

An introduction to deep inference

Willem Heijltjes
University of Bath

TYDI-0
Oxford, 7 July 2018

Frege/Hilbert/Ackermann

Axiom schemas

$$K : A \rightarrow B \rightarrow A$$

$$S : (A \rightarrow B \rightarrow C) \rightarrow (A \rightarrow B) \rightarrow A \rightarrow C$$

$$P : ((A \rightarrow B) \rightarrow A) \rightarrow A$$

plus Modus Ponens (MP): if A and $A \rightarrow B$ then B

1. $(A \rightarrow (B \rightarrow A) \rightarrow A) \rightarrow (A \rightarrow B \rightarrow A) \rightarrow A \rightarrow A$ (S)
2. $A \rightarrow (B \rightarrow A) \rightarrow A$ (K)
3. $(A \rightarrow B \rightarrow A) \rightarrow A \rightarrow A$ (MP 1, 2)
4. $A \rightarrow B \rightarrow A$ (K)
5. $A \rightarrow A$ (MP 3, 4)

What is the structure of **proofs**?

$$\begin{array}{c} \text{B} \\ \text{---} \\ \text{B} \end{array} ::= \quad \overline{A \rightarrow B \rightarrow A} \quad | \quad \cdots \quad | \quad \begin{array}{c} \text{A} \rightarrow B \\ \text{---} \\ \text{B} \end{array} \quad \begin{array}{c} \text{A} \\ \text{---} \\ \text{A} \end{array}$$

- ▶ **Logical consequence** ($A \rightarrow B$): only at the level of **formulas**
- ▶ **Branching** (horizontal): proof-level conjunction
- ▶ **Modus ponens**: mixes formula-implication and proof-conjunction

(There are benefits to a simple proof structure; in particular, implementation of functional programming via *supercombinators* is simple and fast [Hughes, 1982].)

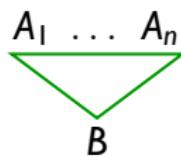
Gentzen: Natural Deduction

	introduction	elimination
conjunction	$\frac{A \quad B}{A \wedge B}$	$\frac{A \wedge B}{A}$ $\frac{A \wedge B}{B}$
implication	$\frac{\begin{array}{c} [A] \\ \vdots \\ B \end{array}}{A \rightarrow B}$	$\frac{A \rightarrow B \quad A}{B}$

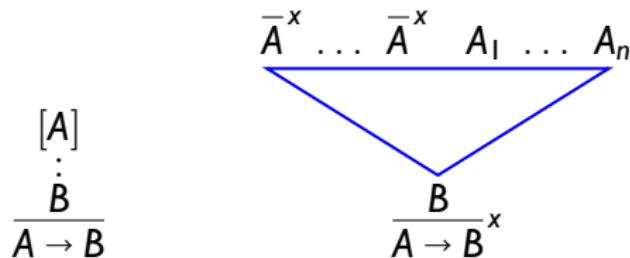
Features:

- ▶ Corresponds to natural reasoning
- ▶ Defining introduction/elimination rules for each connective
- ▶ Normalization

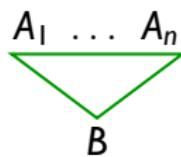
What is the structure of **proofs**?



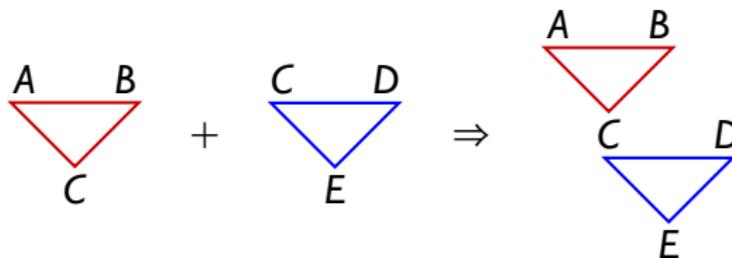
Aside: what does the implication introduction rule actually mean?



