Decomposing Probabilistic Lambda-Calculi
Willem Heijltjes
University of Bath

Joint work with Ugo Dal Lago and Giulio Guerrieri

Mathematical Foundations Seminar, 31 March 2020

Probabilistic A-calculus

MN = x| N | NM | NeM

ANM] =g CINM/x]]

CINeM] —g C[N]+CM]

C = []| xC|CM|NC| CaM |NaC

..is non-confluent

cbn :

(Ax.x=x)(Tel) —pg (Tel)=(Tel)
-» (T=T)+(T=1)+ (L=T)+ (L=1)
= T+ 1L

cbv :

(Axx=x)(Tel) —» (Axx=
(

The problem: duplicating probabilistic events

MN = x| N | NM | NeM

ANM] g CNM/x]]

C(NeM] —g CN]+C[M]

C = []| xC|CM|NC| CoM |NaC

Analysing the problem

A probabilistic sum NeM
I) flips a coin, and then

2) evaluates to N for heads and M for tails.

Does duplicating N& M mean
a) flipping different coins for each copy, or
b) flipping the same coin for all copies?

(call-by-name)
(call-by-value)

Decomposing the probabilistic sum

a

A
NeM = [a.NéM

[q] (generator): a probabilistic quantifier that binds a
— it flips a coin and stores the result as a

NeM (choice): a conditional on a
—itevaluatesto Nifa=0and Mifa = I.

encoding cbn :

(M.x=x)[a]. TéL) —p (@ TEL)-(G] TEL)
w (T=T)+(T=L1)+ (L=T) + (L=1)
= T+l

encoding cbv :

[(M. x=x)(T&L) —p [a(T&L)=(T&L)

The Probabilistic Event A-Calculus (PEL)
M,N == x| &N | NM | NéeM | [a.N

Overview:

» Confluent
» Two forms of probabilistic reduction:

» permutative reduction (—;)

— small-step; gives natural probabilistic normal forms
> projective reduction (—,)

— big-step; intuitive; efficient

» Simple types are simple

Principal ideas:
» Confluence is non-negotiable
» Call-by-name is correct for duplicating probabilistic events

» Call-by-value has a valid intuition that should be expressible

Permutative reduction

Conditionals satisfy the equivalence
C(N&M] ~ CIN]J&CIM] (i ais free)
which is readily cast as rewriting . ..

... if we have an order on choice variables:

(NEM)EP ~ (NEP)&(MEP)

Definition a < bif[b] occurs in the scope of [a]:

[a]. C[[b]- N]

(assuming Barendregts convention: binders have unique names).

Reduction rules

Beta-reduction:

(AN)M — N[M/x] (B)

Permutative reduction: (continued on next slide)

NéN —, N
(NéM)&P —, N&P
N&(M&P) —, N&P

[a].N —p N
Ax.[a]. N —p [a] AX.N
(La]- NYM —;, [a]. (NM)

(i)
(c1)
(c2)

(@A)
(ef)
(®2)
(if a<b) (®9))
(ifa<b) (997)
(ifa<b) (e0)

(ifad MN) ()
(o)
(ifa ¢ (M) (f

Example

Another reduction path for the cbv-translation of (Ax.x = x)(T + 1)

[a] (A x=x)(T&L) —, [a] (Mx=x)T & (Mx.x=x)L (a)
g [a (T=T)&(L=1)
= [T&T
—p [a] T (i)
—p T (¢)

Observations

» The “missing” rule which would otherwise generate
non-confluence is

N ([M) 45, [NM

» We don't allow generators to permute out of argument position,
but we do choice:

N(M&P) —, (NM)&(NP)

a . :
» The rules for & alone are the rewriting rules for ordered binary
decision trees.'

'[Zantema & Van de Pol, 2001]

Characterization

Theorem Permutative reduction is SN
(A direct application of recursive path orders?)
Normal forms:

Py == P||P0®Po
P| =X |)\XP| | P| Po

Theorem Permutative reduction is confluent

2[Dershowitz, 2001]

Reduction

Definition Reduction —is —g U —,.

Theorem Reduction is confluent.

Simple types

[x:AFN:B [-N:A-B rM=M:A

[x:AFx: A [Ax.N: A—B [FNM:B

FEFN:A FrEM:A M- N:A
[NéM: A M [a].N: A

Theorem Typed reduction is SN

(By abstract reducibility)

Encoding cbn

[x]n = x [Ax.N]n = Ax.[N]a [NM],, = [N]n[M]an

[NeM], = [a]. [N].& [M].

Encoding cbv
[NIv = LINI]

=x [N =axIN] [NM] = [N]IM]

[NoM] = [N]&[M]

where each choice variable a is fresh;

IN| =[] ... [@].N

where a, . .. a, are the free choice variables of N.

Next: to show that the encodings work. ..

Definition a-Projections sr5(—) and 7{(—):

AE(NeM) = md(N) 7%(Ax. N) = Ax.t°(N)
7{ (N&M) = =if (M) (NM) = nif(N) 7f (M)
7@ N) =[N n°Ne)_n(N)en(M) ifa#b
i (x) = x 77 ([6]- N) = [b]. i/ (N if a # b.
Definition Head contexts: H::=[] | &x.H | HN

Proposition Permutative normal forms are given by |, :

Hlp [NLp] if a & fv(N)

HI). N) L= {
Hlp 3N o] © Hlp [79(N) 1] otherwise

HlP: I M.Hlp= Ax.(H]p) HN o= (Hp) (N{p)

Projective head reduction

Definition Projective head reduction —, is given by

H{[a]. N =m0 Hmig(N)] + H[{ (N)]

Permutative reduction simulates projective head reduction:
HIN| if a & fv(N)
H[a]- N] —»p . . _
H[7§(N)] ® H[r{(N)] otherwise.
This is sufficient to capture call-by-name.
But: we should be able to reduce in any linear context, i.e. also under

generators and choices. However, we cannot simulate that with
permutative reduction, since it would require exchanging generators.

BN <~ [N

Projective reduction

Definition N° labels N with a binary streams € S = {0, I}

(M. N)* = Ax. N° ([N =[a]". N°
(NM)* = N°M (NEM)® = N°&M®

Definition Projective reduction — is

[N =, 7°N).

]

Extend B-reduction to stream-labelled terms with a substitution case
for labelled variables: x*[M/x] = M®

@ENT = E.EBN o (7P (N))

DN = B[N T m(rf(N))

Philosophy:
N=N’+N

Proposition — includes —n, :

HIlal-N] = H[[]®.N] + H[[a]'.N] = HI7g(N)] + H[7{(N)].

Proposition If M — N by a step other than (i then M® — N°.

(Note that il is included in —1,)

Call-by-value

M,N::=x | x.N|MN|MeN C[(Ax.N)V] —g, CN[V/x]
V,W = x| AV | VW C(MeN] -, CM]+ C[N]

If N-—, M+ P then thereis an n € N such that for any finite
stream s of length n and any stream t:

NI o [M5° NI [P

Why the fuss

» Composing computational effects is not satisfactorily solved
> Linearity is enforced through monadic types

» But the spine of a A-term is also linear

Compare

(M. x=x)([a] Té&L)

f :: Random Bool
f = g random
where
g x = do
a <-x
b <- x
return (a ==

[a] (Ax. x=x)(T & L)

:: Random Bool
= do
a <- random
return (h a)
where

f
f

hx=x

» Our approach generalizes to any read operation (think STDin,
ROM, etc.)

» We know how to do write operations analogously, so we can do IO
and State (with individual mutable variables)

» Important questions to make this work:

> Types
» Pointer calculations
» Parallellism/concurrency

