occurrence of an atom in the derivation, and each
vertex label corresponds to the occurrence of a structural rule where atoms are created or
destroyed (ai↓, ai↑, aw↓, aw↑), or duplicated (ac↓, ac↑). The units f and t are not represented
in the flow. See Figure 2 for examples of SKS derivations and their respective flows.

Technically, there are some polarity restrictions on the construction of the flows to
guarantee that for every flow there is an associated SKS derivation. However, an intuitive
understanding of the flows is sufficient to follow the graphical representation of the reduction
rules and the measure presented below, and this is what we are seeking to provide. Again,
the interested reader is invited to refer to [7] for further technical details on the definition of
atomic flows.

CSL 2017



9:4 Removing Cycles from Proofs

t
a ∨ ā

m
[a ∨ t] ∧ [t ∨ ā]

s
[a ∨ t] ∧ ā

s
a ∧ ā

f
∨ t

∨ t

t
ā ∨ a

∨
f
a

=

ā ∨
a ∨ a

a

∧

t
ā

ā ∧
ā

t
∨ a

=
[ā ∨ a] ∧ [ā ∨ a]

2s

ā ∨
a ∧ ā

f
∨ a

a

a ∧ a
∨

b

b ∧ b
m

[a ∨ b] ∧ [a ∨ b]

∧
a

a ∧ a

Figure 2 Three examples of SKS derivations and the atomic flows associated to them.

2.2 Decomposition
One major use of atomic flows is to better understand normalisation in deep inference [7, 8].
In particular, we can use atomic flows to describe the aspect of normalisation that deals
with (co)contractions and (co)weakenings, preliminary to cut elimination. This stage of
normalisation is called decomposition [13].

I Definition 1. An SKS derivation φ from A to B can be decomposed if we can convert it
to the following form:

A
φ SKS
B

−→

A
aw↑

A1
ac↑

A2
{s,m,ai↑,ai↓}

A3
ac↓

A4
aw↓

B

We will first show that every acyclic proof can be decomposed, a result first shown in [8],
and then extend the result to proofs containing cycles.

2.3 The rewriting system C

I Definition 2. A reduction rule r is a pair (φ′, ψ′) where φ′ and ψ′ are derivations in SKS
with the same premise and conclusion. We write r : φ′ → ψ′.

For every reduction rule r : φ′ → ψ′ we define the reduction →r such that φ→r ψ if and
only if ψ′ is a subderivation of φ and ψ is obtained from φ by replacing φ′ by ψ′.



A. Aler Tubella, A. Guglielmi, and B. Ralph 9:5

We call a finite set R of reduction rules a rewriting system. Given a set S of derivations, we
say that rewriting system R is terminating on S if there is no infinite chain φ→r1 φ1 →r2 . . .

with ri ∈ R for any φ ∈ S.

I Definition 3. We define the following reduction rules for SKS:

ac↓ − ac↑ :
a ∨ a

ac↓
a

ac↑
a ∧ a

−→

a
ac↑
a ∧ a

∨
a

ac↑
a ∧ a

m
a ∨ a

ac↓
a

∧
a ∨ a

ac↓
a 3 4

1 2

−→

3 4

1 2

ac↓ − ai↑ :
a ∨ a

ac↓
a

∧ ā

ai↑
f

−→

[a ∨ a] ∨
ā

ac↑
ā ∧ ā

2s
a ∧ ā

ai↑
f

∨
a ∧ ā

ai↑
f

=
f

1 2 3

−→

1 2 3

ac↓ − aw↑ :
a ∨ a

ac↓
a

aw↑
t

−→
a

aw↑
t

∨
a

aw↑
t

=
t

1 2

−→
1 2

And their duals:

ai↓ − ac↑ :
t

ai↓
a

ac↑
a ∧ a

∨ ā
−→

t
=

t
ai↓
a ∨ ā

∧
t

ai↓
a ∨ ā

2s

(a ∧ a) ∧
ā ∨ ā

ac↓
ā

1 2 3

−→

1 2 3

aw↓ − ac↑ :
f

aw↓
a

ac↑
a ∧ a

−→
f

=
f

aw↓
a

∧
f

aw↓
a 1 2

−→
1 2

Last, we define the trivial family of reduction rules:

ac↓ − ρH :
H

{
a ∨ a

ac↓
a

}
ρ

H ′ {a}

−→

H {a ∨ a}
ρ

H ′

{
a ∨ a

ac↓
a

}

ρH − ac↑ :

H ′ {a}
ρ

H

{
a

ac↑
a ∧ a

}
−→

H ′

{
a

ac↑
a ∧ a

}
ρ

H {a ∧ a}

These simply correspond to drawing the (co)contraction node lower (higher) in the atomic
flow.

