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Linear logic proof nets



Linear Logic:

§ classical and computationally meaningful
§ sequent calculus not natural deduction
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B, B⊥ C, C⊥
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A, A⊥ ⊗ B, B⊥ ⊗ C, C⊥
∼

A, A⊥ B, B⊥
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Canonical proof nets

§ canonical for proof equivalence
§ independent of proofs by a correctness criterion

A B

⊗ B⊥

&

C⊥

⊗ &

D ⊗
D⊥

&

A⊥ C



Canonical proof nets

§ MLL− [Girard 1987]

§ ALL− [Hu 1999; Hughes 2002]

§ MALL− [Hughes & Van Glabbeek 2005]

§ ALL [Heijltjes 2011]

Main result

§ MLL No: proof equivalence is too hard (PSPACE-complete)



MLL proof equivalence
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Proof equivalence

∼

∗-Autonomous categories

∼

Proof net equivalence
(also generated by: rewire one jump preserving correctness)

[Seely 1989; Blute, Cockett, Seely & Trimble 1996; Hughes 2012]



Main result

MLL proof equivalence is PSPACE-complete

Corollary

Proof nets with

§ canonicity
§ tractable proof net equality
§ tractable translation from proofs

would need P=PSPACE



PSPACE and Constraint Logic



PSPACE

§ Turing machines with polynomial space and unbounded time
§ canonical problem: quantified Boolean formulae (QBF)

NP, co-NP ⊆ PSPACE ⊆ EXPTIME



Constraint Logic [Hearn & Demaine 2005, 2008]
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Constraint Graphs:

§ weighted edges
§ sum weight of incoming edges ≥ vertex inflow constraint
§ step: reverse one edge

Equivalence of constraint graphs is PSPACE-complete

























Encoding Constraint Logic
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⊥i & ⊥j

1n ⊗ 1m

Provable iff i = n and j = m

(or i = m and j = n)



⊥i & ⊥j

1n ⊗ 1m

Provable iff i = n and j = m (or i = m and j = n)



3-Partition (NP-complete) [Garey & Johnson 1975]

§ multiset {i1, . . . , i3n} with sum n× k
§ partition into n triples {ia, ib, ic} with sum k
§ k/4 < i < k/2 ⇒ any subset with sum k is a triple

⊥i1 ⊥i2 ⊥i3 ⊥i4 ⊥i5 ⊥i6 · · · ⊥ ⊥ ⊥in

1k ⊗ 1k ⊗ · · · ⊗ 1k
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§ vertices connected by ⊗
§ note: edges may connect to every vertex
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§ constraint units for vertex m: 1m ⊗1n

§ weight units for edge i− j: ⊥i &⊥i−j &⊥k

§ i ≡ j ≡ 1 (mod 3)
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§ weight sink 1m
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MLL proof equivalence is PSPACE-complete

§ PSPACE-hard by the reduction from Constraint Logic
§ in PSPACE by Savitch’s Theorem (PSPACE = NPSPACE)



The End


