
Quantitative Types for the Functional Machine
Calculus (Extended Version)
Willem Heijltjes #Ñ

Department of Computer Science, University of Bath, UK

Abstract
The Functional Machine Calculus (FMC, Heijltjes 2022) extends the lambda-calculus with the com-
putational effects of global mutable store, input/output, and probabilistic choice while maintaining
confluent reduction and simply-typed strong normalization. Based in a simple call–by–name stack
machine in the style of Krivine, the FMC models effects through additional argument stacks, and
introduces sequential composition through a continuation stack to encode call–by–value behaviour,
where simple types guarantee termination of the machine.

The present paper provides a discipline of quantitative types, also known as non-idempotent
intersection types, for the FMC, in two variants. In the weak variant, typeability coincides with
termination of the stack machine and with spine normalization, while exactly measuring the
transitions in machine evaluation. The strong variant characterizes strong normalization through a
notion of perpetual evaluation, while giving an upper bound to the length of reductions. Through
the encoding of effects, quantitative typeability coincides with termination for higher-order mutable
store, input/output, and probabilistic choice.

2012 ACM Subject Classification Theory of computation → Type structures; Theory of computation
→ Lambda calculus

Keywords and phrases lambda-calculus, computational effects, intersection types

Acknowledgements I am grateful to Vincent van Oostrom for many interesting discussions. Thanks
also to the anonymous referees for suggestions and pointers to the literature.

1 Introduction

The Functional Machine Calculus (FMC) [5, 24] is a new approach to extending the λ-
calculus with computational effects, preserving confluent reduction and simply-typed strong
normalization for the effects of global mutable store, input/output, and probabilistic choice.
This paper presents a generalization of the type system to non-idempotent intersection types,
a notion of quantitative types that not only characterizes weak or strong normalisation, but
in addition provides quantitative information about the length of reductions.

It is well known that introducing effects into the λ-calculus renders it non-confluent.
The FMC gets around this by starting not from β-reduction, which indeed is incompatible
with global effect operations, but from the (simplified) Krivine machine [30]. This gives a
call–by–name operational semantics to the λ-calculus in the form of an abstract machine with
a single stack, where application pushes its argument and abstraction pops. The FMC then
introduces additional stacks to model effects, for example mutable variables as stacks of depth
one and a random generator as a probabilistically generated stream (an infinite stack). It
further adds sequential composition, naturally interpreted on the stack machine, which allows
the encoding of call–by–value evaluation as well as Moggi’s computational metalanguage [34]
and Levy’s call–by–push–value [32]. Confluent reduction and simple types are then derived
from the behaviour of the machine, where types have a natural interpretation as a guarantee
of successful termination of the machine [24].

The FMC continues to be developed, for example with an extension to exception hand-
ling [25] and as a symmetric variant for relational programming [4], and there are many

mailto:w.b.heijltjes@bath.ac.uk
http://willem.heijltj.es
https://orcid.org/0009-0001-8941-1150

2 Quantitative Types for the FMC

remaining questions regarding its type system and possible extensions to it. The simply-
typed FMC is constrained in its expressiveness, for instance requiring the consumption of
a fixed number of probabilistic values from the stream representing a random generator.
Like monadic encodings of effects such as store, semantically it remains a Cartesian closed
category [5]. Richer type systems are required (and expected) to more accurately capture the
nature of effects, as demonstrated by a recent type system for probabilistic termination [26].
The aim of the present paper is to take a next step in this direction, moving from simple
types to intersection types.

Intersection type systems [12, 41], which characterize exactly the normalizing terms of a
calculus, have become an important semantic tool (see [8] for a recent overview). They are
a form of finite polymorphism, where a term may be assigned multiple types. Conversely,
a collection of multiple types is inhabited by the intersection of the inhabitants of its
constituents—hence the name intersection types. The original idempotent intersection types,
where type collections are sets, were later joined by non-idempotent variants [11, 27, 36],
where collections are multisets. In addition to characterizing normalization, these resource-
sensitive versions provide quantitative information about terms such as the maximal length
of reductions. They are closely related to a range of other models and techniques, including
resource calculi and differential λ-calculus [9, 21, 28], relational models [31, 38], and game
semantics [37]. The relation between both variants manifests at the semantic level as a
connection between Scott models and relational models [18, 19]. Intersection types have
been studied from various other angles including category theory [33] and logic and proof
theory [20, 23, 39].

Importantly for the present purpose, intersection types have been used to study com-
putational effects [7, 13, 16]. In particular, intersection type systems exist for probabilistic
choice [2, 10], mutable store [1, 14, 15], and monadic effects in general [22].

Where these efforts start from untyped effects and introduce tailored intersection types to
capture their semantics, the development in this paper is in the opposite direction: it starts
from a simply-typed calculus for effects, the FMC, and derives intersection types essentially
by the standard generalization, which is to replace the input types of a function with a
collection type. The litmus test is whether both approaches arrive at the same solution.
Validating both views, this is confirmed in Section 7, where it is demonstrated that modulo
the distinction between idempotent and non-idempotent types, the type system presented
here agrees with that of De’Liguoro and Treglia for higher-order store [14]. Appendix A
extends the comparison to the non-idempotent type system for store of Alves, Kesner, and
Ramos [1].

The contributions of the paper are as follows. The overall result is to give a system of
quantitative types for the FMC that is implicitly reflected on encoded effects and strategies:
higher-order store, input/output, and probabilistic choice, the call–by–name and call–by–
value λ-calculus [40], the computational metalanguage [34], and call–by–push–value [32] (see
Section 7 for some of their encodings, and [24] for the remainder). The type system has
two variants, weak and strong. The main theorem for the weak system, Theorem 20, is that
weak quantitative types characterize both termination of the machine, where types give
the exact number of steps in machine evaluation, and spine normalization. That machine
termination and spine normalization coincide then holds untyped, which is a new result for
the FMC relating the machine to reduction. The main result for strong quantitative types,
Theorem 29, is that typing coincides with strong normalization and gives an upper bound
to reduction length. The development is via a new notion of perpetual evaluation for the
FMC, an inductive definition of iterated weak head reduction to normal form analogous to

W. Heijltjes 3

perpetual strategies for the λ-calculus [3, 6, 43].
An interesting observation is that weak typing corresponds to machine termination,

an important and natural notion for the FMC, but not to weak normalization. That is
because, unlike for the call–by–name λ-calculus, the machine may terminate with a non-empty
stack of return values, about which the type system gives no guarantees (i.e. they may be
non-terminating).

The paper uses a variant definition of the FMC that differs superficially from the
original [24]. The changes and their benefits are explained after the calculus is introduced in
the next section. Confluence holds [25], but since it is unpublished at time of writing, the
present exposition is formulated so as not to rely on it.

The development aims to put the emphasis on careful definitions, so that proofs become
straightforward case analyses and structural inductions. This manifests particularly in the
perpetual evaluation relation used to relate strong types and strong normalization. In this
extended version of the conference paper, proofs that are indeed of this kind have been
relegated to the Appendix.

2 The Functional Machine Calculus

This section will define the FMC: its syntax, the abstract machine, a quantitative big-step
semantics, its reduction relations, and the type system.

The primary intuition for the FMC is as an instruction language for a machine with
multiple stacks, indexed by a set of locations {a, b, c, . . . }, and together called a memory.
The calculus interacts with individual stacks through push and pop constructs: [N]a. M

pushes the term N to the stack a and continues as M , and a⟨x⟩. M pops from the stack
a, using the popped term as x in M . This generalizes the evaluation of λ-terms on the
(simplified) Krivine machine [30], where application pushes its argument, and abstraction
pops. The standard, call–by–name λ-calculus [40] then embeds by choosing a default location
λ, by letting M N = [N]λ. M and λx.M = λ⟨x⟩. M . For brevity, the location λ may be
omitted, writing instead [N]. M respectively ⟨x⟩. M . The locations of the FMC may encode
reader/writer effects: higher order store as stacks of depth one, I/O as separate input and
output streams, and non-determinism and probabilistic choice as non-deterministically and
probabilistically generated input streams (see [24] for details).

The FMC further includes sequencing M ; N and its unit skip ⋆. These are composition
and identity of FMC terms viewed as memory transformers: computations with an input
memory and output memory. The big-step semantics, below, uses this interpretation directly,
while it is implemented on the machine via a continuation stack, in standard fashion.

▶ Definition 1 (Syntax). The terms of the Functional Machine Calculus are given by the
following grammar.

M, N, P ::= x | a⟨x⟩. M | [N]a. M | ⋆ | M ; N

From left to right these are: a variable x, an abstraction or pop a⟨x⟩. M on location a which
binds x in M , an application or push [N]a. M of term N on location a, the unit or skip ⋆,
and sequencing M ; N .

The operational meaning of the five constructs will be expressed through a small-step
semantics, in the form of a simple stack machine, and a big-step semantics, in the form of
an inductive evaluation relation. The abstract machine will use the following components.
An operand stack or argument stack S is a stack of terms, represented with the head on the

4 Quantitative Types for the FMC

right and using ε for the empty stack. A memory is a family of operand stacks indexed in a
set of locations A. A continuation stack is a stack of terms with the head to the left.

S, T ::= ε | S M SA ::= {Sa | a ∈ A} K, L ::= M K | ε

For a memory SA, the stack a being empty, εa, or outside the family, a /∈ A, are equivalent.
Thus we may fix a set of locations A going forward, noting that any given term uses only a
fixed, finite set of locations, determined syntactically. Let SA ·Ma denote the memory SA

with M pushed to the stack indexed by a.

▶ Definition 2 (Abstract machine). A machine state (SA, M, K) is a triple of a memory SA,
a term M , and a continuation stack K. The transitions or steps of the machine given by
the following rules.

(SA , [N]a. M , K)
(SA ·Na , M , K)

(SA , M ; N , K)
(SA , M , N K)

(SA ·Na , a⟨x⟩. M , K)
(SA , {N/x}M , K)

(SA , ⋆ , M K)
(SA , M , K)

A final state is of the form (SA, ⋆, ε) and a failure state of either of the forms (SA, x, K) or
(SA, a⟨x⟩. M, K) where Sa = ε. A run is a sequence of steps, written as below, where the
length of the run n ≥ 1 is the number of states it traverses (which may be omitted from the
notation). A run is successful if it terminates in a final state.

(SA , M , K)
(TA , N , L)

n

The following big-step semantics describes the successful runs on the machine, for a given
term, as an inductive evaluation relation ⇓n between memories. The length of a run will
correspond exactly to the number of rule instances in a derivation for ⇓n, recorded as the
number n. This correspondence, and a similar one with the type system defined later in this
section, is the reason to measure the length of a run by its states and not its steps: a unit
term ⋆ is introduced by a rule, so correspondingly the unit run will have length one, not zero.

▶ Definition 3 (Quantified big-step semantics). The quantified evaluation relation ⇓n between
an input memory, a term, and an output memory is defined inductively as follows.

SA, ⋆ ⇓1 SA

RA, M ⇓m SA SA, N ⇓n TA

RA, M ; N ⇓m+n+1 TA

SA ·Na, M ⇓n TA

SA, [N]a. M ⇓n+1 TA

SA, {N/x}M ⇓n TA

SA ·Na, a⟨x⟩. M ⇓n+1 TA

Both the machine and the evaluation relation are deterministic: there is exactly one rule
for each constructor (except none for the variable). Evaluation is thus a partial function,
undefined where the machine is non-terminating or ends in a failure state. Note that it is
not inductive on terms due to the substitution in the rule for abstraction, which handles the
variable construct.

▶ Proposition 4 (Small-step and big-step semantics agree). Successful machine runs of length
n correspond to quantified evaluation ⇓n:

(SA , M , ε)
(TA , ⋆ , ε)

n ⇐⇒ SA, M ⇓n TA

W. Heijltjes 5

We will see two reduction relations. Regular reduction is a rewrite relation, closed
under all contexts, and spine reduction w is restricted to spine contexts, which means
everywhere except within the argument N of an application [N]a. M .

