Willem's Adventures in Curry-Howard Land

Willem Heijltjes University of Bath

Computability in Europe 2023 Batumi, Georgia Part I: The computational side of deep inference

Open deduction

[Guglielmi, Gundersen & Parigot 2010]

A derivation from assumption A to conclusion C:

- Atom a
- Horizontal construction with connective \star with arity in $\{+,-\}^*$
- Vertical construction with rule r from B₁ to B₂

A derivation from assumption A to conclusion C:

- Atom a
- Horizontal construction with connective \star with arity in $\{+, -\}^*$
- ► Vertical construction with rule r from B₁ to B₂

An open-deduction *proof system* is given by:

- A signature of connectives
- A set of rules

Connectives:
$$\rightarrow \land \top$$
 of arity: $(-+)(++)()$

Connectives:
$$\rightarrow \land \top$$
 of arity: $(-+)$ $(++)$ $()$ Rules:
$$\frac{B}{A \rightarrow (B \land A)} \qquad \frac{(A \rightarrow B) \land A}{B} \qquad \frac{A}{A \land A} \qquad \frac{A}{\top}$$

Connectives:
$$\rightarrow \wedge \top$$
 of arity: $(-+)$ $(++)$ $()$ Rules:
$$\frac{B}{A \rightarrow (B \wedge A)} \quad \frac{(A \rightarrow B) \wedge A}{B} \quad \frac{A}{A \wedge A} \quad \frac{A}{\top}$$
$$\frac{A \wedge \top}{A} \quad \frac{A}{A \wedge \top} \quad \frac{A \wedge B}{B \wedge A} \quad \frac{(A \wedge B) \wedge C}{A \wedge (B \wedge C)} \quad \frac{A \wedge (B \wedge C)}{(A \wedge B) \wedge C}$$

Example

- Universal framework for proof systems
- ► Locality: correctness of a rule is locally verifiable
- ▶ New fine-grained rules such as medial:

$$\frac{(A \land B) \lor (C \land D)}{(A \lor C) \land (B \lor D)}$$

- Universal framework for proof systems
- Locality: correctness of a rule is locally verifiable
- New fine-grained rules such as medial:

$$\frac{(A \land B) \lor (C \land D)}{(A \lor C) \land (B \lor D)}$$

Results

- ► Expresses more logics than sequent calculi (BV) [Tiu 2006]
- Quasipolynomial normalization (CPL)
 [Jeřábek 2009; Bruscoli, Guglielmi, Gundersen & Parigot 2016]
- ► Non-elementary compression (FOL) [Aguilera & Baaz 2019]

- Universal framework for proof systems
- Locality: correctness of a rule is locally verifiable
- New fine-grained rules such as medial:

$$\frac{(A \land B) \lor (C \land D)}{(A \lor C) \land (B \lor D)}$$

Results

- ► Expresses more logics than sequent calculi (BV) [Tiu 2006]
- Quasipolynomial normalization (CPL)
 [Jeřábek 2009; Bruscoli, Guglielmi, Gundersen & Parigot 2016]
- ► Non-elementary compression (FOL) [Aguilera & Baaz 2019]

Costs

No subformula property

- Universal framework for proof systems
- Locality: correctness of a rule is locally verifiable
- New fine-grained rules such as medial:

$$\frac{(A \land B) \lor (C \land D)}{(A \lor C) \land (B \lor D)}$$

Results

- ► Expresses more logics than sequent calculi (BV) [Tiu 2006]
- Quasipolynomial normalization (CPL)
 [Jeřábek 2009; Bruscoli, Guglielmi, Gundersen & Parigot 2016]
- ► Non-elementary compression (FOL) [Aguilera & Baaz 2019]

Costs

No subformula property

Remark

► Same syntax as category theory but different aims and techniques

What is the computational meaning of open deduction?

duplication/ deletion
$$\xrightarrow{B \land B}$$
 \xrightarrow{A} \xrightarrow{A} \xrightarrow{A} \xrightarrow{B} \xrightarrow{B}

$$\begin{array}{c|c} A \\ \downarrow \\ B \\ \hline \end{array} \rightarrow \begin{array}{c} A \\ \hline \top \end{array}$$

beta-reduction

Similar to categorical combinators [Curien 1986]

