
The Relational Machine Calculus
Chris Barrett

chris.barrett@cs.ox.ac.uk

University of Oxford

United Kingdom

Daniel Castle

drc22@bath.ac.uk

University of Bath

United Kingdom

Willem Heijltjes

w.b.heijltjes@bath.ac.uk

University of Bath

United Kingdom

ABSTRACT
This paper presents the Relational Machine Calculus (RMC): a

simple, foundational model of first-order relational programming.

The RMC originates from the Functional Machine Calculus (FMC),

which generalizes the lambda-calculus and its standard call-by-

name stack machine in two directions. One, "locations", introduces

multiple stacks, which enable effect operators to be encoded into the

abstraction and application constructs. The second, "sequencing",

introduces the imperative notions of "skip" and "sequence", similar

to kappa-calculus and concatenative programming languages.

The key observation of the RMC is that the first-order fragment

of the FMC exhibits a latent duality which, given a simple decom-

position of the relevant constructors, can be concretely expressed

as an involution on syntax. Semantically, this gives rise to a sound

and complete calculus for string diagrams of Frobenius monoids.

We consider unification as the corresponding symmetric gener-

alization of beta-reduction. By further including standard operators

of Kleene algebra, the RMC embeds a range of computational mod-

els: the kappa-calculus, logic programming, automata, Interaction

Nets, and Petri Nets, among others. These embeddings preserve

operational semantics, which for the RMC is again given by a gen-

eralization of the standard stack machine for the lambda-calculus.

The equational theory of the RMC (which supports reasoning about

its operational semantics) is conservative over both the first-order

lambda-calculus and Kleene algebra, and can be oriented to give a

confluent reduction relation.

CCS CONCEPTS
•Theory of computation→Abstractmachines;Lambda calcu-
lus; Regular languages; Operational semantics; Denotational
semantics; Categorical semantics; Constraint and logic pro-
gramming.

KEYWORDS
lambda-calculus, Kleene algebra, logic programming, reversible

programming, non-determinism, hypergraph category, Krivine ab-

stract machine, categorical semantics, operational semantics.

ACM Reference Format:
Chris Barrett, Daniel Castle, and Willem Heijltjes. 2024. The Relational Ma-

chine Calculus. In 39th Annual ACM/IEEE Symposium on Logic in Computer
Science (LICS ’24), July 8–11, 2024, Tallinn, Estonia. ACM, New York, NY,

USA, 15 pages. https://doi.org/10.1145/3661814.3662091

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

LICS ’24, July 8–11, 2024, Tallinn, Estonia
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0660-8/24/07

https://doi.org/10.1145/3661814.3662091

1 INTRODUCTION
The 𝜆-calculus is widely considered the canonical model of func-

tional programming. However, there is no similarly agreed foun-

dation of relational programming. Paradigmatic examples of re-

lational programming are logic programming, based on unifica-

tion [1, 39, 43, 58, 72], and database query languages, based on

Tarski’s relational algebra [22, 75]. Relations also serve as the (in-

tended) semantics for a wide range of languages. For example,

non-deterministic finite automata, Kleene algebra and its variants

— some of which subsume propositional Hoare logic [25, 50] — and

monadic languages for non-determinism [60]. Furthermore, the cat-

egory of relations is a simple folk model of (differential) linear logic

and thus of the linear 𝜆-calculus; via the Kleisli construction, it is

also the basis of a simple quantitative model of the plain 𝜆-calculus

[29, 37, 53], which can even be seen as underlying game semantics

and intersection types [16, 26, 35, 63].

Here we present a foundational model of (first-order, sequential)

relational programming: the Relational Machine Calculus (RMC).
We first set out the aims and constraints that informed its design.

Then, in the remainder of the introduction, we detail the origin of

the RMC: from a first-order 𝜆-calculus through several adaptations

to incorporate the relational paradigm, including duality, unifica-
tion, and non-determinism. The body of the paper is dedicated to

justifying our claim of meeting the design criteria we now set out.

1.1 Design criteria
The space of all possible (first-order, sequential) relational models

of computation is bewildering, and indeed there is a proliferation

of languages in this space, indicating its importance and range of

applications. Yet, we find none in the literature which satisfy the

following — minimal, but stringent — design criteria that we would

expect to be met by a "𝜆-calculus of relational computation".

Denotational semantics: has a relational and categorical se-

mantics, through quotienting by a local equational theory;

Duality: exhibits a syntactic involution which switches input

and output, and denotes the relational converse;

Operational semantics: preserves that of standard models of

first-order, sequential (standard and relational) computation;

Confluence: orienting the equational theory gives a confluent
reduction relation, sound for the operational semantics.

We proceed to motivate these criteria, which serve to tame the

design space and establish standards for success in our programme.

Denotational semantics. A minimal qualifying criterion for any

relational calculus is to have a denotational semantics in the cate-

gory of sets and relations. We further expect a categorical semantics

in an appropriate symmetric monoidal category which abstracts

the structural properties of relations; we shall see momentarily our

preferred candidate.

https://orcid.org/0000-0003-1708-3554
https://orcid.org/0009-0000-3333-8161
https://orcid.org/0009-0001-8941-1150
https://doi.org/10.1145/3661814.3662091
https://doi.org/10.1145/3661814.3662091

LICS ’24, July 8–11, 2024, Tallinn, Estonia C. Barrett, D. Castle, and W. Heijltjes

Duality. While the category of sets and relations embeds that

of sets and functions, it exhibits very different structural proper-

ties; mainly, a perfect duality between input and output given by

relational converse. We consider this duality a defining feature of

relational computation. A paradigmatic example is the following

Prolog program to concatenate two lists.

concat([],L,L)
concat([E | L1], L2, [E | L3]) :- concat(L1,L2,L3)

Fixing input lists L1 and L2 in the relation concat(L1,L2,L3) returns
their concatenation as L3, but by fixing the value L3 instead, the
relation may be run in reverse to (non-deterministically) return

every way of splitting L3 into L1 and L2.
Duality is a common theme in programming language research

[31, 36, 70], and in mathematics and physics more generally. Its

aesthetic appeal barely needs justification; practically, it offers par-

simony of expression by identifying a dual program (theorem) with

each program (theorem) written.We require our language to feature

duality in a direct and natural way: by a syntactic involution.

Operational semantics. We expect our language to be expres-

sive enough to encode a range of relational models of first-order,

sequential computation, including the first-order 𝜆-calculus, au-

tomata, logic programming, and Petri nets. However, any suffi-

ciently expressive language can encode any other: we would like

the embeddings into our calculus to be, in some way, natural. As
our criterion for this, we specify that operational semantics is pre-

served, for models where it is defined. This means that (at least,

with respect to operational semantics — a relatively fine-grained

notion) the encoded models may be viewed as fragments of our
language, built from its more fundamental primitives.

Confluence. The intended relational semantics will impose an

equational theory on our calculus. Following the central notion

of 𝛽-reduction in the 𝜆-calculus, we expect the equational theory

(modulo certain congruences) to be orientable as a reduction rela-

tion, and that this relation is confluent, contributing in an essential

way to an effective solution to this theory.

1.2 First-order lambda-calculus and duality
Our point of departure is the first-order 𝜆-calculus, as first appeared

as the 𝜅-calculus [40, 67] and recently as the first-order fragment

of the Functional Machine Calculus [4, 42] (FMC). These calculi

feature three of our desired properties: a denotational semantics
(albeit in Cartesian categories), an operational semantics in a simple

stack machine, and confluent reduction. Crucially, they also exhibit

the potential for duality; and in the formulation of the FMC, this is

directly observable in the syntax.

Taking the operational perspective, the first-order FMC is an in-

struction language for a simple stack machine. Terms are sequences

of push [𝑥] and pop ⟨𝑥⟩ operations over variables 𝑥 or constant

values 𝑐 , separated by sequential composition (;). The following
example shows a term and its associated string diagram; the type

is given by the size of its input and output stacks.