I Definition 4. We define rewriting system C for SKS as the rewriting system given by the
reduction rules of Definition 3.

CSL 2017



9:6 Removing Cycles from Proofs

It should be clear that if the rewriting system C terminates for a derivation, we will
obtain a derivation with the same premise and conclusion of the following form: all the
instances of ac↑ are at the top, followed by a derivation composed only of rules in the set
{s,m, ai↑, ai↓, aw↑, aw↓} and a bottom phase made up only of ac↓ rules.

2.4 Termination of C
In [8, Theorem 4.22] it is shown that rewriting system C terminates for the set of SKS proofs
that do not contain a certain construction, called an ai-cycle. The measure used to prove
termination can be easily followed in a flow: it corresponds to the length of a certain type of
path.

I Definition 5. Given an edge ε in an atomic flow, we define up(ε) as the upper vertex it is
connected to, and lo(ε) as the lower vertex it is connected to.

I Definition 6. Given a sequence of distinct edges ε1, . . . , εn such that lo(εi) = up(εi+1)
for 1 ≤ i < n, we say that ε1, . . . , εn is a path of length n from up(ε1) to lo(εn), and that
εn, . . . , ε1 is a path of length n from lo(εn) to up(ε1).

Given a sequence of edges ε1, . . . , εn, we say that ε1, . . . , εn is an ai-path of length n from
vertex v1 to vertex v2 if it is a path from v1 to v2 or if there exists a vertex v labelled by ai↑
or ai↓ such that ε1, . . . , εh is an path from v1 to v, εh 6= εh+1, and εh+1, . . . , εn is an ai-path
from v to v2.

An ai-path of length n is maximal if no ai-path containing its edges has length greater
than n. An ai-path of length n from v is maximal if no ai-path from v containing its edges
has length greater than n.

Intuitively, paths correspond to any non-empty sequence of edges from v1 to v2 that do not
change direction (they either only ‘go downwards’ or only ‘go upwards’). ai-paths are allowed
to change direction, but only at ai-vertices: they are zig-zag paths that change direction at
ai-nodes.

I Example 7.

1 2

4

3 5

Some examples of paths in this flow are (2, 4) and (5).
Some examples of ai-paths in this flow are given by (1, 2) and (3, 4, 5).
The maximal ai-paths in this flow are (1, 2, 4, 5), (3, 4, 5) and their respective reversals.
The maximal ai-paths from the ac↓ vertex are (2, 1), (3), and (4, 5).

Informally, the ai-paths from a particular ac↓ vertex correspond to all the paths that the
corresponding contraction will take when the reduction rules are applied. Thus, the maximal
ai-path length corresponds to the maximal number of other rules a contraction must pass
through.

For example, in a derivation whose flow is as in Example 7, when we apply the reduction
rules to move the atomic contraction downwards, it will permute with one instance of the
rule ai↑.



A. Aler Tubella, A. Guglielmi, and B. Ralph 9:7

→C →C →C . . .

Figure 3 A flow that does not terminate under C.

More precisely, we can assign a rank to every contraction and to every cocontraction of a
derivation by referring to its flow. The rank of a contraction will be given by the sum of the
lengths of the maximal ai-paths starting with the lower edge of its corresponding vertex in
the flow. Dually, the rank of a cocontraction will be given by the sum of the lengths of the
maximal ai-paths starting with the upper edge of its corresponding vertex in a flow. We will
see that the reduction rules of system C reduce the sum of the ranks of the contractions and
cocontractions in a derivation, effectively providing a termination measure when these ranks
are finite.

I Definition 8. Given a vertex v labelled with ac↓ in a flow, we define its rank as the sum
of the lengths of the maximal ai-paths ε1, . . . , εn from v such that up(ε1) = v.

Dually, given a vertex v labelled with ac↑ in a flow, we define its rank as the sum of the
lengths of the maximal ai-paths ε1, . . . , εn from v such that lo(ε1) = v.

I Example 9. The rank of the ac↓ vertex of the flow of example 7 is 2: it corresponds to
the length of the ai-path (4, 5).

