

No proof nets for MLL with units

Proof equivalence in MLL is PSPACE-complete

Willem Heijltjes*
and
Robin Houston**

CSL-LICS, 16 July 2014

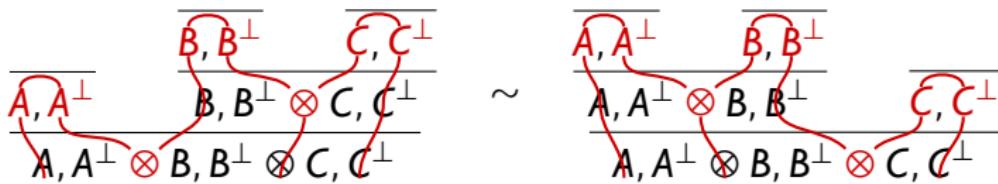
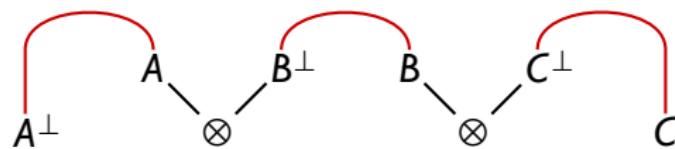
* University of Bath

** Independent

Linear logic proof nets

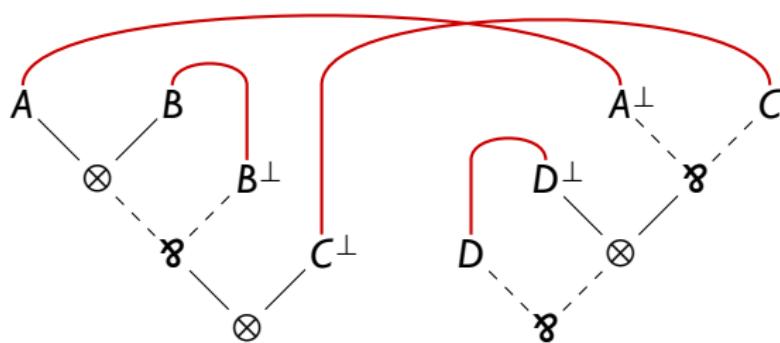
Linear Logic:

- ▶ classical and computationally meaningful
- ▶ sequent calculus not natural deduction



Canonical proof nets

- ▶ canonical for proof equivalence
- ▶ independent of proofs by a correctness criterion



Canonical proof nets

- ▶ **MLL⁻** [Girard 1987]
- ▶ **ALL⁻** [Hu 1999; Hughes 2002]
- ▶ **MALL⁻** [Hughes & Van Glabbeek 2005]
- ▶ **ALL** [Heijltjes 2011]

Main result

- ▶ **MLL** No: proof equivalence is too hard (PSPACE-complete)

MLL proof equivalence

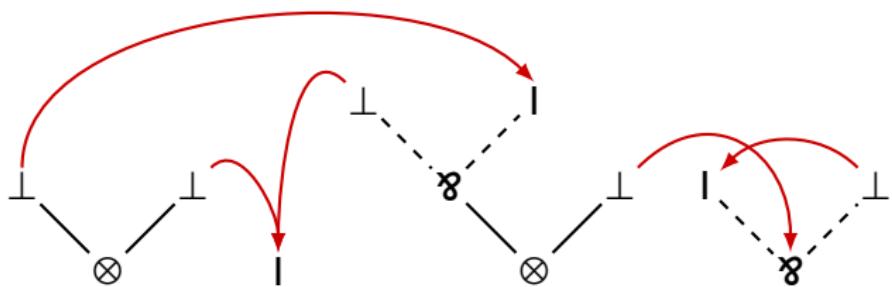
$$A, B, C := \top \mid \perp \mid A \otimes B \mid A \wp B$$

$$\overline{\top}$$

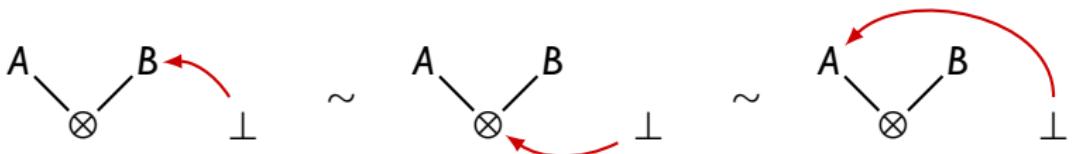
$$\frac{\Gamma}{\Gamma, \perp}$$

$$\frac{\Gamma, A \quad B, \Delta}{\Gamma, A \otimes B, \Delta}$$

$$\frac{\Gamma, A, B}{\Gamma, A \wp B}$$

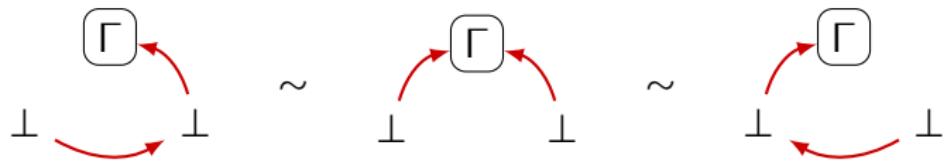


$$\frac{\Gamma, A \quad B, \Delta}{\Gamma, A \otimes B, \Delta, \perp} \sim \frac{\Gamma, A \quad B, \Delta}{\frac{\Gamma, A \otimes B, \Delta}{\Gamma, A \otimes B, \Delta, \perp}} \sim \frac{\Gamma, A}{\frac{\perp, \Gamma, A \quad B, \Delta}{\perp, \Gamma, A \otimes B, \Delta}}$$

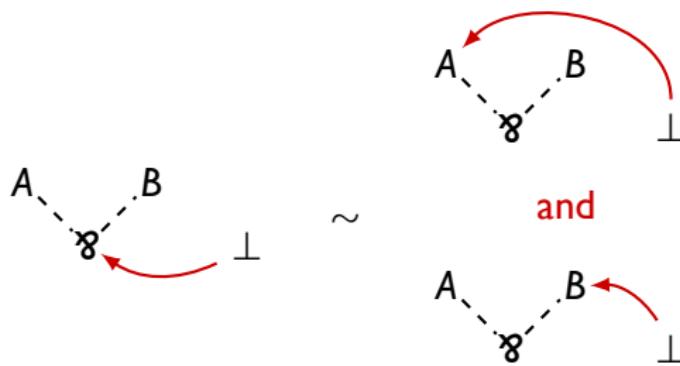


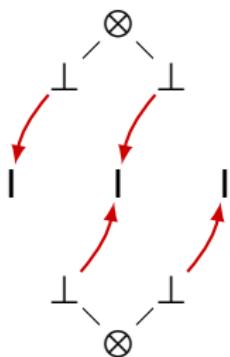
$$\frac{\Gamma}{\Gamma, \perp} \quad \sim \quad \frac{\Gamma}{\perp, \Gamma}$$

$$\frac{}{\perp, \Gamma, \perp} \quad \quad \frac{}{\perp, \Gamma, \perp}$$

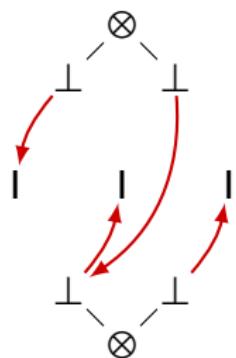


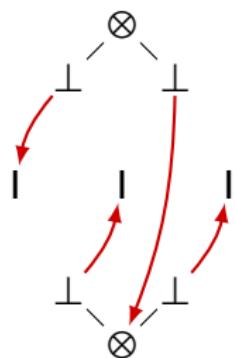
$$\begin{array}{c}
 \Gamma, A, B \\
 \hline
 \Gamma, A \otimes B \\
 \hline
 \Gamma, A \otimes B, \perp
 \end{array}
 \quad \sim \quad
 \begin{array}{c}
 \Gamma, A, B \\
 \hline
 \Gamma, A, B, \perp \\
 \hline
 \Gamma, A \otimes B, \perp
 \end{array}$$

