Willem’s Adventures in Curry—Howard Land

Willem Heijltjes
University of Bath

Computability in Europe 2023
Batumi, Georgia

Part I: The computational side of deep inference

Open deduction [Guglielmi, Gundersen & Parigot 2010]

>
>
>
N
e =]

&——
Il
Q
&——
>*
&——

|n<:.9°|

A derivation from assumption A to conclusion C:
» Atom a
» Horizontal construction with connective x with arity in {+, —}"

» Vertical construction with rule r from B to B,

Open deduction [Guglielmi, Gundersen & Parigot 2010]

>
=
>
N
[P =>|

&——
Il
Q
——
>*
——

|n<:.9°|

A derivation from assumption A to conclusion C:
» Atom a
» Horizontal construction with connective x with arity in {+, —}"

» Vertical construction with rule r from B to B,

An open-deduction proof system is given by:
» A signature of connectives

» A set of rules

Open deduction for intuitionistic logic

Derivations:

Open deduction for intuitionistic logic

Derivations:

A (o Ay Al A
I i
C Al |G G| |G

Connectives: — A T ofarity: (—+) (++) ()

Open deduction for intuitionistic logic

Derivations:

A (o Ay Al A
B - o i
C Al |G G| |G

Connectives: — A T ofarity: (—+) (++) ()

Rules:
B (A—=B)rA A

A= (BAA) B ANA

A
T

e =>]

|n¢.5°|

Open deduction for intuitionistic logic

Derivations:

A (o Ay Al A
-l
C Al |G G| |G

Connectives: — A T ofarity: (—+) (++) ()
Rules:

B A-B)rA A
A= (BAA) B ANA

ANT A AnB (AnB)AC

A AT BrAA AA(BAC)

A

T
An(BAC)

(AAB)AC

e =>]

|n¢.5°|

Example

(A—~B~C)
(A—>B—C)A(A—B)

W80\ o | [Eaeal T]

(ASB—C)—(A-B)>A—C

Benefits
» Universal framework for proof systems
» Locality: correctness of a rule is locally verifiable

» New fine-grained rules such as medial:

(AnB)v(CAD)
(AVO)A(BVD)

Benefits
» Universal framework for proof systems
» Locality: correctness of a rule is locally verifiable

» New fine-grained rules such as medial:

(AnB)v(CAD)
(AVO)A(BVD)

Results
» Expresses more logics than sequent calculi (BV) [Tiu 2006]

» Quasipolynomial normalization (CPL)
[Jerabek 2009; Bruscoli, Guglielmi, Gundersen & Parigot 2016]

» Non-elementary compression (FOL) [Aguilera & Baaz 2019]

Benefits
» Universal framework for proof systems
» Locality: correctness of a rule is locally verifiable

» New fine-grained rules such as medial:

(AnB)v(CAD)
(AVO)A(BVD)

Results
» Expresses more logics than sequent calculi (BV) [Tiu 2006]

» Quasipolynomial normalization (CPL)
[Jerabek 2009; Bruscoli, Guglielmi, Gundersen & Parigot 2016]

» Non-elementary compression (FOL) [Aguilera & Baaz 2019]
Costs

» No subformula property

Benefits
» Universal framework for proof systems
» Locality: correctness of a rule is locally verifiable

» New fine-grained rules such as medial:

(AnB)v(CAD)
(AVO)A(BVD)

Results
» Expresses more logics than sequent calculi (BV) [Tiu 2006]

» Quasipolynomial normalization (CPL)
[Jerabek 2009; Bruscoli, Guglielmi, Gundersen & Parigot 2016]

» Non-elementary compression (FOL) [Aguilera & Baaz 2019]
Costs

» No subformula property
Remark

» Same syntax as category theory but different aims and techniques

What is the computational meaning of open deduction?

