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This talk. . .

Part 1

◮ Background

◮ Sum–product nets without units

◮ Sum–product nets with units

◮ Results and future work

Part 2

◮ Proofs



Motivation: proof nets

For a given logic,

◮ Syntax: proofs, terms

◮ Semantics: games, complete partial orders, coherence spaces,
Kripke frames, categories

But: many proofs may correspond to the same semantic entity
The aim of proof nets is to obtain a 1-1 correspondence between
syntax and semantics



Motivation: sum–product logic

◮ A.k.a. additive linear logic
“Simple” fragment of linear logic, but units are hard

(Girard)

◮ Categorical semantics: free products and coproducts
(Joyal)

◮ Game-semantics: two communicating games of binary choice
(Cockett, Seely)

◮ Process semantics: “the logic of message passing”
(Cockett)



Sum–product logic

Categorical (free) finite products and coproducts (over C)

X := A ∈ ob(C) | 0 | 1 | X + X | X × X

Morphisms f : X → Y



Sum–product logic

Categorical (free) finite products and coproducts (over C)

X := A ∈ ob(C) | 0 | 1 | X + X | X × X

Morphisms f : X → Y

Additive linear logic

X := A | 0 | ⊤ | X ⊕ X | X & X

Proofs of X ⊢ Y (or X ⊸ Y , or X⊥

&

Y )

Free lattice completions of a poset (P ,≤)

x := a ∈ P | ⊥ | ⊤ | x ∨ x | x ∧ x

Justifications that x ≤ y



Idiosyncrasies of free (co)products

Zero and one are units

0 + X ∼= X 1 × X ∼= X

and products and coproducts are perfectly dual

But there is no distributivity

6|= 0 × X ∼= 0 6|= 1 + X ∼= 1

6|= X × (Y + Z ) ∼= (X × Y ) + (X × Z )

(there may not even be a single arrow from left to right!)



Sum–product logic

A
a

−→ B 0
?

−→ X X
!

−→ 1

X
f

−→ Yi

X
ιi◦f−→ Y0 + Y1

X0
f

−→ Y X1
g

−→ Y

X0 + X1
[f ,g ]
−→ Y

X
f

−→ Y0 X
g

−→ Y1

X
〈f ,g〉
−→ Y0 × Y1

Xi
f

−→ Y

X0 × X1
f ◦πi−→ Y

X
id
−→ X

X
f

−→ Y Y
g

−→ Z

X
g◦f
−→ Z



Cut elimination / subformula property

Whitman’s Theorem for free lattices (1940s)
e.g.: u ∧ v ≤ x ∨ y only if u ≤ x ∨ y or v ∧ u ≤ x or

v ≤ x ∨ y or v ∧ u ≤ y

Joyal: Free Bicompletions of Categories (1995)
a morphism f : V0 × V1 → X0 + X1 has one of these forms

V0 × V1
πi−→ Vi

g
−→ X0 + X1

V0 × V1
h

−→ Xj

ιj
−→ X0 + X1

and if it has both, then

V0 × V1 πi

h

Vi
k

g

Xj

ιj

X0 + X1



Softness

Joyal: Free Bicompletions of Categories (1995)
For any (small) diagrams D : I → C and E : J → C:

colim
I×J

(hom(Dop
,E )) colim

J
(hom(lim

I
D,E ))

colim
I

(hom(Dop
, colim

J
E )) hom(lim

I
D, colim

J
E )



Proof identity

Proofs equal up to permutations denote the same morphism

X1
f

−→ Y0

X0 × X1
f ◦π1−→ Y0

X0 × X1
ι0◦(f ◦π1)
−→ Y0 + Y1

=

X1
f

−→ Yi

X1
ιi◦f−→ Y0 + Y1

X0 × X1
(ι0◦f )◦π1
−→ Y0 + Y1

0
?

−→ Y0 0
?

−→ Y1

0
〈?,?〉
−→ Y0 × Y1

= 0
?

−→ Y0 × Y1



Proof identity

Cockett and Seely: Finite Sum–Product Logic (2001)

ιi ◦ (f ◦ πj) = (ιi ◦ f ) ◦ πj

[ ιi ◦ f , ιi ◦ g ] = ιi ◦ [ f , g ] 〈f ◦ πi , g ◦ πi 〉 = 〈f , g〉 ◦ πi

[ 〈f0, g0〉, 〈f1, g1〉] = 〈[ f0, f1] , [ g0, g1]〉

?1 = !0

〈?, ?〉 = ? [ !, !] = !

πi ◦ ? = ? ! ◦ ιi = !