▶ Definition 5 (Reduction). The reduction rules are as follows.

Beta: [N]a. a⟨x⟩. M {N/x}M

Passage: [N]b. a⟨x⟩. M a⟨x⟩. [N]b. M (a ̸= b, x /∈ fv(N))
Next: ⋆ ; M M

Prefix (pop): a⟨x⟩. N ; M a⟨x⟩. (N ; M) (x /∈ fv(M))
Prefix (push): [P]a. N ; M [P]a. (N ; M)
Associate: (P ; N) ; M P ; (N ; M)

Reduction contexts C are given by the following grammar.

C ::= {} | a⟨x⟩. C | [M]a. C | [C]a. M | C ; M | M ; C

Spine contexts W are given by the following grammar.

W := {} | a⟨x⟩. W | [M]a. W | W ; M | M ; W

The (capturing) substitution of the hole {} in a context C by a term M is written C{M}.
The reduction relation is given by closing the reduction rules M N under any context,
C{M} C{N}. Spine reduction w is given by closing under spine contexts, W{M} w
W{N}. The reflexive-transitive closure of a relation is written , and reduction to
normal form as .

Without the beta-rule, reduction is strongly normalizing.

▶ Proposition 6. Non-beta reduction is SN.

Proof. The following pair of measures strictly decreases. Writing |M | for the size of a term
M , first the sum over |M | for every subterm M ; N (equal for passage, decreasing for other
rules); second the sum over |M | for every subterm [N]a. M (decreasing for passage). ◀

The above definitions differ from the original presentation [24] in the following ways, and
for the following reasons. First, instead of introducing sequencing M ; N as a primitive, the
original syntax used a sequential variable x. M and defined sequencing as an operation. The
two formulations are equivalent modulo the reductions for sequencing (the Next, Prefix, and
Associate reductions), whose normal forms use sequencing exclusively as x ; M . The original
formulation reduced the number of reduction rules and avoided the need for a continuation
stack on the machine, emphasizing the view of terms as sequences of machine instructions.
Present thinking however prefers simplicity not through fewer but through more elementary
components, viewing the more refined reduction relation and the continuation stack as
benefits rather than obstacles. The current syntax emphasizes the clean combination of
λ-calculus and sequencing and more readily accommodates current and future extensions
such as exceptions [25] and concurrency.

Second, the original formulation used a single yet complex reduction rule, below, where
the ellipsis represents any number of abstractions and applications on locations other than a.

[N]a . . . a⟨x⟩. M . . . {N/x}M

6 Quantitative Types for the FMC

Again the emphasis has shifted to multiple simpler rules, Beta and Passage. These follow
the natural case analysis for an application meeting an abstraction, whether they have the
same or different locations, and give more structured normal forms, where all abstractions
precede all applications, as we will see in Sections 4 and 6.

The main technical results of the paper, in the following sections, will establish the
relation between the operational semantics, reduction, and quantitative types. The latter are
defined next.

▶ Definition 7 (Quantitative types). Quantitative types for the FMC are built up in four
mutually recursive layers : computation types, collection types, vector types, and memory
types, given by the following grammars.

Computation types: τ ::= ι ⇒ κ

Collection types: ι, κ, µ, ν, π ::= [τ1, . . . , τn]
Vector types: ι ::= ι1 . . . ιn

Memory types: ι ::= {ιa | a ∈ A}

Collection types are multisets, i.e. considered modulo associativity, symmetry, and unitality,
where multiset union is denoted as a sum, ι+κ.

These four categories reflect the components of the operational semantics. Terms will
be typed with computation types (or simply types) M : τ , as will continuation stacks K : τ .
Collection types may be viewed as value types, along the computation/value distinction of
call–by–push–value [32], and apply to the argument term in an application and to the terms
on an argument stack (note the continuation stack holds terms as computations). Argument
stacks themselves are typed by vector types, S : ι, and memories by memory types, SA : ι.

Note that the base cases for the definition are given by empty collection types [] and empty
vector and memory types, both denoted ε. Composition of type vectors is by juxtaposition,
ι κ, extended to memories point-wise, ι κ = {ιa κa | a ∈ A}. The singleton family a(ι) has
ι at location a and ε at any other location. The default location λ may again be omitted,
writing ι for λ(ι).

Since stacks are first-in-first-out, identity terms are of the form below, with pops and
pushes in inverse order to each other. To match this in the type system, type vectors on the
left of an implication are implicitly reversed, so that identity types may be written ι ⇒ ι.

an⟨xn⟩ . . . a1⟨x1⟩. [x1]a1 . . . [xn]an. ⋆ : an(ιn) . . . a1(ι1)⇒a1(ι1) . . . an(ιn)

A typing context Γ, ∆, Λ, Σ is a function from variables to collection types, written as a
sequence Γ = x1 : ι1, . . . , xn : ιn where any other variable y is implicitly assigned the empty
type, Γ(y) = []. The union or sum of two contexts Γ+∆ is given pointwise: (Γ+∆)(x) =
Γ(x) + ∆(x).

▶ Definition 8 (The quantitatively typed FMC). The typing rules in Figure 1 define the
quantitatively-typed Functional Machine Calculus, in two variants: weak and strong, with
typing judgements Γ ⊢w M : τ respectively Γ ⊢s M : τ that assign the term M the type τ in
the context Γ. The weak type system is given by the rules of Figure 1 with unlabelled (⊢)
and weak judgements (⊢w), and the strong system by those with unlabelled (⊢) and strong
judgements (⊢s). The weight n of a derivation is the number of rule instances for abstraction,
application, sequencing, and unit, and may be indicated in a judgement as ⊢n .

The first section of Figure 1 gives the weak system for terms, the next section extends
the weak system to memories, continuation stacks, and machine states, and the final section

W. Heijltjes 7

Variable: x : [τ] ⊢ x : τ
var

Abstraction:
Γ, x : ι ⊢ M : κ ⇒ µ

Γ ⊢ a⟨x⟩. M : a(ι) κ ⇒ µ
abs

Application (weak):
Γ ⊢w N : ι ∆ ⊢w M : a(ι) κ ⇒ µ

Γ+∆ ⊢w [N]a. M : ι ⇒ µ
app

Unit: ⊢ ⋆ : ι ⇒ ι
unit

Sequencing:
Γ ⊢ N : ι ⇒ κ ∆ ⊢ M : κ ⇒ µ

Γ+∆ ⊢ N ; M : ι ⇒ µ
seq

Collection:
(Γi ⊢ M : τi)1≤i≤n

Γ1 + . . . +Γn ⊢ M : [τ1, . . . , τn]
col

Memory:
⊢ εA : ε

m0
⊢ SA : ι ⊢ M : κ

⊢ SA ·Ma : ι a(κ)
m1

Continuation stack:
⊢ ε : ι ⇒ ι

k0
Γ ⊢ M : ι ⇒ κ ⊢ K : κ ⇒ µ

⊢ M K : ι ⇒ µ
k1

State:
⊢ SA : ι ⊢ M : ι ⇒ κ ⊢ K : κ ⇒ µ

⊢ (SA, M, K) : ε⇒ µ
st

Application (strong):
Γ ⊢s N : ι ∆ ⊢s M : a(ι) κ ⇒ µ Λ ⊢s N : τ

Γ+∆+Λ ⊢s [N]a. M : κ ⇒ µ
APP

Weakening:
Γ ⊢s M : τ

Γ+∆ ⊢s M : τ
WEAK

Figure 1 The quantitatively typed Functional Machine Calculus

8 Quantitative Types for the FMC

gives the specific rules for the strong type system (which is defined only for terms, not states).
When it is clear from the context whether a judgement concerns the weak or the strong type
system, the subscripts on ⊢w and ⊢s may be dropped.

The key difference between both systems is in the third premise to the strong application
rule. In both application rules, the first premise assigns a type to the argument N which
may be empty in the case where it will not be used by M . This corresponds to machine
evaluation, where N may be discarded without evaluation, but not to strong normalization,
where N must itself be normalizing. The strong application rule therefore requires N to be
typed separately, a standard approach [8, 11], here via the third premise.

Typing judgements for machine states are of the form ⊢ (SA, M, K) : ε⇒ ι, with empty
context and input type. This prevents failure states from being typed: the empty context
means there are no computation types for free variables, and an empty input type means
there must always be sufficient items in memory for any abstraction to pop. Progress, the
idea that a machine state is either final or has a transition, is thus immediate from types,
once it is proved that machine transitions preserve typing in Lemma 10 below.

Non-idempotent intersection types for the λ-calculus [11] embed into quantitative FMC
types in the manner of simple types [24], by the following interpretation, using the default
location λ (omitted from the notation). The weak type system then embeds the system W
for λ-terms of [11], while the strong system differs from system S in two minor ways: in the
presence of the weakening rule, and for the strong application rule, in requiring a witness
also when the argument has a non-empty collection type.

Base type: o = ε⇒ε

Arrow types: [σ1, . . . , σn] → τ = [σ1, . . . , σn] κ ⇒ µ where τ = κ ⇒ µ

3 Machine Termination

This section will show that the successful evaluation and weak typeability coincide, where
the weights agree. First, in the weak type system, the following substitution typing rule is
admissible: it can be introduced without altering the expressiveness of the type system.

Γ ⊢ N : ι ∆, x : ι ⊢ M : τ

Γ+∆ ⊢ {N/x}M : τ
sub

▶ Lemma 9 (Substitution, weak). There are derivations Γ ⊢w
n N : ν and ∆, x : ν ⊢w

m M : τ if
and only if there is a derivation Γ+∆ ⊢w

k {N/x}M : τ where k = n + m.

For the weakly typed calculus, a machine step from a typed state leads to a typed state
of weight exactly one less.

▶ Lemma 10 (Evaluation reduces typing weights). If

(SA , M , K)
(TA , N , L)

then ⊢w
n (SA, M, K) : ε⇒ ι if and only if ⊢w

n−1 (TA, N, L) : ε⇒ ι.

It follows that weak types guarantee termination of the machine while measuring the
length of a run.

▶ Theorem 11 (Weak types quantify evaluation). For a typed state ⊢w
n (SA, M, ε) : ε⇒ ι there

exists a typed memory ⊢w
m TA : ι such that SA, M ⇓k TA where n = m + k.

W. Heijltjes 9

Proof. Recall that failure states cannot be typed. A typed state ⊢w
n (SA, M, K) : ε⇒ ι is

then either final or has a machine transition. In the case of a transition, by Lemma 10 the
new state is typed with weight one less. Thus, the machine continues taking steps, preserving
types but reducing weights, until it reaches a final state, giving a run of length k as below
left, so that SA, M ⇓k TA by Proposition 4. The final state (TA, ⋆, ε) is typed as below right,
with weight m + 1 where ⊢w

m
TA : ι. This represents a run of length 1, so that a run of length

k starts from a weight m + k = n.

(SA , M , ε)
(TA , ⋆ , ε)

k ⊢w
m TA : ι ⊢w

1 ⋆ : ι ⇒ ι ⊢w
0 ε : ι ⇒ ι

⊢w
m+1 (TA, ⋆, ε) : ε⇒ ι

st ◀

For the reverse, that all terminating states can be typed, it is now sufficient to give a
type to final states (TA, ⋆, ε). We may do so simply by typing each term in the memory TA

with the empty collection type []. Denote by []n the type vector of [] . . . [] of length n, and by
[]f for a function f : A → N the memory type {[]f(a) | a ∈ A}. Let |T | denote the length of
a stack T and let |TA| = f where f(a) = |Ta| denote the dimensions of a memory TA. For
types, likewise let |ι| denote the length of a type vector and |ι| = f where f(a) = |ιa| the
dimensions of a memory type.

