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This talk. . .

I The ingredients of first-order classical proof

I Classical proof forests

I Cut

I Cut-elimination

I Normalisation (through pruning)



First-order classical proof

Herbrand’s Theorem 1

I Witnesses to the quantifiers

I Multiple instantiations for existential ones

I An ordering on instantiations (prenexification)

1See: [Buss: On Herbrand’s Theorem (1995)]



First-order classical proof

Backtracking games 2

I Backtracking for ∃loise (or verifier)

I Order of moves in a game

Sequent calculus

I Contraction

I Eigenvariable restriction on universal quantifier introduction

2See: [Coquand: A Semantics of Evidence for Classical Arithmetic (1995)]



First-order classical proof

The necessary ingredients

I Witness assignment

I Multiple witnesses to existential quantifiers

I An ordering to reflect available information

Important: a partial order suffices.

Dale Miller’s expansion tree proofs3

In this presentation we will look at cut-elimination for this system.

3[Miller: A Compact Representation of Proofs (1987)]



Classical proof forests

An assignment tree for a prenex formula A is built as follows:

A P ∀x .B ∃x .B

�������*******

A

'&%$ !"#p

'&%$ !"#∀
a

�������*******

B[a/x]

t1

'&%$ !"#∃
tn. . .

�������******* �������*******. . .

B[t1/x] B[tn/x]

where P is propositional and n ≥ 0; a is an eigenvariable.



Classical proof forests

A classical proof forest proves a sequent A1, . . . ,An.

It consists of n trees plus a dependency ordering:

'&%$ !"#

ww
'&%$ !"#

�������*******

'&%$ !"#∀
a

'&%$ !"#∃
t//

�������******* �������*******

(a∈FV (t))

Correctness and validity criteria are:

• eigenvariables are unique,
• the dependency is a partial order, and
• the disjunction over the propositional leaves is a tautology.



Classical proof forests

Games interpretation

A forest gives a strategy for ∃loise in a backtracking game:

'&%$ !"#∀
a

'&%$ !"#∃
t4

t1

'&%$ !"#∃
t2 t3

'&%$ !"#∀
boo

◦ ◦ ◦ ◦

I The edges of the trees represent moves.

I The dependency gives the prerequisites of each move.

The edges plus dependency are an event structure (later: conflict).



Classical proof forests

Example: the drinker’s formula

(“There is a man in a bar, and if he drinks, everyone drinks.”)

∃x∀y . (Px → Py)

a

'&%$ !"#∃
b'&%$ !"#∀

b

'&%$ !"#∀
c

;;wwwwwwwww
'&%$ !"#p '&%$ !"#p

Pa→Pb Pb→Pc

'&%$ !"#∃

  ~~
'&%$ !"#∀ '&%$ !"#∀

@@��������
'&%$ !"#p '&%$ !"#p

On the right: the isolated dependency of the proof.



Classical proof forests

Another example.

∃x .(¬Px∨Rx) ∀x∃y .(Px∧¬Qy) ∀x∃y .(Qx∧¬Ry)

'&%$ !"#∀
a

'&%$ !"#∀
b'&%$ !"#∃

a rr
))uu

'&%$ !"#∃
b

'&%$ !"#∃
a'&%$ !"#p '&%$ !"#p '&%$ !"#p

¬Pa∨Ra Pa∧¬Qb Qb∧¬Ra



Cut

Composition

A

�������******* �������*******. . .

∼A

�������******* �������*******. . .

⇓

A

�������******* �������******* �������******* �������*******. . . . . .



Cut

Interpretation (1)

Cut as communicating strategies: ∀belard mimicks ∃loise’s moves
on the other side.

�������******* �������*******. . .

'&%$ !"#∀
a

'&%$ !"#∃
t1'&%$ !"#∃

t2

'&%$ !"#∀
b'&%$ !"#∀

c

'&%$ !"#∃
t3

◦ ◦

�������******* �������*******. . .

This gives an approach to normalisation.

