Willem's Adventures in Curry-Howard Land

Willem Heijltjes
University of Bath

Computability in Europe 2023
Batumi, Georgia

Part I: The computational side of deep inference

Open deduction

[Guglielmi, Gundersen \& Parigot 2010]

A derivation from assumption A to conclusion C :

- Atom a
- Horizontal construction with connective \star with arity in $\{+,-\}^{*}$
- Vertical construction with rule r from B_{1} to B_{2}

Open deduction

[Guglielmi, Gundersen \& Parigot 2010]

A derivation from assumption A to conclusion C :

- Atom a
- Horizontal construction with connective \star with arity in $\{+,-\}^{*}$
- Vertical construction with rule r from B_{1} to B_{2}

An open-deduction proof system is given by:

- A signature of connectives
- A set of rules

Open deduction for intuitionistic logic

Derivations:

Open deduction for intuitionistic logic

Derivations:

Connectives: $\quad \rightarrow \wedge \top$ of arity: $(-+)(++)()$

Open deduction for intuitionistic logic

Derivations:

Connectives: $\quad \rightarrow \wedge \top$ of arity: $(-+)(++)()$
Rules:

$$
\frac{B}{A \rightarrow(B \wedge A)} \quad \frac{(A \rightarrow B) \wedge A}{B} \quad \frac{A}{A \wedge A} \quad \frac{A}{T}
$$

Open deduction for intuitionistic logic

Derivations:

Connectives: $\quad \rightarrow \wedge \top$ of arity: $(-+)(++)()$
Rules:

$$
\frac{B}{A \rightarrow(B \wedge A)} \quad \frac{(A \rightarrow B) \wedge A}{B} \quad \frac{A}{A \wedge A} \quad \frac{A}{T}
$$

$$
\begin{array}{lclll}
A \wedge T & A & A \wedge B & (A \wedge B) \wedge C & A \wedge(B \wedge C) \\
-\bar{A} & \bar{A} \wedge \bar{T} & \bar{B} \wedge \bar{A} & \bar{A} \wedge(B \wedge \bar{C}) & \bar{A}-\bar{A} \wedge \bar{B}) \wedge \bar{C}
\end{array}
$$

Example

Benefits

- Universal framework for proof systems
- Locality: correctness of a rule is locally verifiable
- New fine-grained rules such as medial:

$$
\frac{(A \wedge B) \vee(C \wedge D)}{(A \vee C) \wedge(B \vee D)}
$$

Benefits

- Universal framework for proof systems
- Locality: correctness of a rule is locally verifiable
- New fine-grained rules such as medial:

$$
\frac{(A \wedge B) \vee(C \wedge D)}{(A \vee C) \wedge(B \vee D)}
$$

Results

- Expresses more logics than sequent calculi (BV)
[Tiu 2006]
- Quasipolynomial normalization (CPL)
[Jeřábek 2009; Bruscoli, Guglielmi, Gundersen \& Parigot 2016]
- Non-elementary compression (FOL)
[Aguilera \& Baaz 2019]

Benefits

- Universal framework for proof systems
- Locality: correctness of a rule is locally verifiable
- New fine-grained rules such as medial:

$$
\frac{(A \wedge B) \vee(C \wedge D)}{(A \vee C) \wedge(B \vee D)}
$$

Results

- Expresses more logics than sequent calculi (BV)
[Tiu 2006]
- Quasipolynomial normalization (CPL)
[Jeřábek 2009; Bruscoli, Guglielmi, Gundersen \& Parigot 2016]
- Non-elementary compression (FOL)
[Aguilera \& Baaz 2019]

Costs

- No subformula property

Benefits

- Universal framework for proof systems
- Locality: correctness of a rule is locally verifiable
- New fine-grained rules such as medial:

$$
\frac{(A \wedge B) \vee(C \wedge D)}{(A \vee C) \wedge(B \vee D)}
$$

Results

- Expresses more logics than sequent calculi (BV)
[Tiu 2006]
- Quasipolynomial normalization (CPL)
[Jeřábek 2009; Bruscoli, Guglielmi, Gundersen \& Parigot 2016]
- Non-elementary compression (FOL)
[Aguilera \& Baaz 2019]

Costs

- No subformula property

Remark

- Same syntax as category theory but different aims and techniques

What is the computational meaning of open deduction?