Terms: $M, N ::= x | MN | \lambda x.M$

Types: $A, B, C := a \mid A \rightarrow B$

Contexts: $\Gamma^{\overline{x}}$, $\Delta^{\overline{y}}$::= $A_1^{x_1} \wedge \ldots \wedge A_n^{x_n}$

Derivations: $\begin{vmatrix} 1 & A \\ M & A \end{vmatrix}$

Terms: $M, N ::= x \mid MN \mid \lambda x.M$

Types: A, B, C ::= $a \mid A \rightarrow B$

Contexts: $\Gamma^{\overline{x}}$, $\Delta^{\overline{y}}$::= $A_1^{x_1} \wedge \ldots \wedge A_n^{x_n}$

Terms: $M, N ::= x \mid MN \mid \lambda x.M$

Types: A, B, C ::= $a \mid A \rightarrow B$

Contexts: $\Gamma^{\overline{x}}$, $\Delta^{\overline{y}}$::= $A_1^{x_1} \wedge \ldots \wedge A_n^{x_n}$

Derivations: $\begin{vmatrix} 1 \\ M \\ A \end{vmatrix}$

Terms: $M, N := x \mid MN \mid \lambda x.M \mid M[x \leftarrow N]$

Types: A, B, C ::= $a \mid A \rightarrow B$

Contexts: $\Gamma^{\overline{x}}$, $\Delta^{\overline{y}}$::= $A_1^{x_1} \wedge \ldots \wedge A_n^{x_n}$

In Curry–Howard–Lambek

- Same embedding of natural deduction in deep inference as in cartesian closed categories [Lambek 1972]
- Not an isomorphism, but a correspondence or interpretation
- Many derivations for one λ -term
- Terms guide reduction

Medial rules make contractions atomic:

$$\frac{(A \vee B) \to (C \wedge D)}{(A \to C) \wedge (B \to D)} \text{m} \qquad \frac{a}{a \wedge a} \wedge \qquad \frac{a \vee a}{a} \checkmark$$

Medial rules make contractions atomic:

$$\frac{(A \lor B) \to (C \land D)}{(A \to C) \land (B \to D)} \, \mathsf{m} \qquad \frac{a}{a \land a} \, \stackrel{\triangle}{\longrightarrow} \quad \frac{a \lor a}{a} \, \mathsf{v}$$

$$\frac{A \to B}{(A \to B) \land (A \to B)} \, \stackrel{\triangle}{\longrightarrow} \qquad \frac{A}{A \lor A} \, \stackrel{\triangle}{\longrightarrow} \, \frac{B}{B \land B} \, \stackrel{\triangle}{\longrightarrow} \, \mathsf{m}$$

$$(A \to B) \land (A \to B) \, \stackrel{\triangle}{\longrightarrow} \, \mathsf{m}$$

Medial rules make contractions atomic:

$$\frac{(A \lor B) \to (C \land D)}{(A \to C) \land (B \to D)} \, \mathsf{m} \qquad \frac{a}{a \land a} \, \stackrel{\triangle}{\longrightarrow} \, \frac{a \lor a}{a} \, \checkmark$$

$$\frac{A \to B}{(A \to B) \land (A \to B)} \, \stackrel{\triangle}{\longrightarrow} \qquad \frac{A}{A \lor A} \, \rightarrow \, \frac{B}{B \land B} \, \stackrel{\triangle}{\longrightarrow} \, \frac{A}{(A \to B) \land (A \to B)} \, \mathsf{m}$$