But what about backtracking?



Cut

Interpretation (2)

Cut as a combination of moves:

'&%$ !"#⊥
A

(⊥)

'&%$ !"#∧
����

//// (A∧∼A)
A

◦ ◦ ◦ ◦
A ∼A A ∼A

I Conjunctions can be modelled as a choice by ∀belard

I if A contains eigenvariables, ∃loise’s move must participate in
the dependency.



Cut

Cuts participate in the dependency in the following way:

{{ ##

'&%$ !"# '&%$ !"#

�������******* �������*******

'&%$ !"#∀
a

'' A

�������******* �������******* �������*******

(a∈FV (A))



Cut

Validity

'&%$ !"#⊥
A'&%$ !"#∧

��� ///

◦ ◦
A ∼A

⇒

'&%$ !"#⊥
A'&%$ !"#∧

���

◦
A

or

'&%$ !"#⊥
A'&%$ !"#∧

///

◦
∼A

I A switching chooses one side of each cut.
It represents a possible strategy for ∀belard on conjunctions.

I If ∀belard plays a branch, the other’s dependants are removed.

I For any switching, this must be valid.

I Cut-free validity via a propositional tautology check.

Note this is different from Miller’s validity criterion!



Cut

Conflict

Another way of describing validity:

I Moves by ∀belard on a conjunction are in conflict
(mutually exclusive in a single play).

I Any two moves depending on conflicting moves are in conflict.

I Any maximal conflict-free subforest must be winning.

This gives the conflict relation of the event structure.



Reductions

A propositional step

'&%$ !"#p '&%$ !"#p ∗

A disposal step

'&%$ !"#∃ '&%$ !"#∀
a

�� ��

�������******* ∆

∗

In this case also the dependants (∆) are removed.



Reductions

A logical step

Γ
&& ∃x .B

'&%$ !"#∃
t

'&%$ !"#∀
aΓ′ // // ∆

�������******* �������*******

Γ, Γ′ %%%%B[t/x]
∆

�������******* �������*******

[t/a]

I The eigenvariable a is substituted with the opposing term t.

I The dependency is updated accordingly.



Reductions

Backtracking

�������******* �������*******. . . t1

'&%$ !"#∃
t2

'&%$ !"#∀
a

◦ ◦ ◦ �������******* �������*******. . .

I Two ways to instantiate ∀belard’s choice a.

I The moves responding to it are the dependants.

I These must be duplicated to accommodate both choices.



Reductions

A structural step

Γ
vv

t1 t2

'&%$ !"#∃
tn

'&%$ !"#∀
a. . . // // ∆

�������******* �������******* �������******* �������*******. . .

Γ
vv ''

t2

'&%$ !"#∃
tn

'&%$ !"#∀
a

'&%$ !"#∃
t1

'&%$ !"#∀
a′. . . // // ∆ // // ∆′

�������******* �������******* �������******* �������******* �������*******. . .



Reductions

Properties

I The reduction relation preserves validity.

I It is weakly normalising.

I It is non-confluent.

I Naively, the reduction relation exhibits non-termination.

'&%$ !"#∃ '&%$ !"#∀ '&%$ !"#∀ '&%$ !"#∃
<<<

��<<<
��������'&%$ !"#∀ '&%$ !"#∀ '&%$ !"#∃ '&%$ !"#∃ '&%$ !"#∀ '&%$ !"#∀

^^<<<<<<

@@������
◦ ◦ ◦ ◦ ◦ ◦



Non-termination

'&%$ !"#∃ '&%$ !"#∀ '&%$ !"#∀ '&%$ !"#∃
<<<

��<<<
��������'&%$ !"#∀ '&%$ !"#∀ '&%$ !"#∃ '&%$ !"#∃ '&%$ !"#∀ '&%$ !"#∀

^^<<<<<<

@@������
◦ ◦ ◦ ◦ ◦ ◦

∗
'&%$ !"#∀ '&%$ !"#∃ '&%$ !"#∃ '&%$ !"#∀
◦ ◦ ◦ ◦ ◦ ◦

>>``

∗
'&%$ !"#∃ '&%$ !"#∀

◦ ◦ ◦ ◦
UU



Non-termination

A dependency ‘crossing’ a cut generates infinite reductions.

