Classical Proof Forestry

Willem Heijltjes

LFCS
School of Informatics
University of Edinburgh

SD’09 Bordeaux

This talk. . .

The ingredients of first-order classical proof
Classical proof forests
Cut

Cut-elimination

vV Vv v Y

Normalisation (through pruning)

First-order classical proof

Herbrand's Theorem 1

» Witnesses to the quantifiers
» Multiple instantiations for existential ones

» An ordering on instantiations (prenexification)

!See: [Buss: On Herbrand’s Theorem (1995)]

First-order classical proof

Backtracking games 2

» Backtracking for Jloise (or verifier)

» Order of moves in a game
Sequent calculus

» Contraction

» Eigenvariable restriction on universal quantifier introduction

2See: [Coquand: A Semantics of Evidence for Classical Arithmetic (1995)]

First-order classical proof

The necessary ingredients

» Witness assignment
» Multiple witnesses to existential quantifiers

» An ordering to reflect available information

Important: a partial order suffices.

Dale Miller's expansion tree proofs3
In this presentation we will look at cut-elimination for this system.

3[Miller: A Compact Representation of Proofs (1987)]

Classical proof forests

An assignment tree for a prenex formula A is built as follows:

A P Vx.B 3x.B

A Bla/x] Blti/x] Bl[ta/x]

where P is propositional and n > 0; a is an eigenvariable.

Classical proof forests

A classical proof forest proves a sequent Ay, ..., A,.

It consists of n trees plus a dependency ordering:

\ ajl—t
4

(a€ FV(1))

Correctness and validity criteria are:

e eigenvariables are unique,
e the dependency is a partial order, and
e the disjunction over the propositional leaves is a tautology.

Classical proof forests

Games interpretation

A forest gives a strategy for dloise in a backtracking game:

» The edges of the trees represent moves.

» The dependency gives the prerequisites of each move.

The edges plus dependency are an event structure (later: conflict).

Classical proof forests

Example: the drinker's formula

(“There is a man in a bar, and if he drinks, everyone drinks.”)

IxVy. (Px — Py)

Pa— Pb Pb— Pc

On the right: the isolated dependency of the proof.

Classical proof forests

Another example.

Ix.(-PxVRx) Vx3y.(PxA—Qy) Vx3y.(QxA-Ry)

® ®
@ a b
a/ \
I o ><__©0
® ®

—-PaVRa Pan—Qb QbA—Ra

Composition

Cut

Interpretation (1)

Cut as communicating strategies: Vbelard mimicks Jloise’s moves
on the other side.

This gives an approach to normalisation.

But what about backtracking?

Cut

Interpretation (2)

Cut as a combination of moves:

\ (AA~A)

5ol

A ~A A ~A

» Conjunctions can be modelled as a choice by Vbelard

» if A contains eigenvariables, dloise’s move must participate in
the dependency.

Cut

Cuts participate in the dependency in the following way:

/\ aii/\iA
Z N\
(a€ FV(A))

Cut

Validity

A ~A A ~A

» A switching chooses one side of each cut.
It represents a possible strategy for Vbelard on conjunctions.

» If Vbelard plays a branch, the other's dependants are removed.
» For any switching, this must be valid.

» Cut-free validity via a propositional tautology check.

Note this is different from Miller's validity criterion!

Cut

Conflict
Another way of describing validity:

» Moves by Vbelard on a conjunction are in conflict
(mutually exclusive in a single play).

» Any two moves depending on conflicting moves are in conflict.

» Any maximal conflict-free subforest must be winning.

This gives the conflict relation of the event structure.

Reductions

A propositional step

® ® ~ *

A disposal step

@ O
a

A

In this case also the dependants (A) are removed.

*

Reductions

A logical step

/NHXB

\B[f/X]
r"> a‘>A [t/a]

» The eigenvariable a is substituted with the opposing term t.

» The dependency is updated accordingly.

Reductions

Backtracking

AN

» Two ways to instantiate Vbelard's choice a.

» The moves responding to it are the dependants.

» These must be duplicated to accommodate both choices.

Reductions

A structural step

al—s= A/

Reductions

Properties

» The reduction relation preserves validity.
» It is weakly normalising.
» It is non-confluent.

» Naively, the reduction relation exhibits non-termination.

Non-termination

Non-termination

A dependency ‘crossing’ a cut generates infinite reductions.

This example has no normalizing reduction paths.

@

A ‘cycle of cuts’ can reduce to a dependency across a cut. ..

© 0 00 ~--<% . ® 0

...or it can pass branches around indefinitely (example by
McKinley).

o5y -

@ d

¢

9 - 1 9

Non-termination

The following constructions do not arise from the example,

o o
N
t(afe a w7 ®O® ~ @

but their occurrence would break the reduction mechanism.

Reductions

Pruning

AN

d

-

» The offending branch depends on both sides of the cut.
» In any switching, one side will be removed.

» In other words, the branch is in conflict with itself.

Pruning is the removal of such branches.

Reductions

Compound reduction steps

» The structural steps on a single cut,
» plus the logical steps on the resulting cuts.

M R

SN /N
B[t1/X] A, Blta/x] \A
g l g l !

Compound steps are unique and finite (without self-conflict).

Normalisation

Weak normalisation

The complexity of the cut-formula provides a measure.

» A compound step replaces a cut with a finite number of lower
complexity.

» A step duplicates only cuts lower in the dependency.

» If all dependent cuts are of lower complexity a cut may be
reduced.

» Antisymmetry of the dependency guarantees existence of a
suitable cut.

Normalisation

Strong normalisation?

» The previously non-terminating example is now strongly
normalising.

» The proof of weak normalisation allows reduction of ‘most’
cuts.

» The measure used is very ‘simple’.

This gives decent hope for strong normalisation.

Future work

» A strong normalisation proof

» More on non-confluence