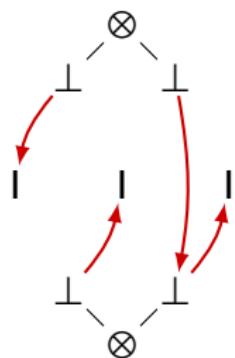


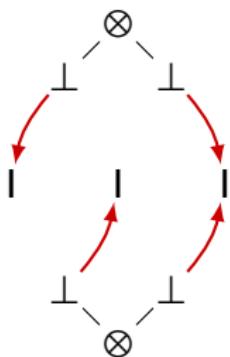


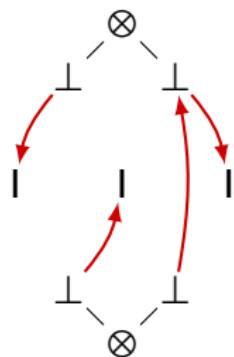
$\perp \otimes \perp, |, |, |, \perp \otimes \perp$

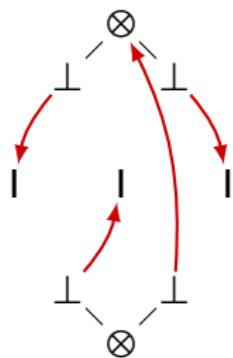


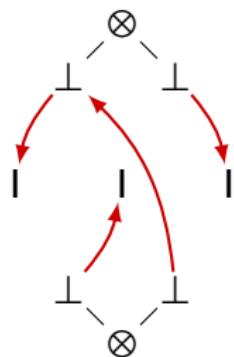


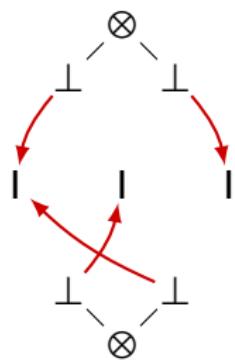


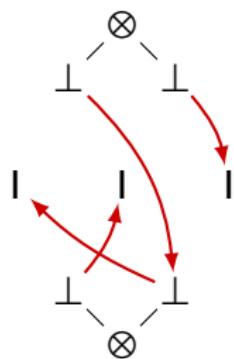


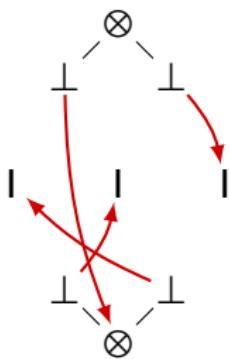


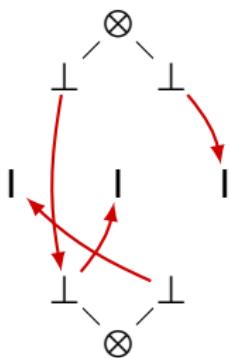


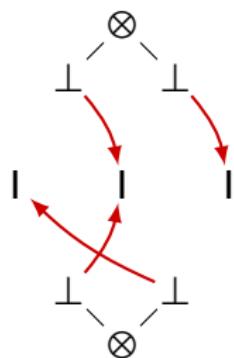












Proof equivalence

~

*-Autonomous categories

~

Proof net equivalence

(also generated by: rewire **one jump** preserving **correctness**)

[Seely 1989; Blute, Cockett, Seely & Trimble 1996; Hughes 2012]

Main result

MLL proof equivalence is PSPACE-complete

Corollary

Proof nets with

- canonicity
- tractable proof net equality
- tractable translation from proofs

would need P=PSPACE

PSPACE and Constraint Logic

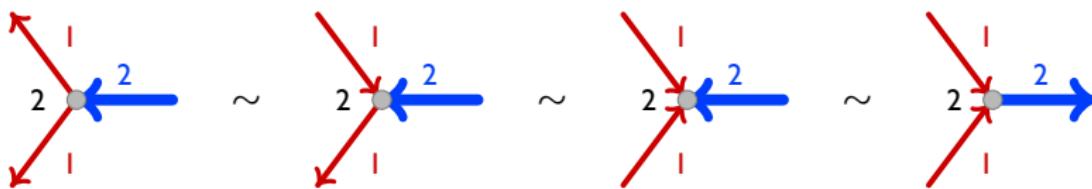
PSPACE

- ▶ Turing machines with **polynomial space** and **unbounded time**
- ▶ canonical problem: **quantified Boolean formulae (QBF)**

$$\text{NP, co-NP} \subseteq \text{PSPACE} \subseteq \text{EXPTIME}$$

Constraint Logic

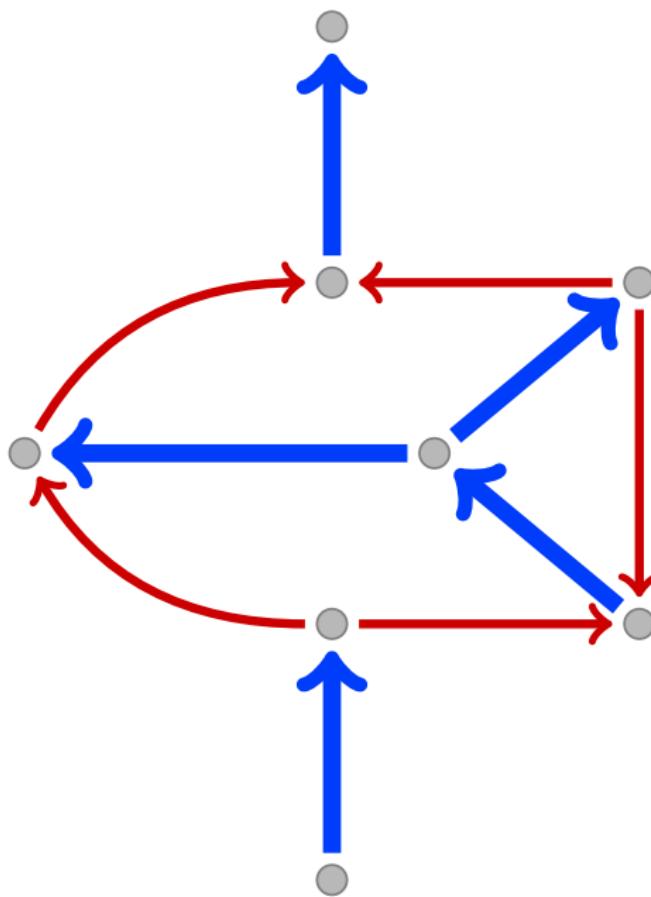
[Hearn & Demaine 2005, 2008]