What is the structure of proofs?



- ▶ **Deriving** (vertical): proof-level implication ($A \rightarrow B$)
- ▶ **Branching** (horizontal): proof-level conjunction ($A_1 \wedge \dots \wedge A_n$)
- ▶ **Modus ponens**: mixes formula-implication and proof-conjunction
- ▶ **Proof composition**: implements proof-level **modus ponens**



No **proof-level disjunction** — encoded via implication and conjunction:

	introduction	elimination
disjunction	$\frac{A}{A \vee B}$	$\frac{B}{A \vee B}$
		$\frac{[A] \quad [B]}{\frac{A \vee B}{\frac{C}{C}}}$

Assumption closing is ad-hoc, non-trivial, and non-local

$$\frac{\overline{A} \quad \overline{A}}{\frac{B}{\frac{A \rightarrow B}{B}}} \rightsquigarrow \frac{\text{ } \quad \text{ }}{\frac{\text{ } \quad \text{ }}{\frac{A \quad A}{\frac{\text{ } \quad \text{ }}{B}}}}$$

Gentzen: Sequent Calculus

Sequents: $\Gamma \vdash B$ where $\Gamma = A_1 \dots A_n$ is a context

Logical rules:

	left	right
conjunction	$\frac{\Gamma A B \vdash C}{\Gamma A \wedge B \vdash C}$	$\frac{\Gamma \vdash A \quad \Delta \vdash B}{\Gamma \Delta \vdash A \wedge B}$
implication	$\frac{\Gamma \vdash A \quad B \Delta \vdash C}{\Gamma A \rightarrow B \Delta \vdash C}$	$\frac{\Gamma A \vdash B}{\Gamma \vdash A \rightarrow B}$

Structural rules:

$$\frac{\Gamma A A \vdash B}{\Gamma A \vdash B} \quad \frac{\Gamma \vdash B}{\Gamma A \vdash B} \quad \frac{}{A \vdash A} \quad \frac{\Gamma \vdash A \quad A \Delta \vdash B}{\Gamma \Delta \vdash B}$$

What is the structure of proofs?

$$\begin{array}{c} \triangle \\ A_1 \cdots A_n \vdash B \end{array}$$

- ▶ **Deriving** (vertical): proof-level implication
- ▶ **Branching** (horizontal): proof-level conjunction
- ▶ **Sequents** ($A_1 \cdots A_n \vdash B$): **another** proof-level implication ($A \rightarrow B$)
- ▶ **Contexts** ($A_1 \cdots A_n$): **another** proof-level conjunction ($A_1 \wedge \cdots \wedge A_n$)
- ▶ **Cut-rule**: mixes sequent-implication and branching-conjunction
- ▶ **Implication-left**: mixes formula-implication and branching-conjunction

$$\frac{\Gamma \vdash A \quad A \Delta \vdash B}{\Gamma \Delta \vdash B}$$

$$\frac{\Gamma \vdash A \quad B \Delta \vdash C}{\Gamma A \rightarrow B \Delta \vdash C}$$

Sequent calculus is a **meta-calculus**:

$$\frac{\Gamma A \vdash B}{\Gamma \vdash A \rightarrow B}$$

$$\frac{\Gamma \quad A}{B} \Rightarrow \frac{\Gamma \quad \bar{A}}{\frac{B}{A \rightarrow B}}$$

$$\frac{\Gamma \vdash A \quad B \quad \Delta \vdash C}{\Gamma A \rightarrow B \Delta \vdash C}$$

$$\frac{\Gamma \quad A \quad B \quad \Delta}{\frac{\Gamma}{A \rightarrow B} \quad \frac{A}{B} \quad \Delta} \Rightarrow \frac{\Gamma}{\frac{A \rightarrow B}{\frac{B}{\Delta}} \quad C}$$

$$\frac{\Gamma \vdash A \quad A \quad \Delta \vdash B}{\Gamma \Delta \vdash B}$$

$$\frac{\Gamma \quad A \quad B \quad \Delta}{\frac{\Gamma}{A} \quad \frac{A}{B} \quad \Delta} \Rightarrow \frac{\Gamma}{\frac{A}{\frac{B}{\Delta}}}$$

