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3
A A

&

A

&

A

6
A A
⊗

A⊗ A

§ long-trip [Girard 1987]
§ switching [Danos & Regnier 1989]
§ contractibility [Danos 1990]
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MLL contractibility

1. Start from an unlabelled graph with paired

&

-edges

2. Contract by:

• • • •

↓ ↓

• •

3. Correct ⇔ contracts to a single point

Implemented in linear time via union–find

[Danos 1990, Guerrini 1999]
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Properties of MLL proof nets

De-sequentialization P =⇒ N 3 linear-time

Sequentialization / correctness N =⇒ P 3 linear-time

Composition / cut-elimination N1 ◦ N2 3 P-time

Proof equivalence / canonicity

P1
?∼ P2=⇒ =⇒

N1 = N2

3

What about other fragments of linear logic?
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Two traditions
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like lambda-calculus like categorical coherence

good with exponentials good with additives

interaction nets1, sharing graphs2 ??
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app

λ

(λx.M)N : B
λx.M : A→B

N : AM : B x : A
 

M[N/x] : B

M : B N : Ax : A

A ⊗ I

A

A ⊗ B

B ⊗ A

A ⊗ (B⊗C)
(A⊗B)⊗ C
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§ Every resolution must contain exactly one link
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Composition is path composition

A⊕ B

B & A

B⊕ A

A & B

 

A⊕ B

A & B



ALL: Coalescence

A

B ⊕ C
→

A

B ⊕ C
←

A

B ⊕ C

A

B & C
→

A

B & C

Correct ⇔ contracts to a single link between roots

[H & Hughes 2015]
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Remark
The set of subsets of a set X ordered by inclusion (⊆)

§ Is a free distributive lattice: A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)
§ Models ALL: A ` B ⇒ A ⊆ B

A & B ⇒ A ∩ B
A⊕ B ⇒ A ∪ B

§ Correctness: every resolution contains at least one link

P

P ∪ Q

Q

P ∪ Q

P

P ∩ P

But distributivity destroys coalescence:(A ∪ B) ∩ (A ∪ C)
A ∪ (B ∩ C)
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Properties of ALL proof nets

De-sequentialization P =⇒ N 3 linear-time

Sequentialization / correctness N =⇒ P 3 linear-time
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Proof equivalence / canonicity

P1
?∼ P2=⇒ =⇒

N1 = N2

3



ALLU

Additive units: 0, > A, >
A

> A

>

Equivalence:

>

A ⊕ B
∼

>

A ⊕ B
∼

>

A ⊕ B

>

A & B
∼

>

A & B

Non-confluence:

> ⊕ A

> ⊕ B
 
> ⊕ A

> ⊕ B

 

> ⊕ A

> ⊕ B
 
> ⊕ A

> ⊕ B

 

> ⊕ A
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Saturation
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∼

>

A ⊕ B
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A ⊕ B

 >
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  >
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 >
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>

A & B

 >

A & B
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MLLU
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Properties of MLLU proof nets

De-sequentialization P =⇒ N 3 linear-time

Sequentialization / correctness N =⇒ P 3 linear-time

Composition / cut-elimination N1 ◦ N2 3 P-time

Proof equivalence / canonicity

P1
?∼ P2=⇒ =⇒

N1 = N2

6 PSPACE



Proof nets and complexity

MLL MLLU ALL ALLU

De-sequentialization 3 3 3 3

Sequentialization / correctness 32 3 36 36

Composition / cut-elimination 3 3 3 3

Proof equivalence / canonicity 31 65 33 34

1[Girard 1987]; 2[Guerrini 1999]; 3[Hu 1999];
4[H 2011]; 5[H & Houston 2014]; 6[H & Hughes 2015]
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Monomial nets

Γ, A Γ, BΓ, A & B Γ, AiΓ, A1 ⊕ A2
Γp Γp Ap Bp

&p

Γ A⊗ B

Γ Ai

⊕i

Γ A⊗ B
Links are indexed by monomial weights: elements

p1 · p2 · p3 . . . pn · q1 · q2 · q3 . . . qm

from a boolean algebra (P, 0, 1,+, ·, ) whose atomic elements
p, p ∈ P indicate the two branches of a subformula A &p B



&p

ax ax

⊕1 ⊕1
w

w·p w·p

w·p w·p

A&A A⊕A

∼
&p

ax ax

⊕1
w

w·p w·p

w

A&A A⊕A

Distributivity: (w · p) + (w · p) = w · (p+ p) = w · 1 = w



MALL proof nets

M: Monomial nets [Girard 1996, Laurent & Maieli 2008]

S: Slice nets [Hughes & Van Glabbeek 2005]

C: Conflict nets [Hughes & H 2016]

M S C

De-sequentialization 3

Sequentialization / correctness 6

Composition / cut-elimination ?

