THE COMMUTATIVE/NONCOMMUTATIVE LINEAR LOGIC BV

ALESSIO GUGLIELMI

ABSTRACT. This brief survey contains an informal presentation of the commuta-
tive/noncommutative linear logic BV in terms of a naif space-temporal model. BV
improves on the ability of linear logic to model spatial structure by satisfactorily cap-
turing temporal structure in programming languages and quantum physics. I provide
a guide to the literature on BV and suggest that the only satisfactory treatment for it
can be obtained in the proof-theoretic methodology of deep inference.

1. AN INFORMAL SPACE-TIME MODEL FOR BV

In this section I introduce the logic BV by resorting to an intuitive ‘space-temporal’
model that interprets at the same time its formulae and its proofs. The next section
contains some more details on the proof theory developed for and around BV. It
turns out that in order to deal with BV we have to change rather deeply our proof-
theoretic methods. In fact, despite its simplicity, BV goes beyond what Gentzen’s
proof theory [10] can handle. On the other hand, the proof-theoretic methodology
needed for BV, which we call deep inference, benefits all the other logics, so I will survey
some of the main results that deep inference makes possible. The formal definition
of BV and the development of its basic proof theory can be found in [13].

BV is a very simple object: it is an extension of multiplicative linear logic MLL [12]
with the connective <, called seq. Seq is noncommutative and self-dual, i.e., given two
formulae A and B we have that the logical equivalence A << B = B < A only holds
if A = B; on the other hand the equivalence A < B = A < B holds, where ~ denotes
an involutive negation.

MLL, as is well known, contains the two commutative connectives 9 (par) and ®
(tensor), which are mutually dual via negation: A’ B = A® B. In MLL negation
obeys the two implications 1 —o (A S /_1) and (A ® /_1) —o 1, where 1 and L are the
units, respectively, for tensor and par. In BV we need to collapse these two units into
a single unit, denoted by o, which also works as a unit for seq: A do=0<1A = A.

We begin to interpret the connectives by looking at the following three diagrams:

.B o o
AN N
T 5 A B and A B
A X N
o o
representing A<B | A9 B and AQ®B

Formulae are statements about events, and the arrows represent a causality relation
in time, so that A < B means that all the events that occur in A precede each of the
events in B. The two formulae A ® B and A ® B are interpreted as two collections of
events A and B that can happen independently in time, and there are points in space-
time that precede and follow each of the events in A and B. Those points, which are
devoid of events, are represented by small circles and correspond to the unit of BV.
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Note that the direction of the arrow is arbitrary: we could have interpreted the flow
of time in the opposite direction.

Formula equivalences by associativity, commutativity (only for ’® and ®) and com-
position with units are all interpreted in a natural way, so, for example

SN
Ai jB (o = (o B A
N \i/

Intuitively, the horizontal dimension is commutative and represents space, while
the vertical one is noncommutative and represents time. Formulae, via this bi-
dimensional diagrammatic representation, are statements about a certain structure in
space-time. Since (at least so far) we are dealing with a linear logic, we can imagine
that an atomic formula stands for an elementary structure at some point in space-time,
such as a particle for example.

We extend now our interpretation from formulae to proofs, which we consider
as chains of implications. We can start from two notable implications that govern
negation in BV, i.e., 0 —o (A S A) and (A ® /_1) —o 0. In the case of atomic formulae
(which we represent with lowercase letters), the two implications above stand behind
the following two elementary inference rules, called ail e aiT:

o a®a
ail - and aif R
aga o

o [0

- VAN

a a

represented by " A and A
a o
N

o [0

Given the circumstances it is natural to associate to one inference rule the annihilation
of two antiparticles and to the other inference rule their creation. There is a perfect
top-down symmetry in what we have built so far, therefore the choice is arbitrary.
We choose to interpret ail as annihilation, or interaction, and aiT as creation. Once
this choice is made, the proof theory of BV imposes an interpretation on '® and ®
that differentiates them: formulae in a par relation are able to interact while going
forward in time, while formulae in a tensor will not interact. If we went backward in
time the interpretation would be reversed. Note that from the point of view of proof
theory ail is an atomic identity (axiom) rule and aif is an atomic cut rule.

