

Decomposing Probabilistic Lambda-Calculi

Willem Heijltjes
University of Bath

Joint work with Ugo Dal Lago and Giulio Guerrieri

Mathematical Foundations Seminar, 31 March 2020

Probabilistic λ -calculus

$$M, N ::= x \mid \lambda x. N \mid NM \mid N \oplus M$$

$$C[(\lambda x. N)M] \rightarrow_{\beta} C[N[M/x]]$$

$$C[N \oplus M] \rightarrow_{\oplus} C[N] + C[M]$$

$$C ::= [] \mid \lambda x. C \mid CM \mid NC \mid C \oplus M \mid N \oplus C$$

... is non-confluent

cbn :

$$\begin{aligned} (\lambda x. x = x)(\top \oplus \perp) &\rightarrow_{\beta} (\top \oplus \perp) = (\top \oplus \perp) \\ &\rightarrow \beta (\top = \top) + (\top = \perp) + (\perp = \top) + (\perp = \perp) \\ &= \top + \perp \end{aligned}$$

cbv :

$$\begin{aligned} (\lambda x. x = x)(\top \oplus \perp) &\rightarrow (\lambda x. x = x) \top + (\lambda x. x = x) \perp \\ &\rightarrow \beta \perp \\ &= \top \end{aligned}$$

The problem: duplicating probabilistic events

$$M, N ::= x \mid \lambda x. N \mid NM \mid N \oplus M$$

$$C[(\lambda x. N)M] \rightarrow_{\beta} C[N[M/x]]$$

$$C[N \oplus M] \rightarrow_{\oplus} C[N] + C[M]$$

$$C ::= [] \mid \lambda x. C \mid CM \mid NC \mid C \oplus M \mid N \oplus C$$

Analysing the problem

A probabilistic sum $N \oplus M$

- 1) flips a coin, and then
- 2) evaluates to N for heads and M for tails.

Does duplicating $N \oplus M$ mean

- a) flipping different coins for each copy, or
- b) flipping the same coin for all copies?

(call-by-name)

(call-by-value)

Decomposing the probabilistic sum

$$N \oplus M \quad \stackrel{\Delta}{=} \quad \boxed{a}. N^a \oplus M$$

- \boxed{a} (generator): a probabilistic quantifier that binds a
 - it flips a coin and stores the result as a

- $N^a \oplus M$ (choice): a conditional on a
 - it evaluates to N if $a = 0$ and M if $a = 1$.

encoding cbn :

$$\begin{aligned} (\lambda x. x=x)(\boxed{a}. \top \stackrel{a}{\oplus} \perp) &\rightarrow_{\beta} (\boxed{a}. \top \stackrel{a}{\oplus} \perp) = (\boxed{b}. \top \stackrel{b}{\oplus} \perp) \\ &\rightarrow \top = \top + (\top = \perp) + (\perp = \top) + (\perp = \perp) \\ &= \top + \perp \end{aligned}$$

encoding cbv :

$$\begin{aligned} \boxed{a}. (\lambda x. x=x)(\top \stackrel{a}{\oplus} \perp) &\rightarrow_{\beta} \boxed{a}. (\top \stackrel{a}{\oplus} \perp) = (\top \stackrel{a}{\oplus} \perp) \\ &\rightarrow \top = \top + (\top = \perp) \\ &= \top \end{aligned}$$

The Probabilistic Event λ -Calculus (PEL)

$$M, N ::= x \mid \lambda x. N \mid NM \mid N^a \oplus M \mid \boxed{a}. N$$

Overview:

- ▶ Confluent
- ▶ Two forms of probabilistic reduction:
 - ▶ permutative reduction (\rightarrow_p)
 - small-step; gives natural probabilistic normal forms
 - ▶ projective reduction (\rightarrow_π)
 - big-step; intuitive; efficient
- ▶ Simple types are simple

Principal ideas:

- ▶ Confluence is non-negotiable
- ▶ Call-by-name is correct for duplicating probabilistic events
- ▶ Call-by-value has a valid intuition that should be expressible

Permutative reduction

Conditionals satisfy the equivalence

$$C[N \stackrel{a}{\oplus} M] \sim C[N] \stackrel{a}{\oplus} C[M] \quad (\text{if } a \text{ is free})$$

which is readily cast as rewriting ...