Reduction in open deduction

[Brünnler \& McKinley 2008]
duplication/ deletion

beta-reduction

Similar to categorical combinators [Curien 1986]

Preservation of strong normalization (PSN) fails

$\frac{A}{A}$
$A \wedge \frac{A}{T}$
A-
$A \wedge \frac{A}{T}$

Preservation of strong normalization (PSN) fails

A	\rightsquigarrow	A	
$\begin{aligned} & \frac{A}{A \wedge \frac{A}{T}} \\ & -A^{-} \end{aligned}$		$\frac{A}{A \wedge} \frac{A}{T}$	$\frac{A}{A \wedge} \frac{A}{T}$
$A \wedge \frac{A}{=}$		A-	A

Preservation of strong normalization (PSN) fails

Preservation of strong normalization (PSN) fails

Open deduction as a type system

Terms: $\quad M, N \quad:=x|M N| \lambda x . M$
Types: $\quad A, B, C:=a \mid A \rightarrow B$
Contexts: $\Gamma^{\bar{x}}, \Delta^{\bar{y}}::=A_{1}^{x_{1}} \wedge \ldots \wedge A_{n}^{x_{n}}$

Derivations: \begin{tabular}{l}

$\Gamma^{\bar{x}}$
$\\| M$
A

\hline
\end{tabular}

Open deduction as a type system

$$
\begin{array}{lll}
\text { Terms: } & M, N & ::=x|M N| \lambda x \cdot M \\
\text { Types: } & A, B, C::=a \mid A \rightarrow B \\
\text { Contexts: } & \Gamma^{\bar{x}}, \Delta^{\bar{y}} & ::=A_{\mid}^{x_{1}} \wedge \ldots \wedge A_{n}^{x_{n}}
\end{array}
$$

Derivations: | $\Gamma^{\bar{x}}$ |
| :--- |
| $\\| M$ |
| A |

$x \quad M N \quad \lambda x . M$

Open deduction as a type system

$\begin{array}{lll}\text { Terms: } & M, N & ::=x|M N| \lambda x . M \\ \text { Types: } & A, B, C & ::=a \mid A \rightarrow B \\ \text { Contexts: } & \Gamma^{\bar{x}}, \Delta^{\bar{y}}::=A_{\mid}^{x_{1}} \wedge \ldots \wedge A_{n}^{x_{n}}\end{array}$
$x \quad M N \quad \lambda x . M$

$$
\begin{array}{lclll}
A \wedge T & A & A \wedge B & (A \wedge B) \wedge C & A \wedge(B \wedge C) \\
-A^{--} & A \wedge T & B^{-} \wedge \bar{A} & \bar{A} \wedge(B \wedge C) & (A \wedge B) \wedge \bar{A}
\end{array}
$$

Open deduction as a type system

Terms: $\quad M, N \quad:=x|M N| \lambda x . M \mid M[x \leftarrow N]$
Types: $\quad A, B, C:=a \mid A \rightarrow B$
Contexts: $\Gamma^{\bar{x}}, \Delta^{\bar{y}}:=A_{1}^{x_{1}} \wedge \ldots \wedge A_{n}^{x_{n}}$

Derivations: \begin{tabular}{|c}

\bar{x}
$\\| M$
A

\hline
\end{tabular}

In Curry-Howard-Lambek

- Same embedding of natural deduction in deep inference as in cartesian closed categories
[Lambek 1972]
- Not an isomorphism, but a correspondence or interpretation
- Many derivations for one λ-term
- Terms guide reduction

Atomic reduction

Medial rules make contractions atomic:

$$
\frac{(A \vee B) \rightarrow(C \wedge D)}{(A \rightarrow C) \wedge(B \rightarrow D)} m \quad \frac{a}{a \wedge a} \Delta \quad \frac{a \vee a}{a} \vee
$$

