Complexity bounds for sum-product logic via additive proof nets and Petri nets

Willem Heijltjes*
and
Dominic Hughes**

LICS, Kyoto, 6 July 2015

Purely geometric proofs for propositional classical logic

[DH, Proofs without syntax, 2005]

a multiplicative proof net

a multiplicative proof net

an additive proof net (that must be functional)

Multiplicative proof nets

Correctness

- ► A switching chooses one edge of each (%)
- Every switching must produce a tree (connected acyclic graph)

[Girard 1987, Danos & Regnier 1989]

Contractibility

- 1. Start from an unlabelled graph with paired 8-edges
- 2. Contract by:

3. Correct ⇔ contracts to a single point

Implemented in linear time via union-find

[Danos 1990, Guerrini 1999]

$\overline{Q^\perp,Q}$

$\overline{Q^{\perp},Q}$

$$\frac{\overline{P^{\perp},P}}{(P^{\perp}\otimes Q^{\perp}),P,Q}$$

$$\frac{(P^{\perp}\otimes Q^{\perp}),P,Q}{(P^{\perp}\otimes Q^{\perp}),P\ \&\ Q}$$

$$\frac{\overline{P^{\perp},P}}{(P^{\perp}\otimes Q^{\perp}),P,Q}$$
$$\frac{(P^{\perp}\otimes Q^{\perp}),P\otimes Q}{(P^{\perp}\otimes Q^{\perp}),P\otimes Q}$$

$$\frac{\overline{P^{\perp},P} \qquad \overline{Q^{\perp},Q}}{(P^{\perp} \otimes Q^{\perp}),P,Q}$$

$$\frac{(P^{\perp} \otimes Q^{\perp}),P \otimes Q}{(P^{\perp} \otimes Q^{\perp}) \otimes P \otimes Q}$$

For multiplicative linear logic:

- ▶ We have contractibility as abstract sequentialization
- Proof net correctness is linear-time decidable

For multiplicative linear logic:

- We have contractibility as abstract sequentialization
- ▶ Proof net correctness is linear-time decidable

What about additive linear logic?

(We use A + B and $A \times B$ instead of $A \oplus B$ and $A \otimes B$)

Correctness

- ► A resolution chooses one branch of each + above and × below
- Every resolution must contain exactly one link

(We use A + B and $A \times B$ instead of $A \oplus B$ and $A \otimes B$)

Correctness

- ► A resolution chooses one branch of each + above and × below
- Every resolution must contain exactly one link

(We use A + B and $A \times B$ instead of $A \oplus B$ and $A \otimes B$)

Correctness

- ► A resolution chooses one branch of each + above and × below
- Every resolution must contain exactly one link

(We use A + B and $A \times B$ instead of $A \oplus B$ and A & B)

Correctness

- ► A resolution chooses one branch of each + above and × below
- Every resolution must contain exactly one link

(We use A + B and $A \times B$ instead of $A \oplus B$ and $A \otimes B$)

Correctness

- ► A resolution chooses one branch of each + above and × below
- Every resolution must contain exactly one link

Additive proof nets

(We use A + B and $A \times B$ instead of $A \oplus B$ and $A \otimes B$)

Correctness

- ► A resolution chooses one branch of each + above and × below
- Every resolution must contain exactly one link

[DH & Van Glabbeek 2005]

Composition is path composition

Additive linear logic / sum-product logic

Formulae:

$$A, B, C ::= P \mid A+B \mid A \times B$$

Sequents: $A \vdash B$ (or $\vdash A^{\perp}$, B where $(\cdot)^{\perp}$ is DeMorgan dualization)

Sequent calculus:

$$\frac{A \vdash B_{i}}{A \vdash B_{0} + B_{1}} \qquad \frac{A \vdash B \qquad A \vdash C}{A \vdash B \times C}$$

$$\frac{A \vdash C \qquad B \vdash C}{A + B \vdash C} \qquad \frac{A_{i} \vdash B}{A_{0} \times A_{1} \vdash B}$$

Additive proof nets

A linking for a sequent $A \vdash B$ is a set of links C - D:

- ► C is a subformula of A
- ▶ D is a subformula of B
- → C D is an axiom link if C and D are the same atom P

Correctness

- A resolution deletes one child of each + in A and x in B
- A linking is discrete if every resolution contains one link

A proof net is a discrete axiom linking

Petri nets

A model of concurrent computation

- A set \mathcal{P} of places \bigcirc
- ► A set \Rightarrow of transitions $S \Rightarrow T$ where $S, T \subseteq P$
- ▶ A configuration, a set $M \subseteq P$ of places that store a token •

Firing: if $S \rightarrow T$ and $S \subseteq M$ then $M \rightarrow (M \setminus S) \cup T$

(Models where places store multiple tokens have multisets S, T, and M)