The interpretation of A < B establishes that no space-time point in A can coincide
with any space-time point in B, so there is no possible interaction between whatever
occupies those two points either going forward or backward in time. Moreover, the
temporal structure induced by < prevents other interactions. To see this consider for
example the formula ' = (A < B) % (C < D), represented as

B/<O>\D
.
A c
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In F an interaction event could occur in a space-time point belonging to both B and
C, but if this is the case then we cannot have an event between points belonging
to both A and D, because I prescribes that whatever happens in D must follow
anything in C, and so also anything in A since something in C' happens at the same
time as something in B. This situation is represented in the following diagrammatic
representation of a BV proof, which consists in the application of a single inference
rule twice (modulo some unit equations):

s
aO—=8

g

Under our space-time interpretation, building a proof means either removing con-
straints if we read a proof top-to-bottom, or adding constraints if we read it bottom-up.
For example, the previous proof can be built bottom-up by starting from its bottom
formula and adding the constraint that B and C both happen after A and before D.
Clearly, in order to design a valid proof system one needs to be a lot more careful
and precise in formulating its interpretation, or semantics, than I did here. The cited
paper [13] develops a proof system for BV under the following assumptions, which
are imposed over a precise formulation of the space-time structure mentioned before:

(1) A ‘space-time snapshot’ should be representable via a formula (and not, for
example, via a more general structure such as a circuit).

(2) The interaction mechanism should be as liberal as possible, basically meaning
that the removing or adding constraints over space-time, mentioned before,
should be the most natural and free that can be conceived.

(3) There should be a mechanism of proof composition equivalent to Gentzen’s
cut, and there should be a corresponding cut-elimination procedure.

The details of all this go far beyond the scope of this short survey, but I provide some
more information in the next section. I conclude this introduction by mentioning
two applications, which hopefully help to better understand the interpretation that I
offered here and that could serve as motivation for further studying BV.

Arguably, the most primitive constructor for programming languages is sequential
composition. In process algebras, such as CCS, we have expressions such as

ablab
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which represents the parallel composition of two processes, P = aband Q = a.b,
that might communicate over the two channels a and . Communication (or syn-
chronisation) takes place when two dual atoms representing the same channel are
next in the execution order. In the example above the order is right and a communi-
cation between a and a can take place, followed by a communication between b and
b. In this case we have that the given expression, representing the initial state of the
computation, successfully evolves to a state where nothing else has to be done.

Each elementary communication has a very natural interpretation in BV as an
instance of ail. In fact, a proof corresponding to a successful reduction of a.b | a.b
can be represented as follows:

b b

b b

a _ corresponding to 0 —o ((a < B) w(a<d b))
a

Q ——= O
Q —— o

!

In the above proof we just apply the principles mentioned before. In particular, we
express nondeterministic choice in the execution of a process as nondeterministic
choice in imposing constraints to the space-time structure, while building a proof
bottom-up. Notice that we are exploiting the self-duality of <, which correspond to

the self-duality of *.’: in fact, we can define a.b = a.bif we want to naturally interpret
the two processes P and Q involved in the communication as dual.

The advantage of BV over MLL should be evident: MLL can naturally model
resources and their synchronisation when they belong to a commutative structure
(space), but it cannot do so when their natural algebraic structure is noncommutative
(time), and especially when it is also self-dual.

There is some ongoing research that uses the previous ideas to obtain refined mod-
els of computation involving causality, and not just for process algebras but also for
A-calculi. Some of the early works on the subject are [4, 23] and two recent ones
are [27, 28]. I intend to promote and participate in a significant research effort on
the subject in the near future mainly because, as I will briefly argue in the next sec-
tion, other necessary technologies related to the use of deep inference have recently
matured enough to justify it.

Similarly to what happens in process algebras, it turns out that the added expres-
sivity of seq is precisely what is needed to overcome the limitations of linear logic
when dealing with quantum evolution and entanglement, as argued in the paper [2].
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A specific problem to quantum physics is to differentiate between entangled and un-
entangled particles. At this point it should come as no surprise that the difference can
be made by par (for entangled particles) and tensor (for unentangled ones). A direct
use of these two constructors for representing the entanglement state leaves the seq
connective free for modelling causality.

The following dag of events in a quantum system provides an example. Here
the edges represent particles, the nodes represent events, and the arrows establish
causality:

\
/

QW/\f\

T

The four events 1, 2, 3 and 4 can, respectively, be represented in BV as
E1=(_l<l(b’83c) y E2=l34d y Es=cde and E4=(d_®é)4f

This representation is not ad hoc, rather it is fully representative of a general way of
representing events. By adopting the principles seen so far, it is not too complicated
to see that we can obtain a proof for the formula (e ® E1 ® E2 ® E3 ® Ey) — f, and
again this is a general property: the evolution of a quantum system can be faithfully
represented in BV under the suggested representation of events.

The difference with what can be obtained with linear logic, so in the absence of
seq, is that in order to deal with entailment we have to resort to a rather unnatural
encoding that nonetheless is incapable of dealing with correlations that develop dy-
namically, as the quantum system evolves. A much more thorough explanation can
be found in the cited paper [2].