Atomic reduction

Medial rules make contractions atomic:

$$
\begin{gathered}
\frac{(A \vee B) \rightarrow(C \wedge D)}{(A \rightarrow C) \wedge(B \rightarrow D)} m \\
\frac{a}{a \wedge a} \Delta \quad \frac{a \vee a}{a} \vee \\
\frac{A \rightarrow B}{(A \rightarrow B) \wedge(A \rightarrow B)} \Delta \\
\rightarrow \frac{A}{A \vee A} \rightarrow \frac{B}{B \wedge B} \Delta \\
(A \rightarrow B) \wedge(A \rightarrow B) \\
\end{gathered}
$$

Atomic reduction

Medial rules make contractions atomic:

$$
\begin{aligned}
& \frac{(A \vee B) \rightarrow(C \wedge D)}{(A \rightarrow C) \wedge(B \rightarrow D)} m \quad \frac{a}{a \wedge a} \Delta \quad \frac{a \vee a}{a} .
\end{aligned}
$$

$$
\begin{aligned}
& \frac{A \wedge B}{(A \wedge B) \wedge(A \wedge B)} \Delta \frac{\bar{A}}{A \wedge A} \Delta \wedge \frac{B}{B \wedge B} \Delta
\end{aligned}
$$

Atomic reduction

Medial rules make contractions atomic:

$$
\begin{aligned}
& \frac{(A \vee B) \rightarrow(C \wedge D)}{(A \rightarrow C) \wedge(B \rightarrow D)} m \quad \frac{a}{a \wedge a} \Delta \quad \frac{a \vee a}{a} . \\
& \rightarrow \frac{\operatorname{li}_{(A \rightarrow B) \wedge(A \rightarrow B)}^{(A)} \rightarrow \frac{A}{A \vee A} \rightarrow \frac{B}{B \wedge B} \Delta}{(A \rightarrow B) \wedge(A \rightarrow B)} m
\end{aligned}
$$

Consequences for proof complexity - here, we look at computational meaning

Simplify to a distribution rule to avoid disjunction:

$$
\frac{A \rightarrow(B \wedge C)}{(A \rightarrow B) \wedge(A \rightarrow C)} d \quad \frac{A \rightarrow B}{(A \rightarrow B) \wedge(A \rightarrow B)} \Delta \rightarrow \frac{A \rightarrow \frac{B}{B \wedge B}{ }^{\Delta}}{(A \rightarrow B) \wedge(A \rightarrow B)} d
$$

Simplify to a distribution rule to avoid disjunction:

$$
\frac{A \rightarrow(B \wedge C)}{(A \rightarrow B) \wedge(A \rightarrow C)} d \quad \frac{A \rightarrow B}{(A \rightarrow B) \wedge(A \rightarrow B)} \Delta \Delta \frac{A \rightarrow \frac{B}{B \wedge B}{ }^{\Delta}}{(A \rightarrow B) \wedge(A \rightarrow B)} d
$$

Introduce a corresponding distributor term construct:

$\frac{\Gamma}{A \rightarrow \underbrace{}_{\begin{array}{c} \Gamma \wedge A \\ \\|_{N} \\ \\ \hline \end{array}}{ }^{\lambda}}$

$M[x \leftarrow \lambda y . N]$

Γ
$A \rightarrow \underbrace{}_{$$\Gamma \wedge A$ $\\| N$ $B$$}{ }^{\lambda}$
$\overline{(A \rightarrow B) \wedge(A \rightarrow B)}$

$$
M[x \leftarrow \lambda y \cdot N]
$$

$M\{\lambda y \cdot N / x\}$

$$
M[x \leftarrow \lambda y \cdot N]
$$

$M[x \leftarrow \lambda y \cdot\langle z, z\rangle[z \leftarrow N]]$

$M\{\lambda y \cdot N / x\}$

$$
\begin{aligned}
& M[x \leftarrow \lambda y . N] \\
& M\{\lambda y \cdot N / x\} \\
& M[x \leftarrow \lambda y .\langle N, N\rangle]
\end{aligned}
$$

The atomic λ-calculus family

Term calculi for:

- Full laziness
- Atomic $\lambda \mu$-reduction
- Spinal full laziness
- Atomic distance reduction
[Gundersen, H \& Parigot 2013]
[He 2018]
[Sherratt, H, Gundersen \& Parigot 2020]
[Kesner, Peyrot \& Ventura 202I]

Deep reduction

Deep reduction

(Or categorically: dinaturality)

$(\lambda x . N) M$

$$
\left(\lambda\left\langle x_{1}, \ldots, x_{n}\right\rangle . N\right)\langle M, \ldots, M\rangle
$$

\uparrow

Deep reduction takes a simply-typed term to a resource λ-term
Resource λ-calculus: [Boudol 1993]

$$
M, N::=x\left|\lambda\left\langle x_{1}, \ldots, x_{n}\right\rangle \cdot M\right| M\left\langle N_{1}, \ldots, N_{n}\right\rangle
$$

Equivalently, deep reduction takes a simple type derivation to a (non-idempotent) intersection-type derivation

Intersection types:
[Coppo \& Dezani 1978]

$$
A, B::=a \mid\left(A_{1} \cap \ldots \cap A_{n}\right) \rightarrow B
$$

Open-deduction intersection types

[Guerrieri, H \& Paulus 202I]

Types:	A, B	$:=a \mid I \rightarrow A$	
Collections:	I, J	$:=A \mid I \cap J$	Derivations:
Contexts:	$\Gamma^{\bar{x}}, \Delta^{\bar{y}}::=I_{1}^{x_{1}} \wedge \ldots \wedge I_{n}^{x_{n}}$		

Open-deduction intersection types

Types: $\quad A, B \quad:=a \mid I \rightarrow A$
Collections: I, $\quad::=A|\cap|$
Contexts: $\Gamma^{\bar{x}}, \Delta^{\bar{y}}:=\left.I_{1}^{x_{1}} \wedge \ldots \wedge\right|_{n} ^{x_{n}}$
[Guerrieri, H \& Paulus 202I]

Open-deduction intersection types

Types: $\quad A, B \quad:=a \mid I \rightarrow A$
$\begin{array}{lll}\text { Collections: } & I, J & ::=A \mid I \cap J \\ \text { Contexts: } & \Gamma^{\bar{x}}, \Delta^{\bar{y}}::=I_{1}^{x_{1}} \wedge \ldots \wedge I_{n}^{x_{n}}\end{array}$
$\begin{array}{lll}\text { Collections: } & I, J & ::=A \mid I \cap J \\ \text { Contexts: } & \Gamma^{\bar{x}}, \Delta^{\bar{y}}::=I_{1}^{x_{1}} \wedge \ldots \wedge I_{n}^{X_{n}}\end{array}$
[Guerrieri, H \& Paulus 202I]

Derivations:

$$
\frac{(I \cap J)^{x}}{I^{x} \wedge J^{x}} \Delta
$$

Open-deduction intersection types
$\begin{array}{lll}\text { Types: } & A, B & :=a \mid I \rightarrow A \\ \text { Collections: } & I, J & :=A \mid I \cap J \\ \text { Contexts: } & \Gamma^{\bar{x}}, \Delta^{\bar{y}}::=I_{\mid}^{x_{1}} \wedge \ldots \wedge I_{n}^{x_{n}}\end{array}$
$\begin{array}{lll}\text { Types: } & A, B & :=a \mid I \rightarrow A \\ \text { Collections: } & I, J & :=A \mid I \cap J \\ \text { Contexts: } & \Gamma^{\bar{x}}, \Delta^{\bar{y}}::=I_{\mid}^{x_{1}} \wedge \ldots \wedge I_{n}^{x_{n}}\end{array}$
$\begin{array}{lll}\text { Types: } & A, B & :=a \mid I \rightarrow A \\ \text { Collections: } & I, J & :=A \mid I \cap J \\ \text { Contexts: } & \Gamma^{\bar{x}}, \Delta^{\bar{y}}::=I_{\mid}^{x_{1}} \wedge \ldots \wedge I_{n}^{x_{n}}\end{array}$
[Guerrieri, H \& Paulus 202I]

$$
\frac{(I \cap J)^{x}}{I^{x} \wedge J^{x}} \Delta
$$

$$
\frac{(I \cap J)^{x} \wedge(K \cap L)^{y}}{\left(I^{x} \wedge K^{y}\right) \cap\left(J^{x} \wedge L^{y}\right)} m
$$

