
Classical Proof Forestry

Willem Heijltjes

LFCS
School of Informatics

University of Edinburgh

SD’09 Bordeaux

This talk. . .

I The ingredients of first-order classical proof

I Classical proof forests

I Cut

I Cut-elimination

I Normalisation (through pruning)

First-order classical proof

Herbrand’s Theorem 1

I Witnesses to the quantifiers

I Multiple instantiations for existential ones

I An ordering on instantiations (prenexification)

1See: [Buss: On Herbrand’s Theorem (1995)]

First-order classical proof

Backtracking games 2

I Backtracking for ∃loise (or verifier)

I Order of moves in a game

Sequent calculus

I Contraction

I Eigenvariable restriction on universal quantifier introduction

2See: [Coquand: A Semantics of Evidence for Classical Arithmetic (1995)]

First-order classical proof

The necessary ingredients

I Witness assignment

I Multiple witnesses to existential quantifiers

I An ordering to reflect available information

Important: a partial order suffices.

Dale Miller’s expansion tree proofs3

In this presentation we will look at cut-elimination for this system.

3[Miller: A Compact Representation of Proofs (1987)]

Classical proof forests

An assignment tree for a prenex formula A is built as follows:

A P ∀x .B ∃x .B

�������*******

A

'&%$!"#p

'&%$!"#∀
a

�������*******

B[a/x]

t1

'&%$!"#∃
tn. . .

�������******* �������*******. . .

B[t1/x] B[tn/x]

where P is propositional and n ≥ 0; a is an eigenvariable.

Classical proof forests

A classical proof forest proves a sequent A1, . . . ,An.

It consists of n trees plus a dependency ordering:

'&%$!"#

ww
'&%$!"#

�������*******

'&%$!"#∀
a

'&%$!"#∃
t//

�������******* �������*******

(a∈FV (t))

Correctness and validity criteria are:

• eigenvariables are unique,
• the dependency is a partial order, and
• the disjunction over the propositional leaves is a tautology.

Classical proof forests

Games interpretation

A forest gives a strategy for ∃loise in a backtracking game:

'&%$!"#∀
a

'&%$!"#∃
t4

t1

'&%$!"#∃
t2 t3

'&%$!"#∀
boo

◦ ◦ ◦ ◦

I The edges of the trees represent moves.

I The dependency gives the prerequisites of each move.

The edges plus dependency are an event structure (later: conflict).

Classical proof forests

Example: the drinker’s formula

(“There is a man in a bar, and if he drinks, everyone drinks.”)

∃x∀y . (Px → Py)

a

'&%$!"#∃
b'&%$!"#∀

b

'&%$!"#∀
c

;;wwwwwwwww
'&%$!"#p '&%$!"#p

Pa→Pb Pb→Pc

'&%$!"#∃

 ~~
'&%$!"#∀ '&%$!"#∀

@@��������
'&%$!"#p '&%$!"#p

On the right: the isolated dependency of the proof.

Classical proof forests

Another example.

∃x .(¬Px∨Rx) ∀x∃y .(Px∧¬Qy) ∀x∃y .(Qx∧¬Ry)

'&%$!"#∀
a

'&%$!"#∀
b'&%$!"#∃

a rr
))uu

'&%$!"#∃
b

'&%$!"#∃
a'&%$!"#p '&%$!"#p '&%$!"#p

¬Pa∨Ra Pa∧¬Qb Qb∧¬Ra

Cut

Composition

A

�������******* �������*******. . .

∼A

�������******* �������*******. . .

⇓

A

�������******* �������******* �������******* �������*******.

Cut

Interpretation (1)

Cut as communicating strategies: ∀belard mimicks ∃loise’s moves
on the other side.

�������******* �������*******. . .

'&%$!"#∀
a

'&%$!"#∃
t1'&%$!"#∃

t2

'&%$!"#∀
b'&%$!"#∀

c

'&%$!"#∃
t3

◦ ◦

�������******* �������*******. . .