I Definition 10. Given an occurrence of the rule ac↓ in a derivation φ with flow ψ, we define
its rank as the rank of its corresponding vertex in ψ.

Likewise, we define the rank of an occurrence of the rule ac↑ as the rank of its corresponding
vertex.

However, it is possible that (co)contractions have an infinite rank in a derivation: these are
precisely those cases when the contraction is in a cycle.

I Definition 11. An ai-path from v to v is called an ai-cycle.

I Example 12. In the following flow, the ai-path (1, 2, 3) is an ai-cycle.

1

3 2

I Definition 13. We say that a derivation contains an ai-cycle if its atomic flow contains an
ai-cycle.

We can easily see that if we repeatedly perform rewrites exclusively on a contraction inside
an ai-cycle, such as in Figure 3, then the rewriting procedure will not terminate.

In the absence of such cycles however, the rewriting always terminates. We will briefly
outline this result and its proof as presented in [8].

CSL 2017



9:8 Removing Cycles from Proofs

... −→∗C
...

...
...

...

Figure 4 Exponential blow-up caused by sausages.

I Theorem 14. The rewriting system C is terminating on the set of ai-cycle-free derivations.

Proof. The first observation is that it is clear by inspection of the reduction rules that the
rank of (co)contractions not involved in the reduction stays the same.

Given an ai-cycle-free derivation φ, we consider the lexicographic order on (r, d). r is
the sum of the ranks of the contractions and cocontractions in φ, and d is the sum of the
number of rules below each contraction and the number of rules above each cocontraction
when sequentialising φ.

We describe how each application of a reduction of C reduces (r, d):

Applications of the rules ac↓ − ac↑, ac↓ − ai↓ and ai↓ − ac↑ reduce r in the absence of
ai-cycles as is shown in the proof of Theorem 7.2.3 of [11].

Applications of the rules ac↓−aw↑ and aw↓−ac↑ reduce r since they remove contractions
and cocontractions.

Applications of the rules ac↓ − ρH and ρH− ac↑ trivially maintain r and reduce d. J

The decomposition procedure may increase the size of a proof exponentially, through the
crossings of contractions and cocontractions as shown in Figure 4. We call the contraction-
cocontraction pairs on the left sausages.

ai-cycles are evidently removed through cut-elimination, since they are caused by the
connection of a cut and an introduction. In this paper we will present a local procedure
to remove cycles that does not involve cut-elimination, thus proving the independence of
decomposition from cut-elimination.

To improve this decomposition result, it can also be shown that (co)weakenings can be
permuted to the bottom (top) of a derivation through the following reductions [7].



A. Aler Tubella, A. Guglielmi, and B. Ralph 9:9

I Definition 15. We define the following reduction rules for SKS:

aw↓ − ac↓ :
f

aw↓
a
∨ a

ac↓
a

−→
f ∨ a

=
a

2

1 −→
1,2

aw↓ − ai↑ :
f

aw↓
a
∧ ā

ai↑
f

−→
f ∧

ā
aw↑

t
=

f
1
−→

1

aw↓ − aw↑ :
f

aw↓
a

aw↑
t

−→

f
=

f ∧ [f ∨ t]
s
(f ∧ f) ∨ t

=
t

−→

And their duals:

ac↑ − aw↑ :
a

ac↑
a

aw↑
t
∧ a

−→
a

=
t ∧ a

2

1 −→
1,2

ai↓ − aw↑ :
t

ai↓
a

aw↑
t
∨ ā

−→
t

=

t ∨
f

aw↓
ā

1 −→
1

And the trivial reductions:

aw↓ − ρH :
H

{
f

aw↓
a

}
ρ

H ′ {a}
−→

H {f}
ρ

H ′

{
f

aw↓
a

}

ρH − aw↑ :
H ′ {a}

ρ

H

{
a

aw↑
t

}
−→

H ′

{
a

aw↑
t

}
ρ

H {t}

I Definition 16. We define the rewriting system W as the rewriting system given by the
reductions in Definition 15.

I Theorem 17. The rewriting system W is terminating.

Proof. By observing the corresponding flow reductions, it is easy to see that the non-trivial
reductions of W remove edges of atomic flows. Since every application of a non-trivial
reduction rule reduces the number of edges of the associated flow to a derivation, and
the trivial rules reduce the number of rules below weakenings and above coweakenings,
termination is clear. J

CSL 2017



9:10 Removing Cycles from Proofs

Note that the reductions of system W do not introduce atomic (co)contractions or medials.
Thus, we get the following theorem.

