
Decomposing Probabilistic Lambda-Calculi

Willem Heijltjes
University of Bath

Joint work with Ugo Dal Lago and Giulio Guerrieri

Mathematical Foundations Seminar, 31 March 2020

Probabilistic λ-calculus

M,N ····= x | λx.N | NM | N⊕M

C[(λx.N)M] β C[N[M/x]]
C[N⊕M] ⊕ C[N] + C[M]

C ····= [] | λx.C | CM | NC | C⊕M | N⊕C

. . . is non-confluent

cbn :(λx. x = x)(>⊕⊥) β (>⊕⊥) = (>⊕⊥)(>=>) + (>=⊥) + (⊥=>) + (⊥=⊥)= >+⊥
cbv :(λx. x = x)(>⊕⊥) (λx. x = x)>+ (λx. x = x)⊥

β (>=>) + (⊥=⊥)= >

The problem: duplicating probabilistic events

M,N ····= x | λx.N | NM | N⊕M

C[(λx.N)M] β C[N[M/x]]
C[N⊕M] ⊕ C[N] + C[M]

C ····= [] | λx.C | CM | NC | C⊕M | N⊕C

Analysing the problem

A probabilistic sum N⊕M
1) flips a coin, and then
2) evaluates to N for heads and M for tails.

Does duplicating N⊕M mean
a) flipping different coins for each copy, or (call-by-name)
b) flipping the same coin for all copies? (call-by-value)

Decomposing the probabilistic sum

N⊕M
∆= a .N a⊕M

a (generator): a probabilistic quantifier that binds a
— it flips a coin and stores the result as a

N
a
⊕M (choice): a conditional on a

— it evaluates to N if a = 0 and M if a = 1.

encoding cbn :(λx. x=x)(a . > a⊕⊥) β (a . > a⊕⊥)=(b . > b⊕⊥)(>=>) + (>=⊥) + (⊥=>) + (⊥=⊥)= >+⊥
encoding cbv :
a . (λx. x=x)(> a⊕⊥) β a . (> a⊕⊥)=(> a⊕⊥)(>=>) + (⊥=⊥)= >

The Probabilistic Event λ-Calculus (PEL)

M,N ····= x | λx.N | NM | N a⊕M | a .N

Overview:

I Confluent
I Two forms of probabilistic reduction:

I permutative reduction (p)
— small-step; gives natural probabilistic normal forms

I projective reduction (π)
— big-step; intuitive; efficient

I Simple types are simple

Principal ideas:

I Confluence is non-negotiable

I Call-by-name is correct for duplicating probabilistic events

I Call-by-value has a valid intuition that should be expressible

Permutative reduction

Conditionals satisfy the equivalence

C[N a⊕M] ∼ C[N] a⊕C[M] (if a is free)
which is readily cast as rewriting . . .

. . . if we have an order on choice variables:

(N a⊕M) b⊕P ∼ (N b⊕P) a⊕(M b⊕P)
Definition a < b if b occurs in the scope of a :

a . C [b .N]
(assuming Barendregts convention: binders have unique names).

Reduction rules

Beta-reduction:

(λx.N)M β N[M/x] (β)

Permutative reduction: (continued on next slide)

N
a
⊕N p N (i)(N a⊕M) a⊕P p N

a
⊕P (c1)

N
a
⊕(M a⊕P) p N

a
⊕P (c2)

λx. (N a⊕M) p (λx.N) a⊕(λx.M) (⊕λ)(N a⊕M)P p (NP) a⊕(MP) (⊕f)

N(M a⊕P) p (NM) a⊕(NP) (⊕a)(N a⊕M) b⊕P p (N b⊕P) a⊕(M b⊕P) (if a < b) (⊕⊕1)

N
b
⊕(M a⊕P) p (N b⊕M) a⊕(N b⊕P) (if a < b) (⊕⊕2)

b . (N a⊕M) p (b .N) a⊕(b .M) (if a < b) (⊕�)

a .N p N (if a /∈ fv(N)) (6�)

λx. a .N p a . λx.N (�λ)

(a .N)M p a . (NM) (if a /∈ fv(M)) (�f)

Example

Another reduction path for the cbv-translation of (λx.x = x)(>+⊥)
a . (λx. x=x)(> a⊕⊥) p a . (λx. x=x)> a

⊕ (λx. x=x)⊥ (⊕a)
β a . (>=>) a⊕ (⊥=⊥)= a . > a⊕>
p a . > (i)
p > (6�)

Observations

I The “missing” rule which would otherwise generate
non-confluence is

N (a .M) 6 p a .NM

I We don’t allow generators to permute out of argument position,
but we do choice:

N (M a⊕P) p (NM) a⊕(NP)
I The rules for

a
⊕ alone are the rewriting rules for ordered binary

decision trees.1

1[Zantema & Van de Pol, 2001]

Characterization

Theorem Permutative reduction is SN

(A direct application of recursive path orders2)

Normal forms:
P0 ····= P1 | P0⊕ P0
P1 ····= x | λx.P1 | P1 P0

Theorem Permutative reduction is confluent

2[Dershowitz, 2001]

Reduction

Definition Reduction is β ∪ p.