Reduction in open deduction [Briinnler & McKinley 2008]

A A A
duplication/ ﬂ AllA ﬂ A
— — =
deletion B ﬂ A H B T
BAB BJ[B T
D
¢ Ch H
ChA D A
beta-reduction A— ﬂ A ﬂ — ——-=—=—-
B A ChA

Similar to categorical combinators [Curien 1986]

Preservation of strong normalization (PSN) fails

Preservation of strong normalization (PSN) fails

A A
A/\A A A
L A A/\A
A ~ |AA=|A T
S RS
A/\A A _

Preservation of strong normalization (PSN) fails

A — A _ A
AAQ A AA A
i - el -l
ArA A | = A
T T T__ -

Preservation of strong normalization (PSN) fails

2 A A A

_ A

AA% A AA A An=
AT e |ANA A AAT w [AANA A

A - I A

AnA A L2 A AL

______________ T AT e
A A A

Open deduction as a type system
Terms: M,N = x|MN]|xM

Types: A B, C al|A-B
Contexts: %, \V AN AAS

Derivations:

Open deduction as a type system

Terms: M, N n=
Types: A B, C
Contexts: %, \V

X MN
I—Y hy
ac |]
A—B A

x| MN | &x.M

al|A-B

Derivations:

Al A AAS

A—

Open deduction as a type system

Terms: M, N
Types: A B, C
Contexts: %, \V

X MN
I—Y hy
ac |]
A—B A
B

ANT A AnB

A AAT BAA

@ B

x| MN | &x.M

al|A-B Derivations:

Al A AAS

Ax.M

ry

[V AAX A
A— ”M AN L AAK

(AAB)AC AA(BAC)

An(BAC) (AAB)AC

Open deduction as a type system

Terms: M, N
Types: A B, C
Contexts: %, \V

X MN
I—Y hy
ac |]
A—B A
B

ANT A AnB

A AAT BAA

x| MN | &x.M | Mix = N]

al|A-B

Al A AAS

A—

(AAB)AC

An(BAC)

Ax.M

ry

[V AAX
&

B

An(BAC)

(ArB)AC

Derivations: ”M

In Curry—Howard—Lambek

» Same embedding of natural deduction in deep inference as in
cartesian closed categories [Lambek 1972]

» Not an isomorphism, but a correspondence or interpretation
» Many derivations for one A-term

» Terms guide reduction

Atomic reduction

Medial rules make contractions atomic:

(AvB)—(CAD) - a , ava,
(A—~C)A(B—D) ana a

Atomic reduction

Medial rules make contractions atomic:

(AVB)—(CAD)
A-C)A(B—D)"

A-B

(A—B)A(A— B)

A

_a , ava

ana a
LA B,
AVA BAB

(A—B)A(A—B)

Atomic reduction

Medial rules make contractions atomic:

(AVB)—(CAD)
A-C)A(B—D)"

A-B

(A—B)A(A— B)

A

AAB

(ANB)A(ANB)

_a ava

ana a
LA B,
AVA BAB
(A—B)A(A—B)
LA N B A
ANrA BAB

(ArB)A(ANB)

Atomic reduction

Medial rules make contractions atomic:

(AVB)—’(CAD)m _a . ava,
A-C)r(B-D)" ara a
A B
A-B AL B
AoBAsE”| — LAvA] (BB
(A—B)A(A—B)
A B
A/\B . — A | AN | ——2a
ArB)AANB) | 0 AMA | [BAB |
(AAB)A(AAB)

Consequences for proof complexity — here, we look at computational
meaning

Simplify to a distribution rule to avoid disjunction:

B .
BAB)
(A—B)A(A—B)

A-(BAC) A—B A

A

(ASB)A(A—C) (A-B)A(A—B) | 7

Simplify to a distribution rule to avoid disjunction:

B
A-(BrC) | AsB | Ao |ge
(A—=B)A(A—=C) (A—B)A(A—B) TECIEh

Introduce a corresponding distributor term construct:

A

ANAY
Mix < Ay.T] A- ||T
BA...AB
d
(A-B)*A ... A(A—B)*

_r
["AA

A- "N
B

a

(A—B)A(A—B)

Mix<Ay.N]

A-

(A—B)A(A—B)

Mix<Ay.N]

L,

["AA
&
B

a

[AA
&

M{y.N/x}

[AA
&

["AA

A-

(A—B)A(A—B)

