

Classical Proof Forestry

Willem Heijltjes

LFCS
School of Informatics
University of Edinburgh

SD'09 Bordeaux

This talk...

- ▶ The ingredients of first-order classical proof
- ▶ Classical proof forests
- ▶ Cut
- ▶ Cut-elimination
- ▶ Normalisation (through pruning)

First-order classical proof

Herbrand's Theorem ¹

- ▶ Witnesses to the quantifiers
- ▶ Multiple instantiations for existential ones
- ▶ An ordering on instantiations (prenexification)

¹See: [Buss: On Herbrand's Theorem (1995)]

First-order classical proof

Backtracking games ²

- ▶ Backtracking for \exists loise (or verifier)
- ▶ Order of moves in a game

Sequent calculus

- ▶ Contraction
- ▶ Eigenvariable restriction on universal quantifier introduction

²See: [Coquand: A Semantics of Evidence for Classical Arithmetic (1995)]

First-order classical proof

The necessary ingredients

- ▶ Witness assignment
- ▶ Multiple witnesses to existential quantifiers
- ▶ An ordering to reflect available information

Important: a **partial order** suffices.

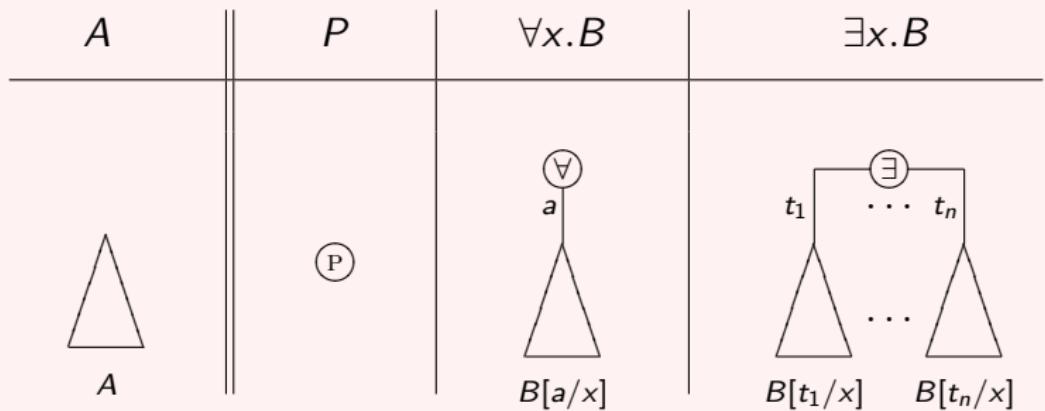
Dale Miller's **expansion tree proofs**³

In this presentation we will look at cut-elimination for this system.

³[Miller: A Compact Representation of Proofs (1987)]

Classical proof forests

An **assignment tree** for a prenex formula A is built as follows:

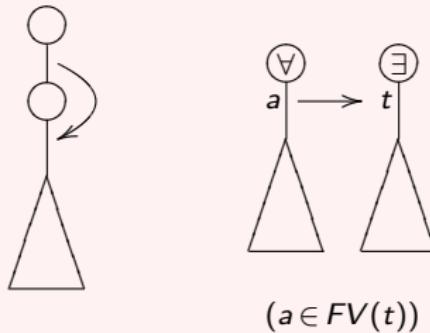


where P is propositional and $n \geq 0$; a is an **eigenvariable**.

Classical proof forests

A **classical proof forest** proves a sequent A_1, \dots, A_n .

It consists of n trees plus a **dependency** ordering:



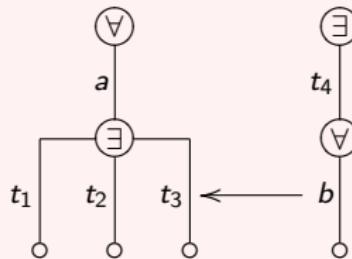
Correctness and validity criteria are:

- eigenvariables are unique,
- the dependency is a partial order, and
- the disjunction over the propositional leaves is a tautology.

Classical proof forests

Games interpretation

A forest gives a **strategy** for \exists loise in a backtracking game:



- ▶ The edges of the trees represent moves.
- ▶ The dependency gives the **prerequisites** of each move.

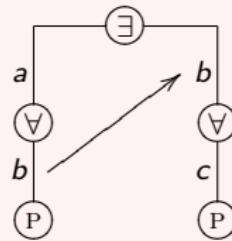
The edges plus dependency are an **event structure** (later: **conflict**).