'&%$ !"#∀ '&%$ !"#∃
TT

◦ ◦ ◦

•'&%$ !"#∀ '&%$ !"#∃ '&%$ !"#∀ '&%$ !"#∃
TToo

◦ ◦ ◦ ◦ ◦

'&%$ !"#∀ '&%$ !"#∃
TT

◦ ◦ ◦

This example has no normalizing reduction paths.



A ‘cycle of cuts’ can reduce to a dependency across a cut. . .

• •'&%$ !"#∀ '&%$ !"#∃ '&%$ !"#∀ '&%$ !"#∃ . . . '&%$ !"#∀ '&%$ !"#∃
TToo oo oo

◦ ◦ ◦ ◦ ◦ . . . ◦ ◦
∗

'&%$ !"#∀ '&%$ !"#∃
TT

◦ ◦ ◦

. . . or it can pass branches around indefinitely (example by
McKinley).

•'&%$ !"#∃ '&%$ !"#∀ '&%$ !"#∃ '&%$ !"#∀
JJ //

◦ ◦ ◦ ◦ ◦

•'&%$ !"#∃ '&%$ !"#∀ '&%$ !"#∃ '&%$ !"#∀ '&%$ !"#∃ '&%$ !"#∀
TT//II

◦ ◦ ◦ ◦ ◦ ◦ ◦

•'&%$ !"#∃ '&%$ !"#∀ '&%$ !"#∃ '&%$ !"#∀ '&%$ !"#∃ '&%$ !"#∀
II JJ //
◦ ◦ ◦ ◦ ◦ ◦ ◦

•'&%$ !"#∃ '&%$ !"#∀ '&%$ !"#∃ '&%$ !"#∀
JJ //
◦ ◦ ◦ ◦ ◦



Non-termination

The following constructions do not arise from the example,

'&%$ !"#∃
t(a)

'&%$ !"#∀
aoo

◦ ◦
?

'&%$ !"#∃
��'&%$ !"#∀ '&%$ !"#∃ '&%$ !"#∀
//

◦ ◦ ◦

'&%$ !"#∃
'&%$ !"#∀
gg

◦

but their occurrence would break the reduction mechanism.



Reductions

Pruning

'&%$ !"#∀ '&%$ !"#∃
TT

◦ ◦ ◦

'&%$ !"#∀ '&%$ !"#∃
◦ ◦

I The offending branch depends on both sides of the cut.

I In any switching, one side will be removed.

I In other words, the branch is in conflict with itself.

Pruning is the removal of such branches.



Reductions

Compound reduction steps

I The structural steps on a single cut,

I plus the logical steps on the resulting cuts.

Γ
%%KKKK

Γ1

++

... Γn

++

∀x .B

t1

'&%$ !"#∃
tn

'&%$ !"#∀
...

// ∆
◦ ◦ ◦

Γ, Γ1

�������

��

Γ, Γn

�������

��. . .
B[t1/x]

∆1
B[tn/x]

∆n
◦ ◦ ◦ ◦

Compound steps are unique and finite (without self-conflict).



Normalisation

Weak normalisation

The complexity of the cut-formula provides a measure.

I A compound step replaces a cut with a finite number of lower
complexity.

I A step duplicates only cuts lower in the dependency.

I If all dependent cuts are of lower complexity a cut may be
reduced.

I Antisymmetry of the dependency guarantees existence of a
suitable cut.



Normalisation

Strong normalisation?

I The previously non-terminating example is now strongly
normalising.

I The proof of weak normalisation allows reduction of ‘most’
cuts.

I The measure used is very ‘simple’.

This gives decent hope for strong normalisation.



Future work

I A strong normalisation proof

I More on non-confluence