▶ Theorem 12 (Evaluation implies weak typing). If SA, M ⇓n TA then ⊢w
n (SA, M, ε) : ε⇒ []f

where f = |TA|.

Proof. The memory TA may be typed ⊢w
0 TA : []f , and its final state ⊢w

0 (TA, ⋆, ε) : ε⇒ []f . By
Proposition 4 there is a run of length n to this state from (SA, M, ε). By Lemma 10 each
step in this run, backwards from the final state, gives a previous state with the same type
but weight one greater, so that by induction ⊢w

n (SA, M, ε) : ε⇒ []f . ◀

Combining both theorems, since a typeable state ⊢w (SA, M, ε) : ε⇒ ι terminates with a
memory TA : ι, which is also typed by []f where f = |ι|, we have ⊢w

n (SA, M, ε) : ε⇒ []f where
the weight n of the latter is exactly the number of machine steps to successful termination.

4 Spine Normalization

The present section will establish that weak typing and successful evaluation further coincide
with spine normalization. First we observe the shape of spine normal forms and demonstrate
that they may be typed.

▶ Proposition 13 (Spine normal forms). The normal forms of spine reduction w are the
terms W given by the following mutually recursive grammars.

W ::= a⟨x⟩. W | V
V ::= [M]a. V | x ; W | x | ⋆

▶ Lemma 14 (Spine normal forms are weakly typeable). For any W there is a derivation
Γ ⊢w W : ι ⇒ []f .

Spine reduction preserves and reflects typing, where weights are strictly reduced in the
reduction rules beta ([N]a. a⟨x⟩. M {N/x}M) and next (⋆ ; M M), and preserved
otherwise.

▶ Lemma 15 (Weighted subject reduction and expansion). If M w N then Γ ⊢w
m M : τ if

and only if Γ ⊢w
n

N : τ , where m = n + 2 in the case of a beta-step or next-step and m = n

otherwise.

10 Quantitative Types for the FMC

It now follows that weak typeability and spine normalization coincide.

▶ Theorem 16 (Weak typing characterizes spine normalization). A term is weakly typeable if
and only if it is spine-normalizing.

Proof. From left to right, since non-beta steps are strongly normalizing by Proposition 6, an
infinite reduction must contain infinitely many beta-steps. By Lemma 15 spine beta-reduction
decreases the weight of the typing derivation, while other steps do not increase it. Then
spine reduction is terminating. From right to left, proceed by induction on the sum length of
all spine reduction paths. Spine-normal terms are typeable by Lemma 14, and for a step
M w N if N is typeable then so is M by Lemma 15. ◀

Since weak typing characterizes both spine normalization and machine termination (by
Theorems 11 and 12), the natural corollary would be that machine termination and spine
normalization coincide. In one direction, this follows directly: by Theorem 12 termination
implies typeability, and by Theorem 16 typeability implies spine normalization.

In the other direction, however, there is still a small gap to be closed: a spine-normalizing
term M may be typeable as Γ ⊢w M : ι ⇒ κ, but the machine is only guaranteed to run for
states of type ε⇒ κ. In other words, for M to run successfully, a memory SA of type ⊢w SA : ι

must be provided, and each variable x : ι in Γ must be substituted by a term N typed ⊢w N : ι.
However, these are not guaranteed to exist, since not all quantitative types are inhabited.
This is in contrast with simple types for the FMC, which are inhabited [24, Remark 3.7].

▶ Proposition 17 (No type inhabitation). There exist types τ such that ̸⊢wM : τ for any M .

Proof. Since types are preserved under spine reduction, if a type is inhabited by a term,
it is inhabited by its spine normal form. The only normal form inhabiting the type ε⇒ε

is ⊢ ⋆ : ε⇒ε (it cannot be an abstraction, since the type has no inputs; it cannot contain
free variables, since the context is empty; and it cannot be an application, since the type
has no outputs). Similarly, the only spine normal forms inhabiting ε⇒ [ε⇒ε] are of the form
⊢ [M]. ⋆ : ε⇒ [ε⇒ε]. It follows that the collection type [ε⇒ε, ε⇒ [ε⇒ε]] is not inhabited, and

so neither is the type ε⇒ [ε⇒ε, ε⇒ [ε⇒ε]]. ◀

To connect spine normalization and termination, for every spine normal term W a memory
SA and substitution map σ will be given such that for SA and σW the machine terminates.
A substitution map σ = {M1/x1, . . . , Mn/xn} is a finite function from variables to terms,
applied as σM to a term M as a simultaneous substitution. To allow a successful machine
run for σW , the memory SA and substitution map σ must be such that, at any point in the
computation, there are sufficient terms on all stacks to pop from. To this end the following
notions are defined: for a natural number d, a memory of dimension d will have at least
d terms of dimension d − 1 on each stack, and a term of dimension d consists of sufficient
applications to generate a memory of dimension d. These are formalized as follows, again
noting that the locations A for a given term are finite and may be determined syntactically.

For a stack S = ε N1 . . . Nn let [S]a. M denote the term [N1]a . . . [Nn]a. M , and for a
memory SA let [SA]. M denote a term [Sa1]a1 . . . [San

]an. M where A = {a1 . . . an}. For a
natural number d, a memory of dimension d is one SA where |SA| = f with f(a) ≥ d for all
a ∈ A, and each term in SA is a term of dimension d − 1, where a term of dimension d is
of the form [SA]. ⋆ with SA of dimension d. A substitution map of dimension d is one that
sends every variable to a term of dimension d. Observe that an element of dimension d is
also one of any d′ < d.

W. Heijltjes 11

▶ Lemma 18 (Spine normal forms terminate). For a spine-normal term W there is a dimension
d such that for any memory SA and substitution map σ of dimension d, there is a memory
TA such that SA, σW ⇓ TA.

Since machine termination guarantees typing (Theorem 12), the above would be sufficient
to connect spine normalization to weak typeability. The following lemma is however instructive
in connecting spine reduction and machine termination explicitly.

▶ Lemma 19 (Evaluation is invariant under spine reduction). If M w N then SA, σM ⇓ TA

if and only if SA, σN ⇓ TA for any memories SA and TA and substitution map σ.

The main theorem connecting weak typing, spine normalization, and machine termination
is then the following.

▶ Theorem 20 (Weak types characterize termination and spine normalization). For a term M

the following are equivalent:
1. M is weakly typeable Γ ⊢w M : τ ,
2. M is spine-normalizing,
3. M is machine-terminating: there are memories SA, TA and a substitution map σ such

that SA, σM ⇓ TA.

Proof. By Theorem 16 statements 1 and 2 are equivalent. From statement 2 to 3, if M

spine normalizes to W then Lemma 18 gives memories SA and TA and a substitution map
σ such that SA, σW ⇓ TA, and since machine evaluation is reflected by spine reduction
(Lemma 19), also SA, σM ⇓ TA. From 3 to 1, by Theorem 12 for SA, σM ⇓ TA we
get ⊢w (SA, σM, ε) : ε⇒ []f where f = |TA|. The typing rule for states gives ⊢w SA : ι and
⊢w σM : ι ⇒ []f for some ι. By the weak substitution lemma (Lemma 9), since σM is typeable

so is M , and we have Γ ⊢w M : ι ⇒ []f for some Γ. ◀

Note that the above theorem resolves the problem of uninhabited types as follows: if M

is typed Γ ⊢w M : τ where either Γ or τ contains an uninhabited (input) type, then (by 1
⇒ 2) it has a spine normal form, which in turn (by 2 ⇒ 3) evaluates on the machine, which
then (by 3 ⇒ 1) guarantees that M may also be typed with only inhabited types.

5 Strong Normalization

Where the weak type system characterizes machine evaluation and spine normalization, the
strong type system characterizes strong normalization (SN). This section will prove one
direction, that normalization reduces the weight of strong type derivations and, hence, that
strong quantitative types guarantee SN and give upper bounds to the length of reductions.

We start with the substitution lemma for strong types. The substitution typing rule can
be eliminated, maintaining or reducing weight, and introduced, maintaining weight. The
inequality is due to the weakening rule WEAK: substitution into a weakened part of the
context erases the typing information of a term, maintaining only the types for its context.

▶ Lemma 21 (Substitution, strong). If there are derivations Γ ⊢s
n

N : ν and x : ν, ∆ ⊢s
m

M : τ

then there is a derivation Γ+∆ ⊢s
k {N/x}M : τ where k ≤ n + m, and vice versa where

k = n + m.

The following lemma gives preservation of typing for beta-reduction, reducing weights.

▶ Lemma 22 (Subject reduction, beta). If M N by a beta-step and Γ ⊢s
m

M : τ then
Γ ⊢s

n N : τ where m > n.

12 Quantitative Types for the FMC

While we have subject reduction, note that we do not have subject expansion. In the
reduction [N]a. a⟨x⟩. M {N/x}M , if x is not free in M , there is no typing information
for N in the reduct, but this is required for the strong application rule in the redex. This
familiar situation presents an obstacle in demonstrating that all strongly normalising terms
can be typed, covered in the next section.

For the remaining reduction rules, we do have subject expansion as well as reduction.
Recall that the next reduction, ⋆ ; M M , reduces weights, while the other non-beta
reduction rules maintain weights. It would be possible to use an adjusted weight that counts
only application and abstraction typing rules, to give exact weights for non-beta subject
reduction, since non-beta rules are inherently terminating by Proposition 6.

▶ Lemma 23 (Subject reduction and expansion, non-beta). If M N by a non-beta-step
then Γ ⊢s

m M : τ if and only if Γ ⊢s
n N : τ where m ≥ n.

We conclude this section with the theorem that typed terms are strongly normalizing.

▶ Theorem 24 (Strong normalization). If Γ ⊢s M : τ then M is strongly normalizing.

Proof. By subject reduction, Lemmata 22 and 23, reduction preserves types while maintaining
or reducing weights. Since beta-steps strictly reduce the weight of a derivation and non-beta-
steps are strongly normalizing by Proposition 6, all reduction paths must be finite. ◀

6 Perpetual Evaluation

For the reverse direction, that all strongly normalizing terms are typeable, the challenge is
that of weakened terms, the argument terms N in a reduction [N]a. a⟨x⟩. M {N/x}M

where x is not free in M . Reasoning by beta-expansion, to derive SN for [N]a. a⟨x⟩. M we
need termination information for N , which the reduct {N/x}M = M does not immediately
provide. This problem constitutes the essential difference between the λI- and λK-calculus
(see [3]) and is familiar from many strong normalization arguments, in particular those
deriving SN from weak normalization by maintaining the weakened term N in the term
structure [29, 35] and those using perpetual reduction strategies [6, 43].

The present approach will be a variant of perpetual reduction. We will see a perpetual
evaluation relation M ▶ M which relates a term M to its normal form M, that in the case
of a redex [N]a. a⟨x⟩. M not only evaluates {N/x}M but in addition requires an evaluation
N ▶ M′. This definition, as a big-step evaluation relation instead of a strategy, avoids
maintaining weakened terms in the syntax, either as redexes or explicit substitutions.

The proof then becomes straightforward: strong normalizability of M implies perpetual
evaluation M ▶ M, implies strong typeability Γ ⊢s M : τ . As before, we begin by observing
the shape of normal forms.

▶ Proposition 25 (Normal forms). The normal forms of are the terms M given by the
following grammars.

M ::= a⟨x⟩. M | N
N ::= [M]a. N | x ; M | x | ⋆

Perpetual evaluation will reduce terms to normal form by iterated weak head reduction.
That is, terms are reduced in a context of applications, a weak head context, which functions
similarly to the memory of the abstract machine. Where the machine would reach a final or
failure state, reduction continues (i.e. is iterated) for the remaining subterms, which on the
machine would constitute the memory and continuation stack.