Further observations

Further observations

$$
\frac{(A \rightarrow B) \wedge C}{A \rightarrow(B \wedge C)}
$$

Switch: corresponds to an explicit end-of-scope construct $人$
[Hendriks \& Van Oostrom 2003; Sherratt et al 2020]

Further observations

$$
\frac{(A \rightarrow B) \wedge C}{A \rightarrow(B \wedge C)}
$$

Switch: corresponds to an explicit end-of-scope construct 人
[Hendriks \& Van Oostrom 2003; Sherratt et al 2020]

$$
\begin{aligned}
& \begin{array}{|l|l|l|}
\hline A & B \\
\| & a & \| \\
C & & D \\
\hline
\end{array} \\
& \frac{(A a B) \rightarrow(C a D)}{(A \rightarrow C) a(B \rightarrow D)}
\end{aligned}
$$

Subatomic logic: may be interpreted as conditionals or decision trees [Barrett \& Guglielmi 2022; Dal Lago, Guerrieri \& H. 2020]

Summary

Deep inference is explicit \Longrightarrow fine-grained computational notions

- atomic λ-calculus
- deep intersection types
- switch as end-of-scope
- subatomic logic as conditionals

All these extend the standard Curry-Howard-Lambek correspondence. But...

Part II: The logical side of the Functional Machine Calculus

Effects

The problem: how to combine λ-calculus with computational effects (I/O, store, non-determinism, error handling, concurrency, etc.)

Effects

The problem: how to combine λ-calculus with computational effects (I/O, store, non-determinism, error handling, concurrency, etc.)

- Call-by-value with thunks
- Monads (Haskell)
- Call-by-push-value
- Effect handlers
[Landin 1964, Plotkin 1975]
[Moggi 1989]
[Levy 1999]
[Plotkin \& Pretnar 2009]

Approach

- effects require sequentiality
- λ-calculus should be call-by-name

Approach

- effects require sequentiality
- λ-calculus should be call-by-name

Simple abstract machine:
cf. KAM [Krivine 2007]
application is PUSH $\quad M N=[N] \cdot M$
$\frac{(S,[N] \cdot M)}{(S N, \quad M)}$

Approach

- effects require sequentiality
- λ-calculus should be call-by-name

Simple abstract machine:
cf. KAM [Krivine 2007]
application is PUSH $\quad M N=[N] . M$
$\frac{(S,[N] . M)}{(S N, \quad M)}$
abstraction is POP $\quad \lambda x . M=\langle x\rangle \cdot M \quad \frac{(S N,\langle x\rangle \cdot M)}{(S,\{N / x\} M)}$

From λ-calculus to FMC
[H 2022; Barrett, H \& McCusker 2023]

$$
\begin{array}{ccc|c|c}
M, N & :=x & \lambda x . M & M N \\
M, N::=x & \langle x\rangle . M & {[N] . M}
\end{array}
$$

From λ-calculus to FMC

[H 2022; Barrett, H \& McCusker 2023]

$$
\begin{aligned}
& M, N:=x|\lambda x . M| M N \\
& M, N::=x|\langle x\rangle . M|[N] . M|\star| \quad M ; N
\end{aligned}
$$

- λ-terms as sequential processes
* identity, skip, empty
$M ; N$ composition, sequencing

From λ-calculus to FMC

[H 2022; Barrett, H \& McCusker 2023]

$$
\begin{aligned}
& M, N:=x|\lambda x . M| M N \\
& M, N::=x|\langle x\rangle . M|[N] . M|\star| \quad M ; N
\end{aligned}
$$

- λ-terms as sequential processes
* identity, skip, empty
$M ; N$ composition, sequencing
- NEW: successful termination, output

$$
(S, \star) \quad[M] \cdot[N] \cdot \star \quad \text { (shorten to }[M] \cdot[N])
$$