Cut-free proofs up to these permutations denote the same
categorical morphism—and proof identity is decidable.



Proof identity

Cockett and Santocanale (2009):

Proof identity for sum–product logic is tractable

Equality of f , g : X → Y can be decided in time

O((hgt(X ) + hgt(Y )) × |X | × |Y |)

(where hgt(X ) is the height and |X | the total size of the syntax
tree of X )



Proof nets (without units)

Hughes (2002), Hughes and Van Glabbeek (2005)

A
a

−→ B A
a

B

Xi
f

−→ Y

X0 × X1
f ◦πi−→ Y

f

×

π0

π1

X0
f

−→ Y X1
g

−→ Y

X0 + X1
[ f ,g ]
−→ Y

f

+

g



Proof nets (without units)

Hughes (2002), Hughes and Van Glabbeek (2005)

X
f

−→ Yi

X
ιi◦f−→ Y0 + Y1

f

+

ι0

ι1

X
f

−→ Y0 X
g

−→ Y1

X
〈f ,g〉
−→ Y0 × Y1

f

×

g



Example: construction

A

× A

B ×

+ B

A +

× C

C

(A × B) + (A × C ) −→ A × (B + C )
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C
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Switching

A net X
R

−→ Y has

◮ a source object X

◮ a target object Y

◮ a labelled relation R from the leaves in X to the leaves in Y

Any such triple is a net if it satisfies the switching condition:

+ ×

After choosing one branch for each coproduct in X and each
product in Y there must be exactly one path from left to right.
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Non-example: switching
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Non-example: switching

A

A ×

× B

B +

+ A

C ×

C

A × (B + C ) −→ (A × B) + (A × C )



Equalities factored out

A
f

B

× +

A B

A
f

g

B

× ×

A B

ι0 ◦ (f ◦ π0) = (ι0 ◦ f ) ◦ π0 〈f ◦ π0, g ◦ π0〉 = 〈f , g〉 ◦ π0

A
f

B

+ +

A

g

B

A
f

k

B

+ ×

A
m

g

B

[ ι0 ◦ f , ι0 ◦ g ] = ι0 ◦ [ f , g ] 〈[ f , g ] , [ k,m]〉 = [ 〈f , k〉, 〈g ,m〉]



The units

For initial and terminal maps ? : 0 → Y or ! : X → 1 the objects
X and Y may be a product or coproduct.
These (unlabelled) links are added:

0 1

Links are no longer restricted to the leaves. For example:

0 A

+ +

0 A

The switching condition is unaffected.
Omitting the label factors out an additional equality:

0
?

!
1 0 1



The full net calculus

A
a

B 0 1

f

+

ι0

ι1

f

+

g

f

×

g

f

×

π0

π1



The unit equations

ιi ◦ ? = ?

0 +

m

0 +

. . . define an equational theory (⇔) over nets, via graph rewriting



The unit equations

ιi ◦ ? = ? 〈?, ?〉 = ?

0 + 0 ×

m m

0 + 0 ×

. . . define an equational theory (⇔) over nets, via graph rewriting



The unit equations

ιi ◦ ? = ? 〈?, ?〉 = ? [ !, !] = ! ! ◦ πi = !

0 + 0 × + 1 × 1

m m m m

0 + 0 × + 1 × 1

. . . define an equational theory (⇔) over nets, via graph rewriting
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Example

1 1

× ×

+ 0 0 +

× 1 1 ×

0 0



The problem

We would like canonical representations for the equivalence classes
of proof nets generated by (⇔).

A standard approach is to rewrite towards a normal form, using a
confluent and terminating rewrite relation.

The first question is then whether restricting the equivalences of
(⇔) to a single direction can provide a suitable rewrite relation.



Rewriting towards the leaves

× 1

⇒
⇒

× 1 ?

⇒
⇒

× 1



Rewriting towards the roots

0 1

× +

⇒ ⇒

0 1

× +

0 1

× +

⇒ ⇒

?



Rewriting towards the roots

0 1

× +

⇒ ⇒

0 1

× +

0 1

× +

⇒ ⇒

?

A first attempt at a solution: a new type of link

0 1

× +



Rewriting towards the roots

A
id

A

+ ×

0 1⇒ ⇒

A
id

A

+ ×

0 1

A
id

A

+ ×

0 1
⇒ ⇒

?



Rewriting towards the roots

A
id

A

+ ×

0 1⇒ ⇒

A
id

A

+ ×

0 1

A
id

A

+ ×

0 1
⇒ ⇒

?