Mix<Ay.N]

r

I
B

a

[AA
&

M{y.N/x}

[AA
&

r
[AA

Ao In
B

BAB

—_— 4
(A—B)r(A—B)

Mix«Ay.(z, z)[z—N]]

r

_r .,
TAA rﬁA
N
A- ﬂN — A- B
R BAB
(A—B)A(A—B) —Ad
(A—B)A(A—B)
Mix<Ay.N] Mix«Ay.(z, z)[z—N]]
¢
r A
3 ° ["AA
r A L A =
TAA Y e |ao| I
RN NP I
B B B B
(A—B)A(A-B)

M{y.N/x} Mix<2Ay.(N, N)]

The atomic A-calculus family

Term calculi for:

» Full laziness [Gundersen, H & Parigot 2013]
» Atomic Ap-reduction [He 2018]
» Spinal full laziness [Sherratt, H, Gundersen & Parigot 2020]

» Atomic distance reduction [Kesner, Peyrot & Ventura 2021]

Deep reduction

Deep reduction

(Or categorically: dinaturality)

I 2 r
A, — AN AAL
A= I—/\A/\.../\A F A4
AN ... AA
0 A ~B|nA AL AN ... AA
B

(Ax.N)M

r
A
r A
NAn A
[T AANA AA

(Ax.N)M

C A
A A
A r— A
A= | [TAAA .. AA AHM
[l :
B
B
!
-
R i [AAA ... AA
A A
v — N
i |
B

(x.N)M

C A
A,
rAA/\ . NA A
[T AAA NA " HM
[’
B
B @
4
A
r
A M
[AAA .. AA AM ﬂ
)| 1 B Y Mo
A A
B a
° AN ... NA

(Ax.N)M (A1, .- xa)-N) (M, ..., M)

r , .
A r 2
A a A A A

e | FAAn A | i
| | (An ... nA) - N A A

z
>
o]
=
B
>
>
——
ES

A A
B
3 @
i T
A
r
A M
[AAA ... AA AM ﬂ
)| 1 L B Y Mo
A A
B A
@ AN ... NA

Deep reduction takes a simply-typed term to a resource A-term

Resource A-calculus: [Boudol 1993]

M,N =X |)\<X|,...,Xn>.M | M<N|,...,Nn>

Equivalently, deep reduction takes a simple type derivation to a
(non-idempotent) intersection-type derivation

Intersection types: [Coppo & Dezani 1978]

A B :=a | Arn...NA,)-B

Open-deduction intersection types [Guerrieri, H & Paulus 2021]

Types: A B all-A x
Collections: 1, J Allnj Derivations: ”M
Contexts: M A .= If" Ao AL A

Open-deduction intersection types [Guerrieri, H & Paulus 2021]

Types: A B = al|l-A x
Collections: 1, J = AllInJ Derivations: ”M
Contexts: M A .= If" Ao AL A

r} AY

Open-deduction intersection types [Guerrieri, H & Paulus 2021]

Types: A B = al|l-A [
Collections: 1, J = AlInJ Derivations: ”M
Contexts: M A .= If" Ao AL A

X X

N (1n)"

|M N ”M — .

1*nJ
I J

Open-deduction intersection types

Types:
Collections:

Contexts:

A B

1)
™, A\

r}

all-A
Allng

X X
SR

[Guerrieri, H & Paulus 2021]

Derivations: ” M

(n)*aknl)”

(IFAKY) 0 (ALY

Further observations

Further observations

(A-B)AC
A—(BAC)
Switch: corresponds to an explicit end-of-scope construct A
[Hendriks & Van Oostrom 2003; Sherratt et al 2020]

Further observations

(A-B)AC
A—(BAC)
Switch: corresponds to an explicit end-of-scope construct A
[Hendriks & Van Oostrom 2003; Sherratt et al 2020]

(AaB)—(CaD)
(A=C)a(B—D)

Subatomic logic: may be interpreted as conditionals or decision trees
[Barrett & Guglielmi 2022; Dal Lago, Guerrieri & H. 2020]

Summary

Deep inference is explicit = fine-grained computational notions

» atomic A-calculus
» deep intersection types
» switch as end-of-scope

» subatomic logic as conditionals

All these extend the standard Curry—Howard—Lambek correspondence.