Classical proof forests

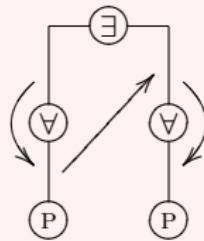
Example: the drinker's formula

(“There is a man in a bar, and if he drinks, everyone drinks.”)

$$\exists x \forall y. (Px \rightarrow Py)$$



$$Pa \rightarrow Pb \qquad Pb \rightarrow Pc$$



On the right: the isolated dependency of the proof.

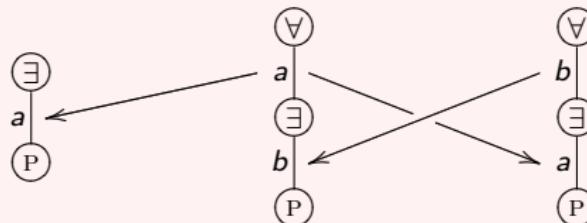
Classical proof forests

Another example.

$$\exists x.(\neg Px \vee Rx)$$

$$\forall x \exists y.(Px \wedge \neg Qy)$$

$$\forall x \exists y.(Qx \wedge \neg Ry)$$



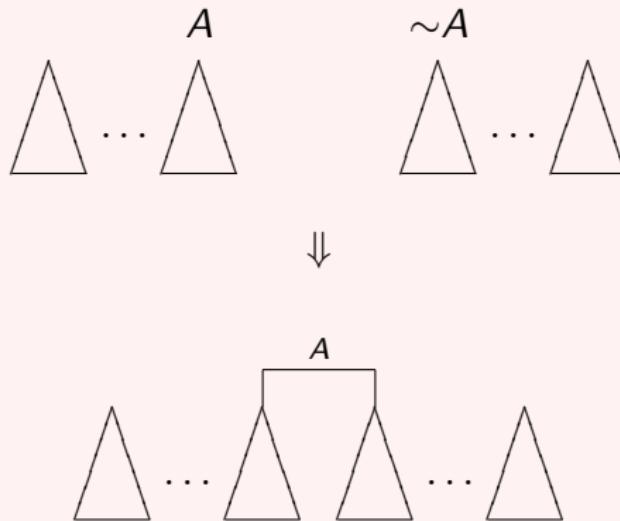
$$\neg Pa \vee Ra$$

$$Pa \wedge \neg Qb$$

$$Qb \wedge \neg Ra$$

Cut

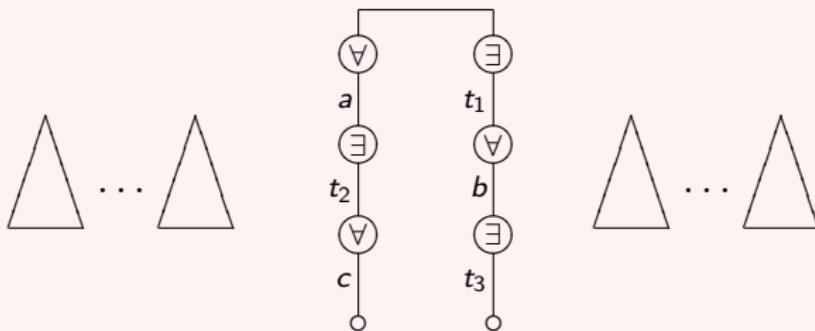
Composition



Cut

Interpretation (1)

Cut as communicating strategies: \forall belard mimicks \exists loise's moves on the other side.



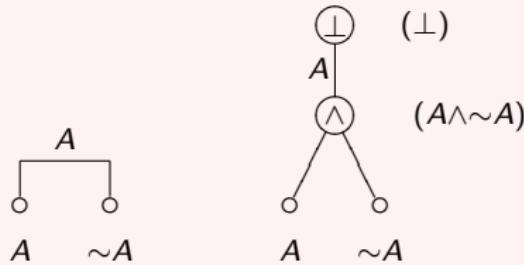
This gives an approach to normalisation.

But what about **backtracking**?

Cut

Interpretation (2)

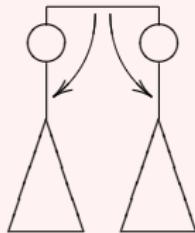
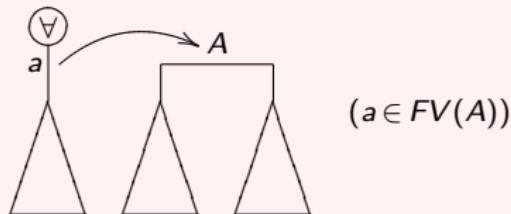
Cut as a combination of moves:



- ▶ Conjunctions can be modelled as a choice by \forall belard
- ▶ if A contains eigenvariables, \exists loise's move must participate in the dependency.