W. Heijltjes 13

Beta
[SA]. {N/x}M ▶ M N ▶ M′

[SA]. [N]a. a⟨x⟩. M ▶ M
[SA]. a⟨x⟩. [N]b. M ▶ M
[SA]. [N]b. a⟨x⟩. M ▶ M

Passage

Next
[SA]. M ▶ M

[SA]. (⋆ ; M) ▶ M
[SA]. a⟨x⟩. (N ; M) ▶ M
[SA]. (a⟨x⟩. N ; M) ▶ M

Prefix (pop)

Associate
[SA]. (P ; (N ; M)) ▶ M
[SA]. ((P ; N) ; M) ▶ M

[SA]. [P]a. (N ; M) ▶ M
[SA]. ([P]a. N ; M) ▶ M

Prefix (push)

Normal (abstraction)
M ▶ M

a⟨x⟩. M ▶ a⟨x⟩. M

Normal (unit)
(Ni ▶ Mi)i≤n

[N1]a1 . . . [Nn]an. ⋆ ▶ [M1]a1 . . . [Mn]an. ⋆

Normal (variable)
(Ni ▶ Mi)i≤n

[N1]a1 . . . [Nn]an. x ▶ [M1]a1 . . . [Mn]an. x

Normal (sequence)
(Ni ▶ Mi)i≤n M ▶ M

[N1]a1 . . . [Nn]an. (x ; M) ▶ [M1]a1 . . . [Mn]an. (x ; M)

Figure 2 Perpetual evaluation

We will denote a term M in weak head context [N1]a1 . . . [Nn]an. M as [SA]. M , where
SA = ε ·(N1)a1 · · · (Nn)an

is the memory corresponding to the sequence of applications
[N1]a1 through [Nn]an. Note that the notation [SA] is not a function on SA, since multiple
application sequences may correspond to the same memory (to be exact: those modulo
[P]b. [N]a. M ∼ [N]a. [P]b. M where a ̸= b). Typing, however, collapses these distinctions
again: a term [SA]. ⋆ will have the type ε⇒ ι where SA : ι.

▶ Definition 26 (Perpetual evaluation). The perpetual evaluation relation M ▶ M between
terms and normal forms is given inductively by the rules in Figure 2.

The salient features of perpetual evaluation are the following. The first six rules each
correspond to a reduction rule in weak head context. Simultaneously, these can be seen to
implement machine evaluation, where the context represents the memory. The beta-rule
requires the additional normalization of the argument N , as discussed above. The remaining
four rules cover four of the five cases of normal forms, with the fifth, for application, covered
by the presence of weak head contexts. As discussed above, these cases represent final or
failure states on the machine, where reduction needs to iterate on the subterms representing
the remaining memory and continuation stack.

The following lemma then shows that a strongly normalizing term also has a finite
perpetual evaluation. To avoid reference to confluence, it is phrased as a combination of two
statements: one, that SN implies perpetual evaluation, and two, that the normal form given
by perpetual evaluation is indeed a normal form of the original term.

▶ Lemma 27 (Strong normalization implies perpetual evaluation). If M is strongly normalizing
then M ▶ M and M M for some M.

14 Quantitative Types for the FMC

The definition of perpetual evaluation as an inductive relation means we may assign the
same type to a term and its normal form simultaneously.

▶ Lemma 28 (Perpetual evaluation implies strong typeability). If M ▶ M then Γ ⊢s M : τ and
Γ ⊢s M : τ for some Γ and τ .

This gives the required equivalence between strong quantitative typing, strong normaliza-
tion, and perpetual evaluation.

▶ Theorem 29 (Strong typing characterizes strong normalization). For a term M , the following
are equivalent:
1. M is strongly typeable, Γ ⊢s M : τ ,
2. M is strongly normalizing,
3. there is a perpetual evaluation M ▶ M.

Proof. From 1 to 2 is Theorem 24, from 2 to 3 is Lemma 27, and from 3 to 1 is Lemma 28. ◀

7 Quantitative Types for Higher-Order Store

The quantitative type system extends to computational effects and evaluation strategies via
their encoding in the FMC. We will explore this by demonstrating that the present type
system agrees with the intersection types of De’Liguoro and Treglia for a monadic λ-calculus
with higer-order store [14]. The comparison will be exact, but informal, for the reason that
their type system is idempotent, i.e. their type collections are sets, not multisets. Modulo this
distinction, their typed calculus will embed directly into the FMC. Appendix A in addition
gives the correspondence with the related quantitative types of Alves, Kesner, and Ramos [1],
a correspondence that is likewise informal but exact, as it is restricted to a fragment of their
type system.

The untyped calculus consists of six syntactic constructs, which embed as follows, where
the values V are the first column and the computations M the second and third. The
embedding into the FMC uses the default location λ for regular application, abstraction,
and monadic constructs, omitted from the notation both in terms and types, i.e. [N]. M and
⟨x⟩. M abbreviate [N]λ. M and λ⟨x⟩. M , and ι may abbreviate the singleton memory λ(ι).

Values V : Computations M :
x = x [V] = [V]. ⋆ geta(λx.M) = a⟨x⟩. [x]a. M

λx.M = ⟨x⟩. M M V = M ; V seta(V, M) = a⟨_⟩. [V]a. M

The current presentation uses M V instead of De’Liguoro and Treglia’s M ⋆ V to avoid
conflicting with skip, and a, b, c . . . instead of ℓ for memory locations. The embeddings are
standard [17, 24, 42]. They further agree with the encodings of application, let-syntax, and
update a := M and lookup !a, as follows (the first column gives the encodings by De’Liguoro
and Treglia [14], the second their standard FMC interpretation [24]).

V W = [W] V [W]. V ([W]. ⋆) ; V

let x = !a in M = geta(λx.M) (a⟨x⟩. [x]a. [x]. ⋆) ; ⟨x⟩. M a⟨x⟩. [x]a. M

a := V ; M = setaV, M (a⟨_⟩. [V]a. ⋆) ; M a⟨_⟩. [V]a. M

Types for the monadic calculus, given below, are stratified like those of the FMC, but unlike

W. Heijltjes 15

the latter they include an intersection operator ∧ and unit ω at each level.

Value types: δ ::= α | δ → τ | δ ∧ δ′ | ω

Store types: σ ::= ⟨a : δ⟩ | σ ∧ σ′ | ω

Configuration types: κ ::= δ × σ | κ ∧ κ′ | ω

Result types: τ ::= σ → κ | τ ∧ τ ′ | ω

A subtyping relation ≤ and equivalence = for these types helps embed them into FMC
types. First, implication distributes over intersection, δ → (τ ∧ τ ′) = (δ → τ) ∧ (δ → τ ′),
so that value types are given by a large intersection over arrow types δ → τ and variables
α. Value types then encode as collection types, where δ ∧ δ′ = δ +δ′ and ω = [], and arrow
types by their standard encoding [24], where δ → τ adds the additional input δ to the FMC
implication type given by τ . Since value types are collections, δ → τ embeds as a singleton
collection, as follows.

δ → τ = [δ µ ⇒ ν] where τ = µ ⇒ ν

For store types, collections distribute over location indexing, ⟨a, δ⟩ ∧ ⟨a, δ′⟩ = ⟨a, δ ∧ δ′⟩. A
store type is thus of the following form, and embeds as a memory type over a set of locations
A representing (non-empty) memory cells.∧

a∈A

⟨a : δa⟩ = {δa | a ∈ A}

Note that store types use the intersection operator to combine the types at different locations.
Configuration types κ are then memory types over a set of locations A that include the
default location λ, in the first line below, and computation types τ are implications from
store types to memory types, second line below.

δ × σ = ι where ιλ = δ and ιa = σa for a ̸= λ

σ → κ = σ ⇒κ

Figure 3 gives the comparison between intersection typing for store and quantitative FMC
typing. With the difference that the former admits weakening and contraction, whereas for
the latter contexts are linear, the relation is an embedding that exactly follows those of terms
and types.

8 Conclusion

Quantitative types for the FMC arise from simple types by the standard generalization, of
replacing input types (or value types) with multisets. Nevertheless, through the encodings
of effects and strategies in the FMC, this gives a quantitative characterization of effectful
higher-order programs, in agreement with known results.

Of the technical contributions of the paper, two deserve closer attention. One is the exact
quantification of machine evaluation by the weak type system, simply by counting the typing
rules corresponding to machine steps, without the need for dedicated technical adaptations.
Fundamentally this relies on the extension of the Krivine machine with sequencing and, in
particular, skip, as signifying successful termination. The direct correspondence between weak
quantitative types and machine evaluation underlines how this is an interesting and natural
extension of the λ-calculus that broadens our perspective on higher-order computation.

The second main technical contribution is the perpetual evaluation relation. Its equivalence
with strong normalization holds independently of the strong type system, and it is expected
to prove useful in strong normalization proofs for potential future type systems.

16 Quantitative Types for the FMC

Γ, x : δ ⊢ x : δ

(
x : [τ] ⊢ x : τ

)
τ∈ι

x : ι ⊢ x : ι

Γ, x : δ ⊢ M : τ

Γ ⊢ λx.M : δ →τ

Γ, x : ι ⊢ M : µ ⇒ ν

Γ ⊢ ⟨x⟩. M : ι µ ⇒ ν

Γ ⊢ V : δ
Γ ⊢ [V] : σ →δ ×σ

Γ ⊢ V : ι ⊢ ⋆ : ι µ ⇒ µ ι

Γ ⊢ [V]. ⋆ : µ ⇒ µ ι

Γ ⊢ M : σ →δ′ ×σ′ Γ ⊢ V : δ′ →σ′ →δ′′ ×σ′′

Γ ⊢ M ⋆ V : σ →δ′′ ×σ′′
Γ ⊢ M : µ ⇒ µ′ ι′ ∆ ⊢ V : ι′ µ′ ⇒ µ′′ ι′′

Γ+∆ ⊢ M ; V : µ ⇒ µ′′ ι′′

Γ, x : δ ⊢ M : σ →κ

Γ ⊢ geta(λx.M) : (⟨a : δ⟩ ∧ σ)→κ

(
x : [τ] ⊢ x : τ

)
τ∈ι

x : ι ⊢ x : ι Γ, x : ι′ ⊢ M : a(ι) µ ⇒ ν

Γ, x : ι+ι′ ⊢ [x]a. M : µ ⇒ ν

Γ ⊢ a⟨x⟩. [x]a. M : a(ι+ι′) µ ⇒ ν

Γ ⊢ V : δ Γ ⊢ M : (⟨a : δ⟩ ∧ σ)→κ

Γ ⊢ seta(V, M) : σ →κ

Γ ⊢ V : ι ∆ ⊢ M : a(ι) µ ⇒ ν

Γ+∆ ⊢ [V]a. M : µ ⇒ ν

Γ+∆ ⊢ a⟨_⟩. [V]a. M : a([]) µ ⇒ ν

Figure 3 A comparison of intersection typing for store to quantitative FMC typing. Let δ = ι,
σ = µ, κ = ν , and τ = µ ⇒ ν , and similarly for δ′, δ′′, etc. The last rule on the left has the side
condition that a is not assigned in σ, which gives the correspondence between σ and a([]) µ on the
right via the subtyping inequality ω ≤ ⟨a : ω⟩, by σ = ω ∧ σ ≤ ⟨a : ω⟩ ∧ σ = a([]) µ.

W. Heijltjes 17

A Addendum to Section 7: encoding Quantitative Global Memory

This Appendix will compare the present quantitative types against the multi-types of Alves,
Kesner, and Ramos in Quantitative Global Memory [1]. The paper uses the same calculus as
De’Liguoro and Treglia [14], characterising it as weak open call–by–value, i.e. not reducing
under abstractions while allowing open terms. The calculus and its FMC encoding are as
follows, using the standard interpretation of call–by–value λ-calculus [17, 24, 42], where the
standard encoding of call–by–value application, v t = t ; [v] ; ⟨x⟩. x, is reduced to t ; v.