... if we have an order on choice variables:

$$(N \stackrel{a}{\oplus} M) \stackrel{b}{\oplus} P \sim (N \stackrel{b}{\oplus} P) \stackrel{a}{\oplus} (M \stackrel{b}{\oplus} P)$$

Definition $a < b$ if \boxed{b} occurs in the scope of \boxed{a} :

$$\boxed{a}. C[\boxed{b}. N]$$

(assuming Barendregts convention: binders have unique names).

Reduction rules

Beta-reduction:

$$(\lambda x. N) M \rightarrow_{\beta} N[M/x] \quad (\beta)$$

Permutative reduction: (continued on next slide)

$$N \oplus N \rightarrow_p N \quad (i)$$

$$(N \overset{a}{\oplus} M) \overset{a}{\oplus} P \rightarrow_p N \overset{a}{\oplus} P \quad (c_1)$$

$$N \overset{a}{\oplus} (M \overset{a}{\oplus} P) \rightarrow_p N \overset{a}{\oplus} P \quad (c_2)$$

$$\lambda x. (N \overset{a}{\oplus} M) \rightarrow_p (\lambda x. N) \overset{a}{\oplus} (\lambda x. M) \quad (\oplus \lambda)$$

$$(N \overset{a}{\oplus} M)P \rightarrow_p (NP) \overset{a}{\oplus} (MP) \quad (\oplus f)$$

$$N(M \overset{a}{\oplus} P) \rightarrow_p (NM) \overset{a}{\oplus} (NP) \quad (\oplus a)$$

$$(N \overset{a}{\oplus} M) \overset{b}{\oplus} P \rightarrow_p (N \overset{b}{\oplus} P) \overset{a}{\oplus} (M \overset{b}{\oplus} P) \quad (\text{if } a < b) \quad (\oplus \oplus_1)$$

$$N \overset{b}{\oplus} (M \overset{a}{\oplus} P) \rightarrow_p (N \overset{b}{\oplus} M) \overset{a}{\oplus} (N \overset{b}{\oplus} P) \quad (\text{if } a < b) \quad (\oplus \oplus_2)$$

$$\boxed{b}. (N \overset{a}{\oplus} M) \rightarrow_p (\boxed{b}. N) \overset{a}{\oplus} (\boxed{b}. M) \quad (\text{if } a < b) \quad (\oplus \square)$$

$$\boxed{a}. N \rightarrow_p N \quad (\text{if } a \notin \text{fv}(N)) \quad (\not\exists)$$

$$\lambda x. \boxed{a}. N \rightarrow_p \boxed{a}. \lambda x. N \quad (\square \lambda)$$

$$(\boxed{a}. N)M \rightarrow_p \boxed{a}. (NM) \quad (\text{if } a \notin \text{fv}(M)) \quad (\square f)$$

Example

Another reduction path for the cbv-translation of $(\lambda x. x = x)(\top + \perp)$

$$\begin{array}{llll} \boxed{a}. (\lambda x. x = x)(\top \stackrel{a}{\oplus} \perp) & \xrightarrow{p} & \boxed{a}. (\lambda x. x = x)\top \stackrel{a}{\oplus} (\lambda x. x = x)\perp & (\oplus a) \\ & \xrightarrow{\Rightarrow \beta} & \boxed{a}. (\top = \top) \stackrel{a}{\oplus} (\perp = \perp) & \\ & = & \boxed{a}. \top \stackrel{a}{\oplus} \top & \\ & \xrightarrow{p} & \boxed{a}. \top & (i) \\ & \xrightarrow{p} & \top & (\not\models) \end{array}$$

Observations

- ▶ The “missing” rule which would otherwise generate non-confluence is

$$N(\boxed{a}. M) \not\rightarrow_p \boxed{a}. NM$$

- ▶ We don’t allow *generators* to permute out of argument position, but we do *choice*:

$$N(M \stackrel{a}{\oplus} P) \rightarrow_p (NM) \stackrel{a}{\oplus} (NP)$$

- ▶ The rules for $\stackrel{a}{\oplus}$ alone are the rewriting rules for *ordered binary decision trees*.¹

¹[Zantema & Van de Pol, 2001]

Characterization

Theorem Permutative reduction is SN

(A direct application of recursive path orders²)

Normal forms:

$$\begin{aligned} P_0 & ::= P_1 \mid P_0 \oplus P_0 \\ P_1 & ::= x \mid \lambda x. P_1 \mid P_1 P_0 \end{aligned}$$

Theorem Permutative reduction is confluent

²[Dershowitz, 2001]

Reduction

Definition Reduction \rightarrow is $\rightarrow_\beta \cup \rightarrow_p$.