Deep Inference / Open Deduction

What is the structure of **proofs**?

$$\begin{array}{c} A \\ \Downarrow \\ B \end{array}$$

- ▶ **Deriving (vertical):** proof-level implication ($A \rightarrow B$)
- ▶ **Proof composition** implements proof-level **modus ponens**

$$\begin{array}{c} A \\ \Downarrow \\ B \end{array} + \begin{array}{c} B \\ \Downarrow \\ C \end{array} \Rightarrow \begin{array}{c} A \\ \Downarrow \\ B \\ \Downarrow \\ C \end{array}$$

A **formula** A is a proof with premise A and conclusion A .
Composition is **associative** and has formulas as **unit**.

Inference rules

conjunction:
$$\frac{A}{\top} \quad \frac{A}{A \wedge A} \quad \frac{A \wedge B}{B \wedge A} \quad \frac{A \wedge (B \wedge C)}{(A \wedge B) \wedge C} \quad \frac{A \wedge \top}{A}$$

implication:
$$\frac{(A \rightarrow B) \wedge A}{B} \quad \frac{B}{A \rightarrow (B \wedge A)}$$

Horizontal composition

$$\begin{array}{c} A \quad C \\ \Downarrow \quad \Downarrow \\ B \quad D \end{array} \quad \wedge \quad \Rightarrow \quad \begin{array}{c} A \wedge C \\ \Downarrow \\ B \wedge D \end{array} \quad \quad \begin{array}{c} B \\ \Updownarrow \\ A \end{array} \quad \rightarrow \quad \begin{array}{c} C \\ \Downarrow \\ D \end{array} \quad \Rightarrow \quad \begin{array}{c} B \rightarrow C \\ \Downarrow \\ A \rightarrow D \end{array}$$

Note that $A \Rightarrow B$ and $B \rightarrow C$ and $C \Rightarrow D$ gives $A \rightarrow D$

We consider any proof

$$\begin{array}{c} A \\ \Downarrow \\ B \end{array}$$

over just symmetry, associativity, unitality, and their inverses

$$\begin{array}{cccc} \begin{array}{c} A \wedge B \\ \hline B \wedge A \end{array} & \begin{array}{c} A \wedge (B \wedge C) \\ \hline (A \wedge B) \wedge C \end{array} & \begin{array}{c} A \wedge \top \\ \hline A \end{array} & \begin{array}{c} A \quad C \\ \Downarrow \quad \wedge \quad \Downarrow \\ B \quad D \end{array} \end{array}$$