Values v: Terms t:
x = x v = [v]. ⋆ geta(λx.t) = a⟨x⟩. [x]a. t

λx.t = ⟨x⟩. t v t = t ; v seta(v, t) = a⟨_⟩. [v]a. t

The paper gives a system of quantitative types for this calculus. Here, we will consider it in
simplified form, omitting base types and restricting our focus to four (out of eight) categories.
The type system, and its encoding in quantitative FMC types, is then as follows.

Value types: σ ::= M ⇒ (S ≫κ) = λ(M) S ⇒κ

Configuration types: κ ::= M×S = λ(M) S
Multi-types: M ::= [σ1, . . . , σn] = [σ1, . . . , σn]
State types: S ::= {a1 : M1, . . . , an : Mn} = a1(M1) . . . an(Mn)

That is: value types encode as computation types τ , state types as memory types ι excluding
the main location λ, multi-types as collection types ι, and configuration types as memory
types ι.

The type system features the properties that it is tight, it counts exactly the reduction
steps to normal form, and it is split, it separately counts beta-steps, store operations, and the
size of the normal form. These quantities are however not meaningful in the FMC encoding,
which measures machine evaluation rather than reduction, identifies beta-reduction and store
operations (both are stack interactions), and considers spine reduction, while the encoded
call–by–value reduction corresponds to weak head reduction in the FMC. Accordingly, we
will here consider only the structural correspondence between both type systems, omitting
the triple counters and the base types a, v, and n which are used to identify normal forms.
Thus simplified, the type system and its FMC encoding are given in Figure 4.

B Proofs for Section 2: The Functional Machine Calculus

▶ Proposition 4 (Small-step and big-step semantics agree). Successful machine runs of length
n correspond to quantified evaluation ⇓n:

(SA , M , ε)
(TA , ⋆ , ε)

n ⇐⇒ SA, M ⇓n TA

Proof. The machine transitions correspond to the big-step evaluation rules as follows. From
left to right the proof is by (strong) induction on n, and from right to left by induction on
the derivation for ⇓n.

Application: A successful run starting with a push transition and the evaluation rule
for application correspond as follows.

(SA , [N]a. M , ε)
(SA ·Na , M , ε)
(TA , ⋆ , ε)

n

SA ·Na, M ⇓n TA

SA, [N]a. M ⇓n+1 TA

18 Quantitative Types for the FMC

x : [σ] ⊢ x : σ x : [σ] ⊢ x : σ

Γ, x : M ⊢ t : S ≫κ

Γ ⊢ λx.t : M ⇒ (S ≫κ)
Γ, x : M ⊢ t : S ⇒κ

Γ ⊢ ⟨x⟩. t : M S ⇒κ

(Γi ⊢ v : σi)i≤n

Γ1 + · · · + Γn ⊢ v : [σ1, . . . , σn]
(Γi ⊢ v : σi)i≤n

Γ1 + . . . +Γn ⊢ v : [σ1, . . . , σn]

Γ ⊢ v : M
Γ ⊢ v : S ≫(M×S)

Γ ⊢ v : M ⊢ ⋆ : M S ⇒M S
Γ ⊢ [v]. ⋆ : S ⇒M S

Γ ⊢ v : M ⇒ (S ′ ≫κ) ∆ ⊢ t : S ≫(M×S ′)
Γ + ∆ ⊢ v t : S ≫κ

∆ ⊢ t : S ⇒M S ′ Γ ⊢ v : M S ′ ⇒κ

Γ+∆ ⊢ t ; v : S ⇒κ

Γ, x : M ⊢ t : {a : N }; S ≫κ

Γ ⊢ geta(λx.t) : {a : M + N }; S ≫κ

(
x : [σ] ⊢ x : σ

)
σ∈N

x : N ⊢ x : N Γ, x : M ⊢ t : a(N) S ⇒κ

Γ, x : M+N ⊢ [x]a. t : S ⇒κ

Γ ⊢ a⟨x⟩. [x]a. t : a(M+N) S ⇒κ

Γ ⊢ v : M ∆ ⊢ t : {a : M}; S ≫κ

Γ + ∆ ⊢ seta(v, t) : {a : []}; S ≫κ

Γ ⊢ v : M ∆ ⊢ t : a(M) S ⇒κ

Γ+∆ ⊢ [v]a. t : S ⇒κ

Γ+∆ ⊢ a⟨_⟩. [v]a. t : a([]) S ⇒κ

Figure 4 A comparison of multi-types for store to quantitative FMC typing. The FMC types omit
the default location λ, using M S for λ(M) S. In the last rule on the left, the addition of {a : []} (in
green) to the conclusion type corrects a minor mistake in [1] (confirmed in private communication
with the authors).

W. Heijltjes 19

Abstraction: A successful run starting with a pop transition and the evaluation rule for
abstraction correspond as follows.

(SA ·Na , a⟨x⟩. M , ε)
(SA , M , ε)
(TA , ⋆ , ε)

n

SA, {N/x}M ⇓n TA

SA ·Na, a⟨x⟩. M ⇓n+1 TA

Unit: The unit run for a single state corresponds to the unit evaluation rule.

(SA, ⋆, ε)
SA, ⋆ ⇓1 SA

Sequence: A successful run for M ; N consists of a transition pushing N to the continu-
ation stack, a successful run for M (ignoring N on the continuation stack), a transition
popping N , and a run for N . The correspondence is then as follows, where the total
length of the run is that of both constituting runs for M and N plus the initial state for
M ; N .

(RA , M ; N , ε)
(RA , M , N)
(SA , ⋆ , N)
(SA , N , ε)
(TA , ⋆ , ε)

m

n

RA, M ⇓m SA SA, N ⇓n TA

RA, M ; N ⇓m+n+1 TA

◀

C Proofs for Section 3: Machine Termination

▶ Lemma 9 (Substitution, weak). There are derivations Γ ⊢w
n

N : ν and ∆, x : ν ⊢w
m M : τ if

and only if there is a derivation Γ+∆ ⊢w
k {N/x}M : τ where k = n + m.

Proof. The proof is by induction on M , except that the collection case is treated separately
from the application case. Each case is demonstrated by two derivations, representing a
permutation of the substitution typing rule, where one derivation exists if and only if the
other does.

Variable case: In the case M = x we have the following two derivations. In both
directions it is immedate that given one derivation, we may construct the other.

Γ ⊢ N : τ

Γ ⊢ N : [τ]
col

x : [τ] ⊢ x : τ
var

Γ ⊢ {N/x}x : τ
sub

Γ ⊢ N : τ

In the case M = y ̸= x we have the following two derivations.

⊢ N : []
col

y : [τ], x : [] ⊢ y : τ
var

y : [τ] ⊢ {N/x}y : τ
sub

y : [τ] ⊢ y : τ
var

Abstraction case: In the case M = a⟨y⟩. P we have the following two derivations. In
both directions, given one derivation we may construct the other, where by α-conversion

20 Quantitative Types for the FMC

we may assume y /∈ fv(N).

Γ ⊢ N : ν

∆, x : ν, y : ι, ⊢ P : κ ⇒ µ

∆, x : ν ⊢ ⟨y⟩. P : a(ι) κ ⇒ µ
abs

Γ+∆ ⊢ {N/x}a⟨y⟩. P : a(ι) κ ⇒ µ
sub

Γ ⊢ N : ν ∆, x : ν, y : ι, ⊢ P : κ ⇒ µ

Γ+∆, y : ι ⊢ {N/x}P : κ ⇒ µ
sub

Γ+∆ ⊢ a⟨y⟩. {N/x}P : a(ι) κ ⇒ µ
abs

Weak application case: In the case M = [Q]a. P we have the following two derivations,
where ν = ν1 +ν2 and ∆ = ∆1 +∆2. Given the former derivation, since Γ ⊢ N : ν must
be introduced by a collection rule, we have Γi ⊢ N : νi for i = 1, 2 with Γ = Γ1 +Γ2, so
that we may construct the latter derivation. The other direction is immediate.

Γ ⊢ N : ν

∆1, x : ν1 ⊢ Q : ι ∆2, x : ν2 ⊢ P : a(ι) κ ⇒µ

∆, x : ν ⊢w [Q]a. P
app

Γ+∆ ⊢ {N/x}[Q]a. P : κ ⇒ µ
sub

Γ1 ⊢ N : ν1 ∆1, x : ν1 ⊢ Q : ι

Γ1 +∆1 ⊢ {N/x}Q : ι
sub

Γ2 ⊢ N : ν2 ∆2, x : ν2 ⊢ P : a(ι) κ ⇒ µ

Γ2 +∆2 ⊢ {N/x}P : a(ι) κ ⇒ µ
sub

Γ+∆ ⊢w [{N/x}Q]a. {N/x}P : κ ⇒ µ
app

Unit case: We have the following two derivations.

⊢ N : []
col

⊢ ⋆ : ι ⇒ ι
unit

⊢ {N/x}⋆ : ι ⇒ ι
sub

⊢ ⋆ : ι ⇒ ι
unit

Sequencing case: The case is similar to the weak application case, with the following
two derivations. Given the former derivation, since ν = ν1 +ν2 and Γ ⊢ N : ν is introduced
by an intersection rule, we have the two derivations Γi ⊢ N : νi for i = 1, 2, and may
construct the latter derivation. The reverse is again immediate, noting that Γ = Γ1 +Γ2
and ∆ = ∆1 +∆2.

Γ ⊢ N : ν

∆1, x : ν1 ⊢ P : ι ⇒ κ ∆2, x : ν2 ⊢ Q : κ ⇒ µ

∆, x : ν ⊢ P ; Q : ι ⇒ µ
seq

Γ+∆ ⊢ {N/x}(P ; Q) : ι ⇒ µ
sub

Γ1 ⊢ N : ν1 ∆1, x : ν1 ⊢ P : ι ⇒ κ

Γ1 +∆1 ⊢ {N/x}P : ι ⇒ κ
sub

Γ2 ⊢ N : ν2 ∆2, x : ν2 ⊢ Q : κ ⇒ µ

Γ2 +∆2 ⊢ {N/x}Q : κ ⇒ µ
sub

Γ+∆ ⊢ {N/x}(P ; Q) : ι ⇒ µ
seq

Collection case: The case is similar to the weak application case. The two derivations are
as follows, where ν = ν1 + . . . +νn and ∆ = ∆1 + . . . +∆n. Given the former derivation,
since Γ ⊢ N : ν is introduced by an intersection rule, we have the derivations Γi ⊢ N : νi

for 1 ≤ i ≤ n needed to construct the latter derivation, where Γ = Γ1 + . . . +Γn. The
reverse direction is immediate.

Γ ⊢ N : ν

(∆i, x : νi ⊢ M : τi)1≤i≤n

∆, x : ν ⊢ M : [τ1, . . . , τn]
col

Γ+∆ ⊢ {N/x}M : [τ1, . . . , τn]
sub(Γi ⊢ N : νi ∆i, x : νi ⊢ M : τi

Γi +∆i ⊢ {N/x}M : τi
sub

)
1≤i≤n

Γ+∆ ⊢ {N/x}M : [τ1, . . . , τn]
col

◀

W. Heijltjes 21

▶ Lemma 10 (Evaluation reduces typing weights). If

(SA , M , K)
(TA , N , L)

then ⊢w
n (SA, M, K) : ε⇒ ι if and only if ⊢w

n−1 (TA, N, L) : ε⇒ ι.

Proof. For each of the four machine transitions the two typing derivations will be given.
In each case, given one derivation the other may be constructed, while the first has weight
exactly one greater than the second, as it has exactly one additional rule instance contributing
to the weight of a derivation (an application, abstraction, unit, or sequencing rule).

