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Linear logic proof nets



Linear Logic:

» classical and computationally meaningful

» sequent calculus not natural deduction
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Canonical proof nets

» canonical for proof equivalence

» independent of proofs by a correctness criterion




Canonical proof nets

» MLL™  [Girard 1987]

» ALL™ [Hu 1999; Hughes 2002]

» MALL™ [Hughes & Van Glabbeek 2005]
» ALL [Heijltjes 201 1]

Main result

» MLL No: proof equivalence is too hard (PSPACE-complete)



MLL proof equivalence
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Proof equivalence

~

x-Autonomous categories

~

Proof net equivalence

(also generated by: rewire one jump preserving correctness)

[Seely 1989; Blute, Cockett, Seely & Trimble 1996; Hughes 2012]



Main result

MLL proof equivalence is PSPACE-complete

Corollary

Proof nets with

» canonicity

» tractable proof net equality

» tractable translation from proofs

would need P=PSPACE



PSPACE and Constraint Logic



PSPACE

» Turing machines with polynomial space and unbounded time

» canonical problem: quantified Boolean formulae (QBF)

NP, co-NP C PSPACE C EXPTIME



Constraint Logic [Hearn & Demaine 2005, 2008]

Constraint Graphs:

» weighted edges
» sum weight of incoming edges > vertex inflow constraint

» step: reverse one edge

Equivalence of constraint graphs is PSPACE-complete









olv\m_u/

NV,

7

© (e ©



olv\m_u/

J/

’

© (e ©



7
J/

\vam—u
O



7
J/

/]



© m— ©

J/

N

/]

© (e ©



© m— ©

NV,

N

/]

© (e ©









\-)m—o




Encoding Constraint Logic
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Provable iffi = nand j = m
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Provable iffi = nand j = m (ori = mand j = n)



3-Partition (NP-complete) [Garey & Johnson 1975]
» multiset {i, ..., i3,} with sum n x k
» partition into n triples {ig, iy, ic} with sum k

» kl4 < i<kl = anysubset with sum k is a triple
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» vertices connected by ®

» note: edges may connect to every vertex
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» constraint units for vertex m: ®

» weight units for edge i — j: J_' % J_i_j k't J_k
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MLL proof equivalence is PSPACE-complete

» PSPACE-hard by the reduction from Constraint Logic
» in PSPACE by Savitch’s Theorem (PSPACE = NPSPACE)



The End