[𝑥]
[𝑧]

⟨𝑥⟩
⟨𝑦⟩
⟨𝑧⟩

[𝑦]

⟨𝑥⟩ ; ⟨𝑦⟩ ; ⟨𝑧⟩ ; [𝑥] ; [𝑧] ; [𝑦] : 3⇒3

Operationally, a term evaluates from left to right; ⟨𝑥⟩ pops the
head off the stack, say a constant 𝑐 , and substitutes 𝑐 for 𝑥 in the

remaining computation; [𝑥] pushes the value substituted for 𝑥 onto

the stack. We write our stacks with the head to the right, to match

the order of pushes; our term then takes a stack 𝑒 𝑑 𝑐 to 𝑐 𝑒 𝑑 , where

⟨𝑥⟩ pops 𝑐 , ⟨𝑦⟩ pops 𝑑 , and ⟨𝑧⟩ pops 𝑒 .
In this way, our term implements a relation between input and

output stacks, as illustrated by the string diagram, where the wires

represent the manipulation of the items on the stack (shown with

the head at the top). The simple typing discipline of giving input

and output arity tames the asymmetric nature of stacks, resulting

in an internal language for symmetric monoidal categories (SMCs)

in the linear case (where each pop ⟨𝑥⟩ is matched by a unique push
[𝑥] to its right, and vice versa).

In the FMC, a pop ⟨𝑥⟩ ;𝑀 , with 𝑀 the remaining computation,

is a first-order lambda-abstraction, which we write 𝜅𝑥.𝑀 following

the 𝜅-calculus. A push [𝑥] ;𝑀 corresponds to an application 𝑀 𝑥 ,

restricted to first order by forcing the argument to be a variable.

The stack machine is then a simplified Krivine machine [51], replac-

ing environments with substitution. This highlights a key aspect.

A 𝜅-abstraction is a binder, making the variable 𝑥 local to 𝜅𝑥.𝑀 .

However, binding and variable scope are the main notions that will

need to be re-visited in light of duality. A pop ⟨𝑥⟩ is therefore not a
binder, and variables in this fragment of the RMC are global. This
does not prevent us from encoding first-order 𝜆-calculus: in the

first-order setting, terms are never duplicated, removing any issues

with variable capture or 𝛼-conversion. We may then simulate bind-

ing by stipulating that each pop ⟨𝑥⟩ has a unique variable, which
only occurs in pushes to its right (this is Barendregt’s convention).
Later, when duplication of terms returns, we will re-introduce local

variable scope with a binding new variable construct ∃𝑥 . 𝑀 , justify-

ing the core fragment of the RMC as a decomposition of abstraction

into its two distinct roles: pop and new variable.

Duality. Our formulation of first-order 𝜆-calculus is tailored to

reveal its latent duality, effected simply by reversing a term while

switching push and pop. The dual of our previous example term:

⟨𝑦⟩ ; ⟨𝑧⟩ ; ⟨𝑥⟩ ; [𝑧] ; [𝑦] ; [𝑥] : 3⇒3 .

The linear fragment, where terms represent permutations, is closed
under duality. By contrast, the non-linear first-order 𝜆-calculus is
characterised by duplication and deletion, embodied by the diagonal
and terminal below left. These yield the dual terms below right,

which we labelmatching and arbitrary, that feature multiple related

pops, or zero.

⟨𝑥⟩ [𝑥]⟨𝑥⟩ ; [𝑥] ; [𝑥]

⟨𝑥⟩
[𝑥]
[𝑥]

[𝑥]⟨𝑥⟩

⟨𝑥⟩ ; ⟨𝑥⟩ ; [𝑥]

⟨𝑥⟩
⟨𝑥⟩

[𝑥]

Semantics tells us that the new terms should represent the relational

converse of the diagonal and terminal functions, given respectively

by the partial function that sends (𝑥, 𝑥) to 𝑥 and is otherwise unde-

fined, and the non-deterministic function sending the trivial input

to all possible outputs.

Operationally, the required behaviour of matching ⟨𝑥⟩ ; ⟨𝑥⟩ ; [𝑥]
for an input stack of two identical values, 𝑐 𝑐 , is to return 𝑐 , and

for distinct values, 𝑑 𝑐 , is to fail. We achieve this by generalising

The Relational Machine Calculus LICS ’24, July 8–11, 2024, Tallinn, Estonia

pop to hold also constants, ⟨𝑐⟩, interpreted as an assertion that the

head of the stack is 𝑐 , with failure for any other constant. Then

⟨𝑥⟩ ; ⟨𝑥⟩ ; [𝑥] evaluates by first popping 𝑐 , substituting it for 𝑥 in

both pop and push to get ⟨𝑐⟩ ; [𝑐], which then pops and replaces the

second value 𝑐 (or fails for 𝑑).

The second term, arbitrary [𝑥], illustrates that stack values must

include variables, and hence must be substituted for: the term ⟨𝑐⟩
for a stack 𝑥 𝑥 incurs a substitution of 𝑐 for the second 𝑥 . The

behaviour of push and pop thus becomes perfectly symmetric, with

substitutions in both the stack and the remaining term.

Altogether these relations are abstracted categorically as Frobe-
nius monoids, which we take to capture non-linear computation

in the presence of duality, given in string diagrams as above and

satisfied by the Frobenius equation below.

= =

Intuitively, this implements the idea that connectivity = identity:
connectedwires represent a single value. In our calculus, this is mod-

eled by variable names; and indeed the three diagrams in the above

equation may all be represented by the term ⟨𝑥⟩ ; ⟨𝑥⟩ ; [𝑥] ; [𝑥].
Frobenius monoids have received a huge amount of interest over

the last decade or so, since they were identified as a fundamental

primitive of quantum computation by the ZX-calculus [23, 24, 47].

Since then, they have been adopted as primitives in a wide range of

string diagrammatic languages, including those capturing conjunc-

tive queries, relational algebra, and aspects of logic programming

[6, 10, 13, 38]. In programming language theory specifically, they

have received significantly less attention, but have been used in

a synthetic axiomatization of the operation of exact conditioning
in probabilistic programming [27, 73] and to model the (partial)

inverse of duplication in reversible languages [48]. The RMC offers

a novel operational account of Frobenius monoids, thus filling a

gap in the literature and bridging the study of string-diagrammatic

and programming languages.

1.3 The full calculus
The calculus thus far is generated by: push [𝑥] and pop ⟨𝑥⟩ opera-
tions, sequential composition 𝑀 ;𝑁 , and its unit ★, the imperative

skip. Associativity of composition will be implemented via the ma-

chine and the equational theory. To reach our desired expressivity,

we extend this with a careful selection of features, outlined below.

Algebraic terms and unification. The 𝛽-reduction relation is the

interaction of a consecutive push and pop, say [𝑦] ; ⟨𝑥⟩, to incur

a (global) substitution {𝑦/𝑥}. With constants, both [𝑐] ; ⟨𝑥⟩ and
[𝑥] ; ⟨𝑐⟩ incur {𝑐/𝑥}, while [𝑐] ; ⟨𝑐⟩ succeeds (★) and [𝑑] ; ⟨𝑐⟩ fails.

Viewing a redex as a formal equation, these are the familiar rules

of first-order unification, restricted to variables and constants. We

generalize our calculus to allow algebraic terms 1 as values, and will
implement unification on the machine and through a symmetric

version of 𝛽-reduction. Evaluating a redex [𝑡] ; ⟨𝑠⟩ will thus produce
substitutions constituting the most general unifier of 𝑡 and 𝑠 , or fail

if none exists.

1
We write "algebraic terms" to avoid name clashing with "first-order terms", which

here refer to terms of the RMC, in contrast with "higher-order terms" of the 𝜆-calculus.

Kleene Algebra. To internalize the partial and non-deterministic

semantics of relations, we introduce non-deterministic sum (+) and
failure (0), its unit. Indeed, the presence of non-determinism is of-

ten considered a defining feature of relational programming. With

sequencing already present, we also desire a Kleene star construc-

tion (−∗) to model infinitary behaviour, e.g., of logic programming.

Our full calculus will thus be conservative over Kleene algebra

(KA).

The atoms of KA may be interpreted as programs, with the ax-

ioms of KA acting as a set of (weak) fundamental laws any standard

non-deterministic, sequential language should satisfy [45, 46, 50].

However, an operational interpretation of KA is typically only given

via its correspondence with finite state automata. Our calculus can

be viewed as a modification of KA to include the dual primitives

of push and pop, replacing the atoms of KA and supporting its

extension with a direct operational semantics.