Application case:

(SA , [N]a. M , K)
(SA ·Na , M , K)

The two typing derivations are as follows.

⊢ SA : ι

⊢ N : ν ⊢ M : a(ν) ι ⇒ κ

⊢ [N]a. M : ι ⇒ κ
app

⊢ K : κ ⇒ µ

⊢ (SA, [N]a. M, K) : ε⇒ µ
st

⊢ SA : ι ⊢ N : ν

⊢ SA ·Na : ι a(ν)
m1

⊢ M : a(ν) ι ⇒ κ ⊢ K : κ ⇒ µ

⊢ (SA ·Na, M, K) : ε⇒ µ
st

Abstraction case:

(SA ·Na , a⟨x⟩. M , K)
(SA , {N/x}M , K)

The two typing derivations are as follows. In both directions, the use of the substitution
typing rule is justified by Lemma 9.

⊢ SA : ι ⊢ N : ν

⊢ SA ·Na : ι a(ν)
m1

x : ν ⊢ M : ι ⇒ κ

⊢ a⟨x⟩. M : a(ν) ι ⇒ κ
abs

⊢ K : κ ⇒ µ

⊢ (SA ·Na, a⟨x⟩. M, K) : ε⇒ µ
st

⊢ SA : ι

⊢ N : ν x : ν ⊢ M : ι ⇒ κ

⊢ {N/x}M : ι ⇒ κ
sub

⊢ K : κ ⇒ µ

⊢ (SA, {N/x}M, K) : ε⇒ µ
st

Sequencing case:

(SA , M ; N , K)
(SA , M , N K)

The two derivations are as follows.

⊢ SA : ι

⊢ M : ι ⇒ κ ⊢ N : κ ⇒ µ

⊢ M ; N : ι ⇒ µ
seq

⊢ K : µ ⇒ ν

⊢ (SA, M ; N, K) : ε⇒ ν
st

⊢ SA : ι ⊢ M : ι ⇒ κ

⊢ N : κ ⇒ µ ⊢ K : µ ⇒ ν

⊢ N K : κ ⇒ ν
k1

⊢ (SA, M, N K) : ε⇒ ν
st

22 Quantitative Types for the FMC

Unit case:

(SA , ⋆ , M K)
(SA , M , K)

The two derivations are as follows.

⊢ SA : ι ⊢ ⋆ : ι ⇒ ι
unit

⊢ M : ι ⇒ κ ⊢ K : κ ⇒ µ

⊢ M K : ι ⇒ µ
k1

⊢ (SA, ⋆, M K) : ε⇒ µ
st

⊢ SA : ι ⊢ M : ι ⇒ κ ⊢ K : κ ⇒ µ

⊢ (SA, M, K) : ε⇒ µ
st

◀

D Proofs for Section 4: Spine Normalization

▶ Proposition 13 (Spine normal forms). The normal forms of spine reduction w are the
terms W given by the following mutually recursive grammars.

W ::= a⟨x⟩. W | V
V ::= [M]a. V | x ; W | x | ⋆

Proof. By induction on terms, it is shown that W are the spine normal terms, and V those
that are not abstractions. A variable x and a unit ⋆ are spine normal, and a composition
M ; N is normal if and only if M is a variable and N is spine normal, since if M is a unit,
application, abstraction, or sequencing, a reduction step applies. An application [N]a. M

is spine-normal if and only if M is spine-normal and not an abstraction, since otherwise a
beta-step or passage-step would apply. An abstraction a⟨x⟩. M is spine-normal if and ony if
M is. ◀

▶ Lemma 14 (Spine normal forms are weakly typeable). For any W there is a derivation
Γ ⊢w W : ι ⇒ []f .

Proof. By induction on W the following are proved.
1. For any W there is a type derivation Γ ⊢w W : ι ⇒ []f .
2. For any V and any f : A → N there is a type derivation Γ ⊢w V : []f ⇒ []g.
Note that 2 implies 1.

Unit case: For a term ⋆, we prove case 2. For any f we have ⊢ ⋆ : []f ⇒ []f .
Variable case: For a variable x, we prove case 2. For any f we have x : [[]f ⇒ε] ⊢ x : []f ⇒ε.
Sequencing case: For a term x ; W we prove case 2. By induction, let Γ ⊢ W : ι ⇒ []g.
For any f we get Γ+(x : []f ⇒ ι) ⊢ x ; W : []f ⇒ []g.
Application case: For a term [M]a. V, we prove case 2. Given f , define f ′ by f ′(a) =
f(a) + 1 and f ′(b) = f(b) for a ̸= b. We apply the inductive hypothesis for case 2 to V
and f ′ to get Γ ⊢ V : []f ′

⇒ []g. The following weak application rule instance then gives
the required type.

⊢ M : []
col

Γ ⊢ V : []f ′
⇒ []g

Γ ⊢w [M]a. V : []f ⇒ []g
app

Abstraction case: For a term a⟨x⟩. W we prove case 1. By induction, there is a
judgement Γ, x : ι ⊢ W : κ ⇒ []f . Then by the abstraction typing rule we get the required
type Γ ⊢ a⟨x⟩. W : a(ι) κ ⇒ []f . ◀

W. Heijltjes 23

▶ Lemma 15 (Weighted subject reduction and expansion). If M w N then Γ ⊢w
m M : τ if

and only if Γ ⊢w
n N : τ , where m = n + 2 in the case of a beta-step or next-step and m = n

otherwise.

Proof. By induction on spine contexts. The cases for a top-level reduction step are as follows.

Beta case: For a reduction [N]a. a⟨x⟩. M {N/x}M , by Lemma 9 a derivation for
{N/x}M is given by a substitution rule, as below right. Then we have the derivation
below left if and only if we have that below right, with weight n + 2 respectively n.

Γ ⊢ N : ι

∆, x : ι ⊢ M : κ ⇒ µ

∆ ⊢ a⟨x⟩. M : a(ι) κ ⇒ µ
abs

Γ+∆ ⊢w [N]a. a⟨x⟩. M : κ ⇒ µ
app

Γ ⊢ N : ι ∆, x : ι ⊢ M : κ ⇒ µ

Γ+∆ ⊢ {N/x}M : κ ⇒ µ
sub

Passage case: For a reduction [N]b. a⟨x⟩. M a⟨x⟩. [N]b. M where a ̸= b and x /∈ fv(N),
we have the derivation below left if and only if we have that below right, with equal
weights. Note that a(ι) b(ν) κ = b(ν) a(ι) κ.

Γ ⊢ N : ι

∆, x : ι ⊢ M : b(ν) κ ⇒ µ

∆ ⊢ a⟨x⟩. M : a(ι) b(ν) κ ⇒ µ
abs

Γ+∆ ⊢w [N]b. a⟨x⟩. M : a(ι) κ ⇒ µ
app

Γ ⊢ N : ι ∆, x : ι ⊢ M : b(ν) κ ⇒ µ

Γ+∆, x : ι ⊢ [N]b. M : κ ⇒ µ
abs

Γ+∆ ⊢w a⟨x⟩. [N]b. M : a(ι) κ ⇒ µ
app

Next case: For a reduction ⋆ ; M M , we have the derivation for Γ ⊢n+2 ⋆ ; M : ι ⇒ κ

below if and only if we have a derivation for Γ ⊢n M : ι ⇒ κ.

⊢ ⋆ : ι ⇒ ι
unit

Γ ⊢ M : ι ⇒ κ

Γ ⊢ ⋆ ; M : ι ⇒ κ
seq

Prefix (pop) case: For a reduction a⟨x⟩. N ; M a⟨x⟩. (N ; M) where x /∈ fv(M), given
the derivation below left we may construct that below right, and vice versa.
Γ, x : ι ⊢ N : κ ⇒ µ

Γ ⊢ a⟨x⟩. N : a(ι) κ ⇒ µ
abs

∆ ⊢ M : µ ⇒ ν

Γ+∆ ⊢ a⟨x⟩. N ; M : a(ι) κ ⇒ ν
seq

Γ, x : ι ⊢ N : κ ⇒ µ ∆ ⊢ M : µ ⇒ ν

Γ+∆, x : ι ⊢ N ; M : κ ⇒ ν
seq

Γ+∆ ⊢ a⟨x⟩. (N ; M) : a(ι) κ ⇒ ν
abs

Prefix (push) case: For a reduction [P]a. N ; M [P]a. (N ; M), given the first
derivation below we may construct the second, and vice versa.

Γ ⊢ P : ι ∆ ⊢ N : a(ι) κ ⇒ µ

Γ+∆ ⊢w [P]a. N : κ ⇒ µ
app

Λ ⊢ M : µ ⇒ ν

Γ+∆+Λ ⊢ [P]a. N ; M : κ ⇒ ν
seq

Γ ⊢ P : ι

∆ ⊢ N : a(ι) κ ⇒ µ Λ ⊢ M : µ ⇒ ν

∆+Λ ⊢ N ; M : a(ι) κ ⇒ ν
seq

Γ+∆+Λ ⊢w [P]a. (N ; M) : κ ⇒ ν
app

Associate case: For a reduction (P ; N) ; M P ; (N ; M), given the first derivation
below we may construct the second, and vice versa.

Γ ⊢ P : ι ⇒ κ ∆ ⊢ N : κ ⇒ µ

Γ+∆ ⊢ P ; N : ι ⇒ κ
seq

Λ ⊢ M : µ ⇒ ν

Γ+∆+Λ ⊢ (P ; N) ; M : ι ⇒ ν
seq

Γ ⊢ P : ι ⇒ κ

∆ ⊢ N : κ ⇒ µ Λ ⊢ M : µ ⇒ ν

∆+Λ ⊢ N ; M : κ ⇒ ν
seq

Γ+∆+Λ ⊢ P ; (N ; M) : ι ⇒ ν
seq

24 Quantitative Types for the FMC

For reduction in a spine context, W{M} w W{N}, it is sufficient to observe from the
derivation rules that the derivation for M occurs exactly once in W{M}; then the effect of
replacing the derivation for Γ ⊢w M : τ with Γ ⊢w N : τ , or vice versa, reflects directly on the
derivations for W{M} and W{N}. ◀

▶ Lemma 18 (Spine normal forms terminate). For a spine-normal term W there is a dimension
d such that for any memory SA and substitution map σ of dimension d, there is a memory
TA such that SA, σW ⇓ TA.

Proof. By induction on W it will be shown that there is a dimension d such that for any
memory SA and substitution map σ of dimension d, the following hold.
1. There is a memory TA such that SA, σW ⇓ TA.
2. For a term V, there is a memory TA such that ε, σV ⇓ TA.
Observe that case 1 implies case 2 by expanding the memory ε to SA.

Unit case: We prove statement 2. Let d = 0. We have σ(⋆) = ⋆ and ε, ⋆ ⇓ ε.
Variable case: We prove statement 2. Let d = 0. Given σ, since σx is a term of
dimension d, we have ε, σx ⇓ TA for some memory TA of dimension d.
Sequencing case: We prove statement 2. Given x ; W , by induction we get a dimension
d such that statement 1 holds for W . Let σ be a substitution map of dimension d. As in
the previous case, we have ε, σx ⇓ SA where SA is a memory of dimension d. Then by the
inductive hypothesis, we have SA, σW ⇓ TA, and by the evaluation rule for sequencing,
ε, σ(x ; W) ⇓ TA.

ε, σx ⇓ SA SA, σW ⇓ TA

ε, σ(x ; W) ⇓ TA

Application case: We prove statement 2. Given [M]a. V, by induction we get a
dimension d such that ε, σV ⇓ TA given any σ of dimension d. Then by expansion and
the evaluation rule for application, statement 2 follows for [M]a. V with dimension d and
return memory σMa ·TA (abusing notation to prepend σM to the stack a in TA).