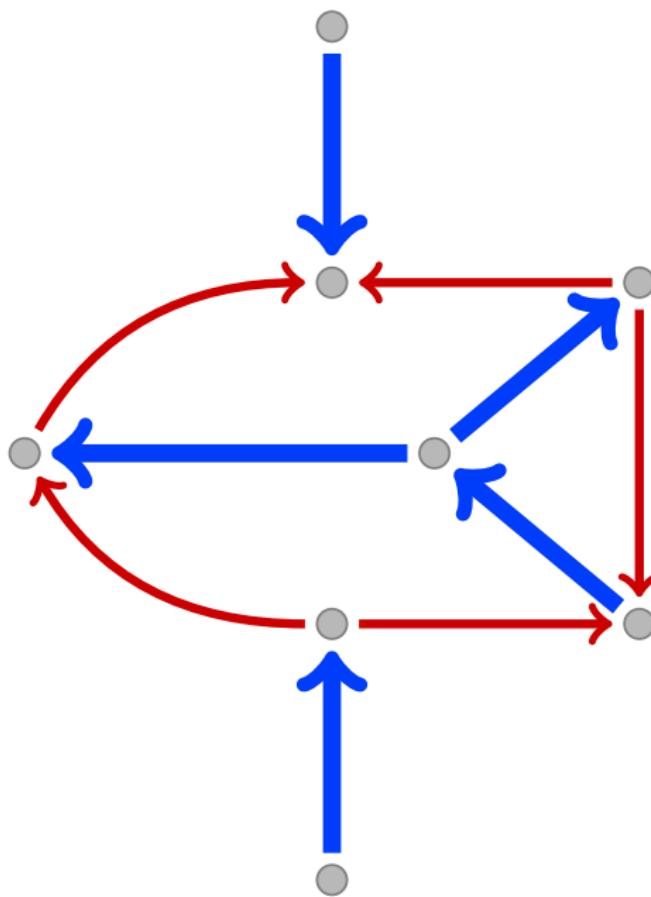


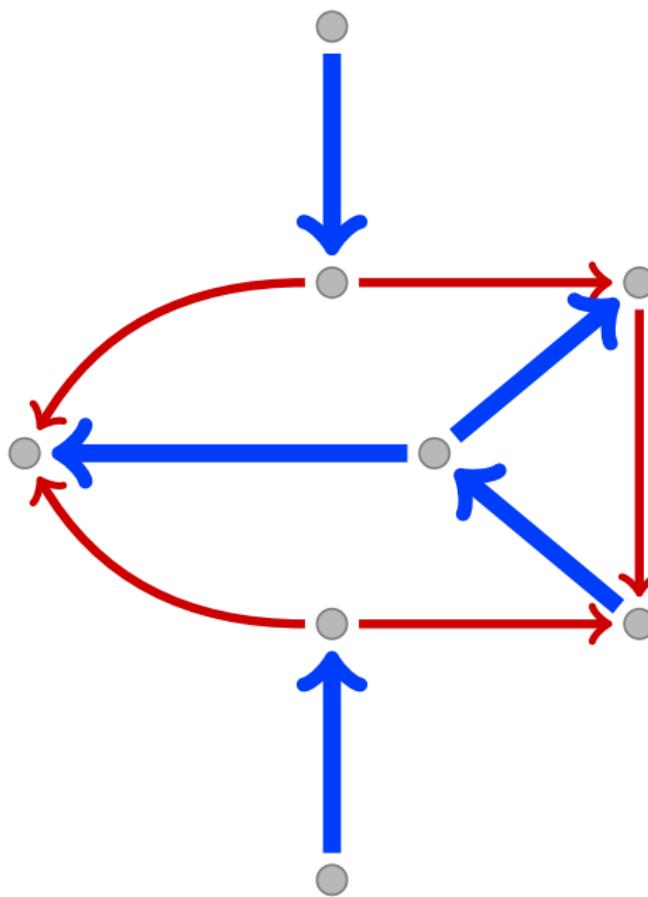
Constraint Graphs:

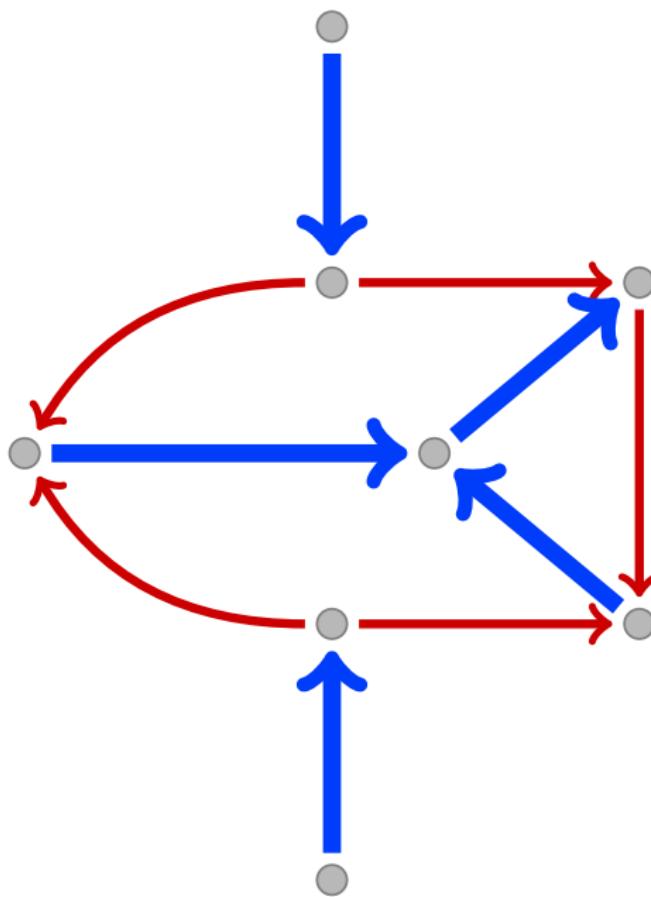
- ▶ **weighted** edges
- ▶ sum weight of incoming edges \geq vertex **inflow constraint**
- ▶ **step:** reverse one edge

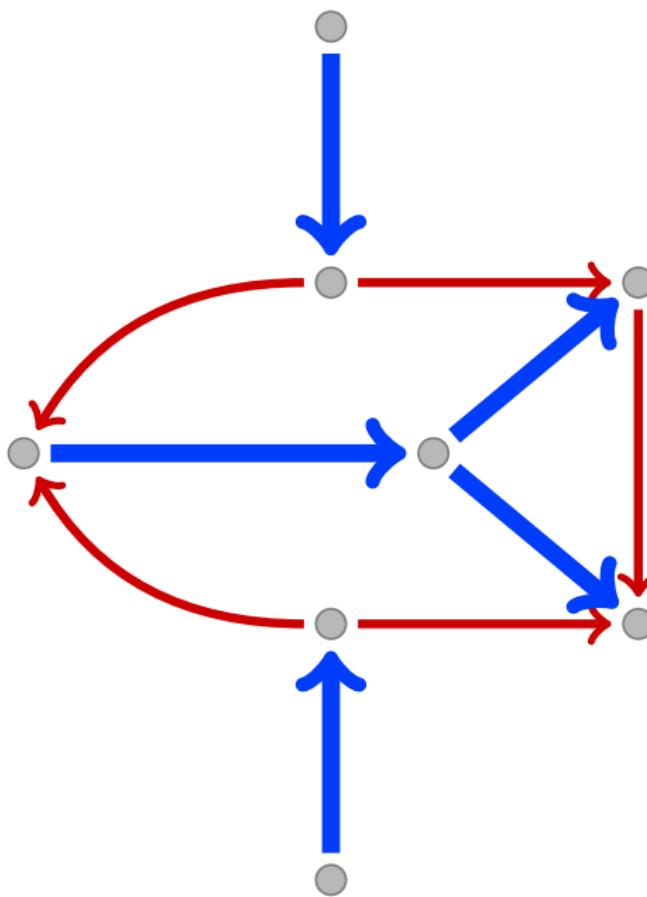
Equivalence of constraint graphs is PSPACE-complete