But...

Part Il: The logical side of the Functional Machine Calculus

Effects

The problem: how to combine A-calculus with computational effects
(I/O, store, non-determinism, error handling, concurrency, etc.)

Effects

The problem: how to combine A-calculus with computational effects
(I/O, store, non-determinism, error handling, concurrency, etc.)

» Call-by—value with thunks [Landin 1964, Plotkin 1975]
» Monads (Haskell) [Moggi 1989]
» Call-by—push—value [Levy 1999]

» Effect handlers [Plotkin & Pretnar 2009]

Approach

» effects require sequentiality

» A-calculus should be call-by—name

Approach

» effects require sequentiality

» A-calculus should be call-by—name

Simple abstract machine:

cf. KAM [Krivine 2007]

application is PUSH MN = [N|.M

Approach

» effects require sequentiality

» A-calculus should be call-by—name

Simple abstract machine: cf. KAM [Krivine 2007]

application is PUSH ~ MN = [N].M W
(SN, (x)M)

abstraction is POP MM = (x).M (S , {NIx}M)

From A-calculus to FMC [H 2022; Barrett, H & McCusker 2023]

M,N MN
MN == x | ()M | [N.M

I
><
2
X

From A-calculus to FMC [H 2022; Barrett, H & McCusker 2023]

M,N MN
MN == x | (x)M | [NNM | « | M;N

I
><
X
X

» A-terms as sequential processes
* identity, skip, empty
M; N composition, sequencing

From A-calculus to FMC [H 2022; Barrett, H & McCusker 2023]

M,N MN
MN == x | (x)M | [NNM | « | M;N

I
><
X
X

» A-terms as sequential processes
* identity, skip, empty
M; N composition, sequencing

» NEW: successful termination, output

(S, %) [M].IN].x (shorten to [M].[N])

From A-calculus to FMC [H 2022; Barrett, H & McCusker 2023]

M,N MN
MN == x | (x)M | [NNM | « | M;N

I
x
X
X

» A-terms as sequential processes
* identity, skip, empty
M; N composition, sequencing

» NEW: successful termination, output

(S, %) [M].IN].x (shorten to [M].[N])

» embeds CBV, monads, CBPV, and handlers

» similar ideas have appeared before:
» kappa-calculus [Hasegawa 1995, Power & Thielecke 1999]
» compiler calculi [Douence & Fradet 1998]
» concatenative programming [Pestov et al 2010]

From A-calculus to FMC [H 2022; Barrett, H & McCusker 2023]

M,N MN
MN == x | (x)M | [NNM | « | M;N

I
x
X
X

» A-terms as sequential processes
* identity, skip, empty
M; N composition, sequencing

» NEW: successful termination, output

(S, %) [M].IN].x (shorten to [M].[N])

» embeds CBV, monads, CBPV, and handlers
» similar ideas have appeared before:

» kappa-calculus [Hasegawa 1995, Power & Thielecke 1999]
» compiler calculi [Douence & Fradet 1998]
» concatenative programming [Pestov et al 2010]

» one more trick gives confluence with state, IO, probabilities

Types

Terms Types

M,N:=x | x.M | MN
M,N == x | (x).M | [N].M

Types

Terms Types

M,N:=x| x.M | MN AB = A ...

M,N == x | (x).M | [N].M

Simple types indicate

» function inputs — ultimate output is 0

—>An—>o

Types

Terms Types
M,N:::X|)\X.M|MN A B = A|—>...—>An—>0
M, N := x| (x).M | [N]M A B = A .. A

Simple types indicate
» function inputs — ultimate output is 0

» equivalently, the input stack on the machine

Types

Terms Types

M,N:=x| x.M | MN A B :
M, N:=x| (x)M|INLJM | x|N:M AB -

Simple types indicate
» function inputs — ultimate output is 0
» equivalently, the input stack on the machine

» with sequencing: input and output stacks

A|—> ...—>An—>0
A| ...An=>B| Bm

Types

Terms Types

M,N:=x| x.M | MN A B :
M, N :=x| ().M|INLM | %|N:M A B := A ...Ay=B,...Bn

A|—>...—>An—>0

Simple types indicate
» function inputs — ultimate output is 0
» equivalently, the input stack on the machine