as a single **monoidal coherence** rule

$$\begin{array}{c} A \\ \hline B \end{array}$$

Natural Deduction

$$\frac{A_1 \dots A_n}{B}$$

Open Deduction

$$\boxed{A_1 \wedge \dots \wedge A_n} \quad \Downarrow \quad B$$

$$\frac{\Gamma \quad \Delta}{\frac{A \quad B}{A \wedge B}}$$

$$\boxed{\Gamma \Downarrow A} \wedge \boxed{\Delta \Downarrow B}$$

$$\frac{\Gamma}{\frac{A \wedge B}{A}}$$

$$\boxed{\Gamma \Downarrow A \wedge B} \quad \frac{A \wedge \frac{B}{\top}}{A}$$

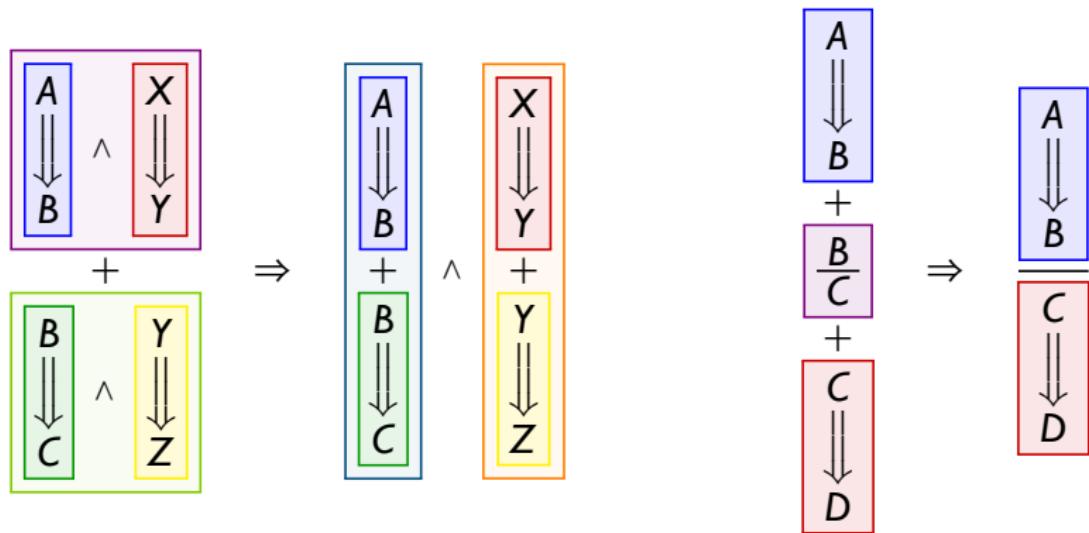
$$\frac{\Gamma \quad \Delta}{\frac{A \rightarrow B \quad B}{B}}$$

$$\frac{\Gamma \Downarrow A \rightarrow B \quad \Delta \Downarrow A}{B}$$

$$\frac{\Gamma \quad \overline{A}^x \dots \overline{A}^x}{\frac{}{B}}{A \rightarrow B}^x$$

$$\frac{\Gamma}{\frac{\Gamma \wedge \frac{A}{\overline{A \wedge \dots \wedge A}}}{A \rightarrow \frac{\Gamma \wedge A \wedge \dots \wedge A}{B}}}$$

Composition in detail



$$\frac{\Gamma \vdash A \quad A \vdash \Delta}{B \vdash \Delta}$$

$$\frac{\boxed{\Gamma \vdash A} \wedge \Delta + \boxed{A \wedge \Delta \vdash B}}{B}$$

$$\frac{\top}{A \rightarrow \frac{\top \wedge A}{A}} \quad \Rightarrow \quad \overline{A \rightarrow A}$$

$$(A \rightarrow B \rightarrow C) \rightarrow (A \rightarrow B) \rightarrow A \rightarrow (A \rightarrow B \rightarrow C) \rightarrow (A \rightarrow B) \rightarrow A \rightarrow C$$

Derivation steps:

- $(A \rightarrow B \rightarrow C)$ (top level, yellow box)
- $(A \rightarrow B \rightarrow C) \wedge (A \rightarrow B)$ (second level, orange box)
- $(A \rightarrow B \rightarrow C) \wedge (A \rightarrow B) \wedge \frac{A}{A \wedge A}$ (third level, red box)
- $A \rightarrow \frac{(A \rightarrow B \rightarrow C) \wedge A}{B \rightarrow C} \wedge \frac{(A \rightarrow B) \wedge A}{B}$ (fourth level, dashed box)
- $\frac{(B \rightarrow C) \wedge B}{C}$ (innermost box, pink box)

Disjunction

Inference rules

disjunction: $\frac{\perp}{A}$ $\frac{A \vee A}{A}$ $\frac{A \vee B}{\overline{B} \vee \overline{A}}$ $\frac{A \vee (B \vee C)}{(\overline{A} \vee \overline{B}) \vee \overline{C}}$ $\frac{A \vee \perp}{\overline{A}}$

Horizontal composition

$$\begin{array}{c} A \quad C \\ \Downarrow \quad \Downarrow \\ B \quad D \end{array} \quad \vee \quad \Rightarrow \quad \begin{array}{c} A \vee C \\ \Downarrow \\ B \vee D \end{array}$$

Question Isn't this just categorical logic?