This gives an approach to normalisation.

But what about backtracking?

Cut

Interpretation (2)

Cut as a combination of moves:

'&%$!"#⊥
A

(⊥)

'&%$!"#∧
����

//// (A∧∼A)
A

◦ ◦ ◦ ◦
A ∼A A ∼A

I Conjunctions can be modelled as a choice by ∀belard

I if A contains eigenvariables, ∃loise’s move must participate in
the dependency.

Cut

Cuts participate in the dependency in the following way:

{{ ##

'&%$!"# '&%$!"#

�������******* �������*******

'&%$!"#∀
a

'' A

�������******* �������******* �������*******

(a∈FV (A))

Cut

Validity

'&%$!"#⊥
A'&%$!"#∧

��� ///

◦ ◦
A ∼A

⇒

'&%$!"#⊥
A'&%$!"#∧

���

◦
A

or

'&%$!"#⊥
A'&%$!"#∧

///

◦
∼A

I A switching chooses one side of each cut.
It represents a possible strategy for ∀belard on conjunctions.

I If ∀belard plays a branch, the other’s dependants are removed.

I For any switching, this must be valid.

I Cut-free validity via a propositional tautology check.

Note this is different from Miller’s validity criterion!

Cut

Conflict

Another way of describing validity:

I Moves by ∀belard on a conjunction are in conflict
(mutually exclusive in a single play).

I Any two moves depending on conflicting moves are in conflict.

I Any maximal conflict-free subforest must be winning.

This gives the conflict relation of the event structure.

Reductions

A propositional step

'&%$!"#p '&%$!"#p ∗

A disposal step

'&%$!"#∃ '&%$!"#∀
a

�� ��

�������******* ∆

∗

In this case also the dependants (∆) are removed.

Reductions

A logical step

Γ
&& ∃x .B

'&%$!"#∃
t

'&%$!"#∀
aΓ′ // // ∆

�������******* �������*******

Γ, Γ′ %%%%B[t/x]
∆

�������******* �������*******

[t/a]

I The eigenvariable a is substituted with the opposing term t.

I The dependency is updated accordingly.

Reductions

Backtracking

�������******* �������*******. . . t1

'&%$!"#∃
t2

'&%$!"#∀
a

◦ ◦ ◦ �������******* �������*******. . .

I Two ways to instantiate ∀belard’s choice a.

I The moves responding to it are the dependants.

I These must be duplicated to accommodate both choices.

Reductions

A structural step

Γ
vv

t1 t2

'&%$!"#∃
tn

'&%$!"#∀
a. . . // // ∆

�������******* �������******* �������******* �������*******. . .

Γ
vv ''

t2

'&%$!"#∃
tn

'&%$!"#∀
a

'&%$!"#∃
t1

'&%$!"#∀
a′. . . // // ∆ // // ∆′

�������******* �������******* �������******* �������******* �������*******. . .

Reductions

Properties

I The reduction relation preserves validity.

I It is weakly normalising.

I It is non-confluent.

I Naively, the reduction relation exhibits non-termination.

'&%$!"#∃ '&%$!"#∀ '&%$!"#∀ '&%$!"#∃
<<<

��<<<
��������'&%$!"#∀ '&%$!"#∀ '&%$!"#∃ '&%$!"#∃ '&%$!"#∀ '&%$!"#∀

^^<<<<<<

@@������
◦ ◦ ◦ ◦ ◦ ◦

Non-termination

'&%$!"#∃ '&%$!"#∀ '&%$!"#∀ '&%$!"#∃
<<<

��<<<
��������'&%$!"#∀ '&%$!"#∀ '&%$!"#∃ '&%$!"#∃ '&%$!"#∀ '&%$!"#∀

^^<<<<<<

@@������
◦ ◦ ◦ ◦ ◦ ◦

∗
'&%$!"#∀ '&%$!"#∃ '&%$!"#∃ '&%$!"#∀
◦ ◦ ◦ ◦ ◦ ◦

>>``

∗
'&%$!"#∃ '&%$!"#∀

◦ ◦ ◦ ◦
UU

Non-termination

A dependency ‘crossing’ a cut generates infinite reductions.