I Theorem 18. Given an SKS derivation φ from A to B not containing ai-cycles, we can
perform decomposition.

Proof. By applying system C followed by system W to φ. J

We will now present a local procedure to remove ai-cycles from derivations, effectively showing
the independence of decomposition and cut-elimination.

3 The Cycle Elimination Procedure

3.1 Overview
For a cycle to occur in a proof, two edges of an atomic flow that were related by ∨ at the top
of a connected component have to be connected by ∧ at the bottom of the flow. Therefore,
an instance of a rule that changes the main relation between formulae from ∨ to ∧ needs to
occur, containing the atoms involved in the cycle. In SKS, the only candidate is the medial
rule.

I Definition 19. A critical medial for a cycle is a medial that converts the link between the
positive and negative atom from an ∨ to a ∧. The picture below shows how this can happen:
it depicts the simplest case, the flow containing the cycle can of course be more complicated.

(A{a} ∧B) ∨ (C ∧D{ā})
m

[A{a} ∨ C] ∧ [B ∨D{ā}]

Following this observation, a strategy one can take to remove cycles becomes clear: we can
permute the critical instances of the medial rule downwards (or upwards) in a proof. When
the corresponding cut is reached, it is ‘broken’ by the critical medial, and the cycle can then
be removed by performing standard deep inference rewriting techniques. It is by no means
obvious that this suffices to remove cycles, but we will show that it in fact does.

I Definition 20. Following the steps below leads to the elimination of ai-cycles in a SKS
derivation. An outline of the procedure is given and then the techniques in bold are explained
in more detail below. Manipulations of derivations by means of the atomic flow that are not
explicitly described follow [11].
0. Remove all trivialising units (this is optional but simplifies step 5).
1. Normalise every connected component containing cycles to the following form,

where double edges in an atomic flow represent an arbitrary number of edges and boxes
represent free compositions of the vertices that they are labelled with:



A. Aler Tubella, A. Guglielmi, and B. Ralph 9:11

2. Pick a normalised connected component that contains a cycle. Colour the edges of the
cycle green.

3. Starting from the bottom, colour red each conjunction (∧) connecting two green edges
until the critical medial for the cycle. In the same way, colour green each disjunction (∨)
connecting two green edges, working from the top of the cycle until the critical medial.
We call the trace of ∧-s the ∧-flow.

∧

...
∧
∨

...
∨

We call the cut below the critical medial the corresponding cut.
4. Sequentialise the proof in such a way that the cut corresponding to the bottom critical

medial is the top cut, that the cut corresponding the second critical medial from the
bottom is the second cut from the top, and so on. Remove the contractions below
each critical medial.

5. Apply the transformation along the ∧-flow to each ∧-flow. Each time apply the
transformation to the most internal ∧-flow. This is so no cuts are created and eventually
all cycles are removed. The proof so created is broken, but will be fixed in the next phase.

6. Propagate (co)weakenings using the rewriting system W.
7. Remove all trivialising units.

3.2 Removing trivialising units
Apply the following transformations, then propagate the (co)-weakenings with rewriting
system W:

f ∧A −→
f ∧

A
w↑

t
=

f
aw↓

A

and t ∨A −→

A
w↑

t
=

t ∨
f

aw↓
A

3.3 Normalise every connected component
To normalise the connected component containing a cycle, we need to collect the identities
together. We will show how to do so in the case of two identities; the general case is similar.

CSL 2017



9:12 Removing Cycles from Proofs

Note that the atoms are indexed to ease understanding.

A
φ1

H

{
t

ai↓
a1 ∨ ā1

}{
t

ai↓
ā2 ∨ a2

}
φ2

G

{
a1 ∧ ā2

ai↑
f

}{
ā1 ∧ a2

ai↑
f

}
φ3

B

−→

A
φ1

t
ai↓ [

a
ac↑

a1 ∧ a2

]
∨

[
ā

ac↑
ā1 ∧ ā2

]
m

[a1 ∨ ā1] ∧ [a2 ∨ ā2]

∧H{t}{t}


? {s}

H{a1 ∨ ā1}{a2 ∨ ā2}
φ2

G

{
a1 ∧ ā2

ai↑
f

}{
ā1 ∧ a2

ai↑
f

}
φ3

B

1 1 2 2

1 2 1 2

−→

1 2 1 2

1 2 1 2

The part of the right-hand derivation labelled with a star is a standard SKS derivation, it
can be found in [11, Lemma 2.3.8]. After applying this transformation, the W rewriting
system can then be used to get the component into the required form.