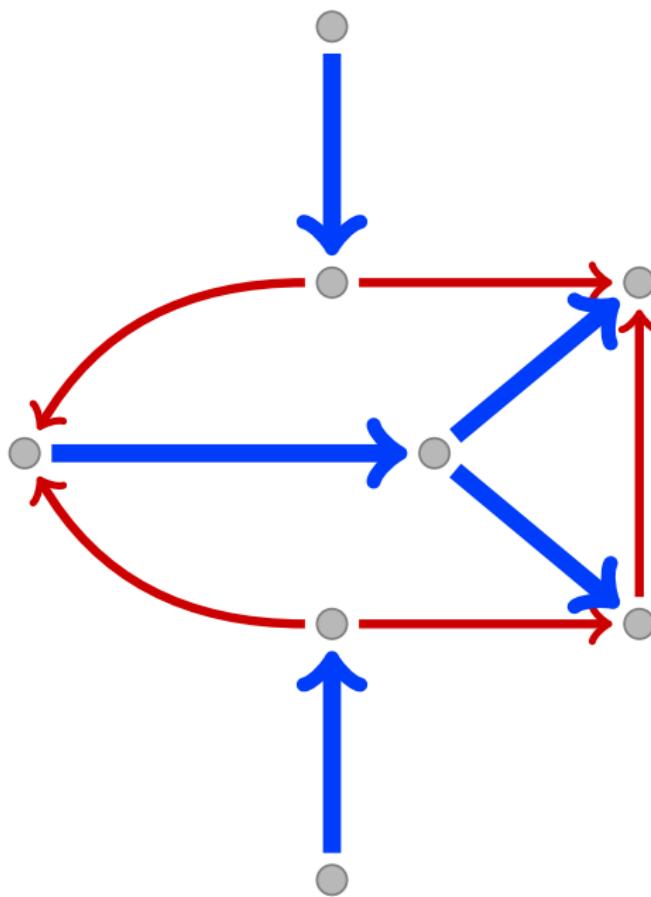


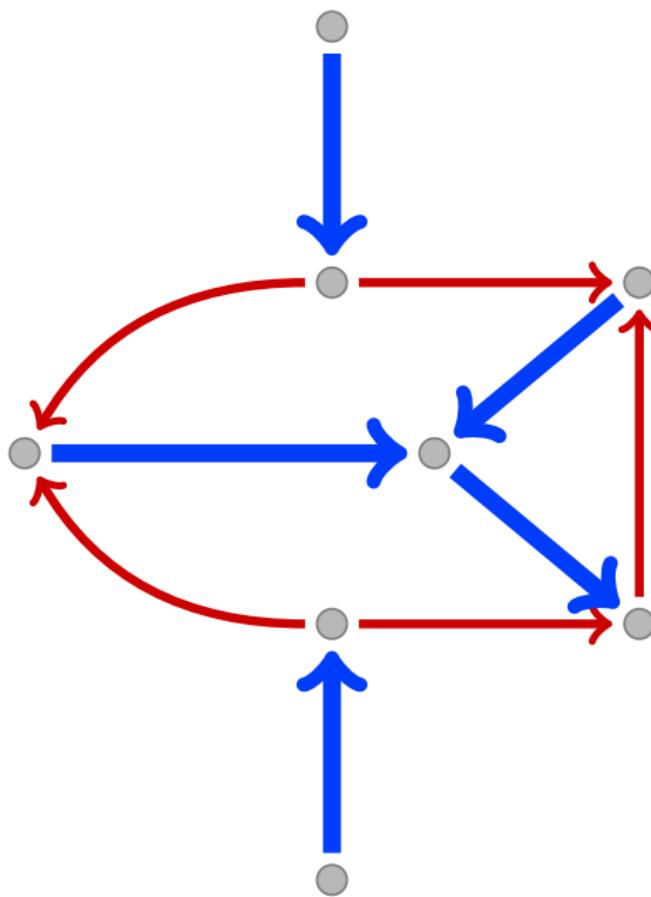


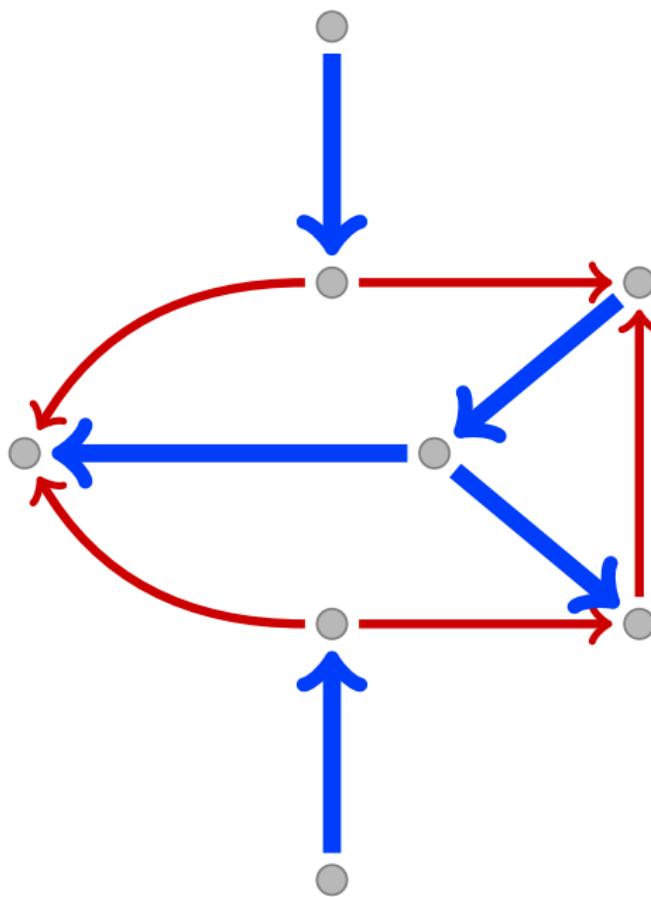


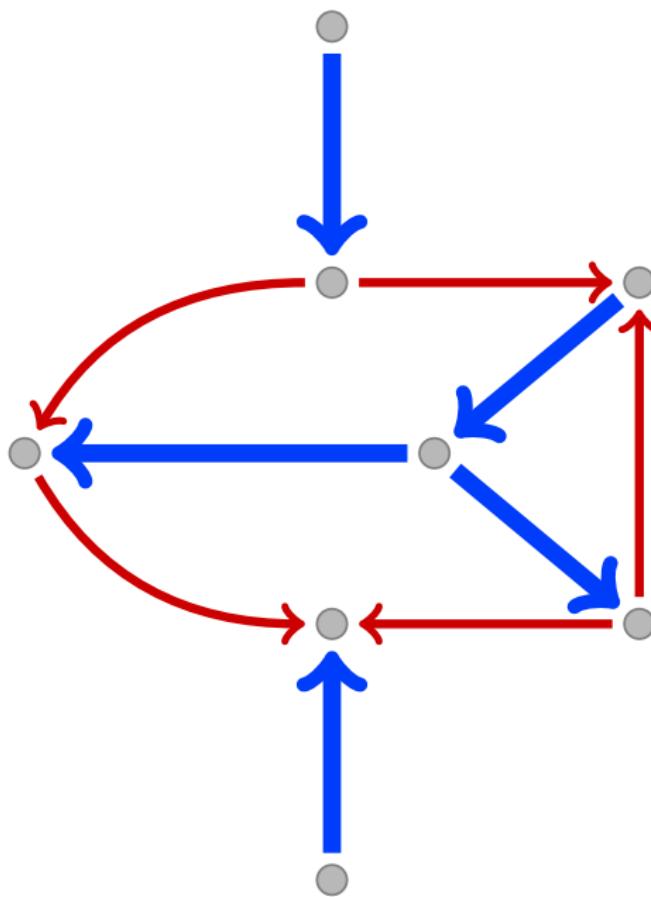


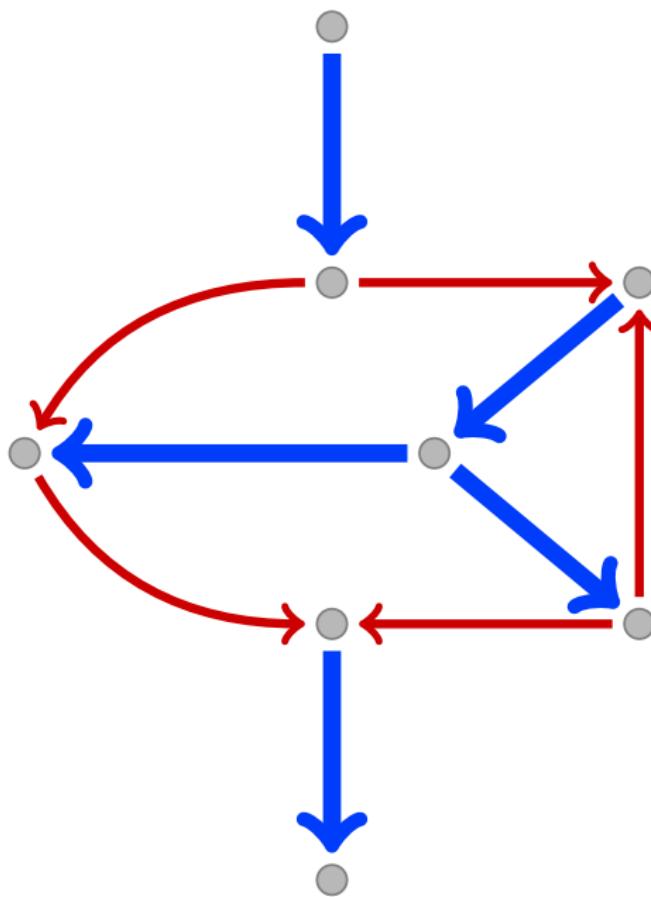


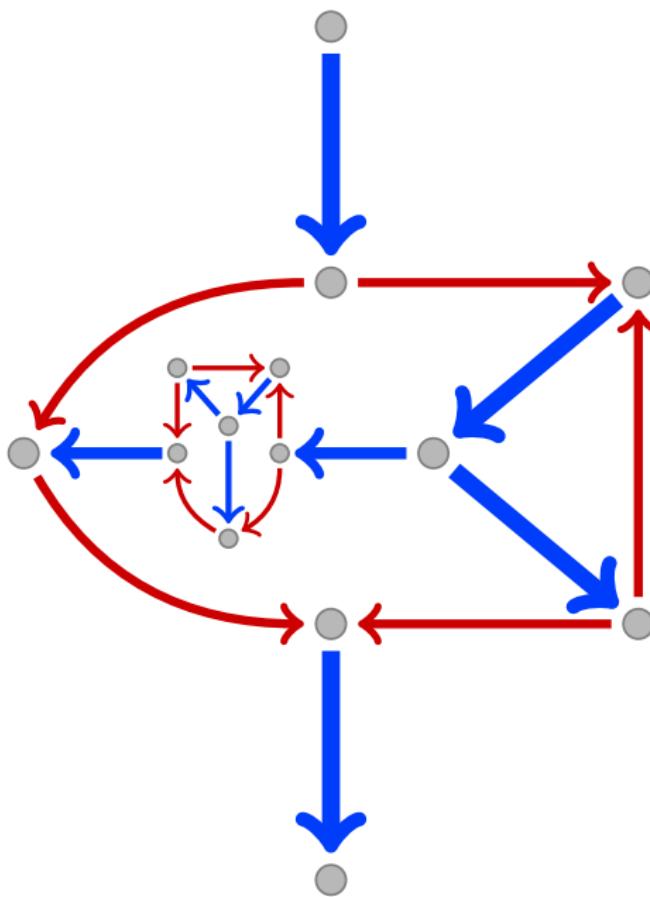












Encoding Constraint Logic

$$\perp^n \quad \underbrace{\perp \otimes \dots \otimes \perp}_{n+1}$$

$$|{}^n \quad \underbrace{| \otimes \dots \otimes |}_{n+1}$$

$$\perp^i \quad \perp^j \quad |^{i+j}$$

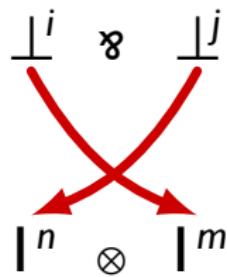
$$\perp^2 \quad \perp^3 \quad |^5$$

$$\perp \otimes \perp \otimes \perp \quad \perp \otimes \perp \otimes \perp \otimes \perp$$

$$| \otimes | \otimes | \otimes | \otimes | \otimes |$$

$$\begin{array}{c} \perp^i \otimes \perp^j \\ \downarrow \qquad \downarrow \\ |^n \otimes |^m \end{array}$$

Provable iff $i = n$ and $j = m$



Provable iff $i = n$ and $j = m$ (or $i = m$ and $j = n$)

3-Partition (NP-complete)

[Garey & Johnson 1975]

- ▶ multiset $\{i_1, \dots, i_{3n}\}$ with sum $n \times k$
- ▶ partition into n triples $\{i_a, i_b, i_c\}$ with sum k
- ▶ $k/4 < i < k/2 \Rightarrow$ any subset with sum k is a triple

3-Partition (NP-complete)

[Garey & Johnson 1975]

- multiset $\{i_1, \dots, i_{3n}\}$ with sum $n \times k$