2. THE THEORY BEHIND BV

As we have seen the principles behind BV are rather simple and natural, and BV
has some interesting applications, but in order to build a proof theory for it we have
to radically rethink the traditional proof-theoretic framework that we inherited from
Gentzen. Quite simply, it is impossible to obtain cut elimination in Gentzen for the
logic BV. Therefore we need a different proof theory, which has been developed
in the last 15 years and called deep inference. It turns out that the new proof theory
has good properties that extend beyond what is necessary for BV, and it benefits all
other logics, starting from classical logic and including logics that Gentzen theory
cannot properly deal with. This section is a short guide to the core deep-inference
literature, with a special emphasis on BV and its extensions. For an almost exhaustive
presentation of the literature we refer the reader to the web page http://alessio.
guglielmi.name/res/cos/.

2.1. PROOF THEORY OF BV The formal semantic structures used to develop BV
(in [13]) are called relation webs. A relation web is a special kind of graph that gener-
alises the notion of N-free order [26]. The idea is to characterise linear formulae that
can arise from any number of commutative and noncommutative relations between
atoms, in particular the formulae of BV that we have seen.

Once we have relation webs, we can define an order between logical relations,
which in the case of BV is ® > < > '@, and stipulate that adding space-temporal
constraints means lifting logical relations inside that order. For example, two atoms in
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A A (A<4C)® (B < D)
o A B)<(CeD)
L,_° (A B)®C (A B) < (C 9 D)
"A%A “Aw(Bac) “(A<dC)w((B<D)

FIGURE 1. System SBV; system BV is the subsystem consisting of the tree
bottom inference rules.

a par can in principle communicate, but we might choose to observe them at different
times (so lifting the par to a seq), or to forbid any communication between them (so
lifting the par to a tensor). This way we can formally define proofs as upward growing
chains of adding constraints. We can then ask the question of what is the most liberal
proof system that provides the maximum number of proofs and at the same time
admits a cut-elimination procedure.

The answer to this question is the proof system called SBV, in Figure 1, and a few
equations about associativity, commutativity and units. The inference rules of SBV
require the inspection of the first two levels of the formula tree, as opposed to limiting
this, in Gentzen theory, to the root connective. However, this difference is not very
significant, considering that in Gentzen one keeps formulae organised in sequents,
and we do not do this.

The important difference with Gentzen theory is that we require to compose proofs
by the same connectives that we use for formulae. In other words, if

A C
D= of and ¥= vy
B D

are two proofs with, respectively, premisses A and C' and conclusions B and D, then

AdC AwC ARC
oY || , oY || and oY ||
B« D B D B®D

are valid proofs with, respectively, premisses A < C, A’® C and A® C, and con-
clusions B < D, B’® D and B ® D. This is basically the definition of deep inference.
Technically speaking, there are a few different presentations of deep inference, all of
which are equivalent in terms of their main properties. The one that we use here is a
formalism called open deduction, which has been defined in the paper [15].

For example, a BV proof in open deduction for o — ((a < b) 2 (a < b)) (seen in
the previous section) is

o o
il =
aga beb

(a<b)w(a<b)

il

Cut elimination in deep inference is not much different, in principle, from cut
elimination in Gentzen theory. At first sight it might seem that the subformula prop-
erty does not hold in deep inference, but the issue is subtle and it turns out that the
differences are surprisingly small. A discussion on this goes beyond the scope of this
paper, so I refer the reader to [7].
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In practice, however, the more liberal proof composition mechanism of deep infer-
ence completely invalidates the techniques (and the intuition) behind cut elimination
procedures in Gentzen systems. Much of the effort of these 15 years of research on
deep inference went into recovering a normalisation theory. In the case of BV cut
elimination consists in proving that the two ‘up’ rules of SBV, viz. iT and qT, are ad-
missible. This is done in [13] by a technique called splitting and that is at present the
most general method we know for eliminating cuts in deep inference. The technique
relies on the fact that reducing cuts to their atomic form is trivial in deep inference,
due to the perfect top-down symmetry of the proof systems. Once a cut is reduced to
its atomic form, a global transformation is performed on the proof above it. This ex-
poses the atom occurrences that interact with those of the cut and allows us to make
them interact between themselves, so eliminating the need for the cut.

A very natural and obvious question is whether BV could be given a ‘normal’
Gentzen proof theory. Perhaps surprisingly, the answer is that it is impossible. The
proof is in the paper [32] by Alwen Tiu. He invented an infinite class of BV tau-
tologies that progressively bury deep into themselves a ‘lock’. Tiu then proves that
any proof, in any system, needs to undo the lock in order to free atoms that are es-
sential in the subsequent stages of the proof of the tautology. This means that any
Gentzen system, being bound by definition over the formula depth that it can reach,
will necessarily be invalidated by infinitely many tautologies in the class. Tiu’s con-
struction is remarkable, and I suggest the reader to study it in the dissertation where it
first appeared [33], because there one can find diagrams in the same space-temporal
metaphor that I used here, and they are more intuitive than the relation webs that are
used elsewhere.