3.4 Removing contractions below a critical medial

One could push the contractions through the proof until they are no longer in the wrong place,
but, as with any procedure that pushes contractions around, this can have an exponential
complexity cost. A simple way to avoid this risk is to convert deviant contractions to
cocontractions in the following way, after which the connected component will need to be
renormalised, as above.

a ∨ a
ac↓

a
−→

[a ∨ a] ∧
t

a

a ∧ a
∨ a

s
[a ∨ a] ∧ (ā ∧ a)

2s
a ∧ ā

f
∨
a ∧ ā

f
∨ a

−→

3.5 Transformation along the ∧-flow
To perform the transformation, we first translate the derivation into sequential form (a
dotted line in an inference rule denotes synchronal composition of derivations). We can then



A. Aler Tubella, A. Guglielmi, and B. Ralph 9:13

transform along the ∧-flow in the following fashion:

χ
=

(A {a} ∧ B) ∨ (C ∧D {ā})
m

[A {a} ∨ C] ∧ [B ∨D {ā}]
=

K {E1 {a} ∧ F1 {ā}}
ρ1

.

.

.
ρk−1

K

{
Ek {a} ∧ Fk {ā}

}
=

H

{
a ∧ ā

ai↑
f

}
=

ψ

−→

χ
=

K

{ (A {a} ∧ B) ∨ (C ∧D {ā})
= ([

f
A {a}

∨ C

]
∧

[
f
B
∨D {ā}

])
∨

([
A {a} ∨

f
C

]
∧

[
B ∨

f
D {ā}

])}
=

K {(E1 {a} ∧ F1 {ā}) ∨ (E1 {a} ∧ F1 {ā})}
φ1

.

.

.
φk−1

K

{(
Ek {a} ∧ Fk {ā}

)
∨
(
Ek {a} ∧ Fk {ā}

)}
=

H

{ (
a ∧

ā
aw↑

t

)
∨

(
a

aw↑
t
∧ ā

)
6=

f

}
=

ψ

Each inference rule ρi on the left yields a derivation φi as follows. If ρi only affects the
context Ki{ } or Ei{a}∧Fi{a} then φi is trivial. Therefore we are left with four non-trivial
cases, where P and P represent Ei{a} and Ei{a}, and Q and Q represent Fi{a} and Fi{a},
respectively:

(P ∧ Q) ∧ R
=
P ∧ (Q ∧ R)

−→
[(P ∧ Q) ∨ (P ∧ Q)] ∧

R
c↑
R ∧ R

2s
(P ∧ Q) ∧ R

=
P ∧ (Q ∧ R)

∨
(P ∧ Q) ∧ R

=
P ∧ (Q ∧ R)

P ∧ (Q ∧ R)
=

(P ∧ Q) ∧ R
−→

P ∧ (Q ∧ R)
=

(P ∧ Q) ∧ R
∨

P ∧ (Q ∧ R)
=

(P ∧ Q) ∧ R
m

[(P ∧ Q) ∨ (P ∧ Q)] ∧
R ∨ R

c↓
R

(P ∧ Q) ∨ (R ∧ S)
m

[P ∨ R] ∧ [Q ∨ S]
−→

[(P ∧ Q) ∨ (P ∧ Q)] ∨ (R ∧ S)
=([

P ∨
f
R

]
∧

[
Q ∨

f
S

])
∨

(P ∧ Q) ∨ (R ∧ S)
m

[P ∨ R] ∧ [Q ∨ S]

P ∧ [Q ∨ R]
s
(P ∧ Q) ∨ R

−→

P ∧ [Q ∨ R]
s
(P ∧ Q) ∨ R

∨
P ∧ [Q ∨ R]

s
(P ∧ Q) ∨ R

=

[(P ∧ Q) ∨ (P ∧ Q)] ∨
R ∨ R

c↓
R

The transformed derivation is valid except for the bottom inference rule, labelled 6=, which
has premise t and conclusion f. Since a and ā are not involved in contraction steps (we have
removed contractions below the critical medial), the weakening steps that generate a and ā

can be propagated down to the invalid inference rule, converting it to the equality
f ∧ f

=
f

.