σMa, σV ⇓ σMa ·TA

ε, σ([M]a. V) ⇓ σMa ·TA

Abstraction case: Given a⟨x⟩. W, by induction there is a dimension d such that
statement 1 holds for W. We prove statement 1 for dimension d + 1. A memory of
dimension d + 1 is of the form SA ·Ma where both M and SA are of dimension d, in
the latter case since every stack is of length at least d (and holding terms of dimenstion
at least d). A substitution map σ of dimension d + 1 is also of dimension d. Then so
is σ{M/x} (which assigns M to x and behaves as σ everywhere else). The inductive
hypothesis then gives SA, σ{M/x}W ⇓ TA. By the evaluation rule for abstraction, from
this we get SA ·Ma, σ(a⟨x⟩. W) ⇓ TA for dimension d + 1.

SA, σ{M/x}W ⇓ TA

SA ·Ma, σ(a⟨x⟩. W) ⇓ TA
◀

▶ Lemma 19 (Evaluation is invariant under spine reduction). If M w N then SA, σM ⇓ TA

if and only if SA, σN ⇓ TA for any memories SA and TA and substitution map σ.

Proof. By induction on the spine context for the reduction step. The first six cases cover
reduction at top level, and the last four reduction in context.

W. Heijltjes 25

Beta case: Let [N]a. a⟨x⟩. M {N/x}M . Noting that σ({N/x}M) = (σ{σN/x})M ,
the left hand term evaluates as below if and only if the right hand term evaluates as
SA, σ({N/x}M) ⇓ TA.

SA, σ({N/x}M) ⇓ TA

SA ·σNa, σ(a⟨x⟩. M) ⇓ TA

SA, σ([N]a. a⟨x⟩. M) ⇓ TA

Passage case: Let [N]b. a⟨x⟩. M a⟨x⟩. [N]b. M where x is not free in N . Assuming
by alpha-conversion that σ does not bind in P , we have the first derivation if and only if
we have the second.

SA ·σN b, σ({P/x}M) ⇓ TA

SA ·P a ·σN b, σ(a⟨x⟩. M) ⇓ TA

SA ·P a, σ([N]b. a⟨x⟩. M) ⇓ TA

SA ·σN b, σ({P/x}M) ⇓ TA

SA, σ([N]b. {P/x}M) ⇓ TA

SA ·P a, σ(a⟨x⟩. [N]b. M) ⇓ TA

Next case: Let ⋆ ; M M . Since σ(⋆) = ⋆, we have SA, σM ⇓ TA if and only if we
have the folowing.

SA, ⋆ ⇓ SA SA, σM ⇓ TA

SA, σ(⋆ ; M) ⇓ TA

Prefix (pop) case: Let a⟨x⟩. N ; M a⟨x⟩. (N ; M) where x is not free in M . Assuming
by alpha-conversion that σ does not bind in P , we have the first derivation if and only if
we have the second.
RA, σ({P/x}N) ⇓ SA

RA ·P a, σ(a⟨x⟩. N) ⇓ SA SA, σM ⇓ TA

RA ·P a, σ(a⟨x⟩. N ; M) ⇓ TA

RA, σ({P/x}N) ⇓ SA SA, σM ⇓ TA

RA, σ({P/x}N ; M) ⇓ TA

RA ·P a, σ(a⟨x⟩. (N ; M)) ⇓ TA

Prefix (push) case: For a reduction [P]. N ; M [P]. (N ; M), we have the first
derivation if and only if we have the second.

RA ·σP a, σN ⇓ SA

RA, σ([P]. N) ⇓ SA SA, σM ⇓ TA

RA, σ([P]. N ; M) ⇓ TA

RA ·σP a, σN ⇓ SA SA, σM ⇓ TA

RA ·σP a, σ(N ; M) ⇓ TA

RA, σ([P]. (N ; M)) ⇓ TA

Associativity case: For a reduction (P ; N) ; M P ; (N ; M), we have the first
derivation if and only if we have the second.

RA, σP ⇓ SA SA, σN ⇓ TA

RA, σ(P ; N) ⇓ TA TA, σM ⇓ UA

RA, σ((P ; N) ; M) ⇓ UA

RA, σP ⇓ SA

SA, σN ⇓ TA TA, σM ⇓ UA

SA, σ(N ; M) ⇓ UA

RA, σ(P ; (N ; M)) ⇓ UA

Application case: Let [P]a. M [P]a. N where M N . Given SA and σ, by
induction we have SA ·σP a, σM ⇓ TA if and only if SA ·σP a, σN ⇓ TA, and hence
SA, σ([P]a. M) ⇓ TA if and only if SA, σ([P]a. N) ⇓ TA.
Abstraction case: Let a⟨x⟩. M a⟨x⟩. N where M N . Given SA ·σP a and
σ, assuming σ does not bind in P , by induction we have SA, σ({P/x}M) ⇓ TA if
and only if SA, σ({P/x}N) ⇓ TA, and hence SA ·σP a, σ(a⟨x⟩. M) ⇓ TA if and only if
SA ·σP a, σ(a⟨x⟩. N) ⇓ TA.

26 Quantitative Types for the FMC

Prefix case: Let M ; P N ; P where M N . Given S, by induction we have
RA, σM ⇓ SA if and only if RA, σN ⇓ SA, so given SA, σP ⇓ TA we have RA, σ(M ; P) ⇓
TA if and only if SA, σ(N ; P) ⇓ TA.
Postfix case: Let P ; M P ; N where M N . By induction we have SA, σM ⇓ TA

if and only if SA, σN ⇓ TA, so given RA, σP ⇓ SA we have RA, σ(P ; M) ⇓ TA if and
only if RA, σ(P ; N) ⇓ TA. ◀

E Proofs for section 5: Strong Normalization

▶ Lemma 21 (Substitution, strong). If there are derivations Γ ⊢s
n N : ν and x : ν, ∆ ⊢s

m M : τ

then there is a derivation Γ+∆ ⊢s
k {N/x}M : τ where k ≤ n + m, and vice versa where

k = n + m.

Proof. The proof is similar to the substitution lemma for the weak type system, Lemma 9.
We cover the new cases: strong application and weakening.

Strong application case: For a term M = [Q]a. P we have the following derivations,
both of the same weight, where ν = ν1 +ν2 +ν3, Γ = Γ1 +Γ2 +Γ3 and ∆ = ∆1 +∆2 +∆3.
In the second derivation, the premises of the top rules are stacked for space and readability.
The argument is as follows. Given the first derivation, where Γ ⊢ N : ν is introduced
by a collection typing rule col, we may partition its premisses along the decomposition
ν = ν1 +ν2 +ν3 to get Γi ⊢ N : νi for i = 1, 2, 3. Then we may construct the second
derivation. In the reverse direction, given the second derivation, we may construct the
first.

Γ ⊢ N : ν

x : ν1, ∆1 ⊢ Q : ι x : ν2, ∆2 ⊢ P : a(ι) κ ⇒ µ x : ν3, ∆3 ⊢ Q : τ

x : ν, ∆ ⊢s [Q]a. P : κ ⇒ µ
APP

Γ+∆ ⊢ {N/x}[Q]a. P : κ ⇒ µ
sub

Γ1 ⊢ N : ν1
x : ν1, ∆1 ⊢ Q : ι

Γ1 +∆1 ⊢ {N/x}Q : ι
sub

Γ2 ⊢ N : ν2
x : ν2, ∆2 ⊢ P : a(ι) κ ⇒ µ

Γ2 +∆2 ⊢ {N/x}P : a(ι) κ ⇒ µ
sub

Γ3 ⊢ N : ν3
x : ν3, ∆3 ⊢ Q : τ

Γ3 +∆3 ⊢ {N/x}Q : τ
sub

Γ+∆ ⊢s [{N/x}Q]. {N/x}P : κ ⇒ µ
APP

Weakening case: From left to right, assume the derivation below left with sub-derivations
of weights i and k. The derivation for N , ending in a collection typing rule, may be
partitioned along ν +µ to give Γ1 ⊢n N : ν and Γ2 ⊢m N : µ where n + m = i. Then we
may construct the derivation below right, which by induction has a weight j ≤ n + k.

Γ ⊢i N : ν +µ

x : ν, ∆ ⊢k M : τ

x : ν +µ, ∆+Λ ⊢s M : τ
WEAK

Γ+∆+Λ ⊢ {N/x}M : τ
sub

Γ1 ⊢n N : ν x : ν, ∆ ⊢k M : τ

Γ1 +∆+Λ ⊢ {N/x}M : τ
sub

Γ1 +Γ2 +∆+Λ ⊢ {N/x}M : τ
WEAK

From right to left, given the derivation below left we may construct that below right of
the same weight n + m, where by alpha-conversion we may assume x does not occur in
the context Λ.

Γ ⊢n N : ν x : ν, ∆ ⊢m M : τ

Γ+∆ ⊢ {N/x}M : τ
sub

Γ+∆+Λ ⊢ {N/x}M : τ
WEAK

Γ ⊢n N : ν

x : ν, ∆ ⊢m M : τ

x : ν, ∆+Λ ⊢ M : τ
WEAK

Γ+∆+Λ ⊢ {N/x}M : τ
sub

◀

W. Heijltjes 27

▶ Lemma 22 (Subject reduction, beta). If M N by a beta-step and Γ ⊢s
m M : τ then

Γ ⊢s
n N : τ where m > n.

Proof. By induction on the reduction context. We give the case for a beta-redex and that
for the argument context [C]a. M of the strong application rule. For the other cases, the
derivation for C{M} contains exactly one subderivation for M , so that a change in weight is
reflected directly.

Beta case: For a reduction [N]a. a⟨x⟩. M {N/x}M , given the first derivation below
we may construct the second. Where the first derivation has weight n + m + k + 2, by
Lemma 21 the second has weight i ≤ n + m.

Γ ⊢n N : ι

∆, x : ι ⊢m M : κ ⇒ µ

∆ ⊢ a⟨x⟩. M : a(ι) κ ⇒ µ
abs

Λ ⊢k N : τ

Γ+∆+Λ ⊢s [N]a. a⟨x⟩. M : κ ⇒ µ
APP

Γ ⊢n N : ι ∆, x : ι ⊢m M : κ ⇒ µ

Γ+∆ ⊢ {N/x}M : κ ⇒ µ
sub

Γ+∆+Λ ⊢s {N/x}M : κ ⇒ µ
WEAK

Argument case: For a reduction [M]a. P [N]a. P given M N , consider the strong
application inference below, where Γ = Γ1 + . . . +Γn and ι = [τ1 . . . τn] Observe that there
is at least one sub-derivation for M , given by Λ ⊢ M : τ , in the derivation for [M]a. P .
Replacing every sub-derivation for M with one for N of strictly smaller weight then gives
a strictly smaller weight for the derivation for [N]a. P .

(Γi ⊢ M : τi)1≤i≤n

Γ ⊢ M : ι
col

∆ ⊢ P : a(ι) κ ⇒ µ Λ ⊢ M : τ

Γ+∆ ⊢s [M]a. P : κ ⇒ µ
APP

◀

▶ Lemma 23 (Subject reduction and expansion, non-beta). If M N by a non-beta-step
then Γ ⊢s

m M : τ if and only if Γ ⊢s
n N : τ where m ≥ n.

Proof. The proof is similar to Lemma 15. The one new case for top-level reduction is the
following.

Strong application/sequence case: For a reduction [P]a. N ; M [P]a. (N ; M),
given the first derivation below we may construct the second, of equal weight.