Proof equivalence / canonicity 6



Sequent + linking

A , A B , B
A , A⊗ B , B⊕ B

A , A B , B
A , A⊗ B , B⊕ B

A & A , A⊗ B , B⊕ B

A & A A⊗ B B⊕ B

A , A B , B
A , A⊗ B , B⊕ B

A , A B , B
A , A⊗ B , B⊕ B

A & A , A⊗ B , B⊕ B



Slice nets

A & A A ⊗ B B & B

A set of links for each slice

A A ⊗ (B & B) B A, A
B, B B, B
B & B, B

A, A⊗ (B & B), B
But there may be 2n slices, for n the number of &-occurrences
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MALL proof nets

M: Monomial nets [Girard 1996, Laurent & Maieli 2008]

S: Slice nets [Hughes & Van Glabbeek 2005]

C: Conflict nets [Hughes & H 2016]

M S C

De-sequentialization 3 6

Sequentialization / correctness 6 3
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The problem: size v canonicity

Π1
A , C

Π3
D

A , C ⊗ D

Π2
B , C

Π3
D

B , C ⊗ D
A & B , C ⊗ D

∼

Π1
A , C

Π2
B , C

A & B , C
Π3
D

A & B , C ⊗ D

Distributivity:

(a · x) + (a · b) + (y · b)
(a · (x + b)) + (y · b) (a · x) + ((a+ y) · b)