3.6 Termination of the Procedure
I Theorem 21. The procedure described in Definition 20 terminates, removing all cycles.

Proof. To see that this procedure to eliminate ai-cycles terminates is straightforward: after
each transformation removing a critical medial there is one less cycle, and no new ai-cycles
are created in the process. This fact is easy to check: no new connections between existing

CSL 2017



9:14 Removing Cycles from Proofs

−→

Figure 5 Possible changes to edges after eliminating cycles.

t
ai↓
a ∨ ā

∧ (b ∧ c)

2s
(a ∧ c) ∨ (b ∧ ā)

m
[a ∨ b] ∧ [c ∨ ā]

∨ (d ∧ e)

m
[[a ∨ b] ∨ d] ∧ [[c ∨ ā] ∨ e]

∧ g

=
[[a ∨ b] ∨ d] ∧ ([[c ∨ ā] ∨ e] ∧ g)

=
[[a ∨ b] ∨ d] ∧ [[c ∨ ā] ∨ e]

2s
[a ∨ b] ∧ [c ∨ ā]

2s  a ∧ ā
ai↑

f
∨ b

 ∨ c ∨ [d ∨ e]
∧ g

−→


b

t
∧ c

c

∨

d

t
∧ e

e

 ∧ g

g ∧ g

2s
(c ∧ g) ∨ (e ∧ g)

m 
c

f
b
∨ c
∨

e

f
d
∨ e

 ∧ g ∨ gg

−→

Figure 6 Potential creation of complexity by consecutive associativity rules.

edges and no new cuts are created through this procedure and so the edges connected by a
cut-rule after the procedure were already connected by a cut-rule before the procedure. J

Thus, from Theorem 21 and Theorem 18, we have that any SKS derivation φ from A to B
can be decomposed without performing cut elimination.

4 Complexity, Confluence and Open Problems

During the transformation along the ∧ flow, the only possible changes to edges outside the
cycle are as follows:

Edges may be bifurcated and then reconnected, creating a sausage.
Edges might be joined by another edge which originates from a (co)weakening.
Edges might be disconnected by weakenings.

Each of these three possibilities is respectively shown in Figure 5 by the three edges to
the right of the flow. In the worst case, bifurcation, this incurs a linear cost in the number of



A. Aler Tubella, A. Guglielmi, and B. Ralph 9:15

inference rules. Furthermore, in this case sausages are introduced in the flow of the proof,
and thus the complexity of the decomposition procedure may be exponentially increased as
seen in Figure 4.

Remarkably, what creates the sausage through bifurcation is two opposite instances of
the associativity rule: in Figure 6, this happens in a completely redundant section of proof.

This leads to the counter-intuitive conclusion that two proofs with cut, equivalent modulo
equality rules, can have an exponential difference in the size of their cut-free proofs when
cut elimination involves the above procedure. Clearly, we could avoid the sausage by simply
eliminating the associativity rules in the left-hand proof. It is not known whether there are
proofs where this cannot be done in a way that does not change the proof in a semantically
significant way. An extended version of this paper is being written for journal publication, in
which complexity issues will be addressed comprehensively.

Another less startling observation is that the transformation along the ∧-flow is non
confluent. This can be seen in the third non-trivial case of converting pi to φi, involving
medial. On the left, weakenings are introduced, but not on the right. Obviously, there is no
reason why this should not be the other way around, and so non-confluence is introduced.

References
1 Paola Bruscoli and Alessio Guglielmi. On the proof complexity of deep inference. ACM

Transactions on Computational Logic (TOCL), 10(2):14, 2009. doi:10.1145/1462179.
1462186.

2 Paola Bruscoli, Alessio Guglielmi, Tom Gundersen, and Michel Parigot. Quasipolynomial
normalisation in deep inference via atomic flows and threshold formulae. Logical Methods
in Computer Science, 12(1):5:1–30, 2016. doi:10.2168/LMCS-12(2:5)2016.

3 Kai Brünnler and Alwen Fernanto Tiu. A local system for classical logic. In Logic for
Programming, Artificial Intelligence, and Reasoning, volume 2250, pages 347–361. Springer,
2001. doi:10.1007/3-540-45653-8_24.

4 Samuel R. Buss. The undecidability of k-provability. Annals of Pure and Applied Logic,
53(1):75–102, 1991. doi:10.1016/0168-0072(91)90059-U.