$$\frac{A \land B}{(A \land B) \land (A \land B)} \, \stackrel{\triangle}{\longrightarrow} \qquad \frac{A}{A \land A} \, \stackrel{\triangle}{\longrightarrow} \, \frac{B}{B \land B} \, \stackrel{\triangle}{\longrightarrow} \, \frac{A}{(A \land B) \land (A \land B)} \, \stackrel{\triangle}{\longrightarrow} \, \frac{A}{(A \land B) \land (A \land B)} \, \stackrel{\triangle}{\longrightarrow} \, \frac{A}{(A \land B) \land (A \land B)} \, \stackrel{\triangle}{\longrightarrow} \, \frac{A}{(A \land B) \land (A \land B)} \, \stackrel{\triangle}{\longrightarrow} \, \frac{A}{(A \land B) \land (A \land B)} \, \stackrel{\triangle}{\longrightarrow} \, \frac{A}{(A \land B) \land (A \land B)} \, \stackrel{\triangle}{\longrightarrow} \, \frac{A}{(A \land B) \land (A \land B)} \, \stackrel{\triangle}{\longrightarrow} \, \frac{A}{(A \land B) \land (A \land B)} \, \stackrel{\triangle}{\longrightarrow} \, \frac{A}{(A \land B) \land (A \land B)} \, \stackrel{\triangle}{\longrightarrow} \, \frac{A}{(A \land B) \land (A \land B)} \, \stackrel{\triangle}{\longrightarrow} \, \frac{A}{(A \land B) \land (A \land B)} \, \stackrel{\triangle}{\longrightarrow} \, \frac{A}{(A \land B) \land (A \land B)} \, \stackrel{\triangle}{\longrightarrow} \, \frac{A}{(A \land B) \land (A \land B)} \, \stackrel{\triangle}{\longrightarrow} \, \frac{A}{(A \land B) \land (A \land B)} \, \stackrel{\triangle}{\longrightarrow} \, \frac{A}{(A \land B) \land (A \land B)} \, \stackrel{\triangle}{\longrightarrow} \, \frac{A}{(A \land B) \land (A \land B)} \, \stackrel{\triangle}{\longrightarrow} \, \frac{A}{(A \land B) \land (A \land B)} \, \stackrel{\triangle}{\longrightarrow} \, \frac{A}{(A \land B) \land (A \land B)} \, \stackrel{\triangle}{\longrightarrow} \, \frac{A}{(A \land B) \land (A \land B)} \, \stackrel{\triangle}{\longrightarrow} \, \frac{A}{(A \land B) \land (A \land B)} \, \stackrel{\triangle}{\longrightarrow} \, \frac{A}{(A \land B) \land (A \land B)} \, \stackrel{\triangle}{\longrightarrow} \, \frac{A}{(A \land B) \land (A \land B)} \, \stackrel{\triangle}{\longrightarrow} \, \frac{A}{(A \land B) \land (A \land B)} \, \stackrel{\triangle}{\longrightarrow} \, \frac{A}{(A \land B) \land (A \land B)} \, \stackrel{\triangle}{\longrightarrow} \, \frac{A}{(A \land B) \land (A \land B)} \, \stackrel{\triangle}{\longrightarrow} \, \frac{A}{(A \land B) \land (A \land B)} \, \stackrel{\triangle}{\longrightarrow} \, \frac{A}{(A \land B) \land (A \land B)} \, \stackrel{\triangle}{\longrightarrow} \, \frac{A}{(A \land B) \land (A \land B)} \, \stackrel{\triangle}{\longrightarrow} \, \frac{A}{(A \land B) \land (A \land B)} \, \stackrel{\triangle}{\longrightarrow} \, \frac{A}{(A \land B) \land (A \land B)} \, \stackrel{\triangle}{\longrightarrow} \, \frac{A}{(A \land B) \land (A \land B)} \, \stackrel{\triangle}{\longrightarrow} \, \frac{A}{(A \land B) \land (A \land B)} \, \stackrel{\triangle}{\longrightarrow} \, \frac{A}{(A \land B) \land (A \land B)} \, \stackrel{\triangle}{\longrightarrow} \, \frac{A}{(A \land B) \land (A \land B)} \, \stackrel{\triangle}{\longrightarrow} \, \frac{A}{(A \land B) \land (A \land B)} \, \stackrel{\triangle}{\longrightarrow} \, \frac{A}{(A \land B) \land (A \land B)} \, \stackrel{\triangle}{\longrightarrow} \, \frac{A}{(A \land B) \land (A \land B)} \, \stackrel{\triangle}{\longrightarrow} \, \frac{A}{(A \land B) \land (A \land B)} \, \stackrel{\triangle}{\longrightarrow} \, \frac{A}{(A \land B) \land (A \land B)} \, \stackrel{\triangle}{\longrightarrow} \, \frac{A}{(A \land B) \land (A \land B)} \, \stackrel{\triangle}{\longrightarrow} \, \frac{A}{(A \land B) \land (A \land B)} \, \stackrel{\triangle}{\longrightarrow} \, \frac{A}{(A \land B) \land (A \land B)} \, \stackrel{\triangle}{\longrightarrow} \, \frac{A}{(A \land B) \land (A \land B)} \, \stackrel{\triangle}{\longrightarrow} \, \frac{A}{(A \land B) \land (A \land B)} \, \stackrel{\triangle}{\longrightarrow} \, \frac{A}{(A \land B) \land (A \land B)} \, \stackrel{\triangle}{\longrightarrow} \, \frac{A}{(A \land B) \land (A \land B)} \, \stackrel{\triangle}{\longrightarrow} \, \frac{A}{(A \land B)} \,$$