Local variables. Evaluation for Kleene star, taking a term 𝑀∗

non-deterministically to a sequence 𝑀 ; . . . ;𝑀 of any length, re-

introduces duplication of terms into the calculus, bringing with it

the familiar problems of variable identity and 𝛼-conversion. We

adopt a standard solution: making the scope of a variable explicit

with a new variable construct, ∃𝑥 . 𝑀 , familiar variously from nom-

inal Kleene algebra [34], functional logic programming [39], 𝜋-

calculus [59], and the 𝜈-calculus [66] as a fragment of ML. This

restores locality and gives a proper decomposition of 𝜅-abstraction

into its two roles: first, as the binder of new variables, and second,

as an instruction to pop from the stack.

𝜅𝑥. 𝑀 = ∃𝑥 . (⟨𝑥⟩ ;𝑀)

Locations. We inherit a further feature from the Functional Ma-

chine Calculus: multiple stacks (or streams) on the abstract machine,

indexed in a set of locations. This captures several computational

effects: mutable store, as stacks restricted to depth one; input and

output, as dedicated streams; and a probabilistic generator, as a

stream of random bits — remarkably, while retaining confluent re-
duction [42]. The required generalization of the syntax is a simple

parameterization of push and pop in a location 𝑎, as [𝑥]𝑎 and 𝑎⟨𝑥⟩
respectively, to operate on the indicated stack. Thereby, the RMC

subsumes the operational semantics of the given effects, while 𝛽𝜂-

equivalence captures their algebraic theory [4, 42]. This extension

allows the simple modelling of stateful models of computation such

as Turing machines and Petri nets, demonstrated in Section 8.

2 THE RELATIONAL MACHINE CALCULUS
We define the Relational Machine Calculus (RMC) as follows. We

assume a countable set of locations 𝐴 = {𝑎, 𝑏, 𝑐 . . . }, which each

represent a stack on the abstract machine. Stacks hold algebraic

terms over a signature Σ of function symbols 𝑓 𝑛 of arity 𝑛.

Definition 2.1 (Relational Machine Calculus). Values 𝑠, 𝑡 and (com-
putation) terms 𝑀, 𝑁 are given by the grammars below.

𝑠, 𝑡 F 𝑥 | 𝑓 𝑛 (𝑡1, . . . , 𝑡𝑛) (𝑓 𝑛 ∈ Σ) algebraic terms

𝑀, 𝑁 F ★ | 𝑀 ;𝑁 | 𝑀∗ | 0 | 𝑀 + 𝑁 Kleene algebra

| [𝑡]𝑎 | 𝑎⟨𝑡⟩ stack operations

| ∃𝑥 . 𝑀 variable scope

LICS ’24, July 8–11, 2024, Tallinn, Estonia C. Barrett, D. Castle, and W. Heijltjes

From left to right, the computation terms are skip or nil ★, (se-
quential) composition𝑀 ;𝑁 , Kleene star 𝑀∗, zero or failure 0, a sum
of terms𝑀 + 𝑁 , a push [𝑡]𝑎 of the value 𝑡 to the location 𝑎, a pop
𝑎⟨𝑡⟩ from the location 𝑎 to unify with 𝑡 , and a new variable intro-

duction ∃𝑥 . 𝑀 which binds 𝑥 in 𝑀 . Operator precedence: Kleene

star binds tightest, then sequencing, then new ∃𝑥 . 𝑀 , and finally

sum; then ∃𝑥 . 𝑀 ;𝑁 + 𝑃 ;𝑄∗ = (∃𝑥 . (𝑀 ;𝑁)) + (𝑃 ; (𝑄∗)). We often

omit the superscript on 𝑓 𝑛 .

The calculus exhibits duality as a syntactic involution.

Definition 2.2 (Duality). Define duality (−)† on terms as follows.

★† = ★

(𝑁 ;𝑀)† = 𝑀† ;𝑁 †

(𝑀∗)† = (𝑀†)∗
0
† = 0

(𝑀 + 𝑁)† = 𝑀† +𝑁 †
[𝑡]𝑎† = 𝑎⟨𝑡⟩
𝑎⟨𝑡⟩† = [𝑡]𝑎

(∃𝑥 . 𝑀)† = ∃𝑥 . 𝑀†

We shall see throughout the paper how various operational,

equational, and semantic notions either dualize or respect duality.

2.1 Operational Semantics
The small-step operational semantics is given by a stack machine,

the relational abstract machine or relational machine.

Definition 2.3 (Relational Machine). A state is a triple (𝑆𝐴, 𝑀, 𝐾)
of: a memory 𝑆𝐴 , a family of stacks indexed in a set of locations 𝐴;

a term𝑀 ; and a continuation stack 𝐾 . These are defined as follows.

𝐾, 𝐿 F 𝜀 | 𝑀 𝐾 continuation stacks

𝑆,𝑇 F 𝜀 | 𝑆 𝑡 operand stacks

𝑆𝐴 F {𝑆𝑎 | 𝑎 ∈ 𝐴} memories

The addition of a stack 𝑆𝑎 to a memory 𝑆𝐴 (𝑎 ∉ 𝐴) is written

𝑆𝐴 · 𝑆𝑎 . We abbreviate 𝑓 (𝑡1, . . . , 𝑡𝑛) to 𝑓 (𝑇) where𝑇 = 𝑡1 . . . 𝑡𝑛 , and

[𝑡1]𝑎 ; . . . ; [𝑡𝑛]𝑎 to [𝑇]𝑎 and 𝑎⟨𝑡𝑛⟩ ; . . . ;𝑎⟨𝑡1⟩ to 𝑎⟨𝑇 ⟩ (note the

inversion). The transitions of the machine are given in Figure 1, read

top–to–bottom, and are non-deterministic: a state transitions to a

formal sum of states, represented by branching of the transitions.

A run of the machine is a single rooted path in the machine tree,

not necessarily to a leaf, shown with a double line as below.

(𝑆𝐴 , 𝑀 , 𝐾)
(𝑇𝐴 , 𝑁 , 𝐿)

A run is successful if it terminates in a state (𝑇𝐴 , ★ , 𝜀). A state

where no transition rules apply represents failure, and is considered
to have zero branches.

Machine evaluation of a term𝑀 for an input memory 𝑆𝐴 gives

a (possibly infinite) number of successful runs, each with a return

memory 𝑇𝐴 . The big-step evaluation function (𝑆𝐴 ⇓𝑀) will collect
these as a multiset. Since variables are global and machine steps

substitute into the continuation stack, evaluation returns also a

finite substitution map 𝜎 with each return memory 𝑇𝐴 , as a pair

(𝑇𝐴, 𝜎). In a composition𝑀 ;𝑁 , the subsitutions from 𝑀 can then

be applied to 𝑁 .

Notation. We denote the empty multiset by [], a singleton by

[(𝑇𝐴, 𝜎)], and multiset union by ⊔. Substitution maps 𝜎 and 𝜏 are

applied to a term as 𝜎𝑀 and composed as (𝜎𝜏)𝑀 = 𝜎 (𝜏𝑀). The

(𝑆𝐴 , ★ , 𝑀 𝐾)
(𝑆𝐴 , 𝑀 , 𝐾)

(𝑆𝐴 , 𝑀∗ , 𝐾)
(𝑆𝐴 , ★ , 𝐾) (𝑆𝐴 , 𝑀 ;𝑀∗ , 𝐾)

(𝑆𝐴 , 𝑀 ;𝑁 , 𝐾)
(𝑆𝐴 , 𝑀 , 𝑁 𝐾)

(𝑆𝐴 , 𝑀 + 𝑁 , 𝐾)
(𝑆𝐴 , 𝑀 , 𝐾) (𝑆𝐴 , 𝑁 , 𝐾)

(𝑆𝐴 · 𝑆𝑎 , [𝑡]𝑎 , 𝐾)
(𝑆𝐴 · 𝑆𝑎 𝑡 , ★ , 𝐾)

(𝑆𝐴 , ∃𝑥 . 𝑀 , 𝐾)
(𝑆𝐴 , {𝑦/𝑥}𝑀 , 𝐾) (𝑦 fresh)