- partition into n triples $\{i_a, i_b, i_c\}$ with sum k
- $k/4 < i < k/2 \Rightarrow$ any subset with sum k is a triple

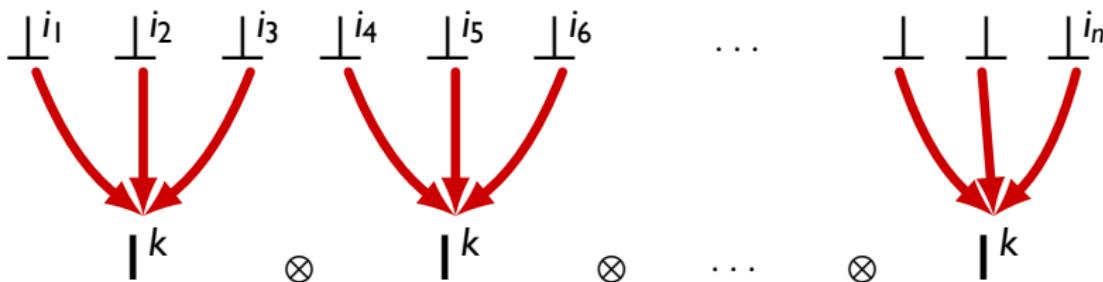
$\perp^{i_1} \quad \perp^{i_2} \quad \perp^{i_3} \quad \perp^{i_4} \quad \perp^{i_5} \quad \perp^{i_6} \quad \dots \quad \perp \quad \perp \quad \perp^{i_n}$

$|^k \quad \otimes \quad |^k \quad \otimes \quad \dots \quad \otimes \quad |^k$

3-Partition (NP-complete)

[Garey & Johnson 1975]

- multiset $\{i_1, \dots, i_{3n}\}$ with sum $n \times k$
- partition into n triples $\{i_a, i_b, i_c\}$ with sum k
- $k/4 < i < k/2 \Rightarrow$ any subset with sum k is a triple



- ▶ **vertices** connected by \otimes
- ▶ **note:** edges may connect to **every vertex**

$$\vdash \perp \otimes \left(\begin{array}{c} W(a, b) \end{array} \right)$$
$$\vdash \wp \left(\begin{array}{c} C(a) \end{array} \right) \otimes \vdash \wp \left(\begin{array}{c} C(b) \end{array} \right)$$

$$\perp \otimes \left(\begin{array}{c} W(a, b) \end{array} \right)$$

$$\perp \otimes \left(\perp^i \wp \perp^j \wp \perp^k \right)$$

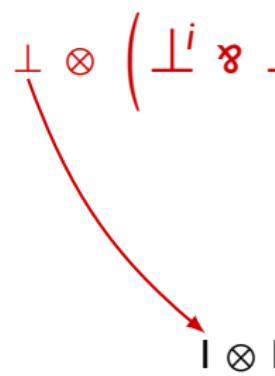
$$| \wp \left(|^i \otimes |^{j+k} \right) \otimes | \wp \left(|^{i+j} \otimes |^k \right)$$

