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Part I: The computational side of deep inference



Open deduction [Guglielmi, Gundersen & Parigot 2010]
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A derivation from assumption A to conclusion C:
» Atom a
» Horizontal construction with connective x  with arity in {+, —}"

» Vertical construction with rule r from B to B,
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A derivation from assumption A to conclusion C:
» Atom a
» Horizontal construction with connective x  with arity in {+, —}"

» Vertical construction with rule r from B to B,

An open-deduction proof system is given by:
» A signature of connectives

» A set of rules
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Open deduction for intuitionistic logic

Derivations:

A (o Ay Al A
-l
C Al |G G| |G

Connectives: — A T  ofarity: (—+) (++) ()
Rules:
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ANT A AnB (AnB)AC

A AT BrAA  AA(BAC)
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Example

(A—~B~C)
(A—>B—C)A(A—B)

W80\ o | [Eaeal T ]

(ASB—C)—(A-B)>A—C
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» Locality: correctness of a rule is locally verifiable

» New fine-grained rules such as medial:

(AnB)v(CAD)
(AVO)A(BVD)

Results
» Expresses more logics than sequent calculi (BV) [Tiu 2006]

» Quasipolynomial normalization (CPL)
[Jerabek 2009; Bruscoli, Guglielmi, Gundersen & Parigot 2016]

» Non-elementary compression (FOL) [Aguilera & Baaz 2019]
Costs

» No subformula property
Remark

» Same syntax as category theory but different aims and techniques



What is the computational meaning of open deduction?



Reduction in open deduction [Briinnler & McKinley 2008]
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Similar to categorical combinators [Curien 1986]
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Open deduction as a type system
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In Curry—Howard—Lambek

» Same embedding of natural deduction in deep inference as in
cartesian closed categories [Lambek 1972]

» Not an isomorphism, but a correspondence or interpretation
» Many derivations for one A-term

» Terms guide reduction
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Atomic reduction

Medial rules make contractions atomic:

(AVB)—’(CAD)m _a . ava,
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Consequences for proof complexity — here, we look at computational
meaning



Simplify to a distribution rule to avoid disjunction:
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Simplify to a distribution rule to avoid disjunction:
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Introduce a corresponding distributor term construct:
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The atomic A-calculus family

Term calculi for:

» Full laziness [Gundersen, H & Parigot 2013]
» Atomic Ap-reduction [He 2018]
» Spinal full laziness [Sherratt, H, Gundersen & Parigot 2020]

» Atomic distance reduction [Kesner, Peyrot & Ventura 2021]
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Deep reduction

(Or categorically: dinaturality)
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Deep reduction takes a simply-typed term to a resource A-term

Resource A-calculus: [Boudol 1993]

M,N =X | )\<X|,...,Xn>.M | M<N|,...,Nn>

Equivalently, deep reduction takes a simple type derivation to a
(non-idempotent) intersection-type derivation

Intersection types: [Coppo & Dezani 1978]

A B :=a | Arn...NA,)-B
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Open-deduction intersection types [Guerrieri, H & Paulus 2021]
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Open-deduction intersection types

Types:
Collections:

Contexts:

A B
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Further observations

(A-B)AC
A—(BAC)
Switch: corresponds to an explicit end-of-scope construct A
[Hendriks & Van Oostrom 2003; Sherratt et al 2020]

(AaB)—(CaD)
(A=C)a(B—D)

Subatomic logic: may be interpreted as conditionals or decision trees
[Barrett & Guglielmi 2022; Dal Lago, Guerrieri & H. 2020]



Summary

Deep inference is explicit = fine-grained computational notions

» atomic A-calculus
» deep intersection types
» switch as end-of-scope

» subatomic logic as conditionals

All these extend the standard Curry—Howard—Lambek correspondence.

But...



Part Il: The logical side of the Functional Machine Calculus
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Effects

The problem: how to combine A-calculus with computational effects
(I/O, store, non-determinism, error handling, concurrency, etc.)

» Call-by—value with thunks [Landin 1964, Plotkin 1975]
» Monads (Haskell) [Moggi 1989]
» Call-by—push—value [Levy 1999]

» Effect handlers [Plotkin & Pretnar 2009]
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Approach

» effects require sequentiality

» A-calculus should be call-by—name

Simple abstract machine: cf. KAM [Krivine 2007]

application is PUSH ~ MN = [N].M W
(SN,  (x)M)

abstraction is POP MM = (x).M (S , {NIx}M)
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M,N MN
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» A-terms as sequential processes
* identity, skip, empty
M; N composition, sequencing

» NEW: successful termination, output

(S, %) [M].IN].x  (shorten to [M].[N])

» embeds CBV, monads, CBPV, and handlers
» similar ideas have appeared before:

» kappa-calculus [Hasegawa 1995, Power & Thielecke 1999]
» compiler calculi [Douence & Fradet 1998]
» concatenative programming [Pestov et al 2010]

» one more trick gives confluence with state, IO, probabilities
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Terms Types

M,N:=x| x.M | MN A B :
M, N:=x| (x)M|INLJM | x|N:M  AB -

Simple types indicate
» function inputs — ultimate output is 0
» equivalently, the input stack on the machine

» with sequencing: input and output stacks
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Types

Terms Types

M,N:=x| x.M | MN A B :
M, N :=x| ().M|INLM | %|N:M A B := A ...Ay=B,...Bn

A|—>...—>An—>0

Simple types indicate
» function inputs — ultimate output is 0
» equivalently, the input stack on the machine

» with sequencing: input and output stacks

Still (conjunction—implication) intuitionistic logic:

Al A=Bi . By = (AjA---AA)—(BiA- - ABp)



Types as logic/categories

Types defined with vector notation; empty vector €, concatenation A-B
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Types as logic/categories

Types defined with vector notation; empty vector €, concatenation A-B
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Types as logic/categories

Types defined with vector notation; empty vector €, concatenation A-B
A,B::=K=>E K::=A|...An

Type vectors are formulas, terms are derivations
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Curry—Howard-Lambek?

This is a different term interpretation of intuitionistic logic and cartesian
closed categories

standard FMC
elements: open terms closed terms
premisses:  (types of) free variables (type of) input stack
conclusion:  (type of) term (type of) output stack




Fragments

Cartesian closed: higher-order, non-linear
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Fragments

Cartesian: first-order, non-linear
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Fragments

Symmetric monoidal closed: higher-order, linear, symmetric
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Fragments

Symmetric monoidal: first-order, linear; symmetric
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Fragments

Monoidal: first-order, linear, asymmetric
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Perspective

What does this mean for logic (if anything)?

» Like Levy’s CBPV, values A vs computations €=A
» Types for state, I/O, and probabilities.

» May give types for error handling, data types, and co-recursion

(loops).
» Classical linear logic may give types for (message-passing)
concurrency

(similar to session types [Honda 1993, Caires & Pfenning 2010])



Thank you!