(𝑆𝐴 · 𝑆𝑎 𝑥 , 𝑎⟨𝑥⟩ , 𝐾)
(𝑆𝐴 · 𝑆𝑎 , ★ , 𝐾)

(𝑆𝐴 · 𝑆𝑎 𝑓 (𝑅) , 𝑎⟨𝑓 (𝑇)⟩ , 𝐾)
(𝑆𝐴 · 𝑆𝑎 𝑅 , 𝑎⟨𝑇 ⟩ , 𝐾)

(𝑆𝐴 · 𝑆𝑎 𝑥 , 𝑎⟨𝑡⟩ , 𝐾)
({𝑡/𝑥}(𝑆𝐴 · 𝑆𝑎) , ★ , {𝑡/𝑥}𝐾) (𝑥 ∉ 𝑡)

(𝑆𝐴 · 𝑆𝑎 𝑡 , 𝑎⟨𝑥⟩ , 𝐾)
({𝑡/𝑥}(𝑆𝐴 · 𝑆𝑎) , ★ , {𝑡/𝑥}𝐾) (𝑥 ∉ 𝑡)

Figure 1: Transitions of the Relational Machine

empty map is 𝜀, and 𝜎 \ 𝑦 is as 𝜎 except undefined on 𝑦. The 𝑛-fold

composition of a term𝑀 is𝑀𝑛
where𝑀0 = ★ and𝑀𝑛+1 = 𝑀 ;𝑀𝑛

.

Definition 2.4 (Big-step operational semantics). The big-step op-

erational semantics of the RMC is given by the evaluation function

(− ⇓−) below, where 𝑦 is globally fresh in the ∃𝑥 . 𝑀 case.

𝑆𝐴 ⇓★ = [(𝑆𝐴, 𝜀)]
𝑆𝐴 ⇓𝑀 ;𝑁 = [(𝑈𝐴, 𝜏𝜎) | (𝑇𝐴, 𝜎) ∈ 𝑆𝐴 ⇓𝑀,

(𝑈𝐴, 𝜏) ∈ 𝑇𝐴 ⇓𝜎𝑁]
𝑆𝐴 ⇓𝑀∗ =

⊔
𝑛∈N (𝑆𝐴 ⇓𝑀𝑛)

𝑆𝐴 ⇓𝑀 + 𝑁 = (𝑆𝐴 ⇓𝑀) ⊔ (𝑆𝐴 ⇓𝑁)
𝑆𝐴 · 𝑆𝑎 ⇓ [𝑡]𝑎 = [(𝑆𝐴 · 𝑆𝑎 𝑡, 𝜀)]

𝑆𝐴 · 𝑆𝑎 𝑥 ⇓𝑎⟨𝑥⟩ = [(𝑆𝐴 · 𝑆𝑎, 𝜀)]
𝑆𝐴 · 𝑆𝑎 𝑥 ⇓𝑎⟨𝑡⟩ = [({𝑡/𝑥}(𝑆𝐴 · 𝑆𝑎), {𝑡/𝑥})] (𝑥 ∉ 𝑡)
𝑆𝐴 · 𝑆𝑎 𝑡 ⇓𝑎⟨𝑥⟩ = [({𝑡/𝑥}(𝑆𝐴 · 𝑆𝑎), {𝑡/𝑥})] (𝑥 ∉ 𝑡)

𝑆𝐴 · 𝑆𝑎 𝑓 (𝑅) ⇓𝑎⟨𝑓 (𝑇)⟩ = 𝑆𝐴 · 𝑆𝑎 𝑅 ⇓𝑎⟨𝑇 ⟩
𝑆𝐴 ⇓∃𝑥 . 𝑀 = [(𝑇𝐴, 𝜎 \ 𝑦) | (𝑇𝐴, 𝜎) ∈ 𝑆𝐴 ⇓ {𝑦/𝑥}𝑀]
𝑆𝐴 ⇓𝑀 = [] (otherwise)

The function ⌊−⌋ takes a multiset to its underlying set, and the

function ret(−) projects onto only return memories in ⌊𝑆𝐴 ⇓𝑀⌋.

We assume that fresh variables are generated globally, without

clashing. In particular, in (∃𝑥 . 𝑀) ;𝑁 the variable instantiating the

∃𝑥 must be free for 𝑁 as well as𝑀 . One may address this practically

by carrying along the formal parameters of (∃𝑥 . 𝑀) ;𝑁 into ∃𝑥 . 𝑀 ;

we omit this for brevity.

Proposition 2.5 (Big-step semantics is well defined). The
evaluation function (− ⇓−) is a total function.

Proposition 2.6 (Small-step and big-step semantics agree).

For every memory 𝑆𝐴 , term𝑀 and continuation 𝐾 , there is a bijection
between the elements (𝑇𝐴, 𝜎) of (𝑆𝐴 ⇓𝑀) and successful runs

(𝑆𝐴 , 𝑀 , 𝐾)
(𝑇𝐴 , ★ , 𝜎𝐾)

.

The Relational Machine Calculus LICS ’24, July 8–11, 2024, Tallinn, Estonia

3 ENCODING COMPUTATIONAL MODELS, I
We embed a number of computational models (or algorithms, in

the case of unification) into the RMC to illustrate the origins and

purposes of its various constructs. Observe, in particular, that op-

erational semantics is preserved, often in a strong sense. We use

only one, unnamed stack, writing [𝑡] and ⟨𝑡⟩. Encodings of stateful
languages, making use of multiple locations, are given in Section 8.

Notation. We introduce vector notation for stacks of variables

⇀
𝑥 = 𝑥1 . . . 𝑥𝑛 , and emphasize the reversal in ⟨↼𝑥⟩ = ⟨𝑥𝑛⟩ ; . . . ; ⟨𝑥1⟩
by pointing the arrow left. Concatenation is given by juxtaposition.

We further abbreviate ∃𝑥1 . . . ∃𝑥𝑛 . 𝑀 as ∃⇀𝑥 . 𝑀 .

3.1 Regular expressions
Regular expressions (REs) over an alphabet Σ of constants 𝑎, 𝑏, 𝑐, . . .

are given by the following grammar, with their embedding ⟦−⟧
into RMC-terms below it, given by juxtaposition.

𝐸, 𝐸′ F 𝜀 | 𝐸 𝐸′ | 𝐸∗ | ∅ | (𝐸 |𝐸′) | 𝑐 ∈ Σ

𝑀, 𝑁 F ★ | 𝑀 ;𝑁 | 𝑀∗ | 0 | 𝑀 + 𝑁 | [𝑐]
Here, constant values 𝑐 are pushed to the stack. The regular language
L𝐸 defined by 𝐸 — a set of words (stacks) over Σ — is thus given

directly by the evaluation of ⟦𝐸⟧.
Proposition 3.1 (Regular expressions embed). For an RE 𝐸,

L𝐸 = ret⌊𝜀 ⇓ ⟦𝐸⟧⌋ .
There is a dual embedding ⟦−⟧† of REs into the grammar below,

given by composition of the original embedding with duality.

𝑀, 𝑁 F ★ | 𝑀 ;𝑁 | 𝑀∗ | 0 | 𝑀 + 𝑁 | ⟨𝑐⟩
Here, constant values 𝑐 are popped from the stack. The embedding

can be considered as defining a computation which tests words
(stacks), with a word 𝑆 accepted if 𝜀 ∈ ret⌊𝑆 ⇓ ⟦𝐸⟧†⌋. The character-
istic (or indicator) function of a regular language L𝐸 is thus given

directly by evaluation of ⟦𝐸⟧†.

3.2 Unification
A (first-order) unification algorithm [56] takes a set of formal equa-

tions 𝐸 = {𝑠1 � 𝑡1, . . . , 𝑠𝑛 � 𝑡𝑛} and returns a most general unifier

(MGU), a minimal subsitution 𝜎 such that 𝜎𝑠𝑖 = 𝜎𝑡𝑖 for all 𝑖 , if

one exists. In the RMC, we may encode such equations as redexes:

⟦𝑠 � 𝑡⟧ = [𝑠] ; ⟨𝑡⟩. Unification (as a general concept) can then be

viewed as embedding in the RMC as the following fragment.