Answer Yes, it is — if you look only at what **syntax** is used, but not the **motivations** for doing so.

~~Categorical logic does not consider computation~~

Categorical logic considers the **result** of computation, but not the **process**. This is because it considers all proof/term manipulations as **equalities**. Attempts to relax this via higher or enriched categories are generally not convincing.

Deep inference investigates the **process** and **complexities** of normalization. It works extremely well for **classical logic** (where the semantics collapses).

What is the structure of **proofs**?

$$\begin{array}{c} A \\ \Downarrow \\ B \end{array}$$

- ▶ **Deriving** (vertical): proof-level implication ($A \rightarrow B$)
- ▶ **Proof composition** implements proof-level **modus ponens**
- ▶ **Proof-level** conjunction, implication, disjunction the same as formula-level
- ▶ Defining rules for the logical operations that are not ad-hoc
- ▶ Formula-level **modus ponens** for formula-implication and formula-conjunction
- ▶ **Not** a meta-calculus

Normalization

$$\frac{}{A \wedge A} \rightsquigarrow \frac{\Gamma \Downarrow A}{\Gamma \wedge \Gamma \Downarrow A} \rightsquigarrow \frac{\Gamma \Downarrow A}{\Gamma} \frac{\Gamma \Downarrow A}{\Gamma \Downarrow \top}$$

$$\frac{\Gamma \Downarrow A \quad \Delta \Downarrow B}{B \wedge A} \rightsquigarrow \frac{\Delta \Downarrow B \quad \Gamma \wedge \Gamma \Downarrow A}{\Gamma \wedge \Delta \Downarrow A} \rightsquigarrow \frac{\Gamma \Downarrow A \quad \Delta \Downarrow \top}{\Gamma \wedge \Delta \Downarrow \top} \rightsquigarrow \frac{\Gamma \Downarrow A}{\Gamma \wedge \Gamma \Downarrow \top}$$

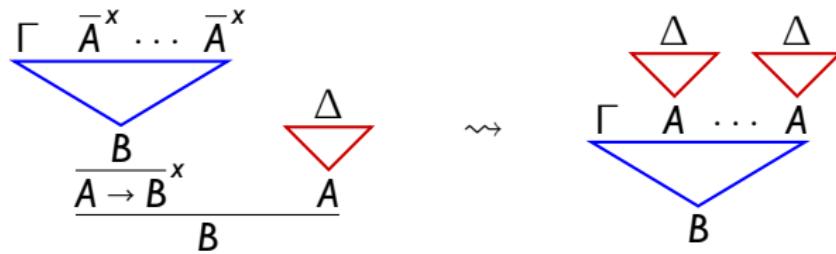
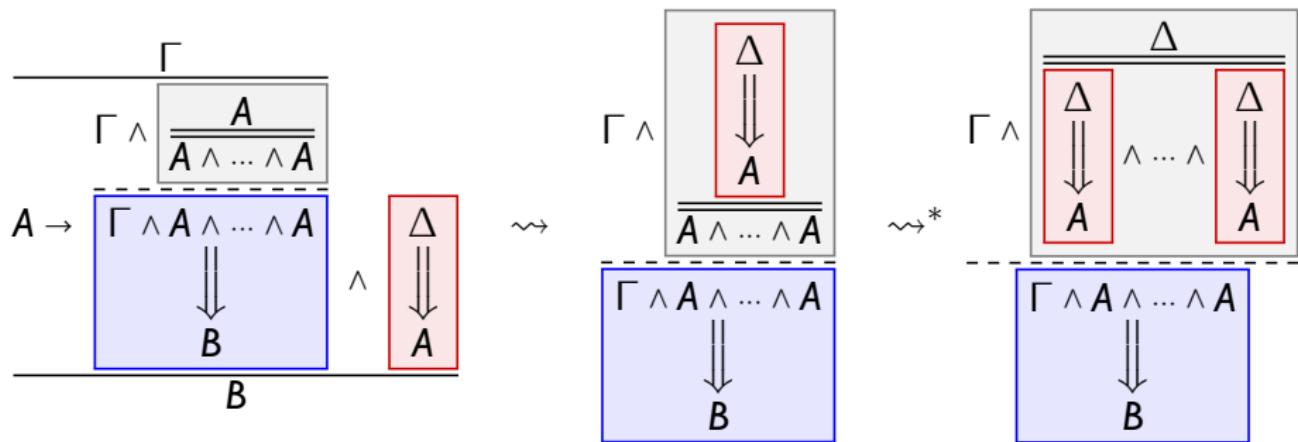
$$\frac{A}{A \wedge A} \rightsquigarrow \frac{A}{A \wedge \frac{A}{\Gamma \Downarrow \top}} \rightsquigarrow A$$