Theorem Reduction is confluent.

Simple types

$$\frac{}{\Gamma, x: A \vdash x: A}$$

$$\frac{\Gamma, x: A \vdash N: B}{\Gamma \vdash \lambda x. N: A \rightarrow B}$$

$$\frac{\Gamma \vdash N: A \rightarrow B \quad \Gamma \vdash M: A}{\Gamma \vdash NM: B}$$

$$\frac{\Gamma \vdash N: A \quad \Gamma \vdash M: A}{\Gamma \vdash N \oplus M: A}$$

$$\frac{\Gamma \vdash N: A}{\Gamma \vdash \boxed{a}. N: A}$$

Theorem Typed reduction is SN

(By abstract reducibility)

Encoding cbn

$$[x]_n = x \quad [\lambda x. N]_n = \lambda x. [N]_n \quad [NM]_n = [N]_n [M]_n$$

$$[N \oplus M]_n = \boxed{a} \cdot [N]_n \stackrel{a}{\oplus} [M]_n$$

Encoding cbv

$$\llbracket N \rrbracket_v = \lfloor \llbracket N \rrbracket \rfloor$$

$$\llbracket x \rrbracket = x \quad \llbracket \lambda x. N \rrbracket = \lambda x. \llbracket N \rrbracket \quad \llbracket NM \rrbracket = \llbracket N \rrbracket \llbracket M \rrbracket$$

$$\llbracket N \oplus M \rrbracket = \llbracket N \rrbracket \stackrel{a}{\oplus} \llbracket M \rrbracket$$

where each choice variable a is fresh;

$$\llbracket N \rrbracket = \boxed{a_1} \dots \boxed{a_n} . N$$

where $a_1 \dots a_n$ are the free choice variables of N .

Next: to show that the encodings work..

Definition a -Projections $\pi_0^a(-)$ and $\pi_1^a(-)$:

$$\pi_0^a(N \oplus M) = \pi_0^a(N) \quad \pi_i^a(\lambda x. N) = \lambda x. \pi_i^a(N)$$

$$\pi_1^a(N \oplus M) = \pi_1^a(M) \quad \pi_i^a(NM) = \pi_i^a(N) \pi_i^a(M)$$

$$\pi_i^a(\boxed{a}. N) = \boxed{a}. N \quad \pi_i^a(N \oplus M) = \pi_i^a(N) \stackrel{b}{\oplus} \pi_i^a(M) \quad \text{if } a \neq b$$

$$\pi_i^a(x) = x \quad \pi_i^a(\boxed{b}. N) = \boxed{b}. \pi_i^a(N) \quad \text{if } a \neq b.$$

Definition Head contexts: $H ::= [] \mid \lambda x. H \mid HN$

Proposition Permutative normal forms are given by \downarrow_p :

$$H[\boxed{a}. N] \downarrow_p = \begin{cases} H \downarrow_p [N \downarrow_p] & \text{if } a \notin \text{fv}(N) \\ H \downarrow_p [\pi_0^a(N) \downarrow_p] \oplus H \downarrow_p [\pi_1^a(N) \downarrow_p] & \text{otherwise} \end{cases}$$

$$[] \downarrow_p = [] \quad \lambda x. H \downarrow_p = \lambda x. (H \downarrow_p) \quad HN \downarrow_p = (H \downarrow_p) (N \downarrow_p)$$

Projective head reduction

Definition Projective head reduction $\rightarrow_{\pi h}$ is given by

$$H[\boxed{a}. N] \rightarrow_{\pi h} H[\pi_0^a(N)] + H[\pi_1^a(N)]$$

Permutative reduction simulates projective head reduction:

$$H[\boxed{a}. N] \rightarrow_P \begin{cases} H[N] & \text{if } a \notin \text{fv}(N) \\ H[\pi_0^a(N)] \oplus H[\pi_1^a(N)] & \text{otherwise.} \end{cases}$$

This is sufficient to capture call-by-name.