Encoding + and \times

The nets $\mathcal{N}(P+Q)$ and $\mathcal{N}(P\times Q)$

Encoding a proof net

The net $\mathcal{N}(A \vdash B)$ is the cartesian product $\mathcal{N}(A^{\perp}) * \mathcal{N}(B)$ Places: $\mathcal{P} = \mathcal{P}_A \times \mathcal{P}_B$ Transitions:

$$\{p\} \times S_B \longrightarrow \{p\} \times T_B \qquad (p \in \mathcal{P}_A, S_B \longrightarrow T_B)$$

 $S_A \times \{q\} \longrightarrow T_A \times \{q\} \qquad (S_A \longrightarrow T_A, q \in \mathcal{P}_B)$

Configuration: a token in (p, q) for each axiom link P - Q

The net is correct if a single token at the root remains

Coalescence

$$\begin{array}{c}
A \\
/ \\
B \times C
\end{array}
\rightarrow
\begin{array}{c}
A \\
| \\
B \times C
\end{array}$$

$$\begin{array}{cccc} A + B & A + B \\ & & & \\ C & & C \end{array}$$

 $P \times Q$

 $\overline{Q \vdash Q}$

 $\overline{P \vdash P}$

 $\overline{Q \vdash Q}$

 $\frac{\overline{P \vdash P}}{P \times Q \vdash P}$

$$\overline{Q \vdash Q}$$

$$\overline{Q \vdash Q}$$

$$\frac{\overline{P \vdash P}}{P \times Q \vdash P}$$

$$\frac{\overline{Q \vdash Q}}{P \times Q \vdash Q} \quad \frac{\overline{P \vdash P}}{P \times Q \vdash P}$$

$$\overline{Q \vdash Q}$$
 $\overline{P \vdash P}$

$$\frac{\overline{Q \vdash Q}}{P \times Q \vdash P}$$

$$\frac{\overline{Q \vdash Q}}{P \times Q \vdash Q} \quad \frac{\overline{P \vdash P}}{P \times Q \vdash P}$$

$$\frac{\overline{Q \vdash Q}}{P \times Q \vdash Q} \frac{\overline{P \vdash P}}{P \times Q \vdash P}$$
$$\frac{P \times Q \vdash Q \times P}{P \times Q \vdash Q \times P}$$

Results

Theorem

Coalescence for $L: A \vdash B$ gives $\{A - B\}$ if and only if L is discrete

Results

Theorem

Coalescence for $L: A \vdash B$ gives $\{A - B\}$ if and only if L is discrete

Theorem

Correctness of an additive proof net $L : A \vdash B$ is decidable in time

$$\mathcal{O}(|A| \times |B|)$$

Results

Theorem

Coalescence for $L : A \vdash B$ gives $\{A - B\}$ if and only if L is discrete

Theorem

Correctness of an additive proof net $L : A \vdash B$ is decidable in time

$$\mathcal{O}(|A| \times |B|)$$

Theorem

Correctness of an additive proof net $L : A \vdash B$ is decidable in time

$$\mathcal{O}(|L| \times (dA + dB) \times max(log|A|, log|B|))$$

For additive linear logic:

- ▶ We have coalescence as abstract sequentialization
- ► Proof net correctness is (almost) linear-time decidable

Remark

The set of subsets of a set X ordered by inclusion (\subseteq)

- ▶ Is a free distributive lattice: $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
- ► Models ALL: $A \vdash B \implies A \subseteq B$ $A \times B \implies A \cap B$ $A + B \implies A \cup B$
- ► Correctness: every resolution contains at least one link

Remark

The set of subsets of a set X ordered by inclusion (\subseteq)

- ▶ Is a free distributive lattice: $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
- ► Models ALL: $A \vdash B \Rightarrow A \subseteq B$ $A \times B \Rightarrow A \cap B$ $A + B \Rightarrow A \cup B$
- Correctness: every resolution contains at least one link

But distributivity destroys coalescence:

$$(A \cup B) \cap (A \cup C)$$

$$A \cup (B \cap C)$$

. . .

More results

▶ Proof search on $A \vdash B$ is $\mathcal{O}(|A| \times |B|)$

More results

▶ Proof search on $A \vdash B$ is $\mathcal{O}(|A| \times |B|)$

For additive linear logic with units:

- ▶ Proof search on $A \vdash B$ is $\mathcal{O}(|A| \times |B|)$
- ► Correctness of $L : A \vdash B$ is $\mathcal{O}(|A| \times |B|)$

More results

▶ Proof search on $A \vdash B$ is $\mathcal{O}(|A| \times |B|)$

For additive linear logic with units:

- ▶ Proof search on $A \vdash B$ is $\mathcal{O}(|A| \times |B|)$
- ► Correctness of $L : A \vdash B$ is $\mathcal{O}(|A| \times |B|)$

For first-order additive linear logic:

Proof search is NP-complete

Further work

- First-order proofs without syntax
- Coalescence for MALL-nets
- ► Proof search in classical logic