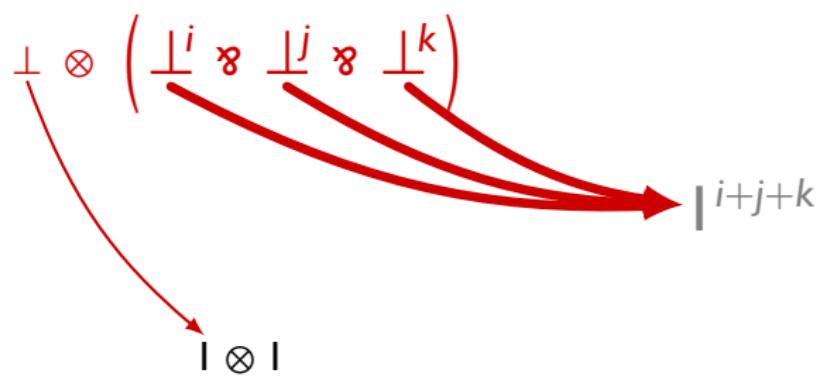
$$\begin{aligned}
 & \perp \otimes \left(\perp^i \otimes \perp^j \otimes \perp^k \right) \\
 & \downarrow \quad \downarrow \quad \downarrow \\
 & \perp \otimes \left(\perp^i \otimes \perp^{j+k} \right) \quad \otimes \quad \perp \otimes \left(\perp^{i+j} \otimes \perp^k \right)
 \end{aligned}$$

$$\begin{aligned}
 & \perp \otimes \left(\perp^i \otimes \perp^j \otimes \perp^k \right) \\
 & \quad \swarrow \quad \searrow \quad \searrow \\
 & \left| \otimes \left(\left| ^i \otimes \left| ^{j+k} \right. \right) \otimes \left| \otimes \left(\left| ^{i+j} \otimes \left| ^k \right. \right) \right. \right.
 \end{aligned}$$

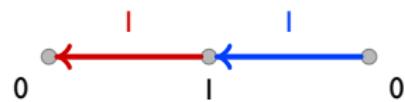
- ▶ **constraint units** for vertex m : $|^m \otimes |^n$
- ▶ **weight units** for edge $i - j$: $\perp^i \otimes \perp^{i-j} \otimes \perp^k$
- ▶ $i \equiv j \equiv 1 \pmod{3}$

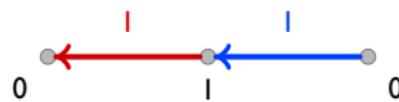
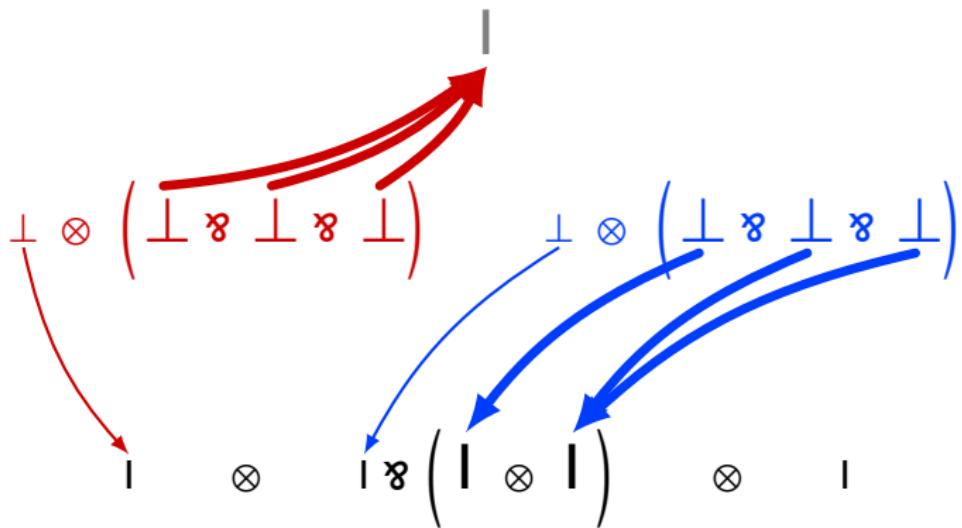
$$\begin{array}{c} | \\ 0 \leftarrow \longrightarrow 0 \end{array}$$

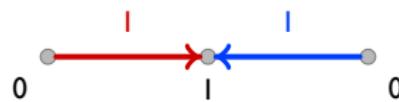
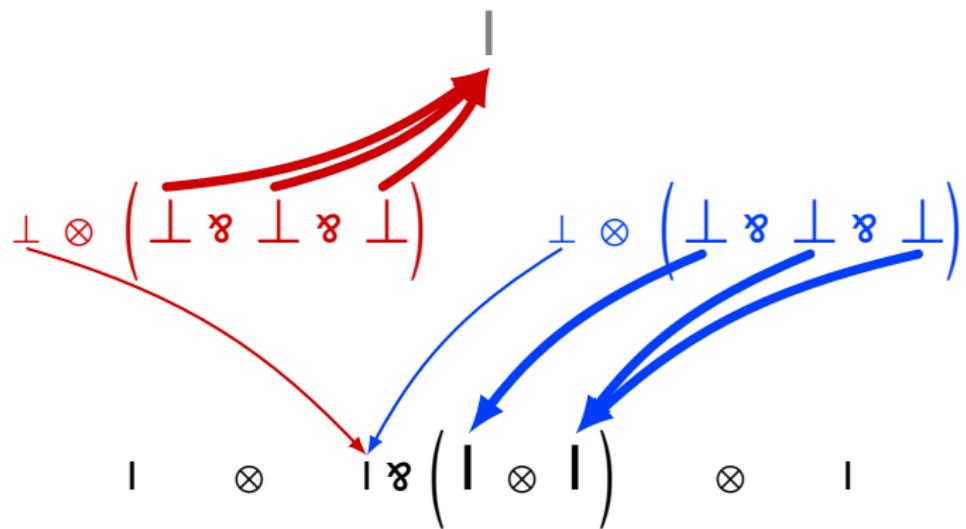
$$\perp \otimes \left(\perp^i \wp \perp^j \wp \perp^k \right)$$

$$| \otimes |$$

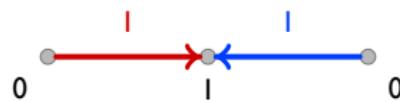
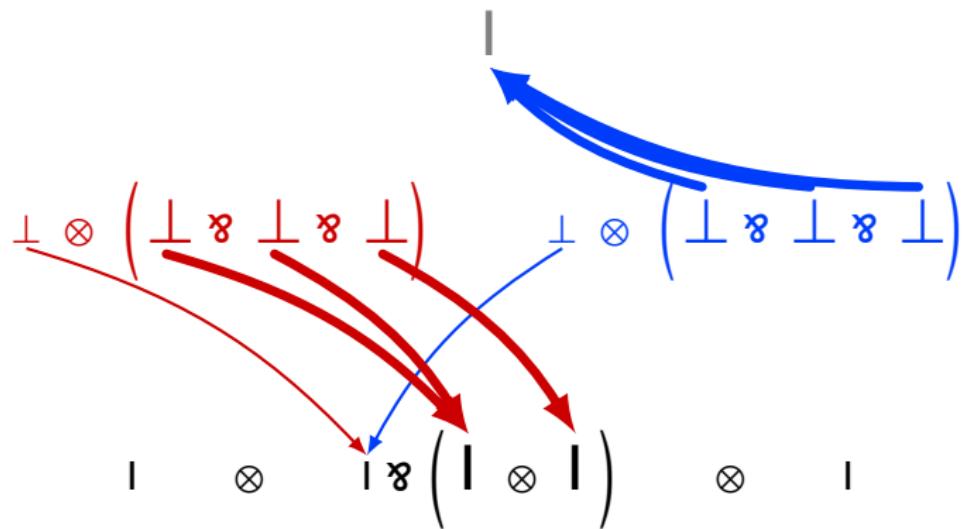