$$\frac{\Gamma \Downarrow B}{A \rightarrow (B \wedge A)} \rightsquigarrow \frac{\Gamma \Downarrow B}{\overline{A \rightarrow \Gamma \wedge A}}$$

Diagram illustrating the derivation of a logical consequence. On the left, a red box contains $\Gamma \Downarrow B$. Below it, a horizontal line with a box contains $A \rightarrow (B \wedge A)$. An arrow labeled \rightsquigarrow points to the right. On the right, a horizontal line with a box contains $\Gamma \wedge A$. Below it, a red box contains $\Gamma \Downarrow B$.

$$\frac{\Gamma \Downarrow B}{A \rightarrow \frac{\Gamma \wedge A \Downarrow B}{B}} \rightsquigarrow \frac{\Gamma \wedge A \Downarrow B}{\Delta \Downarrow A}$$

Diagram illustrating the derivation of a logical consequence. On the left, a red box contains $\Gamma \wedge A \Downarrow B$. Below it, a horizontal line with a box contains B . To the right, a yellow box contains $\Delta \Downarrow A$. An arrow labeled \rightsquigarrow points to the right. On the right, a horizontal line with a dashed box contains $\Gamma \wedge A$. Below it, an orange box contains $\Gamma \wedge A \Downarrow B$. Above the dashed line, a yellow box contains $\Delta \Downarrow A$.

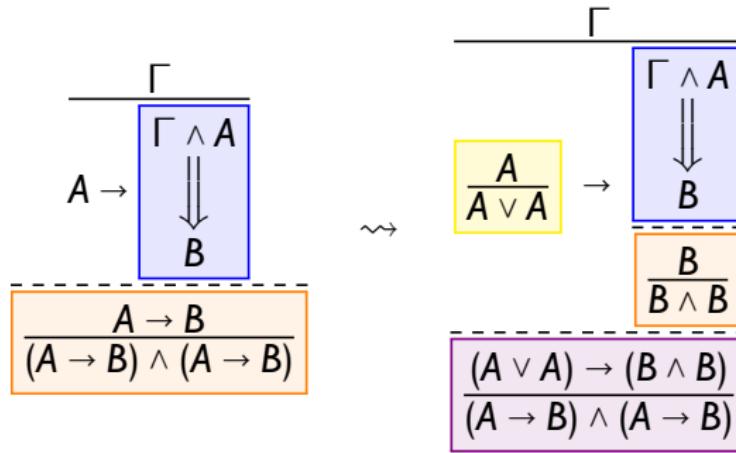


$$\begin{array}{ccc}
 \boxed{\begin{array}{c} A \\ \hline A \wedge \frac{A}{\top} \\ \hline A \end{array}} & \rightsquigarrow^+ & \boxed{\begin{array}{c} A \\ \hline A \wedge \frac{A}{\top} \\ \hline A \end{array}} \\
 + & & + \\
 \boxed{\begin{array}{c} A \\ \hline A \wedge \frac{A}{\top} \\ \hline A \end{array}} & & \boxed{\begin{array}{c} A \\ \hline A \wedge \frac{A}{\top} \\ \hline A \end{array}}
 \end{array}$$