From λ-calculus to FMC

$$
\begin{aligned}
& M, N::=x|\lambda x \cdot M \quad| \quad M N \\
& M, N:=x|\langle x\rangle . M|[N] . M|\star| M ; N
\end{aligned}
$$

- λ-terms as sequential processes
$\star \quad$ identity, skip, empty
$M ; N$ composition, sequencing
- NEW: successful termination, output

$$
(S, \star) \quad[M] \cdot[N] \cdot \star \quad \text { (shorten to }[M] \cdot[N])
$$

- embeds CBV, monads, CBPV, and handlers
- similar ideas have appeared before:
- kappa-calculus
- compiler calculi
- concatenative programming
[Hasegawa I995, Power \& Thielecke 1999]
[Douence \& Fradet 1998]
[Pestov et al 2010]

From λ-calculus to FMC

$$
\begin{aligned}
& M, N: \left.=x\left|\begin{array}{ll}
\\
M, N & :=x
\end{array}\right|\langle x\rangle \cdot M|[N] \cdot M \quad| \star \right\rvert\, \\
& M ; N
\end{aligned}
$$

- λ-terms as sequential processes
* identity, skip, empty
$M ; N$ composition, sequencing
- NEW: successful termination, output

$$
(S, \star) \quad[M] \cdot[N] \cdot \star \quad \text { (shorten to }[M] \cdot[N])
$$

- embeds CBV, monads, CBPV, and handlers
- similar ideas have appeared before:
- kappa-calculus
- compiler calculi
- concatenative programming
[Hasegawa 1995, Power \& Thielecke 1999]
[Douence \& Fradet 1998]
[Pestov et al 2010]
- one more trick gives confluence with state, IO, probabilities

Types

Terms
Types
$M, N::=x|\lambda x . M| M N$
$M, N::=x|\langle x\rangle . M|[N] . M$

Types

Terms

Types

$M, N::=x|\lambda x . M| M N \quad A, B::=A_{1} \rightarrow \ldots \rightarrow A_{n} \rightarrow 0$
$M, N::=x|\langle x\rangle . M|[N] . M$

Simple types indicate

- function inputs - ultimate output is o

Types

Terms
$M, N::=x|\lambda x . M| M N$
$A, B::=A_{1} \rightarrow \ldots \rightarrow A_{n} \rightarrow 0$
$M, N::=x|\langle x\rangle . M|[N] . M$
$A, B::=A_{1} \ldots A_{n}$

Simple types indicate

- function inputs - ultimate output is o
- equivalently, the input stack on the machine

Types

Terms
$M, N::=x|\lambda x . M| M N$
$M, N::=x|\langle x\rangle . M|[N] . M|\star| N ; M \quad A, B::=A_{1} \ldots A_{n} \Rightarrow B_{1} \ldots B_{m}$

Simple types indicate

- function inputs - ultimate output is o
- equivalently, the input stack on the machine
- with sequencing: input and output stacks

Types

Terms
$\begin{array}{ll}M, N::=x|\lambda x \cdot M| M N & A, B::=A_{1} \rightarrow \ldots \rightarrow A_{n} \rightarrow 0 \\ M, N::=x|\langle x\rangle . M|[N] \cdot M|\star| N ; M & A, B::=A_{1} \ldots A_{n} \Rightarrow B_{1} \ldots B_{m}\end{array}$

Simple types indicate

- function inputs - ultimate output is o
- equivalently, the input stack on the machine
- with sequencing: input and output stacks

Still (conjunction-implication) intuitionistic logic:

$$
A_{1} \ldots A_{n} \Rightarrow B_{1} \ldots B_{m}=\left(A_{1} \wedge \cdots \wedge A_{n}\right) \rightarrow\left(B_{1} \wedge \cdots \wedge B_{m}\right)
$$

