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(Classical) Combinatorial Proofs

A— m : nicely coloured cograph
skew fibration

a - = a a cograph

Question: What is the intuitionistic counterpart?
But first: What is a combinatorial proof?

[Hughes 2006]
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... an MLL proof net + ALL proof net
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[Girard 1987, Retoré 2003, Hughes & Van Glabbeek 2005]



Classical combinatorial proofs

» Purely geometric
» Possibly canonical
» Complexity conscious (efficient (de-)sequentialization)

» Quite nice

Question: What is the intuitionistic counterpart?



Intuitionistic Combinatorial Proofs
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Part |: From formulas to arenas
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See also [McCusker 2000]



Arenas, inductively

[a] = e (anode labelled a) @
[AnB] = [A]+[B]

[A=8] = [A] > [8] o G

G+H: union (assuming distinct sets of vertices)

G > H: union, and connect all roots of G to all roots of H



Arenas, geometrically

L-free: if c<a—->b—->d then c—>d
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Arenas, geometrically

r -free: if c<a—->d<b-—->e then a—-e or b-—c
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Arenas, geometrically

b
L-free: a/ \:d
C
Example:
a—b—c—d
e

L-free: RN or S d

Non-example:

a—b—c—d
e



—— Theorem
A directed acyclic graph (DAG) represents a formula [A] if and only if it
is L-free and X-free.

—— Theorem
[A] = [B] if and only if A ~ B by the isomorphisms
(AAB)=C ~ A=B=C ANB ~ BAA (AAB)AC ~ AA(BAC).

Represent “labelled with the same atom” abstractly by a partitioning:

Definition
An arena is an L-free, X-free DAG with a partitioning of its vertices.




Example: S-combinator
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Part 2: From IMLL proof nets to arena nets



IMLL

Formulas

A:::G|A®B|A—OB

Sequent calculus:
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IMLL proof nets
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Paths & Polarity

even® odd*®
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Correctness: (The essential net condition)

A*  B°
In » / every path from A to the root must pass B.

[Lamarche 2008]



IMLL proof nets
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Correctness: in %/ every path from A to the root must pass B.
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Paths in arenas

(((a®2a®)-ob%) ® ) =(b° ® ((c"d") ~d"))

a'F a° c° d°®
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®_ ®
—— Lemma

Formula-paths x° —* y® correspond to arena-edges x° — y°.

Formula-paths x° -* -->» —>* y® correspond to arena-edges y® --> x°.
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An arena is linked if each partition is binary and dual {x*, x°} (a link)
The link graph of an arena are the even edges x°— y* and links x*~ x°
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A linked arena is correct if: (Acyclicity) the link graph is acyclic, and
(Functionality) a rooted link path a®—* r° passes some b° with a®--» b°.

—— Theorem
A linked arena is correct if and only if it represents an IMLL proof net.

Definition
An arena net is a correct linked arena.




Part 3: Skew fibrations



Contraction-weakening derivations in open deduction:

A
A C B C ﬂ
N S Y v G
B D A D ﬂ
c

But: classically contract/weaken only on disjunction — odd conjunction
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Arenas [A] give associativity, symmetry, and units for free:

AnBAC)  AAB AN

(ArB)AC BrA A

Then vertical composition is only used with contraction:
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Skew fibrations, inductively

: [Al+[C]
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Skew fibrations, geometrically

» Preserve edges (and roots):

oo
» Preserve axiom links/partitioning (but not labels!):

a a b b



Skew fibrations, geometrically

Contract on odd (e) but not even (o) nodes — and their subgraphs

o—>e o—>e  e—>0 e—>0
‘o—>e e—>0 8—>0

Two vertices x # y are conjunctively related x \ y if they meet at even
depth (or not at all):

xAy:if x->"zM<y for minimaln,m then z°

» Preserve conjunctive relations



Skew fibrations, geometrically

The skew lifting property:



—— Theorem
A graph homomorphism is “(even) inductive” if and only if it preserves
edges, roots, partitioning, and conjunctive relations, and satisfies skew

lifting.

—— Definition
A skew fibration is a graph homomorphism that preserves edges, roots,
pertitioning, and conjunctive relations, and satisfies skew lifting.

Definition
An intuitionistic combinatorial proof of a formula A is a skew fibration

f:A—[A]

from an arena net A to the arena of A.
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Intuitionistic combinatorial proofs

» Purely geometric
» Locally canonical (factor out non-duplicating permutations)
» Polynomial full completeness (efficient (de-)sequentialization)

» Quite nice