Medial rules make contractions atomic:

$$\frac{(A \lor B) \to (C \land D)}{(A \to C) \land (B \to D)} \, \mathsf{m} \qquad \frac{a}{a \land a} \, \stackrel{\triangle}{\longrightarrow} \, \frac{a \lor a}{a} \, \checkmark$$

$$\frac{A \to B}{(A \to B) \land (A \to B)} \, \stackrel{\triangle}{\longrightarrow} \qquad \frac{A}{A \lor A} \, \stackrel{\triangle}{\longrightarrow} \, \frac{B}{B \land B} \, \stackrel{\triangle}{\longrightarrow} \, \frac{A \land B}{(A \land B) \land (A \land B)} \, \stackrel{\triangle}{\longrightarrow} \, \frac{A}{A \land A} \, \stackrel{\triangle}{\longrightarrow} \, \frac{B}{B \land B} \, \stackrel{\triangle}{\longrightarrow} \, \frac{A}{A \land A} \, \stackrel{\triangle}{\longrightarrow} \, \frac{B}{B \land B} \, \stackrel{\triangle}{\longrightarrow} \, \frac{A}{A \land A} \, \stackrel{\triangle}{\longrightarrow} \, \frac{A}{A \land A} \, \stackrel{\triangle}{\longrightarrow} \, \frac{B}{B \land B} \, \stackrel{\triangle}{\longrightarrow} \, \frac{A}{A \land B} \, \stackrel{\triangle}{\longrightarrow} \, \frac$$

Consequences for proof complexity — here, we look at computational meaning

Simplify to a distribution rule to avoid disjunction:

$$\frac{A \to (B \land C)}{(A \to B) \land (A \to C)} d \qquad \qquad \underbrace{\frac{A \to B}{(A \to B) \land (A \to B)}}_{A \to B} \to \frac{A \to \frac{B}{B \land B}}{(A \to B) \land (A \to B)} d$$

Simplify to a distribution rule to avoid disjunction:

$$\frac{A \to (B \land C)}{(A \to B) \land (A \to C)} d \qquad \qquad \underbrace{A \to B \atop (A \to B) \land (A \to B)} \stackrel{\triangle}{\longrightarrow} \qquad \frac{A \to B \atop B \land B} \atop (A \to B) \land (A \to B)} d$$

Introduce a corresponding distributor term construct:

$$M[x \leftarrow \lambda y.T]$$

$$A \rightarrow \begin{bmatrix} \Delta \\ \Delta \land A^y \\ \| T \\ B \land \dots \land B \end{bmatrix}$$

$$(A \rightarrow B)^x \land \dots \land (A \rightarrow B)^x d$$

$$\frac{\bigcap_{A \to \begin{bmatrix} \bigcap \land A \\ B \end{bmatrix}} \lambda}{(A \to B) \land (A \to B)} \triangle$$

 $M[x \leftarrow \lambda y.N]$

$$M[x \leftarrow \lambda y.N]$$

 $M\{\lambda y.N/x\}$

 $M\{\lambda y.N/x\}$

The atomic λ -calculus family

Term calculi for:

Full laziness	[Gundersen, H & Parigot 2013]
---------------------------------	-------------------------------

- Atomic $\lambda \mu$ -reduction [He 2018]
- ► Spinal full laziness [Sherratt, H, Gundersen & Parigot 2020]
- ► Atomic distance reduction [Kesner, Peyrot & Ventura 2021]

Deep reduction

Deep reduction

(Or categorically: dinaturality)

$(\lambda x.N)M$

 $(\lambda x.N)M$

- @

 $(\lambda x.N)M$

В

Deep reduction takes a simply-typed term to a resource λ -term

Resource λ -calculus:

[Boudol 1993]

$$M, N := x \mid \lambda \langle x_1, \ldots, x_n \rangle. M \mid M \langle N_1, \ldots, N_n \rangle$$

Equivalently, deep reduction takes a simple type derivation to a (non-idempotent) intersection-type derivation

Intersection types:

[Coppo & Dezani 1978]

$$A, B := a \mid (A_1 \cap \ldots \cap A_n) \rightarrow B$$

[Guerrieri, H & Paulus 2021]

```
Types: A, B ::= a \mid I \rightarrow A

Collections: I, J ::= A \mid I \cap J

Contexts: \Gamma^{\overline{x}}, \Delta^{\overline{y}} ::= I_1^{x_1} \wedge \ldots \wedge I_n^{x_n}

Derivations: A \mid A \mid A
```

[Guerrieri, H & Paulus 2021]

```
Types: A, B ::= a \mid I \rightarrow A

Collections: I, J ::= A \mid I \cap J

Contexts: \Gamma^{\overline{x}}, \Delta^{\overline{y}} ::= I_1^{x_1} \wedge \ldots \wedge I_n^{x_n}

Derivations: A \mid A \mid A \mid A
```


[Guerrieri, H & Paulus 2021]

Types: $A, B ::= a \mid I \rightarrow A$ Collections: $I, J ::= A \mid I \cap J$ Contexts: $\Gamma^{\overline{x}}, \Delta^{\overline{y}} ::= I_1^{x_1} \wedge \ldots \wedge I_n^{x_n}$ Derivations: $A, B ::= a \mid I \rightarrow A$ A

$$\begin{bmatrix} \Gamma^{\overline{x}} \\ \| M \\ I \end{bmatrix} \cap \begin{bmatrix} \Delta^{\overline{x}} \\ \| M \\ J \end{bmatrix} \qquad \frac{(I \cap J)^{x}}{I^{x} \wedge J^{x}} \wedge$$

$$\frac{(I \cap J)^{x}}{I^{x} \wedge I^{x}} \triangle$$

[Guerrieri, H & Paulus 2021]

Types: A, B ::=
$$a \mid I \rightarrow A$$

Collections:
$$I, J := A \mid I \cap J$$

Contexts:
$$\Gamma^{\overline{x}}$$
, $\Delta^{\overline{y}}$::= $I_1^{x_1} \wedge \ldots \wedge I_n^{x_n}$

Types:
$$A, B ::= a \mid I \rightarrow A$$

Collections: $I, J ::= A \mid I \cap J$

Contexts: $\Gamma^{\overline{x}}, \Delta^{\overline{y}} ::= I_1^{x_1} \wedge \ldots \wedge I_n^{x_n}$

Derivations: $A \mid A \mid A \mid A$

$$\begin{bmatrix}
\overline{X} \\
M \\
I
\end{bmatrix} \cap \begin{bmatrix}
\Delta^{\overline{X}} \\
M \\
J
\end{bmatrix} = \frac{(I \cap J)^{X}}{I^{X} \wedge J^{X}} \wedge \frac{(I \cap J)^{X} \wedge (K \cap L)^{Y}}{(I^{X} \wedge K^{Y}) \cap (J^{X} \wedge L^{Y})} m$$

$$\frac{(I \cap J)^x}{I^x \wedge I^x} \triangle$$

$$\frac{(I \cap J)^{\times} \wedge (K \cap L)^{y}}{(I^{\times} \wedge K^{y}) \cap (I^{\times} \wedge L^{y})} m$$

Further observations

Further observations

$$\frac{(A \to B) \land C}{A \to (B \land C)}$$

Switch: corresponds to an explicit end-of-scope construct k [Hendriks & Van Oostrom 2003; Sherratt et al 2020]

Further observations

$$\frac{(A \to B) \land C}{A \to (B \land C)}$$

Switch: corresponds to an explicit end-of-scope construct k [Hendriks & Van Oostrom 2003; Sherratt et al 2020]

$$\begin{array}{c|c}
A & B \\
\parallel & C
\end{array}
\qquad
\begin{array}{c|c}
(A a B) \to (C a D) \\
(A \to C) a (B \to D)
\end{array}$$

Subatomic logic: may be interpreted as conditionals or decision trees [Barrett & Guglielmi 2022; Dal Lago, Guerrieri & H. 2020]

Summary

Deep inference is explicit \implies fine-grained computational notions

- atomic λ-calculus
- deep intersection types
- switch as end-of-scope
- subatomic logic as conditionals

All these extend the standard Curry-Howard-Lambek correspondence.

But ...

Part II: The logical side of the Functional Machine Calculus

Effects

The problem: how to combine λ -calculus with computational effects (I/O, store, non-determinism, error handling, concurrency, etc.)