The following breaks the switching condition (and makes no sense)

A
id

A

+ ×

0 1



The solution

Confluent rewriting seems impossible without breaking the
switching condition. So: break it. Then there is a simple confluent
and normalising rewrite relation: saturation ( ).

0 + ⇔ 0 +

0 +
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The solution

Confluent rewriting seems impossible without breaking the
switching condition. So: break it. Then there is a simple confluent
and normalising rewrite relation: saturation ( ).

× 1 ⇔ × 1

× 1
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Results

The saturation relation ( ) is

confluent rewrite steps add links, depending on
the presence of other links

strongly normalising bounded by the number of possible links

(|X | × |Y | for X
R

−→ Y )

linear-time (in |X | × |Y |); saturation steps are
constant-time



Results

The saturation relation ( ) is

confluent rewrite steps add links, depending on
the presence of other links

strongly normalising bounded by the number of possible links

(|X | × |Y | for X
R

−→ Y )

linear-time (in |X | × |Y |); saturation steps are
constant-time

Write X
σR
−→ Y for the normal form (the saturation) of a net

X
R

−→ Y and call it a saturated net



Results

Saturation gives a decision procedure for sum–product logic:

X
R

−→ Y ⇔ X
S

−→ Y ⇐⇒ X
σR
−→ Y = X

σS
−→ Y

Completeness (⇒)

R ⇔ R ′ ⇔ ..... ⇔ S

• • •

.
.
.
.
.
.
.
.
.
.
.
.
.

•

.
.

.
.

.
.

.

•

Soundness (⇐) is the hard part



Saturated nets

A saturated net X
σR
−→ Y combines the links of all equivalent nets

σR =
⋃

{ S | X
S

−→ Y ⇔ X
R

−→ Y }
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−→ Y combines the links of all equivalent nets

σR =
⋃

{ S | X
S

−→ Y ⇔ X
R

−→ Y }

call links occurring in the same saturation step neighbours, and an
equivalence class of neighbouring links a neighbourhood

Correctness: (tentative) relation of links R ⊆ X × Y is a saturated
net if and only if it is saturated, and for every switching the links
switched on form a non-empty neighbourhood.



Saturated nets

A saturated net X
σR
−→ Y combines the links of all equivalent nets

σR =
⋃

{ S | X
S

−→ Y ⇔ X
R

−→ Y }

call links occurring in the same saturation step neighbours, and an
equivalence class of neighbouring links a neighbourhood

Correctness: (tentative) relation of links R ⊆ X × Y is a saturated
net if and only if it is saturated, and for every switching the links
switched on form a non-empty neighbourhood.

Morally, this is a requirement for evidence that all maps expressed
in a net commute.



The category of saturated nets

The category of saturated nets is the free completion with finite
(nullary and binary) products and coproducts of a base category C.

Identities are nets X
σidX−→ X where idX is the identity relation on

the leaves of X .

0 0 A
idA

A 1 1

id0 = ?0 id1 = !1

idX

+ +

idY

idX

× ×

idY

idX+Y = [ ι0 ◦ idX , ι1 ◦ idY ] idX×Y = 〈idX ◦ π0, idY ◦ π1〉



The category of saturated nets

The category of saturated nets is the free completion with finite
(nullary and binary) products and coproducts of a base category C.

Identities are nets X
σidX−→ X where idX is the identity relation on

the leaves of X .

Saturation is necessary: nets idX are equivalent to other nets.

0 0

+ +

1 1

⇔

0 0

+ +

1 1

∗ ∗

0 0

+ +

1 1



The category of saturated nets

The category of saturated nets is the free completion with finite
(nullary and binary) products and coproducts of a base category C.

Composition is relational composition followed by (re-)saturation.

0 A A 1

× + + +

0 B B 1

0 1

× +

0 1

0 1

× +

0 1



Future work: bicompletions

For products, these are the diagrams

× ×



Future work: bicompletions

For products, these are the diagrams

× ×

Possibly, equalisers can be added in the following way

R SE R S E



Conclusion

Saturated nets are canonical proof nets for additive linear logic and
give a combinatorial description of free sum–product categories

◮ Based on a simple rewriting algorithm

◮ Complicated correctness proof

◮ Possibly expands to give a direct syntactic account of Joyal’s
construction on free bicompletions

◮ Relevant to concurrent games and communication by message
passing



Questions?



Example

A A

+ ×

0 1

× +

0 1

(A + 0) × 0 −→ (A × 1) + 1



Example

A A

+ ×

0 1

× +

0 1

(A + 0) × 0 −→ (A × 1) + 1