» with sequencing: input and output stacks

Still (conjunction—implication) intuitionistic logic:

Al A=Bi . By = (AjA---AA)—(BiA- - ABp)

Types as logic/categories

Types defined with vector notation; empty vector €, concatenation A-B
A,B::=K=>E K::=A|...An

Type vectors are formulas, terms are derivations

|
<
Al I &&= >

z

*
X
z

Types as logic/categories

Types defined with vector notation; empty vector €, concatenation A-B
A,B::=K=>E K::=A|...An

Type vectors are formulas, terms are derivations

(x)-(v)-[x].ly]

os]

z
®|
>

|
Al I &&= >

z

*
X
z

Types as logic/categories

Types defined with vector notation; empty vector €, concatenation A-B
A,B::=K=>E K::=A|...An

Type vectors are formulas, terms are derivations

)Xyl (x)[x][x]
e A
B-A A-A

|
<
Al I &&= >

z

*
X
z
8

Types as logic/categories

Types defined with vector notation; empty vector €, concatenation A-B
A,B::=K=>E K::=A|...An

Type vectors are formulas, terms are derivations

G-y)X (x)-x
A Z_E i A-(A=B)
Mﬂ B-A A-A B
A B
dl . .
c € A= (A-B)

*
X
z
~
x|
~
~
x|
~
=)

Types as logic/categories

Types defined with vector notation; empty vector €, concatenation A-B
A,B::=K=>E K::=A|...An

Type vectors are formulas, terms are derivations

-)X {x).x
A Z_E i A-(A=B)
il BA AA B
A B X
Nﬂ MH .C A B
¢ B e A= (A -B)

*
X
z

S~
x|

~
=

=
~
x|
~
~
x|
~
=

Curry—Howard-Lambek?

This is a different term interpretation of intuitionistic logic and cartesian
closed categories

standard FMC
elements: open terms closed terms
premisses: (types of) free variables (type of) input stack
conclusion: (type of) term (type of) output stack

Fragments

Cartesian closed: higher-order, non-linear

(x)-(y)-[x].ly]
7 AB
i BA
A B 7
Mﬂ Mﬂ .C
[B

*
pd
<
I
S
=)

Fragments

Cartesian: first-order, non-linear

(x)-(y)-[x].ly]
1 AB
i BA
A B 7
Mﬂ Mﬂ .C
[B

*
pd
<
I
<
=)

Fragments

Symmetric monoidal closed: higher-order, linear, symmetric

(x).

—~

y)-X1y] (

>
Il
x

|
™|
>

BN
[}

=

oc]
|
os]

A
i
A B A
Mﬂ Mﬂ C B
C B A= (A-B)
* N: M (x).M.[x] (x).[[x]]

Fragments

Symmetric monoidal: first-order, linear; symmetric

(x)-(y)-[x].ly]
7 AB
i BA
A B X
Mﬂ Mﬂ C
[B

>
z
z
)

%).M.[x]

Fragments

Monoidal: first-order, linear, asymmetric

z

BN

>
Ol &= I & >

%
Z
S
<
S
I

Perspective

What does this mean for logic (if anything)?

Perspective

What does this mean for logic (if anything)?

» Like Levy’s CBPV, values A vs computations €=A

Perspective

What does this mean for logic (if anything)?

» Like Levy’s CBPV, values A vs computations €=A
» Types for state, I/O, and probabilities.

Perspective

What does this mean for logic (if anything)?

» Like Levy’s CBPV, values A vs computations €=A
» Types for state, I/O, and probabilities.

» May give types for error handling, data types, and co-recursion
(loops).

Perspective

What does this mean for logic (if anything)?

» Like Levy’s CBPV, values A vs computations €=A
» Types for state, I/O, and probabilities.

» May give types for error handling, data types, and co-recursion

(loops).
» Classical linear logic may give types for (message-passing)
concurrency

(similar to session types [Honda 1993, Caires & Pfenning 2010])

Thank you!