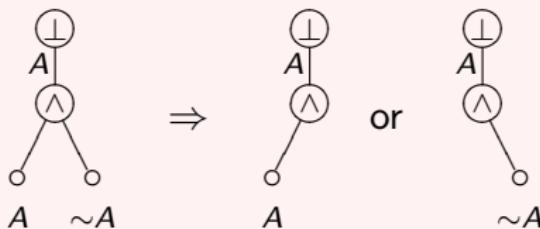
Cut

Cuts participate in the dependency in the following way:



Cut

Validity



- ▶ A **switching** chooses one side of each cut.
It represents a possible strategy for \forall belard on conjunctions.
- ▶ If \forall belard plays a branch, the other's dependants are removed.
- ▶ For any switching, this must be valid.
- ▶ Cut-free validity via a propositional tautology check.

Note this is different from Miller's validity criterion!

Cut

Conflict

Another way of describing validity:

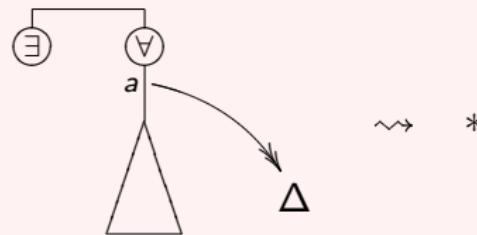
- ▶ Moves by \forall belard on a conjunction are **in conflict** (mutually exclusive in a single play).
- ▶ Any two moves depending on conflicting moves are in conflict.
- ▶ Any **maximal conflict-free** subforest must be winning.

This gives the conflict relation of the event structure.

Reductions

A propositional step

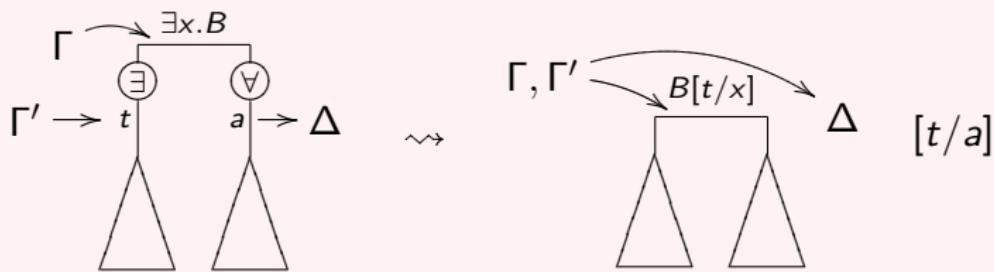
A disposal step



In this case also the dependants (Δ) are removed.

Reductions

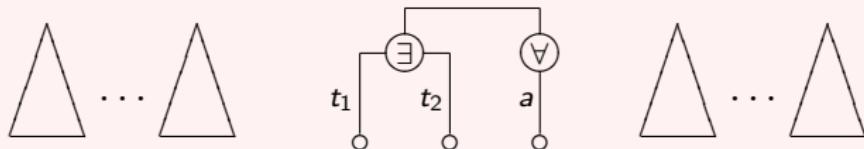
A logical step



- ▶ The eigenvariable a is substituted with the opposing term t .
- ▶ The dependency is updated accordingly.

Reductions

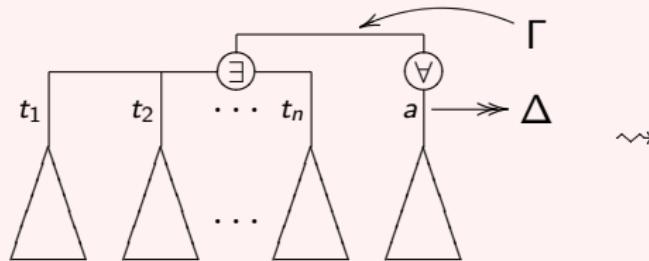
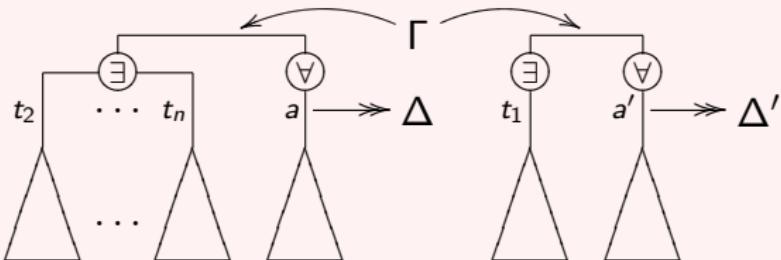
Backtracking



- ▶ Two ways to instantiate \forall belard's choice a .
- ▶ The moves responding to it are the **dependants**.
- ▶ These must be duplicated to accommodate both choices.