'&%$!"#∀ '&%$!"#∃
TT

◦ ◦ ◦

•'&%$!"#∀ '&%$!"#∃ '&%$!"#∀ '&%$!"#∃
TToo

◦ ◦ ◦ ◦ ◦

'&%$!"#∀ '&%$!"#∃
TT

◦ ◦ ◦

This example has no normalizing reduction paths.

A ‘cycle of cuts’ can reduce to a dependency across a cut. . .

• •'&%$!"#∀ '&%$!"#∃ '&%$!"#∀ '&%$!"#∃ . . . '&%$!"#∀ '&%$!"#∃
TToo oo oo

◦ ◦ ◦ ◦ ◦ . . . ◦ ◦
∗

'&%$!"#∀ '&%$!"#∃
TT

◦ ◦ ◦

. . . or it can pass branches around indefinitely (example by
McKinley).

•'&%$!"#∃ '&%$!"#∀ '&%$!"#∃ '&%$!"#∀
JJ //

◦ ◦ ◦ ◦ ◦

•'&%$!"#∃ '&%$!"#∀ '&%$!"#∃ '&%$!"#∀ '&%$!"#∃ '&%$!"#∀
TT//II

◦ ◦ ◦ ◦ ◦ ◦ ◦

•'&%$!"#∃ '&%$!"#∀ '&%$!"#∃ '&%$!"#∀ '&%$!"#∃ '&%$!"#∀
II JJ //
◦ ◦ ◦ ◦ ◦ ◦ ◦

•'&%$!"#∃ '&%$!"#∀ '&%$!"#∃ '&%$!"#∀
JJ //
◦ ◦ ◦ ◦ ◦

Non-termination

The following constructions do not arise from the example,

'&%$!"#∃
t(a)

'&%$!"#∀
aoo

◦ ◦
?

'&%$!"#∃
��'&%$!"#∀ '&%$!"#∃ '&%$!"#∀
//

◦ ◦ ◦

'&%$!"#∃
'&%$!"#∀
gg

◦

but their occurrence would break the reduction mechanism.

Reductions

Pruning

'&%$!"#∀ '&%$!"#∃
TT

◦ ◦ ◦

'&%$!"#∀ '&%$!"#∃
◦ ◦

I The offending branch depends on both sides of the cut.

I In any switching, one side will be removed.

I In other words, the branch is in conflict with itself.

Pruning is the removal of such branches.

Reductions

Compound reduction steps

I The structural steps on a single cut,

I plus the logical steps on the resulting cuts.

Γ
%%KKKK

Γ1

++

... Γn

++

∀x .B

t1

'&%$!"#∃
tn

'&%$!"#∀
...

// ∆
◦ ◦ ◦

Γ, Γ1

�������

��

Γ, Γn

�������

��. . .
B[t1/x]

∆1
B[tn/x]

∆n
◦ ◦ ◦ ◦

Compound steps are unique and finite (without self-conflict).

Normalisation

Weak normalisation

The complexity of the cut-formula provides a measure.

I A compound step replaces a cut with a finite number of lower
complexity.

I A step duplicates only cuts lower in the dependency.

I If all dependent cuts are of lower complexity a cut may be
reduced.

I Antisymmetry of the dependency guarantees existence of a
suitable cut.

Normalisation

Strong normalisation?

I The previously non-terminating example is now strongly
normalising.

I The proof of weak normalisation allows reduction of ‘most’
cuts.

I The measure used is very ‘simple’.

This gives decent hope for strong normalisation.

Future work

I A strong normalisation proof

I More on non-confluence