Ozan Kahramanogullar proved that BV is NP-complete by encoding into it the
3-partition problem [25]. This means that, as expected, the expressiveness of BV is
rather limited. An interesting question is whether it can be extended so that any com-
putation can be expressed in it. The answer is yes. In the three papers [17, 31, 18]
Lutz StraBburger and I study a system called NEL, which is BV augmented with the
linear logic modalities ‘?” and ‘!’. Contrary to BV, system NEL has been proved ade-
quate by StraBburger by encoding into it two-counter machines, which are a universal
model of computation [29]. Via an authentic four de force we have been able to devise
a cut-elimination procedure for NEL. On the other hand, a simple non-constructive
proof of cut admissibility for NEL can be obtained by the technique developed in
[11]. Therefore, given its computational and proof-theoretical adequacy, NEL would
be a good basis over which we could build new models of computation, as mentioned
in the previous section.

On the semantics side I would like to mention the paper [1], where a categorical
model of BV is developed and one can find a discussion of previous approaches and
possible ways forward.

Finally, I would like to cite the paper [21], which, even if it has nothing to do
with BV, is the first attempt to extend deep inference to more general structures than
formulae, in this case circuits. Such an investigation might suggest ways to capture
even more expressive ‘space-temporal’ languages than BV.

2.2. SOME COMMENTS ON DEEP INFERENCE AND COMPLEXITY Besides its
unique ability to support BV, deep inference has several other attractive properties. I
would only mention here the main points at a high level of abstraction.

The crucial advance of deep inference over Gentzen proof theory is that proof
composition is freely built over the same connectives of the underlying logic. This
creates a new (top-down) symmetry for proofs, which is needed by BV because it is
needed by seq and its inference rules. In order to see this one needs to read Tiu’s
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previously cited papers, but a useful exercise is to try and express the gl rule in a
Gentzen system.

Anyway, the new symmetry has beneficial consequences for two other mecha-
nisms that are typical of proof systems: the cut rule and the contraction rule. Both
rules cannot be reduced to their atomic forms in Gentzen except in some cases via
global proof transformations. In the case of cut, most of a typical cut elimination
procedure in Gentzen goes into making the cut rule atomic, by lifting it toward the
premisses. In deep inference this is not the case: every instance of a cut rule can be
reduced into several atomic instances by a local procedure, exactly as can be done
in Gentzen to an identity axiom. The lack of symmetry in Gentzen only allows this
transformation on the instances of identity, but deep inference is top-down symmetric
and the problem disappears. The same is true of contraction: a local transformation
involving rules that depend on the top-down symmetry makes it possible to always
obtain atomic instances of contractions.

Thanks to this, it turns out that normally, for all logics, we can obtain in deep
inference proof systems whose rules are all either linear or atomic. This means that
the complexity necessary to verify them is bounded by a constant. In other words,
we are able to break proofs into their smallest constituents, and so, finally, we can
rearrange with unprecedented freedom all those little inference rule instances. This
has beneficial consequences in four areas: proof complexity, the proof theory of
modal logics, normalisation theory (including the Curry-Howard correspondence)
and semantics.

In the proof complexity of propositional logic in deep inference the most spec-
tacular result so far is that cut elimination can be obtained in quasipolynomial time,
instead of exponential time as is the case in Gentzen systems [22, 6, 8, 5]. Moreover,
Anupam Das recently proved the first new result on the proof complexity of Gentzen
systems obtained by adopting deep-inference techniques: in [9] he significantly re-
duces the best known bound on the size of monotone proofs of the weak pigeonhole
principle. There has also been progress in reducing proof-search nondeterminism
[24] and in decoupling proof compression mechanisms such as the cut and Tseitin’s
extension [30].

The proof theory of modal logics has seen an importance advance thanks to a
deep-inference based new formalism called nested sequents. 1 will only cite here Kai
Briinnler’s habilitation thesis on the subject [3], as it is a comprehensive and well
written account of all the necessary techniques. Above all, nested sequents provide
analytic proof systems for logics for which Gentzen proof theory cannot do so and
they do so in a principled way. The cited web page on deep inference provides
pointers to a vast literature on nested sequents.

The normalisation theory of classical logic is a subject that received a lot of ben-
efits from atomicity. The small granularity of inference rules has translated into a
topological model of normalisation called atomic flows. We found that, amazingly, cut
elimination in deep inference can be performed in a way that is completely indepen-
dent of any logical information present in the proof [16, 14]. We are currently using
atomic flows, in a relatively large project, in order to design a new deep-inference
formalism that removes almost all known sources of ‘syntactic bureaucracy’, in an
attempt to define a purely geometric semantic of proofs and provide an answer to
the problem of identity of proofs. Apart from this and the conceptual advance in the
study of normalisation, atomic flows have also inspired an explicit-sharing A-calculus
that achieves fully lazy sharing, so improving on the previous results obtained without
deep inference [19, 20].
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