Reductions

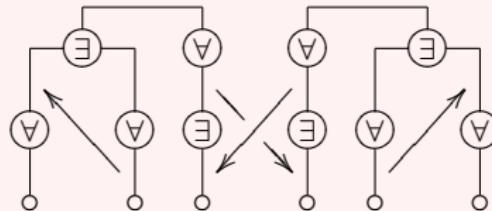
A structural step



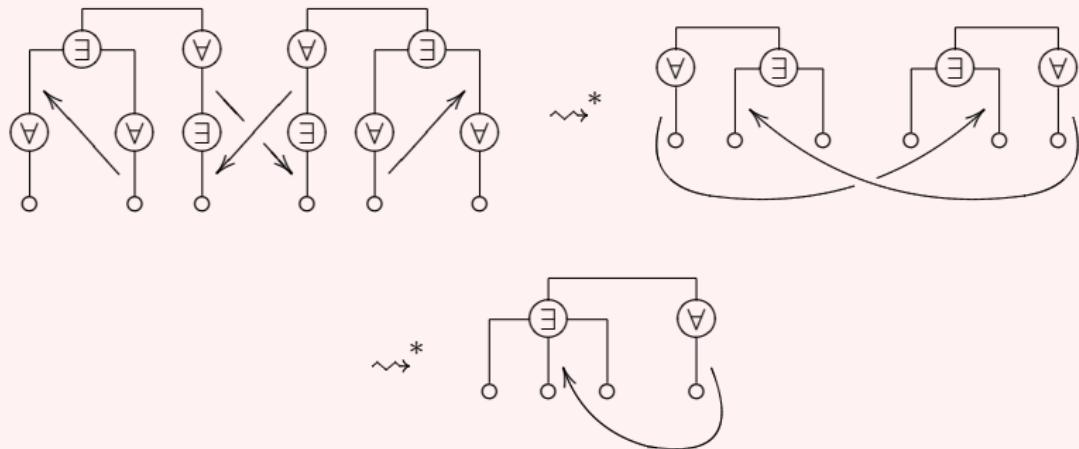
Reductions

Properties

- ▶ The reduction relation preserves validity.
- ▶ It is weakly normalising.
- ▶ It is non-confluent.
- ▶ Naively, the reduction relation exhibits non-termination.

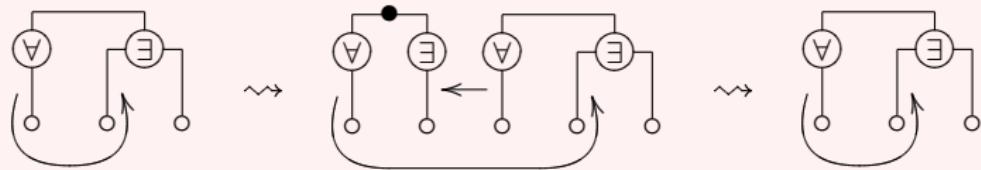


Non-termination



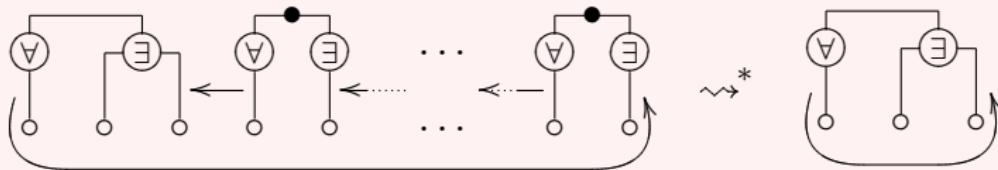
Non-termination

A dependency 'crossing' a cut generates infinite reductions.