5 Samuel R. Buss. Some remarks on lengths of propositional proofs. Archive for Mathematical
Logic, 34(6):377–394, 1995. doi:10.1007/BF02391554.

6 Alessandra Carbone. The cost of a cycle is a square. The Journal of Symbolic Logic,
67(01):35–60, 2002. doi:10.2178/jsl/1190150028.

7 Anupam Das. On the relative proof complexity of deep inference via atomic flows. Logical
Methods in Computer Science, 11(1):4:1–27, 2015. doi:10.2168/LMCS-11(1:4)2015.

8 Alessio Guglielmi and Tom Gundersen. Normalisation control in deep inference via atomic
flows. Logical Methods in Computer Science, 4(1):9:1–36, 2008. doi:10.2168/LMCS-4(1:
9)2008.

9 Alessio Guglielmi, Tom Gundersen, and Michel Parigot. A proof calculus which re-
duces syntactic bureaucracy. In 21st International Conference on Rewriting Techniques
and Applications (RTA), volume 6 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 135–150. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2010. doi:
10.4230/LIPIcs.RTA.2010.135.

10 Alessio Guglielmi, Tom Gundersen, and Lutz Straßburger. Breaking paths in atomic flows
for classical logic. In Logic in Computer Science (LICS), 2010 25th Annual IEEE Sym-
posium on, pages 284–293. IEEE, 2010. doi:10.1109/LICS.2010.12.

11 Tom Erik Gundersen. A general view of normalisation through atomic flows. Thesis, Uni-
versity of Bath, 2009. URL: https://tel.archives-ouvertes.fr/file/index/docid/
509241/filename/thesis.pdf.

CSL 2017

http://dx.doi.org/10.1145/1462179.1462186
http://dx.doi.org/10.1145/1462179.1462186
http://dx.doi.org/10.2168/LMCS-12(2:5)2016
http://dx.doi.org/10.1007/3-540-45653-8_24
http://dx.doi.org/10.1016/0168-0072(91)90059-U
http://dx.doi.org/10.1007/BF02391554
http://dx.doi.org/10.2178/jsl/1190150028
http://dx.doi.org/10.2168/LMCS-11(1:4)2015
http://dx.doi.org/10.2168/LMCS-4(1:9)2008
http://dx.doi.org/10.2168/LMCS-4(1:9)2008
http://dx.doi.org/10.4230/LIPIcs.RTA.2010.135
http://dx.doi.org/10.4230/LIPIcs.RTA.2010.135
http://dx.doi.org/10.1109/LICS.2010.12
https://tel.archives-ouvertes.fr/file/index/docid/509241/filename/thesis.pdf
https://tel.archives-ouvertes.fr/file/index/docid/509241/filename/thesis.pdf


9:16 Removing Cycles from Proofs

12 Emil Jeřábek. Proof complexity of the cut-free calculus of structures. Journal of Logic and
Computation, 19(2):323–339, 2008. doi:10.1093/logcom/exn054.

13 Andrea Aler Tubella. A study of normalisation through subatomic logic. Thesis, University
of Bath, 2017. URL: https://arxiv.org/pdf/1703.10258.pdf.

A An example of cycle elimination

The following proof has a cycle in it, specifically in the atom a. The critical medial is coloured
red.

t
ai↓
a ∨ ā

∧ (b ∧ c)
2s

(a ∧ c) ∨ (b ∧ ā)
m

[a ∨ b] ∧ [c ∨ ā]

∧ (d ∧ e)

=
[a ∨ b] ∧ d

s
a ∨ (b ∧ d)

∧
[ā ∨ c] ∧ e

s
ā ∨ (c ∧ e)

2s
a ∧ ā

ai↑
f
∨ [(b ∧ d) ∨ (c ∧ e)]

We perform the cycle removal procedure on this proof. First, we perform the transformation
along the ∧-flow:

t
ai↓
a ∨ ā

∧ (b ∧ c)
2s

(a ∧ c) ∨ (b ∧ ā)
=([

f
aw↓

a
∨ b

]
∧

[
f

aw↓
c
∨ ā

])
∨

([
a ∨

f
aw↓

b

]
∧

[
c ∨

f
aw↓

ā

]) ∧ d ∧ e
c↓

(d ∧ e) ∧ (d ∧ e)

2s
([a ∨ b] ∧ [c ∨ ā]) ∧ (d ∧ e)