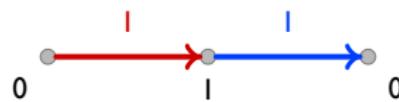
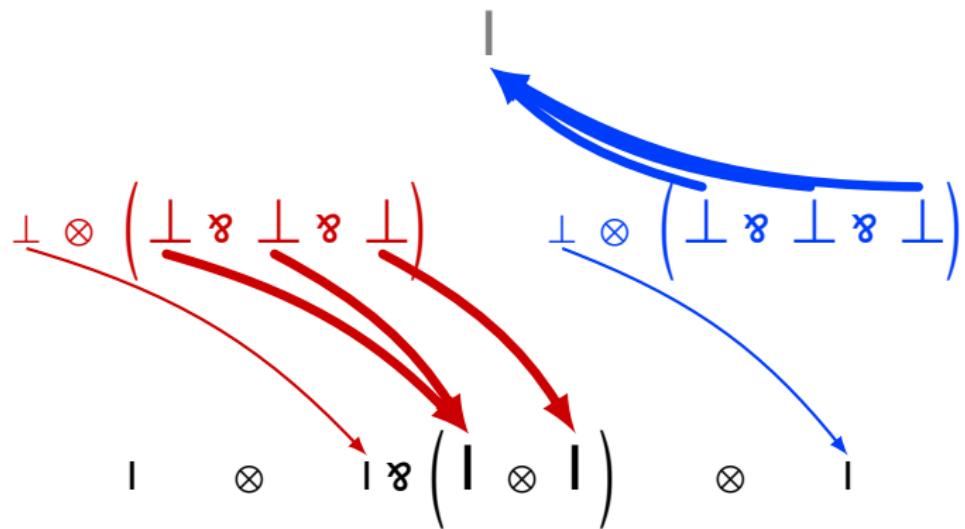
- ▶ weight sink $|^m$

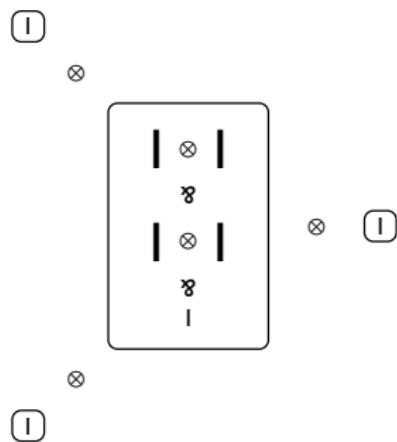


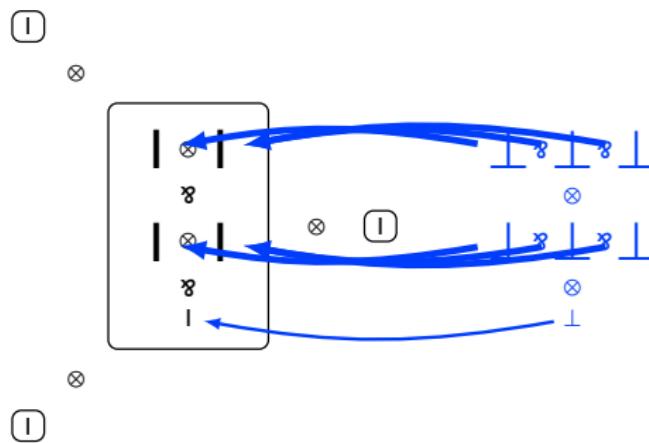


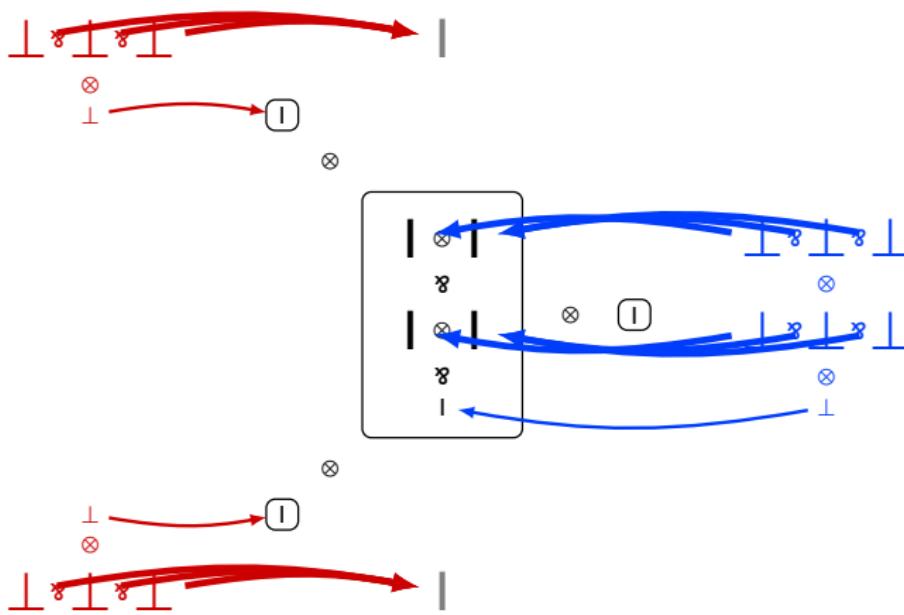


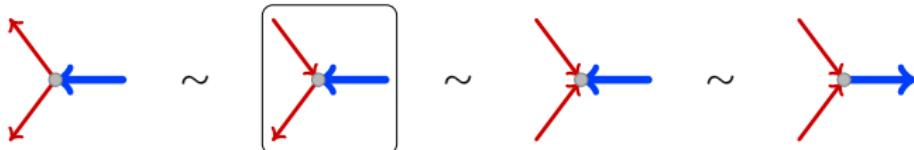
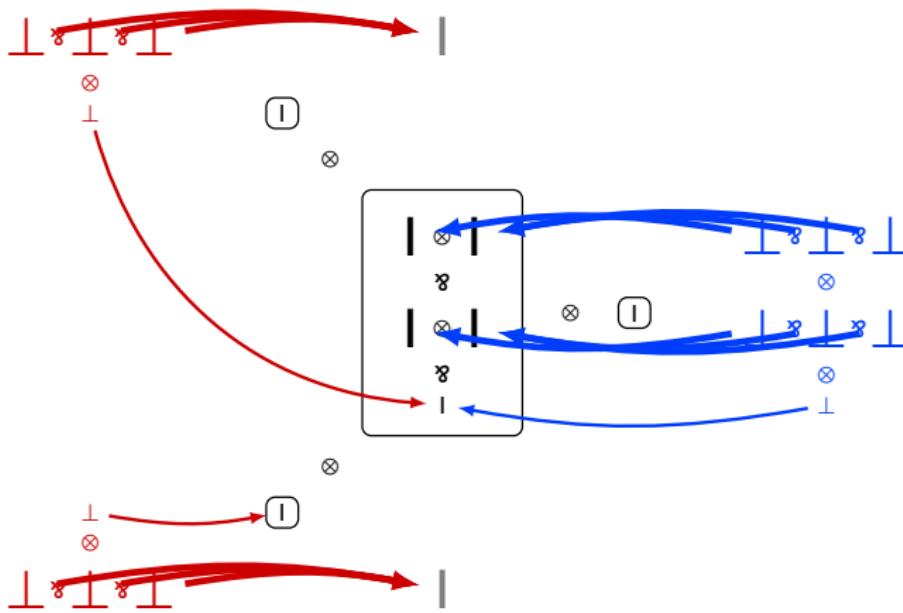