But: we *should* be able to reduce in any *linear* context, i.e. also under generators and choices. However, we cannot simulate that with permutative reduction, since it would require exchanging generators.

$$\boxed{a}.\boxed{b}.N \quad \stackrel{?}{\sim} \quad \boxed{b}.\boxed{a}.N$$

Projective reduction

Definition N^s labels N with a binary stream $s \in \mathbb{S} = \{0, 1\}^{\mathbb{N}}$

$$(\lambda x. N)^s = \lambda x. N^s$$

$$(\boxed{a}. N)^{i \cdot s} = \boxed{a}^i. N^s$$

$$(N M)^s = N^s M$$

$$(N \oplus M)^s = N^s \oplus M^s$$

Definition Projective reduction \rightarrow_{π} is

$$\boxed{a}^i. N \rightarrow_{\pi} \pi_i^a(N) .$$

Extend β -reduction to stream-labelled terms with a substitution case for labelled variables: $x^s[M/x] = M^s$

$$\begin{aligned}
 (\boxed{a} \cdot \boxed{b} \cdot N)^{i \cdot j \cdot s} &= \boxed{a}^i \cdot \boxed{b}^j \cdot N^s \xrightarrow{\pi} \pi_i^a(\pi_j^b(N^s)) \\
 &\sim \qquad \qquad \qquad = \\
 (\boxed{b} \cdot \boxed{a} \cdot N)^{j \cdot i \cdot s} &= \boxed{b}^j \cdot \boxed{a}^i \cdot N^s \xrightarrow{\pi} \pi_j^b(\pi_i^a(N^s))
 \end{aligned}$$

Philosophy:

$$N = N^0 + N^1$$

Proposition \rightarrow_π includes $\rightarrow_{\pi h}$:

$$H[\boxed{a}.N] = H[\boxed{a}^0.N] + H[\boxed{a}^1.N] \rightarrow_\pi H[\pi_0^a(N)] + H[\pi_1^a(N)].$$

Proposition If $M \rightarrow N$ by a step other than $\not\sqsubset$ then $M^s \rightarrow N^s$.

(Note that $\not\sqsubset$ is included in $\rightarrow_{\pi h}$)

Call-by-value

$$M, N ::= x \mid \lambda x. N \mid MN \mid M \oplus N \quad C[(\lambda x. N)V] \rightarrow_{\beta v} C[N[V/x]]$$

$$V, W ::= x \mid \lambda x. V \mid VW \quad C[M \oplus N] \rightarrow_v C[M] + C[N]$$

If $N \rightarrow_v M + P$ then there is an $n \in \mathbb{N}$ such that for any finite stream s of length n and any stream t :

$$[N]_v^{s \cdot 0 \cdot t} \rightarrow_{\pi} [M]_v^{s \cdot t}$$

$$[N]_v^{s \cdot 1 \cdot t} \rightarrow_{\pi} [P]_v^{s \cdot t}$$

Why the fuss

- ▶ Composing computational effects is not satisfactorily solved
- ▶ *Linearity* is enforced through monadic types
- ▶ But the *spine* of a λ -term is also linear

Compare

$$(\lambda x. x=x)(\boxed{a}. \top \stackrel{a}{\oplus} \perp)$$
$$\boxed{a}. (\lambda x. x=x)(\top \stackrel{a}{\oplus} \perp)$$

```
f :: Random Bool
f = g random
  where
    g x = do
      a <- x
      b <- x
      return (a == b)
```

```
f :: Random Bool
f = do
  a <- random
  return (h a)
  where
    h x = x == x
```

- ▶ Our approach generalizes to any *read* operation (think STDin, ROM, etc.)
- ▶ We know how to do *write* operations analogously, so we can do IO and State (with individual mutable variables)
- ▶ Important questions to make this work:
 - ▶ Types
 - ▶ Pointer calculations
 - ▶ Parallelism/concurrency