Γ ⊢ P : ι ∆ ⊢ N : a(ι) κ ⇒ µ Λ ⊢ P : τ

Γ+∆+Λ ⊢s [P]a. N : κ ⇒ µ
APP

Σ ⊢ M : µ ⇒ ν

Γ+∆+Λ+Σ ⊢ [P]a. N ; M : κ ⇒ ν
seq

Γ ⊢ P : ι

∆ ⊢ N : a(ι) κ ⇒ µ Σ ⊢ M : µ ⇒ ν

∆+Σ ⊢ N ; M : a(ι) κ ⇒ ν
seq

Λ ⊢ P : τ

Γ+∆+Λ+Σ ⊢s [P]a. (N ; M) : κ ⇒ ν
APP

For reduction in context, C{M} C{N}, the new case is the argument position, where there
may be any (non-zero) number of sub-derivations for M in C{M}. Replacing a sub-derivation
with one of equal or lower weight then results in an overall weight that is equal or lower. ◀

28 Quantitative Types for the FMC

F Proofs for Section 6: Perpetual Evaluation

▶ Proposition 25 (Normal forms). The normal forms of are the terms M given by the
following grammars.

M ::= a⟨x⟩. M | N
N ::= [M]a. N | x ; M | x | ⋆

Proof. The proof is analogous to that of Proposition 13. Terms M are the normal forms,
and N those that are not abstractions. For the latter, variables x and the unit ⋆ are normal,
and a composition M ; N is normal if M is a variable and N is normal, and thus of the form
x ; M. An application [N]a. M is normal if N and M are and M is not an abstraction, thus
of the form [M]. N . Finally, an abstraction a⟨x⟩. M is normal if M is, thus of the form
a⟨x⟩. M. ◀

▶ Lemma 27 (Strong normalization implies perpetual evaluation). If M is strongly normalizing
then M ▶ M and M M for some M.

Proof. The proof is by induction on the following pair of measures: first, the sum length of
reduction paths from M , and second, the size of M . Let M be of the form [SA]. M ′, with
M ′ not an application and proceed by case analysis on the structure of M ′.

Unit case: if M is of the form [SA]. ⋆ then we have the case Normal (unit) of the
definition of ▶ as below. The premisses are given by the inductive hypothesis: each term
Ni has equal or fewer reductions than M , and is smaller. The reduction M M follows
from the reductions Ni Mi.

(Ni ▶ Mi)i≤n

[N1]a1 . . . [Nn]an. ⋆ ▶ [M1]a1 . . . [Mn]an. ⋆

Variable case: if M is of the form [SA]. x then we have the case Normal (variable) as
below. It resolves as the previous case.

(Ni ▶ Mi)i≤n

[N1]a1 . . . [Nn]an. x ▶ [M1]a1 . . . [Mn]an. x

Abstraction case: if M ′ an abstraction a⟨x⟩. N there are three sub-cases. If [SA] is
empty, we have the case Normal (abstraction) as below.

N ▶ M
a⟨x⟩. N ▶ a⟨x⟩. M

If [SA] is of the form [TA]. [P]a, ending in a push on location a, we have the case Beta as
below, with the reduction [TA]. [P]a. a⟨x⟩. N [TA]. {P/x}N M.

[TA]. {P/x}N ▶ M
[TA]. [P]a. a⟨x⟩. N ▶ M

If [SA] is of the form [TA]. [P]b, ending in a push on location b ≠ a, we have the case
Passage as below, with the reduction [TA]. [P]b. a⟨x⟩. N [TA]. a⟨x⟩. [P]b. N M.

[TA]. a⟨x⟩. [P]b. N ▶ M
[TA]. [P]b. a⟨x⟩. N ▶ M

W. Heijltjes 29

Unit/sequence case: If M is of the form [SA]. (⋆ ; P) we have the case Next below,
with the reduction [SA]. (⋆ ; P) [SA]. P M.

[SA]. P ▶ M
[SA]. (⋆ ; P) ▶ M

Variable/sequence case: If M is of the form [SA]. (x ; P) we have the case Normal
(sequence) as below. The inductive hypothesis gives the premisses, which each have a
smaller measure. The reduction from M follows by that for each Ni and P .

(Ni ▶ Mi)i≤n P ▶ M
[N1]a1 . . . [Nn]an. (x ; P) ▶ [M1]a1 . . . [Mn]an. (x ; M)

Abstraction/sequence case: If M is of the form [SA]. (a⟨x⟩. N ; P) we have the case
Prefix (pop) as below, with the reduction [SA]. (a⟨x⟩. N ; P) [SA]. a⟨x⟩. (N ; P) M.

[SA]. a⟨x⟩. (N ; P) ▶ M
[SA]. (a⟨x⟩. N ; P) ▶ M

Application/sequence case: If M is of the form [SA]. ([P]a. N ; Q) we have the case
Prefix (push) as below, with the reduction [SA]. ([P]a. N ; Q) [SA]. [P]a. (N ; Q) M.

[SA]. [P]a. (N ; Q) ▶ M
[SA]. ([P]a. N ; Q) ▶ M

Sequence/sequence case: If M is of the form [SA]. ((Q ; P) ; N) we have the case
Associate as below, with the reduction [SA]. ((Q ; P) ; N) [SA]. (Q ; (P ; N)) M.

[SA]. (Q ; (P ; N)) ▶ M
[SA]. ((Q ; P) ; N) ▶ M ◀

▶ Lemma 28 (Perpetual evaluation implies strong typeability). If M ▶ M then Γ ⊢s M : τ and
Γ ⊢s M : τ for some Γ and τ .

Proof. For the notation [SA]. M we introduce an associated typing rule APPS (applications),
and a strong typing rule for memories M1.

Γ ⊢s SA : ι ∆ ⊢s M : ι κ ⇒ µ

Γ+∆ ⊢s [SA]. M : κ ⇒ µ
APPS

Γ ⊢s SA : ι ∆ ⊢s N : κ Λ ⊢s N : τ

Γ+∆+Λ ⊢s SA ·Na : ι a(κ)
M1

By induction, these rule are admissible: we have the first derivation below if and only if we
have the second.

Γ ⊢s SA : ι ∆ ⊢s N : κ Λ ⊢s N : τ

Γ+∆+Λ ⊢s SA ·Na : ι a(κ)
M1

Σ ⊢s M : a(κ) ι µ ⇒ ν

Γ+∆+Λ+Σ ⊢s [SA ·Na]. M
APPS

Γ ⊢s SA : ι

∆ ⊢s N : κ Λ ⊢s N : τ Σ ⊢s M : a(κ) ι µ ⇒ ν

∆+Λ+Σ ⊢s [N]a. M : ι µ ⇒ ν
APP

Γ+∆+Λ+Σ ⊢s [SA]. [N]a. M : µ ⇒ ν
APPS

Again by induction, a memory SA = ε ·(N1)a1 · · · (Nn)an may be typed []f where f = |SA|,
if there is a type for each Ni. This gives the following admissible rules.

(Γi ⊢ Ni : τi)i≤n

Γ1 + . . . +Γn ⊢s SA : []f
(Γi ⊢ Ni : τi)i≤n ∆ ⊢ M : []f ι ⇒ κ

Γ1 + . . . +Γn +∆ ⊢s [SA]. M : ι ⇒ κ

The proof is then by induction on the relation ▶.

30 Quantitative Types for the FMC

Beta case:

[SA]. {N/x}P ▶ M N ▶ M′

[SA]. [N]a. a⟨x⟩. P ▶ M

The inductive hypothesis gives the following three derivations: that below (using the
strong substitution lemma, Lemma 21), Σ ⊢ N : τ , and Γ+∆+Λ ⊢ M : µ ⇒ ν .

Γ ⊢ SA : ι

∆ ⊢ N : κ Λ, x : κ ⊢ M : ι µ ⇒ ν

∆+Λ ⊢ {N/x}P : ι µ ⇒ ν
sub

Γ+∆+Λ ⊢ [SA]. {N/x}P : µ ⇒ ν
APPS

From these we may construct the following derivations, the first for M , the second for M.

Γ ⊢ SA : ι

∆ ⊢ N : κ

Λ, x : κ ⊢ M : ι µ ⇒ ν

Λ ⊢ a⟨x⟩. P : a(κ) ι µ ⇒ ν
abs

Σ ⊢ N : τ

∆+Λ+Σ ⊢ [N]a. a⟨x⟩. P : ι µ ⇒ ν
APP

Γ+∆+Λ+Σ ⊢ [SA]. [N]a. a⟨x⟩. P
APPS

Γ+∆+Λ ⊢ M : µ ⇒ ν

Γ+∆+Λ+Σ ⊢ M : µ ⇒ ν
WEAK

Passage, Next, Prefix (pop), Prefix (push), and Associate cases: All five cases
are of the following form, where M N by a non-beta reduction.

N ▶ M
M ▶ M

The inductive hypothesis gives derivations Γ ⊢s N : τ and Γ ⊢s M : τ . The required deriva-
tion Γ ⊢s M : τ follows by Lemma 23 (non-beta reduction preserves and reflects typing).
Normal (abstraction) case:

M ▶ M
a⟨x⟩. M ▶ a⟨x⟩. M

The inductive hypothesis gives Γ, x : ι ⊢ M : κ ⇒ µ and Γ, x : ι ⊢ M : κ ⇒ µ (where ι = []
if x does not occur). The abstraction typing rule abs gives Γ ⊢ a⟨x⟩. M : a(ι) κ ⇒ µ and
Γ ⊢ a⟨x⟩. M : a(ι) κ ⇒ µ.
Normal (unit) case:

(Ni ▶ Mi)i≤n

[N1]a1 . . . [Nn]an. ⋆ ▶ [M1]a1 . . . [Mn]an. ⋆

The inductive hypothesis gives Γi ⊢ Ni : τi and Γi ⊢ Mi : τi for each i ≤ n. By the
admissible rules introduced above, we have the following derivation for M , and similarly
for M, where f is the dimension of the memory ε ·(N1)a1 · · · ·(Nn)an

.

(Γi ⊢ Ni : τi)i≤n ⊢ ⋆ : []f ⇒ []f

Γ1 + . . . +Γn ⊢ [N1]a1 . . . [Nn]an. ⋆ : ε⇒ []f

Normal (variable) case:

(Ni ▶ Mi)i≤n

[N1]a1 . . . [Nn]an. x ▶ [M1]a1 . . . [Mn]an. x

W. Heijltjes 31

The case is as the previous one, with the following derivation for M .

(Γi ⊢ Ni : τi)i≤n x : [[]f ⇒ε] ⊢ x : []f ⇒ε

Γ1 + . . . +Γn +x : [[]f ⇒ε] ⊢ [N1]a1 . . . [Nn]an. x : ε⇒ε

Normal (sequence) case:

(Ni ▶ Mi)i≤n M ▶ M
[N1]a1 . . . [Nn]an. (x ; M) ▶ [M1]a1 . . . [Mn]an. (x ; M)

The inductive hypothesis gives ∆ ⊢ M : κ ⇒ µ and ∆ ⊢ M : κ ⇒ µ. The case is then as
the previous two, with the following derivation.

(Γi ⊢ Ni : τi)i≤n

x : [[]f ⇒ κ] ⊢ x : []f ⇒ κ ∆ ⊢ M : κ ⇒ µ

x : [[]f ⇒ κ]+D ⊢ x ; M : []f ⇒ µ
seq

Γ1 + . . . +Γn +x : [[]f ⇒ κ]+D ⊢ [N1]a1 . . . [Nn]an. (x ; M) : ε⇒ µ ◀

	1 Introduction
	2 The Functional Machine Calculus
	3 Machine Termination
	4 Spine Normalization
	5 Strong Normalization
	6 Perpetual Evaluation
	7 Quantitative Types for Higher-Order Store
	8 Conclusion
	A Addendum to Section 7: encoding Quantitative Global Memory
	B Proofs for Section 2: The Functional Machine Calculus
	C Proofs for Section 3: Machine Termination
	D Proofs for Section 4: Spine Normalization
	E Proofs for section 5: Strong Normalization
	F Proofs for Section 6: Perpetual Evaluation