$$\begin{array}{c}
 \boxed{\frac{A}{A \wedge \frac{A}{\top}}} \\
 \hline
 \frac{A}{A \wedge \frac{A}{\top}} \\
 \hline
 \frac{A}{A \wedge \frac{A}{\top}}
 \end{array} \rightsquigarrow
 \begin{array}{c}
 \frac{A}{A \wedge \frac{A}{\top}} \wedge \frac{A}{A \wedge \frac{A}{\top}} \\
 \hline
 \frac{A}{A \wedge \frac{A}{\top}}
 \end{array} \rightsquigarrow
 \begin{array}{c}
 \frac{A}{A \wedge \frac{A}{\top}} \wedge \frac{A}{\top} \\
 \hline
 \frac{A}{A \wedge \frac{A}{\top}}
 \end{array} \rightsquigarrow
 \begin{array}{c}
 \frac{A}{A \wedge \frac{A}{\top}} \\
 \hline
 \frac{A}{A \wedge \frac{A}{\top}}
 \end{array}$$

Atomic duplication

$$\begin{array}{c}
 \boxed{\Gamma \Downarrow} \quad \boxed{\Delta \Downarrow} \\
 \wedge \\
 A \rightarrow B \quad A \\
 \hline
 \boxed{\frac{(A \rightarrow B) \wedge A}{B}} \\
 \hline
 \boxed{\frac{B}{B \wedge B}}
 \end{array}
 \rightsquigarrow
 \begin{array}{c}
 \boxed{\Gamma \Downarrow} \quad \boxed{\Delta \Downarrow} \\
 \wedge \\
 A \rightarrow B \quad A \\
 \hline
 \boxed{\frac{A \rightarrow B}{(A \rightarrow B) \wedge (A \rightarrow B)}} \\
 \hline
 \boxed{\frac{(A \rightarrow B) \wedge A}{B}} \quad \boxed{\frac{(A \rightarrow B) \wedge A}{B}}
 \end{array}$$



Medial

$$\boxed{\frac{(A \vee B) \rightarrow (C \wedge D)}{(A \rightarrow C) \wedge (B \rightarrow D)}}$$

$$(A \vee B) \rightarrow (C \wedge D) \quad \cong \quad (A \rightarrow C) \quad \wedge \quad (A \rightarrow D) \quad \wedge \\ (B \rightarrow C) \quad \wedge \quad (B \rightarrow D)$$

$$\boxed{\frac{A \rightarrow B}{(A \rightarrow B) \wedge (A \rightarrow B)}} \quad \rightsquigarrow \quad \boxed{\frac{\begin{array}{c} A \\ \hline A \vee A \end{array}}{(A \vee A) \rightarrow (B \wedge B)} \rightarrow \frac{\begin{array}{c} B \\ \hline B \wedge B \end{array}}{(B \wedge B) \rightarrow (A \rightarrow B) \wedge (A \rightarrow B)}}$$

$$\boxed{\frac{A \vee A}{A}} \quad \rightarrow \quad \begin{array}{c} B \\ \uparrow \quad \downarrow \\ A \quad D \end{array} \quad \begin{array}{c} C \\ \uparrow \quad \downarrow \\ B \quad D \end{array}$$

$$\frac{(A \vee B) \rightarrow (C \wedge D)}{(A \rightarrow C) \wedge (B \rightarrow D)}$$