Types as logic/categories

Types defined with vector notation; empty vector ε, concatenation $\bar{A} \cdot \bar{B}$

$$
A, B::=\bar{A} \Rightarrow \bar{B} \quad \bar{A}::=A_{1} \ldots A_{n}
$$

Type vectors are formulas, terms are derivations

Types as logic/categories

Types defined with vector notation; empty vector ε, concatenation $\bar{A} \cdot \bar{B}$

$$
A, B::=\bar{A} \Rightarrow \bar{B} \quad \bar{A}::=A_{1} \ldots A_{n}
$$

Type vectors are formulas, terms are derivations

$$
\langle\bar{x}\rangle \cdot\langle\bar{y}\rangle \cdot[\bar{x}] \cdot[\bar{y}]
$$

\bar{A}

$$
\star \quad M ; N
$$

Types as logic/categories

Types defined with vector notation; empty vector ε, concatenation $\bar{A} \cdot \bar{B}$

$$
A, B::=\bar{A} \Rightarrow \bar{B} \quad \bar{A}::=A_{1} \ldots A_{n}
$$

Type vectors are formulas, terms are derivations

Types as logic/categories

Types defined with vector notation; empty vector ε, concatenation $\bar{A} \cdot \bar{B}$

$$
A, B::=\bar{A} \Rightarrow \bar{B} \quad \bar{A}::=A_{1} \ldots A_{n}
$$

Type vectors are formulas, terms are derivations

		$\langle\bar{x}\rangle \cdot\langle\bar{y}\rangle \cdot[\bar{x}] \cdot[\bar{y}]$	$\langle\bar{x}\rangle \cdot[\bar{x}] \cdot[\bar{x}]$	$\langle x\rangle . x$	
	\bar{A}	$\overline{\bar{A} \cdot \bar{B}}$	\bar{A}	$\underline{\bar{A} \cdot(\bar{A} \Rightarrow \bar{B})}$	
	$M \\|$	$\bar{B} \cdot \bar{A}$	$\bar{A} \cdot \bar{A}$	\bar{B}	
\bar{A}	\bar{B}				
	$N \\|$		\bar{A}	\bar{B}	
	\bar{C}		ε	$\overline{\bar{A} \Rightarrow(\bar{A} \cdot \bar{B})}$	
\star	M; N		$\langle\bar{x}\rangle$	$\langle\bar{x}\rangle .[[\bar{x}]]$	

Types as logic/categories

Types defined with vector notation; empty vector ε, concatenation $\bar{A} \cdot \bar{B}$

$$
A, B::=\bar{A} \Rightarrow \bar{B} \quad \bar{A}::=A_{1} \ldots A_{n}
$$

Type vectors are formulas, terms are derivations

		$\langle\bar{x}\rangle \cdot\langle\bar{y}\rangle \cdot[\bar{x}] \cdot[\bar{y}]$	$\langle\bar{x}\rangle \cdot[\bar{x}] \cdot[\bar{x}]$	$\langle x\rangle \cdot x$
	\bar{A}	$\overline{\bar{A} \cdot \bar{B}}$	\bar{A}	$\underline{\bar{A} \cdot(\bar{A} \Rightarrow \bar{B})}$
	$M \Downarrow$	$\bar{B} \cdot \bar{A}$	$\bar{A} \cdot \bar{A}$	\bar{B}
\bar{A}	\bar{B}	\bar{A}		
	$N \pm$	$M \Downarrow \cdot \bar{C}$	$\underline{\bar{A}}$	\bar{B}
	\bar{C}	\bar{B}	$\bar{\varepsilon}$	$\overline{\bar{A} \Rightarrow(\bar{A} \cdot \bar{B})}$
*	M; N	$\langle\bar{x}\rangle . M .[\bar{x}]$	$\langle\bar{x}\rangle$	$\langle\bar{x}\rangle .[\bar{x}]]$

Curry-Howard-Lambek?