𝑀, 𝑁 F ★ | 𝑀 ;𝑁 | [𝑡] | ⟨𝑡⟩
Terms are sequences of pushes and pops of first-order values to and

from this location. A set of equations 𝐸 is encoded as follows.

⟦{𝑠1 � 𝑡1, . . . , 𝑠𝑛 � 𝑡𝑛}⟧ = [𝑠𝑛] ; . . . ; [𝑠1] ; ⟨𝑡1⟩ ; . . . ; ⟨𝑡𝑛⟩
Note that we have chosen nested redexes, since that is also what the

machine reduction for constants (for [𝑓 (𝑠1, . . . , 𝑠𝑛)] ; ⟨𝑓 (𝑡1, . . . , 𝑡𝑛)⟩)
produces; but a sequence of redexes would have been equally valid.

We then observe that evaluation returns an MGU if one exists.

Proposition 3.2 (First-order unification embeds). For a set
of formal equations over algebraic terms 𝐸 we have the following,
where 𝜎 is an MGU for 𝐸, if one exists, and otherwise 𝜀 ⇓ ⟦𝐸⟧ = [].

𝜀 ⇓ ⟦𝐸⟧ = [(𝜀, 𝜎)]

For machine evaluation, which does not return a substitution

explicitly, we may obtain 𝜎 by populating the initial stack with the

free variables 𝑥1 . . . 𝑥𝑛 in 𝐸. This is the domain of 𝜎 ; the machine

then substitutes into each variable 𝑥𝑖 to return 𝜎𝑥𝑖 , as follows, so

that the relation from input to output stack captures the MGU 𝜎 .

(𝑥1 . . . 𝑥𝑛 , ⟦𝐸⟧ , 𝜀)
(𝜎𝑥1 . . . 𝜎𝑥𝑛 , ★ , 𝜀)

3.3 Kappa-calculus
Hasegawa’s 𝜅-calculus [40], which featured in the introduction, as

formulated by Power and Thielecke [67], embeds as follows.

𝐸, 𝐸′ F 𝐸;𝐸′ | PUSH𝑥 | 𝜅𝑥.𝐸

𝑀, 𝑁 F 𝑀 ;𝑁 | [𝑥] | ∃𝑥 . ⟨𝑥⟩ ;𝑀

A 𝜅-abstraction (first-order 𝜆-abstraction) decomposes into a new
∃𝑥 and a pop ⟨𝑥⟩, so that 𝜅𝑥 acts as a binder as well as taking

input. The asymmetry of this construct, which rules out terms

such as ⟨𝑥⟩ ; ⟨𝑥⟩ ; [𝑥], gives the Cartesian semantics. The machine

behaviour illustrates that the decomposition gives the correct be-

haviour: pop and substitute.

(𝑆 𝑧 , ∃𝑥 . (⟨𝑥⟩ ;𝑀) , 𝐾)
(𝑆 𝑧 , ⟨𝑦⟩ ; {𝑦/𝑥}𝑀 , 𝐾)
(𝑆 𝑧 , ⟨𝑦⟩ , ({𝑦/𝑥}𝑀) 𝐾)
(𝑆 , ★ , ({𝑧/𝑥}𝑀) 𝐾)
(𝑆 , {𝑧/𝑥}𝑀 , 𝐾)

Note that Power and Thielecke’s formulation of the 𝜅-calculus,

above, unfortunately does not include the unit for sequencing; an

omission which is fixed in the FMC and RMC.

3.4 Pattern-matching
In a 𝜆-calculus with pattern-matching [14, 20, 49], abstractions are

over patterns, which generally are algebraic terms, instead of over

variables. Since we do not have higher-order abstraction, we will

stay within 𝜅-calculus. We will use pairing as our only pattern, as

is standard in a Cartesian setting.

𝐸, 𝐸′ F 𝐸;𝐸′ | PUSH 𝑝 | 𝜅𝑝.𝐸 𝑝, 𝑞 F 𝑥 | (𝑝, 𝑞)

In 𝜅𝑝.𝐸, the free variables of the pattern 𝑝 bind in 𝐸. The embedding

in the RMC captures this by introducing each variable as new:

𝑀, 𝑁 F 𝑀 ;𝑁 | [𝑝] | ∃⇀𝑥 . ⟨𝑝⟩ ;𝑀 (⇀𝑥 = fv(𝑝))

The behaviour of the RMC-encoding is slightly more general than

that of the original pattern-matching calculus, since it can deal

with situations such as [𝑥] ;∃𝑦. ∃𝑧. ⟨(𝑦, 𝑧)⟩ (by substituting into 𝑥),

which the latter cannot. Pattern-matching calculi address this by

introducing explicit product types. With that constraint, the overall

behaviour agrees, as expected.

Languages using let-bindings with patterns, used for string dia-

grams or monoidal categories [41, 67], admit an analogous encoding

to that of monadic let-bindings in the FMC [42], as follows.

let 𝐸 = 𝑝 in 𝐸′ ↦→ 𝐸 ;∃⇀𝑥 . ⟨𝑝⟩ ;𝐸′ (⇀𝑥 = fv(𝑝))

LICS ’24, July 8–11, 2024, Tallinn, Estonia C. Barrett, D. Castle, and W. Heijltjes

3.5 Symmetric pattern-matching
We embed a first-order fragment of Theseus, a reversible program-

ming language which is both forwards and backwards determin-

istic [17, 19, 69]. Its values are generated from pairing and injec-

tions. Computation is performed by application of isomorphisms,
expressed using symmetric pattern-matching syntax below, where

the set of values 𝑣𝑖 (respectively,𝑤𝑖) are restricted by the type sys-

tem to be exhaustive and non-overlapping, guaranteeing reversibility.
We omit presentation of the type system here for brevity.

{ 𝑣1 ↔ 𝑤1 | . . . | 𝑣𝑛 ↔ 𝑤𝑛 }

We interpret values using corresponding function symbols, and

embed isomorphisms as below.

∃⇀𝑥1 . ⟨𝑣1⟩ ; [𝑤1] + . . . + ∃⇀𝑥𝑛 . ⟨𝑣𝑛⟩ ; [𝑤𝑛]

Each
⇀
𝑥𝑖 contains exactly the variables of 𝑣𝑖 and𝑤𝑖 . Isomorphism

inversion is given by (−)†. The application of isomorphism 𝑀 to

value 𝑣 is encoded as [𝑣] ;𝑀 .

3.6 Prolog
We embed pure Prolog, as defined by the following grammar.

Terms: 𝑡 B 𝑥 | 𝑓 (𝑡1, . . . , 𝑡𝑛) Atoms: 𝐴 B 𝑃 (𝑡1, . . . , 𝑡𝑛)
Clauses: 𝐶 B 𝐴 :− 𝐴1 . . . 𝐴𝑛 Programs: 𝐿 B 𝐶1 . . .𝐶𝑛

Prolog by defualt evaluates using a top-down evaluation strategy,

which takes the query — that is, a chosen atom — as a goal to be

proved and non-deterministically applies clauses, decomposing the

set of goals into sub-goals, succeeding when the set is empty.

We consider atoms, as well as terms, to be modelled in the RMC

by algebraic terms. The embedding of a clause𝐶 with free variables

⇀
𝑥 is then given as follows.

⟦𝐴 :− 𝐴1 . . . 𝐴𝑛⟧ = ∃⇀𝑥 . ⟨𝐴⟩ ; [𝐴1] ; . . . ; [𝐴𝑛]

The stack will hold the set of goals, with the non-deterministic

sum of clauses modelling the program itself. To select the correct

solution among the non-deterministic outputs, we add a new con-

stant END to the input stack, which can only be removed when

the computation is successfully completed. The embedding of a

query-program pair is thus given below.

⟦(𝑄,𝐶1 . . .𝐶𝑛)⟧ = [END] ; [𝑄] ; (⟦𝐶1⟧ + . . . + ⟦𝐶𝑛⟧)∗ ; ⟨END⟩

As we did with unification, by populating the initial stack with the

query 𝑄 we collect the substitutions generated by the machine run.

The completed computation then returns the same instantiation of

𝑄 as does Prolog.