Γ, A, B, C,D &Γ, A, B, C &D&Γ, A &B, C &D ↔
Γ, A, B, C,D&Γ, A &B, C,D &Γ, A &B, C &D

Γ,A,C Γ,A,D
&Γ, A, C & D Γ,B,C Γ,B,D

&Γ, B, C & D
& Γ, A & B, C & D ↔

Γ,A,C Γ,B,C
& Γ, A & B, C Γ,A,D Γ,B,D

& Γ, A & B,D
&Γ, A & B, C & D

Γ, A B,∆, C D,Σ ⊗
B,∆, C ⊗ D,Σ⊗ Γ, A⊗ B,∆, C ⊗ D,Σ ↔

Γ, A B,∆, C⊗ Γ, A⊗ B,∆, C D,Σ ⊗Γ, A⊗ B,∆, C ⊗ D,Σ
Γ, Ai, Bj ⊕jΓ, A1, B1 ⊕ B2⊕i Γ, A1 ⊕ A2, B1 ⊕ B2 ↔

Γ, Ai, Bj⊕i Γ, A1 ⊕ A2, B, Cj ⊕jΓ, A1 ⊕ A2, B1 ⊕ B2
Γ, A B,∆, C,D &

B,∆, C &D⊗ Γ, A⊗ B,∆, C &D ↔
Γ, A B,∆, C,D⊗ Γ, A⊗ B,∆, C,D &Γ, A⊗ B,∆, C &D

Γ, A, Ci Γ, B, Ci
&Γ, A & B, Ci⊕i Γ, A & B, C1⊕ C2 ↔

Γ, A, Ci⊕i Γ, A, C1⊕ C2 Γ, B, Ci⊕i Γ, B, C1⊕ C2
&Γ, A & B, C1⊕ C2

Γ, A B,∆, Ci ⊕iB,∆, C1 ⊕ C2⊗ Γ, A⊗ B,∆, C1 ⊕ C2 ↔
Γ, A B,∆, Ci⊗ Γ, A⊗ B,∆, Ci ⊕iΓ, A⊗ B,∆, C1 ⊕ C2

Γ, Ai, B, C &Γ, A1, B &C⊕i Γ, A1 ⊕ A2, B &C ↔
Γ, Ai, B, C⊕i Γ, A1 ⊕ A2, B, C &Γ, A1 ⊕ A2, B &C

Γ, A, B, C Γ, A, B,D
&Γ, A, B, C & D&Γ, A &B, C & D ↔

Γ, A, B, C&Γ, A &B, C Γ, A, B,D&Γ, A &B,D
&Γ, A &B, C & D



Conflict nets: idea

(strong) canonicity: invariance under all commutations

local canonicity: invariance under local commutations



A, A
A, (A⊕ A) ⊕2 B, B B, B

B, B & B
&

A, (A⊕ A)⊗ B, B & B ⊗

A, A
A, (A⊕ A) ⊕1 B, B
A, (A⊕ A)⊗ B, B ⊗

A, A
A, (A⊕ A) ⊕2 B, B
A, (A⊕ A)⊗ B, B ⊗

A, (A⊕ A)⊗ B, B & B &

A & A, (A⊕ A)⊗ B, B & B &

(A & A) &((A⊕ A)⊗ B), B & B &

((A & A) &((A⊕ A)⊗ B)) &(B & B) &

ax ax

ax ax ax ⊕1 ax ⊕2 ax

⊕2 & ⊗ ⊗
⊗ &

&

&

&



A, A
A, (A⊕ A) ⊕2 B, B B, B

B, B & B
&

A, (A⊕ A)⊗ B, B & B ⊗

A, A
A, (A⊕ A) ⊕1 B, B
A, (A⊕ A)⊗ B, B ⊗

A, A
A, (A⊕ A) ⊕2 B, B
A, (A⊕ A)⊗ B, B ⊗

A, (A⊕ A)⊗ B, B & B &

A & A, (A⊕ A)⊗ B, B & B &

(A & A) &((A⊕ A)⊗ B), B & B &

((A & A) &((A⊕ A)⊗ B)) &(B & B) &

ax ax

ax ax ax ax ax

& ⊗ ⊗
⊗ &

&



A, A
A, (A⊕ A) ⊕2 B, B B, B

B, B & B
&

A, (A⊕ A)⊗ B, B & B ⊗

A, A
A, (A⊕ A) ⊕1 B, B
A, (A⊕ A)⊗ B, B ⊗

A, A
A, (A⊕ A) ⊕2 B, B
A, (A⊕ A)⊗ B, B ⊗

A, (A⊕ A)⊗ B, B & B &

A & A, (A⊕ A)⊗ B, B & B &

(A & A) &((A⊕ A)⊗ B), B & B &

((A & A) &((A⊕ A)⊗ B)) &(B & B) &

ax ax

ax ax ax ax ax

& ⊗ ⊗
⊗

&



A, A
A, (A⊕ A) ⊕2 B, B B, B

B, B & B
&

A, (A⊕ A)⊗ B, B & B ⊗

A, A
A, (A⊕ A) ⊕1 B, B
A, (A⊕ A)⊗ B, B ⊗

A, A
A, (A⊕ A) ⊕2 B, B
A, (A⊕ A)⊗ B, B ⊗

A, (A⊕ A)⊗ B, B & B &

A & A, (A⊕ A)⊗ B, B & B &

(A & A) &((A⊕ A)⊗ B), B & B &

((A & A) &((A⊕ A)⊗ B)) &(B & B) &
ax axax

ax ax

ax ax&

⊗ ⊗⊗

&



A, A
A, (A⊕ A) ⊕2 B, B B, B

B, B & B
&

A, (A⊕ A)⊗ B, B & B ⊗

A, A
A, (A⊕ A) ⊕1 B, B
A, (A⊕ A)⊗ B, B ⊗

A, A
A, (A⊕ A) ⊕2 B, B
A, (A⊕ A)⊗ B, B ⊗

A, (A⊕ A)⊗ B, B & B &

A & A, (A⊕ A)⊗ B, B & B &

(A & A) &((A⊕ A)⊗ B), B & B &

((A & A) &((A⊕ A)⊗ B)) &(B & B) &
ax axax

ax ax

ax ax#
_ __

#



((A & A) &((A⊕ A)⊗ B)) &(B & B)a
b
c

d
f

e
g

a

b c

d e f g#
_ __

#



Conflict nets

Data: (#/__) alternating, n-ary conflict tree T
T ····= ∆ ⊆ Γ | (T # · · · # T) | (T _ · · · _ T)

over an axiom linking (∆ = a, a) over a sequent Γ
Hybrid of focussing and proof nets:

§ a conflict node # represents an ALL + &proof net (&, ⊕, &)
§ a concord node__ represents an MLL + ⊕ proof net (⊗,⊕, &)
§ (⊕/ &) are not confined to a layer

Correctness / sequentialization: by coalescence



De-sequentialization

q
a, a

y = (a, a)
t ΠΓ, A, BΓ, A &B

| = JΠK

t ΠΓ, AΓ, A⊕ B
| = JΠK

t Π1Γ, A Π2
B,∆Γ, A⊗ B,∆

| = JΠ1K__ JΠ2K
t Π1Γ, A Π2Γ, BΓ, A & B

| = JΠ1K # JΠ2K



Coalescence: MLL + ⊕

A

&

B C1 . . . Ck A ⊕ B C1 . . . Ck
⇓ ⇓

A

&

B C1 . . . Ck A ⊕ B C1 . . . Ck

_(∆) ⇒ ∆
C1 . . . Ck A ⊗ B D1 . . . Dk

a b (a _ b _ T1 _ · · · _ Tn)
⇓

C1 . . . Ck A ⊗ B D1 . . . Dk
c (c _ T1 _ · · · _ Tn)



2D ALL coalescence

A & B

C & D

A & B

C & D

A & B

C & D

A & B

C & D

A
&
B

C & D

A
&
B

C & D

A
&
B

C & D

A
&
B

C & D



3D ALL coalescence

A & B , C & D , E & F
A
&
B

C & D

E&
F A

&
B

C & D

E&
F A

&
B

C & D

E&
F A

&
B

C & D

E&
F

A
&
B

C & D

E&
F A

&
B

C & D

E&
F A

&
B

C & D

E&
F A

&
B

C & D

E&
F



3D ALL coalescence

A & B , C & D , E & F
A
&
B

C & D

E&
F A

&
B

C & D

E&
F A

&
B

C & D

E&
F A

&
B

C & D

E&
F

A
&
B

C & D

E&
F A

&
B

C & D

E&
F A

&
B

C & D

E&
F A

&
B

C & D

E&
F



A & B , C & D , E & F

(A, C, E) # (B, C, E) # (A, C, F) # (B, C, F) # (B,D, F) # (B,D, E) # (A,D, E) # (A,D, F)
⇓(A & B, C, E) # (A, C, F) # (B, C & D, F) # (B,D, E) # (A,D, E & F)



Coalescence: ALL +

&

A & B C1 . . . Ck
a

b

(a # b)
⇓

A & B C1 . . . Ck
c

c

# (∆) ⇒ ∆

A & B

an
a1

b1
bm

(a1 # · · · # an # b1 # . . . bm)
⇓((a1 # · · · # an) # (b1 # . . . bm))



Example

A & A A ⊗ B B & B

a
b1

b2

c2 d2

d1c1

(a _ (b1 # b2)) # (c1 _ d1) # (c2 _ d2)



Example

A & A A ⊗ B B & B

a b

c2 d2

d1c1

(a _ b) # (c1 _ d1) # (c2 _ d2)



Example

A & A A ⊗ B B & B

a

c2 d2

d1c1

a # (c1 _ d1) # (c2 _ d2)



Example

A & A A ⊗ B B & B

a

c2

c1

a # c1 # c2



Example

A & A A ⊗ B B & B

a

c2

c1

a # (c1 # c2)



Example

A & A A ⊗ B B & B

a

c

a # c



Example

A & A A ⊗ B B & B

a

a



MALL proof nets

M: Monomial nets [Girard 1996, Laurent & Maieli 2008]

S: Slice nets [Hughes & Van Glabbeek 2005]

C: Conflict nets [Hughes & H 2016]

M S C

De-sequentialization 3 6 3

Sequentialization / correctness 6 3 3

Composition / cut-elimination ? 3 6

Proof equivalence / canonicity 6 3 ∼∼∼



Cut-elimination

Four rewrite steps:

§ axiom–cut–axiom
§ tensor–cut–par
§ with–cut–plus
§ conflict–cut or cut–conflict

Three logical steps and one duplication step

Π1
A , C

Π2
B , C

A & B , C
Π3
C , Γ

A & B , Γ ∼
Π1
A , C

Π3
C , Γ

A , Γ
Π2
B , C

Π3
C , Γ

B , Γ
A & B ,Γ

Bureaucracy or computation?



Thank you