Effects

The problem: how to combine λ -calculus with computational effects (I/O, store, non-determinism, error handling, concurrency, etc.)

Call-by-value with thunks

► Monads (Haskell)

Call-by-push-value

Effect handlers

[Landin 1964, Plotkin 1975]

[Moggi 1989]

[Levy 1999]

[Plotkin & Pretnar 2009]

Approach

- effects require sequentiality
- λ-calculus should be call-by-name

Approach

- effects require sequentiality
- λ-calculus should be call-by-name

Simple abstract machine:

cf. KAM [Krivine 2007]

application is PUSH
$$MN = [N].M$$

$$\frac{(S, [N].M)}{(SN, M)}$$

Approach

- effects require sequentiality
- λ-calculus should be call-by-name

Simple abstract machine:

cf. KAM [Krivine 2007]

application is PUSH
$$MN = [N].M$$
 $\frac{(S, [N].M)}{(SN, M)}$

abstraction is POP
$$\lambda x.M = \langle x \rangle.M$$
 $\frac{(SN, \langle x \rangle.M)}{(S, \{N/x\}M)}$

From λ-calculus to FMC [H 2022; Barrett, H & McCusker 2023]

 $M, N := x \mid \lambda x.M \mid MN$ $M, N ::= x \mid \langle x \rangle.M \mid [N].M$

From λ -calculus to FMC

[H 2022; Barrett, H & McCusker 2023]

```
M, N ::= x \mid \lambda x.M \mid MN
M, N ::= x \mid \langle x \rangle.M \mid [N].M \mid \star \mid M; N
```

• λ -terms as sequential processes

```
* identity, skip, empty
```

M; N composition, sequencing

$$M, N := x \mid \lambda x.M \mid MN$$
 $M, N := x \mid \langle x \rangle.M \mid [N].M \mid \star \mid M; N$

- λ -terms as sequential processes
 - ★ identity, skip, emptyM; N composition, sequencing
- NEW: successful termination, output

$$(S, \star)$$
 $[M].[N].\star$ (shorten to $[M].[N]$)

From λ -calculus to FMC

[H 2022; Barrett, H & McCusker 2023]

$$M, N := x \mid \lambda x.M \mid MN$$
 $M, N := x \mid \langle x \rangle.M \mid [N].M \mid \star \mid M; N$

- \rightarrow λ -terms as sequential processes
 - * identity, skip, empty
 - M; N composition, sequencing
- NEW: successful termination, output

$$(S, \star)$$
 $[M].[N].\star$ (shorten to $[M].[N]$)

- embeds CBV, monads, CBPV, and handlers
- similar ideas have appeared before:
 - ▶ kappa-calculus [Hasegawa 1995, Power & Thielecke 1999]
 - → compiler calculi [Douence & Fradet 1998]
 - ▶ concatenative programming [Pestov et al 2010]

```
From \lambda-calculus to FMC
```

[H 2022; Barrett, H & McCusker 2023]

```
M, N ::= x \mid \lambda x.M \mid MN
M, N ::= x \mid \langle x \rangle.M \mid [N].M \mid \star \mid M; N
```

- λ-terms as sequential processes
 - identity, skip, emptyM; N composition, sequencing
- NEW: successful termination, output

$$(S, \star)$$
 $[M].[N].\star$ (shorten to $[M].[N]$)

- embeds CBV, monads, CBPV, and handlers
- similar ideas have appeared before:
 - ► kappa-calculus [Hasegawa 1995, Power & Thielecke 1999]
 - compiler calculi [Douence & Fradet 1998]
 concatenative programming [Pestov et al 2010]
- ▶ one more trick gives confluence with state, IO, probabilities

Terms	Types	
$M, N := x \mid \lambda x.M \mid MN$		
$M, N := x \mid \langle x \rangle.M \mid [N].M$		

Terms	Types
$M, N := x \mid \lambda x.M \mid MN$	$A, B ::= A_1 \rightarrow \ldots \rightarrow A_n \rightarrow o$
$M, N := x \mid \langle x \rangle.M \mid [N].M$	

Simple types indicate

► function inputs — ultimate output is o

Terms	Types
$M, N := x \mid \lambda x.M \mid MN$	$A, \ B \ ::= \ A_1 \rightarrow \ldots \rightarrow A_n \rightarrow o$
$M, N := x \mid \langle x \rangle.M \mid [N].M$	$A, B ::= A_1 \dots A_n$