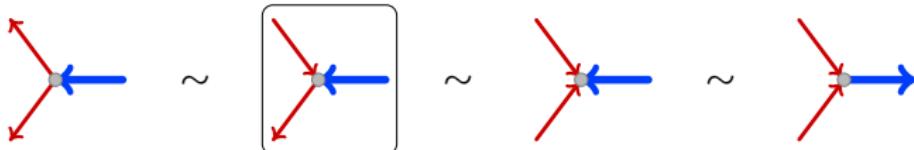
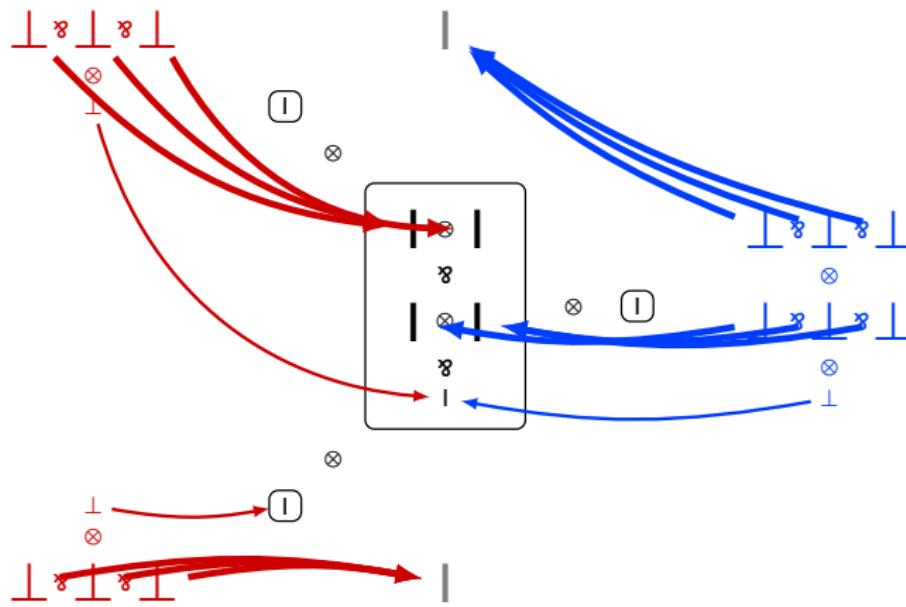


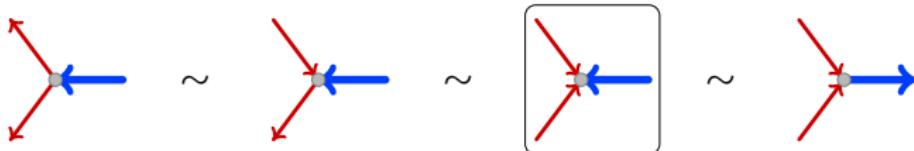
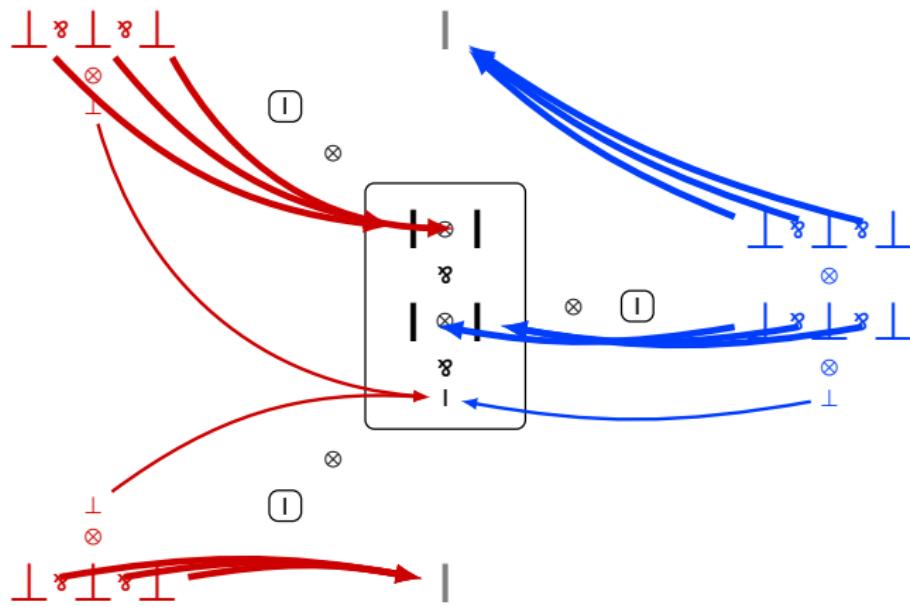


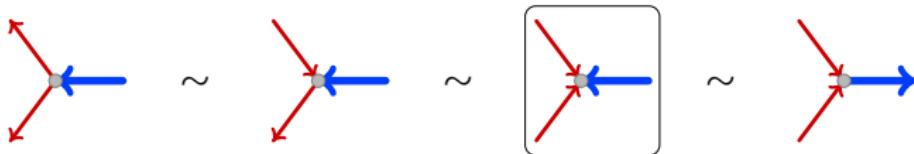
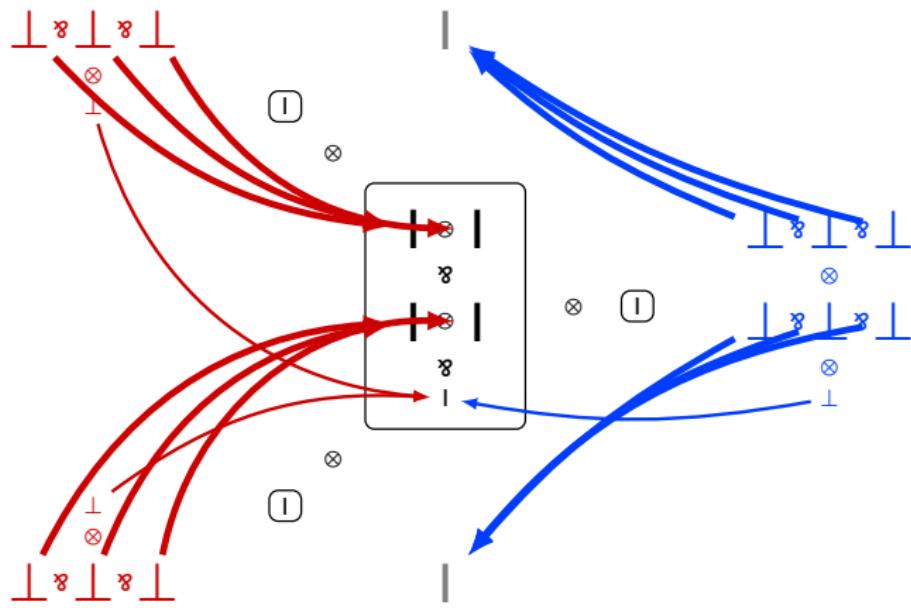


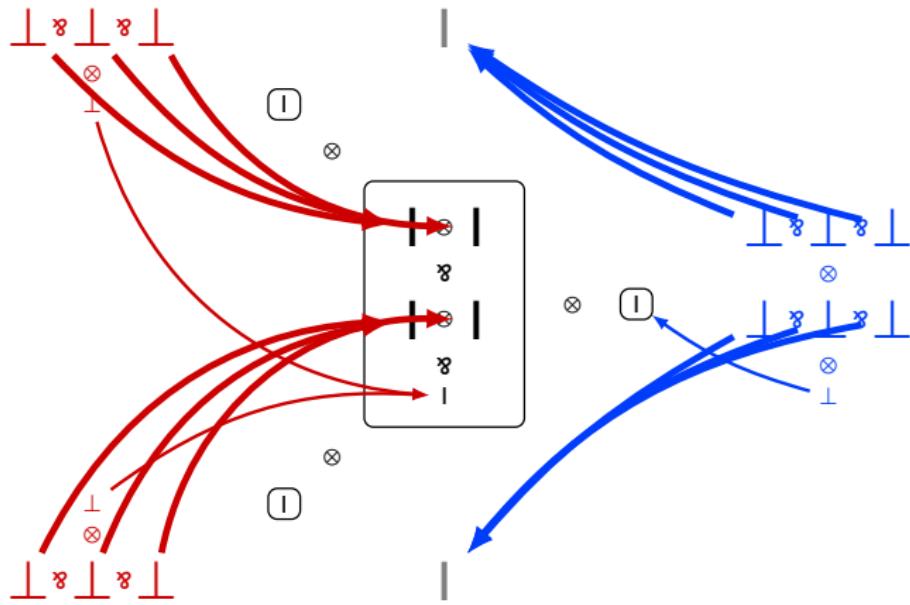












MLL proof equivalence is PSPACE-complete

- ▶ PSPACE-hard by the reduction from Constraint Logic
- ▶ in PSPACE by Savitch's Theorem (PSPACE = NPSPACE)

The End