$$\frac{A \rightarrow B}{(A \rightarrow B) \wedge (A \rightarrow B)}$$

$$\frac{\frac{A}{A \vee A} \rightarrow \frac{B}{B \wedge B}}{(A \vee A) \rightarrow (B \wedge B)}$$

$$\frac{(A \rightarrow B) \wedge (A \rightarrow B)}{(A \rightarrow B) \wedge (A \rightarrow B)}$$

$$\frac{(A \wedge B) \vee (C \wedge D)}{(A \vee C) \wedge (B \vee D)}$$

$$\frac{\frac{A \vee A}{A} \quad \frac{A}{A \wedge A}}{A \wedge A}$$

$$\frac{\frac{A}{A \wedge A} \vee \frac{A}{A \wedge A}}{(A \wedge A) \vee (A \wedge A)}$$

$$\frac{\frac{A \vee A}{A} \wedge \frac{A \vee A}{A}}{(A \vee A) \wedge (A \vee A)}$$

$$\frac{(A \rightarrow B) \vee (C \rightarrow D)}{(A \wedge C) \rightarrow (B \vee D)}$$

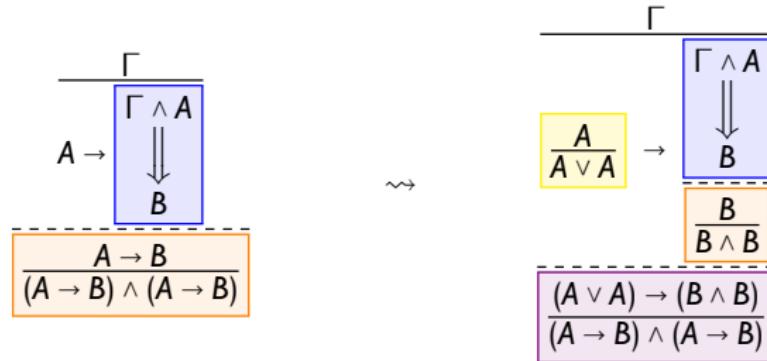
$$\frac{(A \rightarrow B) \vee (A \rightarrow B)}{A \rightarrow B}$$

$$\frac{\frac{(A \rightarrow B) \vee (A \rightarrow B)}{(A \wedge A) \rightarrow (B \vee B)} \rightarrow \frac{B \vee B}{B}}{B \vee B}$$

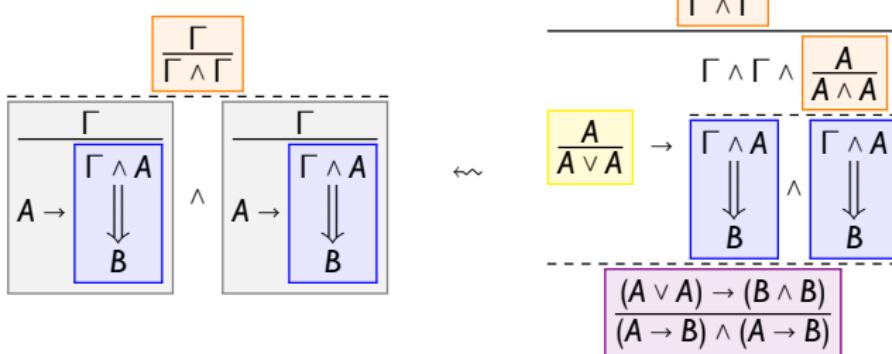
$$\frac{\frac{A}{A \vee A} \quad \rightarrow \quad \frac{A}{A \wedge A}}{(A \vee A) \rightarrow (A \wedge A)} \quad \frac{}{(A \rightarrow A) \wedge (A \rightarrow A)}$$

\rightsquigarrow

$$\frac{}{\overline{A \rightarrow A}} \wedge \frac{}{\overline{A \rightarrow A}}$$



↓*



Thank you!

For everything deep-inference go to <http://alessio.guglielmi.name/res/cos>