Simple types indicate

- ► function inputs ultimate output is 0
- equivalently, the input stack on the machine

Terms	Types
$M, N := x \mid \lambda x.M \mid MN$	$A, B ::= A_1 \rightarrow \ldots \rightarrow A_n \rightarrow o$
$M, N := x \mid \langle x \rangle.M \mid [N].M \mid \star \mid N; M$	$A, B ::= A_1 \dots A_n \Rightarrow B_1 \dots B_m$

Simple types indicate

- function inputs ultimate output is o
- equivalently, the input stack on the machine
- with sequencing: input and output stacks

Terms	Types
$M, N := x \mid \lambda x.M \mid MN$	$A, B ::= A_1 \rightarrow \ldots \rightarrow A_n \rightarrow o$
$M, N := x \mid \langle x \rangle.M \mid [N].M \mid \star \mid N; M$	$A, B ::= A_1 \dots A_n \Rightarrow B_1 \dots B_m$

Simple types indicate

- function inputs ultimate output is o
- equivalently, the input stack on the machine
- with sequencing: input and output stacks

Still (conjunction-implication) intuitionistic logic:

$$A_1 \dots A_n \Rightarrow B_1 \dots B_m = (A_1 \wedge \dots \wedge A_n) \rightarrow (B_1 \wedge \dots \wedge B_m)$$

Types defined with vector notation; empty vector ε , concatenation $\overline{A} \cdot \overline{B}$

$$A,\,B::=\overline{A}\!\Rightarrow\!\overline{B}\qquad \qquad \overline{A}::=A_1\,\ldots\,A_n$$

$$\overline{A}$$
 $M \longrightarrow \overline{B}$
 $N \longrightarrow \overline{C}$
 $M: N$

Types defined with vector notation; empty vector ε , concatenation $\overline{A} \cdot \overline{B}$

$$A, B := \overline{A} \Rightarrow \overline{B}$$
 $\overline{A} := A_1 ... A_n$

Type vectors are formulas, terms are derivations

$$\overline{A}$$
 \overline{A}
 \overline{B}
 \overline{B}
 \overline{B}
 \overline{C}
 \overline{A}
 \overline{A}
 \overline{B}
 \overline{B}
 \overline{B}
 \overline{B}
 \overline{C}

M: N

*

Types defined with vector notation; empty vector ε , concatenation $\overline{A} \cdot \overline{B}$

$$A, B := \overline{A} \Rightarrow \overline{B}$$
 $\overline{A} := A_1 ... A_n$

Types defined with vector notation; empty vector ε , concatenation $\overline{A} \cdot \overline{B}$

$$A, B := \overline{A} \Rightarrow \overline{B}$$
 $\overline{A} := A_1 ... A_n$

Types defined with vector notation; empty vector ε , concatenation $\overline{A} \cdot \overline{B}$

$$A, B := \overline{A} \Rightarrow \overline{B}$$
 $\overline{A} := A_1 ... A_n$

Curry-Howard-Lambek?

This is a different term interpretation of intuitionistic logic and cartesian closed categories

	standard	FMC
elements:	open terms	closed terms
premisses:	(types of) free variables	(type of) input stack
conclusion:	(type of) term	(type of) output stack

Cartesian closed: higher-order, non-linear

Cartesian: first-order, non-linear

Symmetric monoidal closed: higher-order, linear, symmetric

Symmetric monoidal: first-order, linear, symmetric

Monoidal: first-order, linear, asymmetric

What does this mean for logic (if anything)?

What does this mean for logic (if anything)?

► Like Levy's CBPV, values A vs computations $\varepsilon \Rightarrow A$

What does this mean for logic (if anything)?

- ► Like Levy's CBPV, values A vs computations $\varepsilon \Rightarrow A$
- Types for state, I/O, and probabilities.

What does this mean for logic (if anything)?

- ► Like Levy's CBPV, values A vs computations $\varepsilon \Rightarrow A$
- Types for state, I/O, and probabilities.
- May give types for error handling, data types, and co-recursion (loops).

What does this mean for logic (if anything)?

- ► Like Levy's CBPV, values A vs computations $\varepsilon \Rightarrow A$
- Types for state, I/O, and probabilities.
- May give types for error handling, data types, and co-recursion (loops).
- Classical linear logic may give types for (message-passing) concurrency

(similar to session types [Honda 1993, Caires & Pfenning 2010])

