MA10207: Exercise sheet 14

Please hand in solutions to homework problems by Monday, 11th March, 2:15pm.

(Power series & uniform convergence)

Warmup problems

Problem T 14.1. Let $\sum_{n=0}^{\infty} a_n$ be a real series; let $f(x) := \sum_{n=0}^{\infty} a_n (x - x_0)^n$ denote a power series.

- a) Recall some criteria for convergence of infinite series.
- b) What is the radius of convergence of a power series?
- c) How (and why) can the radius of convergence be determined using convergence criteria?

Problem T 14.2. Let $(f_n)_{n \in \mathbb{N}} \subset C^0(I)$ be a sequence of continuous functions on a *compact* interval I.

- (i) Prove that $f_n \xrightarrow{\text{unif.}} f$ if and only if $\forall \varepsilon > 0 \exists N \in \mathbb{N} \forall n \ge N : ||f_n f||_{\infty} < \varepsilon$.
- (ii) Prove that $(f_n)_{n \in \mathbb{N}}$ is a uniform Cauchy sequence if and only if $\forall \varepsilon > 0 \exists N \in \mathbb{N} \forall m, n \ge N :$ $\|f_n - f_m\|_{\infty} < \varepsilon$, that is, $(f_n)_{n \in \mathbb{N}}$ is a "Cauchy sequence in $(C^0(I), \|.\|_{\infty})$ ".

Homework problems

- **Problem H 14.1.** Prove that a uniformly convergent sequence $(f_n)_{n \in \mathbb{N}}$ of functions is a uniform Cauchy sequence. Discuss the converse.
- **Problem H 14.2.** Decide whether the sequence $(f_n)_{n \in \mathbb{N}}$ converges uniformly on [0, 1] in the following cases:

(a)
$$f_n(x) = \frac{nx}{1+nx}$$
, (b) $f_n(x) = x^n(1-x^n)$.

[Hint for (b): check $f_n(x_n)$ for $x_n = \frac{1}{\sqrt[n]{2}}$.]

Problem H 14.3. Use Theorems 4.10 and 4.12 to prove Theorem 3.25 (continuity of power series).

Quiz questions

Problem Q 14.1.

- (i) There are nowhere convergent power series $\sum_{k=0}^{\infty} a_k (x-x_0)^k$. [Hint]
- (ii) If a power series $f(x) = \sum_{k=0}^{\infty} a_k x^k$ has radius of convergence R = 1 then it always converges for either x = 1 or x = -1 (depending on whether $(a_k)_{k \in N}$ is alternating or not). [Hint]
- (iii) If the power series $\sum_{k=0}^{\infty} a_k x^k$ has radius of convergence R > 1, then there is a number M so that $|a_k| \leq M$ for all k. [Hint]
- (iv) The sum of the series $\sum_{k=1}^{\infty} \frac{1}{2^k} (x-3)^k$ and $\sum_{k=1}^{\infty} \frac{1}{3^k} (x-2)^k$ is convergent at x=4. [Hint]
- (v) Suppose $\sum_{k=0}^{\infty} a_k x^k$ and $\sum_{k=0}^{\infty} b_k x^k$ have radii of convergence $R_1 > 0$ and $R_2 > 0$, respectively. Then $\sum_{k=0}^{\infty} (a_k + b_k) x^k$ has radius of convergence $R \ge \min\{R_1, R_2\} > 0$. [Hint]

Evaluate

Problem Q 14.2. Let *I* be an interval and $f_n : I \to \mathbb{R}$ for $n \in \mathbb{N}$.

- (i) For $(f_n)_{n \in \mathbb{N}}$ to be a uniform Cauchy sequence, it is necessary that $(f_n(x))_{n \in \mathbb{N}}$ converges for every $x \in I$. [Hint]
- (ii) For $(f_n)_{n \in \mathbb{N}}$ to be uniformly convergent on I, it is sufficient that $(f_n(x))_{n \in \mathbb{N}}$ be a Cauchy sequence for every $x \in I$. [Hint]
- (iii) If $f(x) = \sum_{k=0}^{\infty} a_k x^k$ is defined by a power series with radius of convergence R > 0, then the sequence of partial sums converges uniformly on (-R, R). [Hint]

Evaluate