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The ingredients of first-order classical proof
Classical proof forests
Cut

Cut-elimination
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Normalisation (through pruning)



First-order classical proof

Herbrand's Theorem 1

» Witnesses to the quantifiers
» Multiple instantiations for existential ones

» An ordering on instantiations (prenexification)

!See: [Buss: On Herbrand’s Theorem (1995)]



First-order classical proof

Backtracking games 2

» Backtracking for Jloise (or verifier)

» Order of moves in a game
Sequent calculus

» Contraction

» Eigenvariable restriction on universal quantifier introduction

2See: [Coquand: A Semantics of Evidence for Classical Arithmetic (1995)]



First-order classical proof

The necessary ingredients

» Witness assignment
» Multiple witnesses to existential quantifiers

» An ordering to reflect available information

Important: a partial order suffices.

Dale Miller's expansion tree proofs3
In this presentation we will look at cut-elimination for this system.

3[Miller: A Compact Representation of Proofs (1987)]



Classical proof forests

An assignment tree for a prenex formula A is built as follows:

A P Vx.B 3x.B

A Bla/x] Blti/x]  Bl[ta/x]

where P is propositional and n > 0; a is an eigenvariable.



Classical proof forests

A classical proof forest proves a sequent Ay, ..., A,.

It consists of n trees plus a dependency ordering:
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Correctness and validity criteria are:

e eigenvariables are unique,
e the dependency is a partial order, and
e the disjunction over the propositional leaves is a tautology.



Classical proof forests

Games interpretation

A forest gives a strategy for dloise in a backtracking game:

» The edges of the trees represent moves.

» The dependency gives the prerequisites of each move.

The edges plus dependency are an event structure (later: conflict).



Classical proof forests

Example: the drinker's formula

(“There is a man in a bar, and if he drinks, everyone drinks.”)

IxVy. (Px — Py)

Pa— Pb Pb— Pc

On the right: the isolated dependency of the proof.



Classical proof forests

Another example.

Ix.(-PxVRx)  Vx3y.(PxA—Qy)  Vx3y.(QxA-Ry)
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Composition




Cut

Interpretation (1)

Cut as communicating strategies: Vbelard mimicks Jloise’s moves
on the other side.

This gives an approach to normalisation.

But what about backtracking?



Cut

Interpretation (2)

Cut as a combination of moves:

\ (AA~A)
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A ~A A ~A

» Conjunctions can be modelled as a choice by Vbelard

» if A contains eigenvariables, dloise’s move must participate in
the dependency.



Cut

Cuts participate in the dependency in the following way:
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Cut

Validity

A ~A A ~A

» A switching chooses one side of each cut.
It represents a possible strategy for Vbelard on conjunctions.

» If Vbelard plays a branch, the other's dependants are removed.
» For any switching, this must be valid.

» Cut-free validity via a propositional tautology check.

Note this is different from Miller's validity criterion!



Cut

Conflict
Another way of describing validity:

» Moves by Vbelard on a conjunction are in conflict
(mutually exclusive in a single play).

» Any two moves depending on conflicting moves are in conflict.

» Any maximal conflict-free subforest must be winning.

This gives the conflict relation of the event structure.



Reductions

A propositional step
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A disposal step
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In this case also the dependants (A) are removed.
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Reductions

A logical step
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» The eigenvariable a is substituted with the opposing term t.

» The dependency is updated accordingly.



Reductions

Backtracking

AN

» Two ways to instantiate Vbelard's choice a.

» The moves responding to it are the dependants.

» These must be duplicated to accommodate both choices.



Reductions

A structural step

al—s= A/




Reductions

Properties

» The reduction relation preserves validity.
» It is weakly normalising.
» It is non-confluent.

» Naively, the reduction relation exhibits non-termination.




Non-termination




Non-termination

A dependency ‘crossing’ a cut generates infinite reductions.

This example has no normalizing reduction paths.

@



A ‘cycle of cuts’ can reduce to a dependency across a cut. ..
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...or it can pass branches around indefinitely (example by
McKinley).
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Non-termination

The following constructions do not arise from the example,
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but their occurrence would break the reduction mechanism.



Reductions

Pruning
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» The offending branch depends on both sides of the cut.
» In any switching, one side will be removed.

» In other words, the branch is in conflict with itself.

Pruning is the removal of such branches.



Reductions

Compound reduction steps

» The structural steps on a single cut,
» plus the logical steps on the resulting cuts.
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Compound steps are unique and finite (without self-conflict).



Normalisation

Weak normalisation

The complexity of the cut-formula provides a measure.

» A compound step replaces a cut with a finite number of lower
complexity.

» A step duplicates only cuts lower in the dependency.

» If all dependent cuts are of lower complexity a cut may be
reduced.

» Antisymmetry of the dependency guarantees existence of a
suitable cut.



Normalisation

Strong normalisation?

» The previously non-terminating example is now strongly
normalising.

» The proof of weak normalisation allows reduction of ‘most’
cuts.

» The measure used is very ‘simple’.

This gives decent hope for strong normalisation.



Future work

» A strong normalisation proof

» More on non-confluence