Proposition 3.3 (Prolog embeds). Given as input a query𝑄 and
program 𝐿, the Prolog abstract interpreter [74] outputs the instance
𝑄 ′ if and only if

(𝑄 , ⟦(𝑄, 𝐿)⟧ , 𝜀)
(𝑄 ′ , ★ , 𝜀)

In contrast to top-down evaluation, bottom-up evaluation starts

from the set of facts (i.e., clauses with a head 𝐴 but no body 𝐴𝑖)

and non-deterministically applies rules in reverse, building up the

set of logical consequences of facts, succeeding when the query is

reached. Remarkably, the RMC reveals a syntactic duality between

the two strategies: the dual embedding ⟦(𝑄, 𝐿)⟧† evaluates the
query-program pair via the bottom-up strategy.

Further, although beyond the scope of the current work, we

believe that semi-naive evaluation – which can asymptotically im-

prove the performance of bottom-up queries – can be formalized

in our language as a source-to-source translation.

4 EQUATIONAL THEORY AND REDUCTION
In this section, we define the equational theory of the RMC and

show that it is sound with respect to a natural notion of observa-

tional equivalence induced by the operational semantics. We then

recover a reduction relation through a natural orientation of (an

appropriate subset of) the equations, which we prove confluent. In

the star-free fragment, this relation is strongly normalising, giving

rise to normal forms.

4.1 The Equational Theory
The equational theory we define is conservative over Kleene alge-

bra, but contains the following additional axioms. For the new vari-

able construct, there are axioms reminiscent of those from nominal
Kleene algebra [34]. There are then axioms internalizing unification,

with each corresponding to a step in the standard Martelli and Mon-

tanari algorithm for unification (including its "occurs check") [56].

In particular, these axioms include a symmetric version of the 𝛽-law

of the 𝜅-calculus. There is also a weaker, inequational version of the

𝜂-law; and we shall see later that, in the typed setting, we recover

the stronger, standard 𝜂-law. Finally, there is an axiom allowing the

permutation of locations, familiar from the Functional Machine Cal-

culus [42]. Observe that the equational theory respects the duality

of the calculus, as expected.

Definition 4.1 (Equational theory). We define the equational the-
ory (=) over terms of the RMC to be the least congruence generated

by the following axioms.

• Those of Kleene algebra: that is, (𝑀, ; ,★, +, 0) forms an idem-

potent semiring
2
together with:

𝑀∗ = ★ +𝑀 ;𝑀∗ 𝑀 ;𝑁 ≤ 𝑁 → 𝑀∗ ;𝑁 ≤ 𝑁
𝑀∗ = ★ +𝑀∗ ;𝑀 𝑀 ;𝑁 ≤ 𝑀 → 𝑀 ;𝑁 ∗ ≤ 𝑀

where ≤ is the natural partial order:𝑀 ≤ 𝑁 iff𝑀 + 𝑁 = 𝑁 . In

the sequel, we work modulo associativity wherever possible.

• Those axiomatizing the new variable constructor:

∃𝑥 . 𝑀 =𝜈 𝑀 (𝑥 ∉ fv(𝑀))
𝑀 ; (∃𝑥 . 𝑁) =𝜈 ∃𝑥 . 𝑀 ;𝑁 (𝑥 ∉ fv(𝑀))
(∃𝑥 . 𝑀) ;𝑁 =𝜈 ∃𝑥 . 𝑀 ;𝑁 (𝑥 ∉ fv(𝑁))
∃𝑥 . (𝑀 + 𝑁) =𝜈 ∃𝑥 . 𝑀 + ∃𝑥 . 𝑁
∃𝑥 . ∃𝑦.𝑀 =𝜈 ∃𝑦. ∃𝑥 . 𝑀

2
That is, (𝑀, ; ,★) is a monoid and (𝑀, +, 0) is an idempotent commutative monoid,

such that ; distributes over + and 0 is annihilative.

The Relational Machine Calculus LICS ’24, July 8–11, 2024, Tallinn, Estonia

• Those axiomatizing 𝛽- and 𝜂-equivalence and unification:

∃𝑥 . 𝑁 ; [𝑡]𝑎 ;𝑎⟨𝑥⟩ ;𝑀 =𝛽 {𝑡/𝑥}(𝑁 ;𝑀) (𝑥 ∉ 𝑡)
∃𝑥 . 𝑁 ; [𝑥]𝑎 ;𝑎⟨𝑡⟩ ;𝑀 =𝛽 {𝑡/𝑥}(𝑁 ;𝑀) (𝑥 ∉ 𝑡)

∃𝑥 . 𝑎⟨𝑥⟩ ; [𝑥]𝑎 ≤𝜂 ★

𝑎[𝑥] ; ⟨𝑥⟩𝑎 =𝜐 ★

[𝑓 (𝑆)]𝑎 ;𝑎⟨𝑓 (𝑇)⟩ =𝜐 [𝑆]𝑎 ;𝑎⟨𝑇 ⟩
[𝑓 (𝑆)]𝑎 ;𝑎⟨𝑔(𝑇)⟩ =𝜐 0 (𝑓 ≠ 𝑔)
[𝑓 (𝑆)]𝑎 ;𝑎⟨𝑥⟩ =𝜔 0 (𝑥 ∈ 𝑆)
[𝑥]𝑎 ;𝑎⟨𝑓 (𝑆)⟩ =𝜔 0 (𝑥 ∈ 𝑆)

• Those axiomatizing permutation of locations:

[𝑠]𝑎 ;𝑏⟨𝑡⟩ =𝜋 𝑏⟨𝑡⟩ ; [𝑠]𝑎 (𝑎 ≠ 𝑏)

The permutation law suffices to derive the fact that "push" and

"pop" on distinct locations commute with each other.

Lemma 4.2 (Permutation). The following equations are derivable.

[𝑠]𝑎 ; [𝑡]𝑏 = [𝑡]𝑏 ; [𝑠]𝑎 𝑎⟨𝑠⟩ ;𝑏⟨𝑡⟩ = 𝑏⟨𝑡⟩ ;𝑎⟨𝑠⟩ (𝑎 ≠ 𝑏)

Proof. Derivable from 𝜋 together with 𝜂, 𝜈 and 𝛽 . □

A 𝛽-redex of the 𝜅-calculus encodes as below, left, assuming a

chosen, unnamed location. As such, its 𝛽-law decomposes into the

following two axioms (where 𝑥 is not free in 𝑡).

[𝑡] ; ∃𝑥 . ⟨𝑥⟩ ;𝑀 =𝜈 ∃𝑥 . [𝑡] ; ⟨𝑥⟩ ;𝑀 =𝛽 {𝑡/𝑥}𝑀
The 𝛽-axiom of the RMC generalizes and symmetrizes the second

equality above: the ∃𝑥 construct may additionally be separated

from the sub-term [𝑡] ; ⟨𝑥⟩ by some term 𝑁 , which is also open for

substitution.

We now define a notion of observational equivalence of terms,

which we call machine equivalence, via the big-step operational

semantics. In the following, we take 𝑆𝐴 to be open in general (i.e. it

may contain free variables), and possibly sharing variables with𝑀 .

Open memories and substitutions are considered equivalent up to

a choice of globally fresh variables. Practically, this means machine

runs and memories are equipped with a context; we omit this for

brevity.

Definition 4.3 (Machine equivalence). Machine equivalence is the
relation (∼) on terms defined by

𝑀 ∼ 𝑁 if ∀𝑆𝐴 . ⌊𝑆𝐴 ⇓𝑀⌋ = ⌊𝑆𝐴 ⇓𝑁 ⌋ .

Proposition 4.4. Machine equivalence is a congruence.

We can define a similarmachine refinement (≲) relation on terms

as follows.

𝑀 ≲ 𝑁 if ∀𝑆𝐴 . ⌊𝑆𝐴 ⇓𝑀⌋ ⊆ ⌊𝑆𝐴 ⇓𝑁 ⌋
It is easy to see that machine refinement satisfies the property

that 𝑀 ≲ 𝑁 if and only if 𝑀 + 𝑁 ∼ 𝑁 , and so (≲) stands in the

same relation to (∼) as (≤) does to (=) in the algebraic theory. In

particular, it is a partial order closed under all contexts.