This is a different term interpretation of intuitionistic logic and cartesian closed categories

	standard	FMC
elements:	open terms	closed terms
premisses:	(types of) free variables	(type of) input stack
conclusion:	(type of) term	(type of) output stack

Fragments

Cartesian closed: higher-order, non-linear

		$\langle\bar{x}\rangle \cdot\langle\bar{y}\rangle \cdot[\bar{x}] \cdot[\bar{y}]$	$\langle\bar{x}\rangle \cdot[\bar{x}] \cdot[\bar{x}]$	$\langle x\rangle . x$		
	\bar{A}	$\bar{A} \cdot \bar{B}$	\bar{A}	$\bar{A} \cdot(\bar{A} \Rightarrow \bar{B})$		
	$N \\|$	$\bar{B} \cdot \bar{A}$	$\bar{A} \cdot \bar{A}$	\bar{B}		
\bar{A}	\bar{B}	\bar{A}				
	$\cdots \\|$	$M \\| \cdot \bar{C}$	\bar{A}	\bar{B}		
	\bar{C}	\bar{B}	ε	$\overline{\bar{A} \Rightarrow(\bar{A} \cdot \bar{B})}$		
*	$N ; M$	$\langle\bar{x}\rangle . M .[\bar{x}]$	$\langle\bar{x}\rangle$	$\langle\bar{x}\rangle .[\bar{x}]]$		

Fragments

Cartesian: first-order, non-linear

	$\langle\bar{x}\rangle \cdot\langle\bar{y}\rangle \cdot[\bar{x}] \cdot[\bar{y}]$	$\langle\bar{x}\rangle \cdot[\bar{x}] \cdot[\bar{x}]$	
	\bar{A}	$\bar{A} \cdot \bar{B}$	
$\bar{A} \\|$	\bar{A}		
	$\bar{B} \cdot \bar{A}$	$\overline{\bar{A} \cdot \bar{A}}$	
	$M \\|$	\bar{A}	
	$M \\| \cdot \bar{C}$	\bar{A}	
	$N ; M$	\bar{B}	
\bar{C}	$\langle\bar{x}\rangle \cdot M \cdot[\bar{x}]$	$\langle\bar{x}\rangle$	

Fragments

Symmetric monoidal closed: higher-order, linear, symmetric

$$
\langle\bar{x}\rangle \cdot\langle\bar{y}\rangle \cdot[\bar{x}] \cdot[\bar{y}]
$$

$$
\langle x\rangle \cdot x
$$

	\bar{A}	$\overline{\bar{A} \cdot \bar{B}}$	$\underline{\bar{A} \cdot(\bar{A} \Rightarrow \bar{B})}$	
	$N \\|$	$\bar{B} \cdot \bar{A}$	\bar{B}	
\bar{A}	\bar{B}	\bar{A}		
	\cdots	$M \\| \cdot \bar{C}$	\bar{B}	
	\bar{C}	\bar{B}	$\overline{\bar{A}} \Rightarrow(\bar{A} \cdot \bar{B})$	
\star	$N ; M$	$\langle\bar{x}\rangle . M .[\bar{x}]$	$\langle\bar{\chi}\rangle \cdot[[\bar{x}]]$	

Fragments

Symmetric monoidal: first-order, linear, symmetric

$$
\langle\bar{x}\rangle \cdot\langle\bar{y}\rangle \cdot[\overline{\bar{x}} \cdot[\bar{y}]
$$

Fragments

Monoidal: first-order, linear, asymmetric

Perspective

What does this mean for logic (if anything)?

Perspective

What does this mean for logic (if anything)?

- Like Levy's CBPV, values A vs computations $\varepsilon \Rightarrow A$

Perspective

What does this mean for logic (if anything)?

- Like Levy's CBPV, values A vs computations $\varepsilon \Rightarrow A$
- Types for state, I/O, and probabilities.

Perspective

What does this mean for logic (if anything)?

- Like Levy's CBPV, values A vs computations $\varepsilon \Rightarrow A$
- Types for state, I/O, and probabilities.
- May give types for error handling, data types, and co-recursion (loops).

Perspective

What does this mean for logic (if anything)?

- Like Levy's CBPV, values A vs computations $\varepsilon \Rightarrow A$
- Types for state, I/O, and probabilities.
- May give types for error handling, data types, and co-recursion (loops).
- Classical linear logic may give types for (message-passing) concurrency
(similar to session types [Honda 1993, Caires \& Pfenning 2010])

Thank you!

