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We consider the conservative dynamical system

(1)
d2q(t)

dt2
= −∇V (q) ,

where V is a smooth potential on Q ⊂ Rn, and

(2) q(0) = qa and q(T ) = qb

with qa, qb ∈ Q and T > 0; we assume that the total energy E, defined as the sum
of kinetic and potential energy, is fixed, so T has to be determined.

A motivation for the analysis of this problem comes from Molecular Dynamics
and other problems with complex energy landscapes. For example, qa and qb can
be different conformational states of a molecule; then the Newtonian equations
of motion (1) describe the vibrations of one conformation, followed by a rapid
transition to the energetic well containing the other conformation, and vibrations
in that well. This example illustrates two typical difficulties: the state space Q can
be high-dimensional (for example, n ≈ 400 for relatively simple models of DNA
motion); the timescale T will be very long in comparison to the temporal scale of
typical vibrations.

The problem of solving (1) with periodic boundary conditions has a long history,
including existence results by Seifert [5], Weinstein [6], Rabinowitz [3].

The boundary value problem (1)–(2) is less studied. An existence result with
additional differential-geometric assumptions on the underlying metric is due to
Gordon [2].

We present an alternative existence result, where the a priori estimates depend
on physical quantities, notably the total energy E and the potential energy V . The
method we employ resembles so-called string methods, but the particular setting
we use allows us to prove the convergence of a suitable approximation.

The setting we use is that of Jacobi and Maupertuis; according to this classi-
cal principle, trajectories to (1) with total energy E are suitably re-parametrised
geodesics with respect to the Jacobi metric

(3) gij(q) := 2(E − V (q))δij(q) ;

we recall that geodesics are critical points γ of

(4) L[γ] :=
∫ τ

0

√
gij(γ(s))γ̇i(s)γ̇j(s) ds ,

where q = q(s), q(0) = qa, q(τ) = qb. For Jacobi’s metric, this is

(5) L[γ] :=
∫ τ

0

√
2(E − V (q)) 〈q̇, q̇〉ds .
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Physical time can then be recovered via the explicit formula

(6) t =
∫ τ

0

√
〈q̇, q̇〉

2(E − V )
ds .

The advantage of the variational method (5) is its elliptic nature; the existence
of periodic solution is thus often studied in this setting [5, 6]. An argument going
back to Birkhoff [1] can in this case provide a constructive existence proof.

We provide a similar result for the boundary value problem, but with a different
focus: Given qa and qb, bounds can be given on the choice for E such that the
existence of a trajectory can be guaranteed. The argument uses discrete curvature
bounds to obtain a neighbourhood of qa and qb which is invariant under a flow.

While in principle such an argument is not hard once a curvature bound yielding
an invariant region is found, we choose to complicate the proof so that it yields in
the end a constructive convergent approximation by line segments. Line segments
are Euclidean geodesics, so it is natural to use piecewise constant approximations
of the Jacobi metric (3). The computation of the length is then in principle simple.
However, care has to be taken of the scaling. It can be shown that locking and
other artificial effects can be avoided if three different scales are considered: one
for the discretisation width ε0 of polygonal approximations for γ, a finer one for
the step width of the Birkhoff step and an even finer one for the computation of
the length.

Unlike the continuous (original) Birkhoff step, the argument requires a grid
refinement, even a sequence of refinements εk := 2−kε0 (and suitable refinements
of the two other scales involved). It can then be shown that the Birkhoff procedure
stops on every discrete level k after finitely many steps, yielding a limit polygon
γk. It can be shown that γk → γ ∈ C1,1 as k →∞, where γ is a geodesic graph.

We close by remarking that, rather than relying on a Birkhoff procedure, a
parabolic flow with an artificial time can be used as a steepest descent procedure
to the elliptic limit associated with (5). A numerical implementation shows that
this is an efficient string method [4]; a theoretical underpinning of this flow in form
of a convergence proof is however missing.

The homogenisation of this problem (that is, the computation of effective Hamil-
tonians for potentials Vε with wiggly contributions in the limit ε → 0) was also
mentioned as open problem in the discussion at the meeting. Also, the result pre-
sented here is deterministic. Extensions to a stochastic setting (e.g., within the
Freidlin-Wentzell theory or for thermostats) are presently not available.
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