Theorem 4.5 (Soundness of eqational theory). The equa-
tional theory is sound with respect to machine equivalence:

𝑀 = 𝑁 ⇒ 𝑀 ∼ 𝑁 .

4.2 Reduction and Confluence
It is possible to recover a reduction relation () from the equational

theory by orientation of the equations. The 𝛽 and 𝜐 equations

have an obvious orientation and the 𝜈 equations are oriented to

bring ∃𝑥 to the front of a term, or remove it when it does not

bind any variables. We do not consider the 𝜂 inequation in the

untyped case. To maintain confluence in the presence of the Kleene

star, we find it necessary to break the symmetry of the equational

theory: we can include either the left-handed unfolding reduction

𝑀∗ ★ +𝑀 ;𝑀∗ or its dual𝑀∗ ★ +𝑀∗ ;𝑀 , but not both. We

opt, arbitrarily, for the former. We do not find it sensible to consider

the conditional equation 𝑀 ;𝑁 ≤ 𝑁 → 𝑀∗ ;𝑁 ≤ 𝑁 or its dual as

part of reduction.

We consider the main interest of confluence for reduction to be

in dealing with the directed 𝛽 , 𝜐 and 𝜈 equations. We thus make

several further adaptations to the KA fragment of reduction which

simplify the confluence proof. We choose to omit the idempotence

equation, in keeping with the more general multiset operational

semantics; we omit consideration of associativity and commutativ-

ity of (+), although the method of proof should extend straightfor-

wardly to these cases; and we assume right-associativity of sequenc-

ing, so terms are of the form 𝑀 ; (𝑁 ; . . . ; (𝑃 ;★) . . .), which also

has the pleasant consequence of eliminating the need to consider

(∃𝑥 . 𝑀) ;𝑁 ∃𝑥 . (𝑀 ;𝑁) where 𝑥 ∉ fv(𝑁) and 𝑀 ;★ 𝑀 . For

this reason, 𝛽-reduction will take place in (also right-associative)

linear contexts, defined as follows

𝐿{ } F { } | 𝑀 ;𝐿{ } | 𝐿{ } ;𝑀

and 𝜐-reductions will contain an arbitrary post-fixed term. We also

enforce a prioritization of left- over right-distributivity, although

we expect this can be lifted. Finally, the permutation equation is

oriented left–to–right. The reduction relation is overall clearly

sound (but not complete) with respect to the equational theory, and

thus the operational semantics.

Definition 4.6 (Reduction). The reduction relation () on terms

is given by the rewrite rules in Figure 2, closed under all contexts.

Our proof of confluence makes use of techniques from the field

of first-order term rewriting by treating the atomic terms [𝑡]𝑎, 𝑎⟨𝑡⟩,
★ and 0 as constants and binders ∃𝑥 as distinct function symbols

for each 𝑥 . Local confluence is shown by analysis of critical pairs.

Lemma 4.7. The reduction relation () is locally confluent.

We now observe the star-free fragment is strongly normalising

(by the measure given in the proof of Proposition 2.5) and hence

confluent by Newman’s Lemma [62]. Confluence of the full reduc-

tion relation then follows from an application of the Hindley-Rosen

Lemma [44].

Theorem 4.8 (Confluence). Reduction () is confluent.

In the (strongly normalising) star-free fragment, we thus recover

the existence of normal forms. Let (∗) be the reflexive, transitive
closure of (). We state the result for the case of one location,

but in general push and pop actions on distinct locations can be

arranged according to a chosen ordering.

LICS ’24, July 8–11, 2024, Tallinn, Estonia C. Barrett, D. Castle, and W. Heijltjes

• Kleene algebra-reduction (k):

𝑀∗ k ★ +𝑀 ;𝑀∗

(𝑀 + 𝑁) ; 𝑃 k 𝑀 ; 𝑃 + 𝑁 ; 𝑃 (𝑃 ≠ 𝑀 + 𝑁)
𝑃 ; (𝑀 + 𝑁) k 𝑃 ;𝑀 + 𝑃 ;𝑁

𝑀 + 0 k 𝑀

0 +𝑀 k 𝑀

★ ;𝑀 k 𝑀

𝑀 ; 0 k 0

0 ;𝑀 k 0

• New variable-reduction (𝜈):

∃𝑥 . 𝑀 𝜈 𝑀 (𝑥 ∉ 𝑀)
𝑀 ;∃𝑥 . 𝑁 𝜈 ∃𝑥 . 𝑀 ;𝑁 (𝑥 ∉ 𝑀)

∃𝑥 . (𝑀 + 𝑁) 𝜈 ∃𝑥 . 𝑀 + ∃𝑥 . 𝑁

• 𝛽- and unification-reduction (𝛽 , 𝜐):

∃𝑥 . 𝐿{[𝑡]𝑎 ;𝑎⟨𝑥⟩ ;𝑀} 𝛽 ∃𝑥 . {𝑡/𝑥}𝐿{𝑀} (𝑥 ∉ 𝑡)
∃𝑥 . 𝐿{[𝑥]𝑎 ;𝑎⟨𝑡⟩ ;𝑀} 𝛽 ∃𝑥 . {𝑡/𝑥}𝐿{𝑀} (𝑥 ∉ 𝑡)

[𝑥]𝑎 ;𝑎⟨𝑥⟩ ;𝑀 𝜐 𝑀

[𝑓 (𝑇)]𝑎 ;𝑎⟨𝑓 (𝑆)⟩ ;𝑀 𝜐 [𝑇]𝑎 ;𝑎⟨𝑆⟩ ;𝑀
[𝑓 (𝑇)]𝑎 ;𝑎⟨𝑔(𝑆)⟩ ;𝑀 𝜐 0 (𝑓 ≠ 𝑔)
[𝑓 (𝑆)]𝑎 ;𝑎⟨𝑥⟩ ;𝑀 𝜐 0 (𝑥 ∈ 𝑆)
[𝑥]𝑎 ;𝑎⟨𝑓 (𝑆)⟩ ;𝑀 𝜐 0 (𝑥 ∈ 𝑆)

• Permutation-reduction (𝜋):

[𝑡]𝑎 ;𝑏⟨𝑠⟩ ;𝑀 𝜋 𝑏⟨𝑠⟩ ; [𝑡]𝑎 ;𝑀 (𝑎 ≠ 𝑏)

Figure 2: Reduction rules of the RMC

Corollary 4.9 (Normal forms). For any closed, star-free RMC-
term𝑀 , we have that𝑀 ∗ 𝑁 , where

𝑁 ≡ 𝑁1 + . . . + 𝑁𝑛 ,

where each 𝑁𝑖 is sum-free and of the form

𝑁𝑖 ≡ ∃⇀𝑥 . ⟨𝑠𝑛⟩ ; . . . ; ⟨𝑠1⟩ ; [𝑡1] ; . . . ; [𝑡𝑚] ,

where ⇀
𝑥 are the variables of 𝑠 𝑗 and 𝑡𝑘 .

Note, normal forms are taken modulo associativity and commu-

tativity of (+) and permutation of ∃𝑥 . We close this section with a

theorem about the equational theory (and thus about operational

semantics) proved easily using the existence of normal forms.

Theorem 4.10 (Eqations for duality). We have the following:

• for any closed, star-free term𝑀 , we have𝑀 ≤ 𝑀 ;𝑀† ;𝑀 ;
• if𝑀 is also sum-free then𝑀 = 𝑀 ;𝑀† ;𝑀 .

The first statement is familiar as the unique law added to KA in

Kleene algebra with converse [15]; the second statement is familiar

as the weakening of invertibility in the definition of inverse monoids
and inverse cateogries [21].

5 THE SIMPLY-TYPED RMC
In this section, we introduce a simple typing discipline giving the

input and output arity of terms, making their stack use explicit.

