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Correctness conditions
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» long-trip [Girard 1987]
» switching [Danos & Regnier 1989]

» contractibility [Danos 1990]



MLL contractibility

|. Start from an unlabelled graph with paired *8-edges
2. Contract by:

N/
N

l !

3. Correct & contracts to a single point

Implemented in linear time via union—find

[Danos 1990, Guerrini 1999]
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What about other fragments of linear logic?
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graph (nodes are rules)
normalization: graph rewriting

like lambda-calculus

sequent + axiom linking
normalization: path composition

like categorical coherence
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Two traditions

A B A
A B,A \®/
NA®B,A |
FrA®B A
Computation Canonicity

graph (nodes are rules)
normalization: graph rewriting
like lambda-calculus

good with exponentials

interaction nets', sharing graphs?

sequent + axiom linking
normalization: path composition
like categorical coherence

good with additives

n

'[Lafont 1990] 2[Lamping 1990, Asperti & Guerrini 1998]
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Additive proof nets
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Correctness
» A resolution or slice deletes one child of each &

» Every resolution must contain exactly one link



Comeposition is path composition
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ALL: Coalescence

A A A A A
/- =\ A
Be&C Ba&C B&C B&C B&C

Correct < contracts to a single link between roots

[H & Hughes 2015]
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ALL: Coalescence
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Remark
The set of subsets of a set X ordered by inclusion (C)
» Is a free distributive lattice: AU(BNC)=(AUB)N(AUC)

» Models ALL: AFB = ACB
A&B = ANB
A®dB = AUB

» Correctness: every resolution contains at least one link

P Q P
/ AN

PUQ PUQ



Remark
The set of subsets of a set X ordered by inclusion (C)
» Is a free distributive lattice: AU(BNC)=(AUB)N(AUC)

» Models ALL: AFB = ACB
A&B = ANB
A®dB = AUB

» Correctness: every resolution contains at least one link
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But distributivity destroys coalescence:
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Properties of ALL proof nets
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Additive units: 0, T AT
Equivalence:
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Properties of MLLU proof nets

De-sequentialization P—= N v linear-time
Sequentialization / correctness N=P v linear-time
Composition / cut-elimination N; o Ny v P-time
?
PP~ P
Proof equivalence / canonicity ﬂ H % PSPACE



Proof nets and complexity

MLL MLLU
De-sequentialization 4 4
Sequentialization / correctness V2 v
Composition / cut-elimination 4 4
Proof equivalence / canonicity /! ¥

'[Girard 1987]; 2[Guerrini 1999]; 3[Hu 1999];
4IH 20117; °[H & Houston 2014]; ®[H & Hughes 2015]
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Monomial nets

[ A [,B [ A

[ A&B LA ©A
P P A BP A
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Links are indexed by monomial weights: elements

Pr-p2-P3---Pn - q-G-G3---qp,

from a boolean algebra (P, 0, |, +, -, ) whose atomic elements
p,p € P indicate the two branches of a subformula A &, B
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Distributivity: (w-p)+(w-p)
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MALL proof nets

M: Monomial nets [Girard 1996, Laurent & Maieli 2008]
S:  Slice nets [Hughes & Van Glabbeek 2005]
C: Conflict nets [Hughes & H 2016]

M
De-sequentialization 4
Sequentialization / correctness x

Composition / cut-elimination

-~

Proof equivalence / canonicity x



Sequent + linking
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MALL proof nets

M: Monomial nets [Girard 1996, Laurent & Maieli 2008]
S:  Slice nets [Hughes & Van Glabbeek 2005]
C: Conflict nets [Hughes & H 2016]

M
De-sequentialization 4
4

Sequentialization / correctness

-~

Composition / cut-elimination
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Proof equivalence / canonicity x



The problem: size v canonicity

ol I3 P3 M3 0l [

A C D B,C D A C B,C M;

A, C®D B,C®D ~ A&B, C D
A&B,C®D A&B,C®D

Distributivity:
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Conflict nets: idea

(strong) canonicity: invariance under all commutations

local canonicity: invariance under local commutations
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Conflict nets

Data: (#/—) alternating, n-ary conflict tree T
To=ACT|(T#---#T)|(T~---~T)

over an axiom linking (A = a, @) over a sequent [

Hybrid of focussing and proof nets:

» a conflict node # represents an ALL + %8 proof net (&, @, 8)
» a concord node — represents an MLL + @ proof net (®, @, ®)

» (@/8) are not confined to a layer

Correctness / sequentialization: by coalescence



De-sequentialization

la,a] = (a,0)
M
F,A,BH _ [n]
[LA®BB
I
A - [n]
[LA®B
at My 1
A B,A = [M]~[N]
A®B,A
[ [ ]
A B = [M]#[N,]
[ A&B




Coalescence: MLL + @

[T 1 |
ABB C ... ¢ A®dB C ... ¢

U J
T 1
A®B C ... G A®B C ... G
~A) = A
1% T b Ty o
C C. AgB D, ... p, @°b~T To)
U

[ 1 [ | (c~Ti~-~Tp)



2D ALL coalescence

c &D c&D c&D

Cc&D

g%y

g%V

g%V



3D ALL coalescence

A&B, C&D, E&F
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3D ALL coalescence

A&B, C&D, E&F

Cc&D C&D Cc&D

C&D

g%V

cC&D Cc&D c&D

Cc&D

g%y



A&B, C&D, E&F

(A, C,E) # (B, C,E) # (A, C,F) # (B,C,F)#(B,D,F) # (B,D,E) # (A, D,E)#(A,D,F)

U
(A&B,C,E) # (A, C,F) # (B,C&D,F) # (B,D,E) # (A, D,E&F)



Coalescence: ALL +%

I—a—|—|
A&B C ... ¢ (a#b)
Ly |
#(A) => A
U
T 1 c
A&B C ... G

(@ #---#a,#by#...by)
S L R et |—bm— U

((ay#---#ay)# (b #...bm))




Example

(aﬂ(b| #bz))#(q Ad|)#(C2Ad2)



Example

(@ ~b)# (c) ~d|) # (ca ~da)



Example
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a#cC| #Q



Example

a#(c| #Cz)



Example

a#c



Example



MALL proof nets

M: Monomial nets [Girard 1996, Laurent & Maieli 2008]
S:  Slice nets [Hughes & Van Glabbeek 2005]
C: Conflict nets [Hughes & H 2016]

M S C
De-sequentialization v X 4
Sequentialization / correctness x v v
Composition / cut-elimination ? v 4
Proof equivalence / canonicity x 4 ~



Cut-elimination

Four rewrite steps:
» axiom—cut—axiom
» tensor—cut—par
» with—cut—plus

» conflict—cut or cut—conflict

Three logical steps and one duplication step

I [, I 7|_|3 [, 7ﬂ3
A,C B,C 7|_|3 A,C c, I B,C c,
A&B,C c,r - AT B, T

A&B, I A&B,I

Bureaucracy or computation?



Thank you