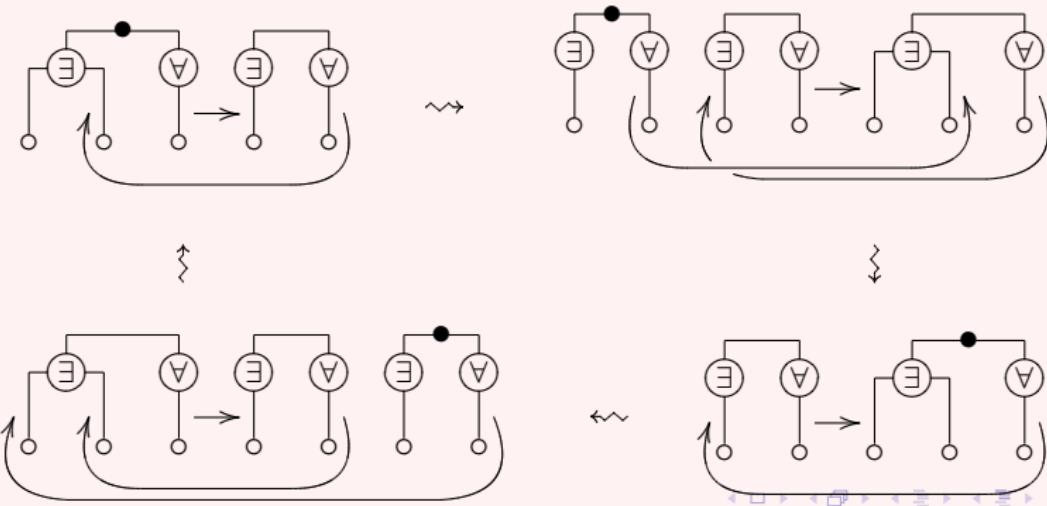


This example has no normalizing reduction paths.

A 'cycle of cuts' can reduce to a dependency across a cut...

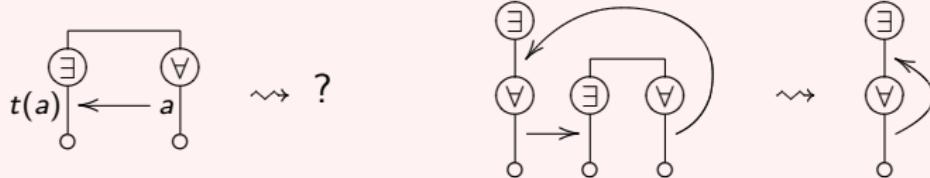


...or it can pass branches around indefinitely (example by McKinley).



Non-termination

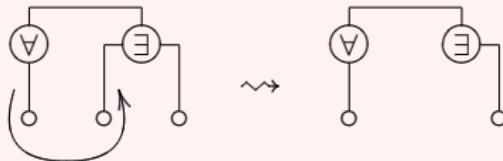
The following constructions do not arise from the example,



but their occurrence would break the reduction mechanism.

Reductions

Pruning



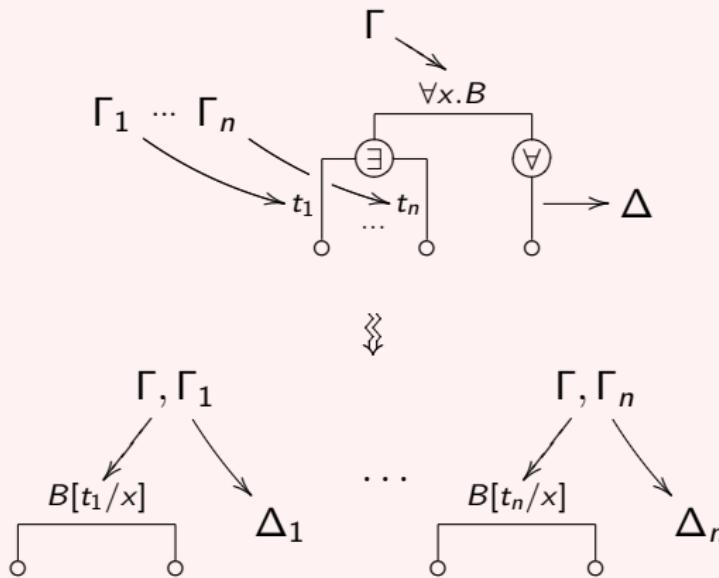
- ▶ The offending branch depends on both sides of the cut.
- ▶ In any switching, one side will be removed.
- ▶ In other words, the branch is in conflict with itself.

Pruning is the removal of such branches.

Reductions

Compound reduction steps

- ▶ The structural steps on a single cut,
- ▶ plus the logical steps on the resulting cuts.



Compound steps are **unique** and **finite** (without self-conflict).

Normalisation

Weak normalisation

The **complexity** of the cut-formula provides a measure.

- ▶ A compound step replaces a cut with a finite number of lower complexity.
- ▶ A step duplicates only cuts lower in the dependency.
- ▶ If all dependent cuts are of lower complexity a cut may be reduced.
- ▶ Antisymmetry of the dependency guarantees existence of a suitable cut.

Normalisation

Strong normalisation?

- ▶ The previously non-terminating example is now strongly normalising.
- ▶ The proof of weak normalisation allows reduction of 'most' cuts.
- ▶ The measure used is very 'simple'.

This gives decent hope for strong normalisation.

Future work

- ▶ A strong normalisation proof
- ▶ More on non-confluence