Theorem Reduction is confluent.

Simple types

Γ, x : A ` x : A Γ, x : A ` N : BΓ ` λx.N : A→B Γ ` N : A→B Γ ` M : AΓ ` NM : BΓ ` N : A Γ ` M : AΓ ` N a⊕M : A Γ ` N : AΓ ` a .N : A
Theorem Typed reduction is SN

(By abstract reducibility)

Encoding cbn

JxKn = x Jλx.NKn = λx.JNKn JNMKn = JNKnJMKn

JN⊕MKn = a . JNKn
a
⊕JMKn

Encoding cbv

JNKv = bJNKc

JxK = x Jλx.NK = λx.JNK JNMK = JNKJMK

JN⊕MK = JNK a⊕JMK

where each choice variable a is fresh;

bNc = a1 . . . an .N

where a1 . . . an are the free choice variables of N.

Next: to show that the encodings work. . .

Definition a-Projections πa0(−) and πa1(−):
πa0(N a⊕M) = πa0(N) πai (λx.N) = λx.πai (N)
πa1(N a⊕M) = πa1(M) πai (NM) = πai (N)πai (M)
πai (a .N) = a .N πai (N b⊕M) = πai (N) b⊕ πai (M) if a 6= b

πai (x) = x πai (b .N) = b . πai (N) if a 6= b.
Definition Head contexts: H ····= [] | λx.H | HN
Proposition Permutative normal forms are given by ↓p :

H[a .N]↓p=
 H↓p [N↓p] if a /∈ fv(N)
H↓p [πa0(N)↓p] ⊕ H↓p [πa1(N)↓p] otherwise

[]↓p= [] λx.H↓p= λx.(H↓p) HN↓p= (H↓p) (N↓p)

Projective head reduction

Definition Projective head reduction πh is given by

H[a .N] πh H[πa0(N)] + H[πa1(N)]
Permutative reduction simulates projective head reduction:

H[a .N] p

{
H[N] if a /∈ fv(N)
H[πa0(N)] ⊕ H[πa1(N)] otherwise.

This is sufficient to capture call-by-name.

But: we should be able to reduce in any linear context, i.e. also under
generators and choices. However, we cannot simulate that with
permutative reduction, since it would require exchanging generators.

a . b .N ?∼ b . a .N

Projective reduction

Definition Ns labels N with a binary stream s ∈ S = {0, 1}N
(λx.N)s = λx.Ns (a .N)i·s = a i.Ns(NM)s = NsM (N a⊕M)s = Ns a⊕Ms

Definition Projective reduction π is

a i.N π πai (N) .
Extend β-reduction to stream-labelled terms with a substitution case
for labelled variables: xs[M/x] = Ms

(a . b .N) i·j·s
(b . a .N) j·i·s

a i. b j.Ns

b j. a i.Ns

πai (πbj (Ns))
πbj (πai (Ns))

π

π
∼

=
= =

Philosophy:
N = N0 + N1

Proposition π includes πh :

H[a .N] = H[a 0.N] + H[a 1.N] π H[πa0(N)] + H[πa1(N)] .
Proposition If M N by a step other than 6� then Ms Ns.

(Note that 6� is included in πh)

Call-by-value

M,N ····= x | λx.N | MN | M⊕N C[(λx.N)V] βv C[N[V/x]]
V,W ····= x | λx.V | VW C[M⊕N] v C[M] + C[N]

If N v M+ P then there is an n ∈ N such that for any finite
stream s of length n and any stream t:

JNKs·0·tv π JMKs·tv JNKs·1·tv π JPKs·tv

Why the fuss

I Composing computational effects is not satisfactorily solved

I Linearity is enforced through monadic types
I But the spine of a λ-term is also linear

Compare

(λx. x=x)(a . > a⊕⊥) a . (λx. x=x)(> a⊕⊥)
f :: Random Bool
f = g random

where
g x = do

a <- x
b <- x
return (a == b)

f :: Random Bool
f = do

a <- random
return (h a)

where
h x = x == x

I Our approach generalizes to any read operation (think STDin,
ROM, etc.)

I We know how to do write operations analogously, so we can do IO
and State (with individual mutable variables)

I Important questions to make this work:
I Types
I Pointer calculations
I Parallellism/concurrency