=
[a ∨ b] ∧ d

s
a ∨ (b ∧ d)

∧
[c ∨ ā] ∧ e

s
ā ∨ (c ∧ e)

2s
(a ∧ ā) ∨ [(b ∧ d) ∨ (c ∧ e)]

∨

([a ∨ b] ∧ [c ∨ ā]) ∧ (d ∧ e)
=

[a ∨ b] ∧ d
s
a ∨ (b ∧ d)

∧
[c ∨ ā] ∧ e

s
ā ∨ (c ∧ e)

2s
(a ∧ ā) ∨ [(b ∧ d) ∨ (c ∧ e)]

= (
a ∧

ā
aw↑

t

)
∨

(
a

aw↑
t
∧ ā

)
6=

f

∨
[(b ∧ d) ∨ (c ∧ e)] ∨ [(b ∧ d) ∨ (c ∧ e)]

c↓
(b ∧ d) ∨ (c ∧ e)

Note that sausages have been created in the atomic flow, a possible source of complexity.

http://dx.doi.org/10.1093/logcom/exn054
https://arxiv.org/pdf/1703.10258.pdf


A. Aler Tubella, A. Guglielmi, and B. Ralph 9:17

Next we push the weakenings through, using the rewriting system W.

t
=

t ∨ t
∧ (b ∧ c)

2s
(t ∧ c) ∨ (b ∧ t)

=
([f ∨ b] ∧ [f ∨ t]) ∨ ([t ∨ f] ∧ [c ∨ f])

∧
d ∧ e

c↓
(d ∧ e) ∧ (d ∧ e)

2s
([f ∨ b] ∧ [f ∨ t]) ∧ (d ∧ e)

=
[f ∨ b] ∧ d

s
f ∨ (b ∧ d)

∧
[f ∨ t] ∧ e

s
t ∨ (f ∧ e)

2s
(f ∧ t) ∨ [(b ∧ d) ∨ (f ∧ e)]

∨

([t ∨ f] ∧ [c ∨ f]) ∧ (d ∧ e)
=

[t ∨ f] ∧ d
s
t ∨ (f ∧ d)

∧
[c ∨ f] ∧ e

s
f ∨ (c ∧ e)

2s
(t ∧ f) ∨ [(f ∧ d) ∨ (c ∧ e)]

=

(f ∧ t) ∨ (t ∧ f)
=

f
∨

[(b ∧ d) ∨ (f ∧ e)] ∨ [(f ∧ d) ∨ (c ∧ e)]
=

(b ∧ d) ∨ (f ∧ d)
m

b ∨ f
=

b
∧

d ∨ d
ac↓

d

∨

(f ∧ e) ∨ (c ∧ e)
m

f ∨ c
=

c
∧

e ∨ e
ac↓

e

We can simplify this proof using unit equations:

t
=

t ∨ t
∧ (b ∧ c)

2s
b ∨ c

∧
d ∧ e

c↓
(d ∧ e) ∧ (d ∧ e)

2s
b ∧ (d ∧ e)

=

(b ∧ d) ∧
[t ∨ f] ∧ e

s
t ∨ (f ∧ e)

s
(b ∧ d) ∨ (f ∧ e)

∨

c ∧ (d ∧ e)
=

[t ∨ f] ∧ d
s
t ∨ (f ∧ d)

∧ (c ∧ e)
s

(f ∧ d) ∨ (c ∧ e)
=

(b ∧ d) ∨ (f ∧ d)
m

b ∨ f
=

b
∧

d ∨ d
ac↓

d

∨

(f ∧ e) ∨ (c ∧ e)
m

f ∨ c
=

c
∧

e ∨ e
ac↓

e

We can simplify even further by removing the trivialising units. Note that this eliminates
the ‘sausages’ that appeared after the transformation along the ∧-flow.

t
=

t ∨ t
∧ (b ∧ c)

2s
b ∨ c

∧ (d ∧ e)

2s
(b ∧ d) ∨ (c ∧ e)

CSL 2017


	Introduction
	Preliminaries on Deep Inference and Atomic Flows
	Atomic Flows
	Decomposition
	The rewriting system C
	Termination of C

	The Cycle Elimination Procedure
	Overview
	Removing trivialising units
	Normalise every connected component
	Removing contractions below a critical medial
	Transformation along the and-flow
	Termination of the Procedure

	Complexity, Confluence and Open Problems
	An example of cycle elimination