This results in a natural language for string diagrams where types

★ : 𝑛𝐴⇒𝑛𝐴
skip

𝑀 : 𝑘𝐴⇒𝑚𝐴 𝑁 : 𝑚𝐴⇒𝑛𝐴
𝑀 ;𝑁 : 𝑘𝐴⇒𝑛𝐴

seq

0 : 𝑚𝐴⇒𝑛𝐴
zero

𝑀 : 𝑚𝐴⇒𝑛𝐴 𝑁 : 𝑚𝐴⇒𝑛𝐴
𝑀 + 𝑁 : 𝑚𝐴⇒𝑛𝐴

sum

𝑀 : 𝑛𝐴⇒𝑛𝐴
𝑀∗ : 𝑛𝐴⇒𝑛𝐴

star
𝑀 : 𝑚𝐴⇒𝑛𝐴
∃𝑥 . 𝑀 : 𝑚𝐴⇒𝑛𝐴

new

[𝑡]𝑎 : 𝑛𝐴⇒𝑛𝐴 + 1𝑎
push

𝑎⟨𝑡⟩ : 1𝑎 + 𝑛𝐴⇒𝑛𝐴
pop

Figure 3: The simply-typed RMC

represent the input and output wires, which we explicate in the

subsequent section on categorical semantics.

In a first-order setting, the power of types is naturally limited.

Types do not confer termination: the fragment without Kleene star

is inherently terminating, while the full RMC is non-terminating

also when typed. Nor do types prevent failure, as in the term 0

or failure of unification, and this is semantically correct: failure

represents the empty relation, and so should not be excluded from

the typed calculus.

What types do enforce is a notion of progress: they guarantee

that there are sufficient elements on the stack for the machine to

continue. In particular, they prevent terms with Kleene star from

consuming (or producing) an arbitrary number of stack elements.

These constraints are essential for correct relational composition,

and hence in giving a relational semantics to terms, where types

represent the source and target of a relation. Specifically, types allow

the sound strengthening the 𝜂-axiom to an equivalence, which is

necessary for a monoidal categorical semantics.

Formally, the type of a term 𝑀 will give the input and output

arity for each location. With a single, unnamed location, we will

have𝑀 : 𝑚⇒𝑛 for natural numbers𝑚 and 𝑛; for a set of locations𝐴,

we will have an input arity𝑚𝑎 and output arity 𝑛𝑎 for each 𝑎 ∈ 𝐴.

Definition 5.1 (Simple types). A memory type 𝑛𝐴 = {𝑛𝑎 | 𝑎 ∈ 𝐴}
is a family of natural numbers in a (finite) set of locations 𝐴. A type
𝑚𝐴⇒𝑛𝐴 consists of an input and an output memory type.

We may consider a memory type 𝑛𝐴 as a function from locations

to natural numbers, where 𝑛𝐴 (𝑎) = 𝑛𝑎 for 𝑎 ∈ 𝐴 and 𝑛𝐴 (𝑏) = 0 for

any 𝑏 ∉ 𝐴, and silently expand 𝑛𝐴 to 𝑛𝐵 for any 𝐵 ⊃ 𝐴. For any
natural number 𝑛 we may write 𝑛𝑎 for the singleton family in {𝑎}.
The empty memory type 0𝐴 (or simply 0) is everywhere zero, and

the sum 𝑛𝐴 +𝑚𝐴 of two memory types is given location-wise by

(𝑛𝐴 +𝑚𝐴) (𝑎) = 𝑛𝐴 (𝑎) +𝑚𝐴 (𝑎).

Definition 5.2 (The simply-typed RMC). The typing rules for

simply-typed RMC-terms𝑀 : 𝑚𝐴⇒𝑛𝐴 are given in Figure 3.

The present type system, which records only the number of

elements consumed and produced on the stack, is much simplified

with respect to that of the FMC [42]. Being higher-order, the latter

records also the types of stack elements, as a vector of types
⇀
𝜏 .

Here, we only need the length of
⇀
𝜏 as a natural number 𝑛; because

the RMC is first-order, and also because we have a single-sorted

The Relational Machine Calculus LICS ’24, July 8–11, 2024, Tallinn, Estonia

signature Σ for algebraic terms, by which we assume only a single

base type for values. A many-sorted signature, where each sort is

represented by a different base type, may be accommodated with

stack types
⇀
𝜏 as on the FMC.

We have the following three basic properties. First, subject reduc-
tion (reduction preserves types). Second, expansion: if the machine

runs with a given input stack, it will also run with a larger stack,

and the output will be equally larger. Third, duality exchanges input
and output types.

Lemma 5.3. The following properties of the type system hold:
• Subject reduction: if 𝑀 : 𝑘𝐴⇒𝑛𝐴 and 𝑀 𝑁 then also
𝑁 : 𝑘𝐴⇒𝑛𝐴 .
• Expansion: if𝑀 : 𝑘𝐴⇒𝑛𝐴 then𝑀 : 𝑘𝐴 +𝑚𝐴⇒𝑚𝐴 + 𝑛𝐴 .
• Duality: if𝑀 : 𝑘𝐴⇒𝑛𝐴 then𝑀† : 𝑛𝐴⇒𝑘𝐴 .

To connect types with machine behaviour, we extend types to

stacks and memories in the expected way: a stack is typed 𝑆 : 𝑛

where 𝑛 = |𝑆 |, the length of 𝑆 , and a memory is typed 𝑆𝐴 : 𝑛𝐴
where 𝑆𝑎 : 𝑛𝑎 for all 𝑎 ∈ 𝐴. Continuation stacks and states are then

typed by the following rules.

𝜀 : 𝑛𝐴⇒𝑛𝐴

𝑀 : 𝑘𝐴⇒𝑚𝐴 𝐾 :𝑚𝐴⇒𝑛𝐴
𝑀 𝐾 : 𝑘𝐴⇒𝑛𝐴

𝑆𝐴 : 𝑘𝐴 𝑀 : 𝑘𝐴⇒𝑚𝐴 𝐾 :𝑚𝐴⇒𝑛𝐴
(𝑆𝐴, 𝑀, 𝐾) : 0⇒𝑛𝐴

Theorem 5.4 (The machine respects types). For a run

(𝑆𝐴 , 𝑀 , 𝐾)
(𝑇𝐴 , 𝑁 , 𝐿)

if (𝑆𝐴 , 𝑀 , 𝐾) : 0⇒𝑛𝐴 then (𝑇𝐴 , 𝑁 , 𝐿) : 0⇒𝑛𝐴 .
A machine state (𝑆𝐴 , 𝑀 , 𝐾) makes progress unless𝑀 is a pop

𝑎⟨𝑡⟩ and 𝑆𝑎 is empty. Note that types rule out the latter configura-

tion, and thus ensure progress. Since types are preserved by the

above theorem, we have the following corollary.

Corollary 5.5 (Machine progress). Any state on a run from a
typed state makes progress.

We define a typed notion of machine equivalence, where we

expect input stacks to respect typing.

Definition 5.6 (Typed machine equivalence). Typed machine equiv-
alence is defined as the relation𝑀 ∼ 𝑁 : 𝑚𝐴⇒𝑛𝐴 on similarly typed

terms, which holds if:

∀𝑆𝐴 :𝑚𝐴 . ⌊𝑆𝐴 ⇓𝑀⌋ = ⌊𝑆𝐴 ⇓𝑁 ⌋ .
We can strengthen the 𝜂-axiom for the typed equational theory,

as it ensures that the stack involved is non-empty.

Definition 5.7 (Typed equational theory). The typed equational
theory 𝑀 = 𝑁 : 𝑚𝐴⇒𝑛𝐴 relates similarly typed terms of the RMC

by the least congruence generated by the axioms of the untyped

equational theory, together with the strengthened 𝜂-axiom

∃𝑥 . 𝑎⟨𝑥⟩ ; [𝑥]𝑎 =𝜂 ★ : 1𝑎 +𝑚𝐴⇒𝑚𝐴 + 1𝑎 .
The 𝜂-law of the 𝜅-calculus is decomposed as follows, where

𝑥 ∉ fv(𝑀), and indeed our symmetric 𝜂-axiom is equivalent.

∃𝑥 . ⟨𝑥⟩ ; [𝑥] ;𝑀 =𝜈 (∃𝑥 . ⟨𝑥⟩ ; [𝑥]) ;𝑀 =𝜂 ★ ;𝑀 = 𝑀

Theorem 5.8 (Soundness of typed eqational theory). The
typed equational theory is sound for typed machine equivalence:

𝑀 = 𝑁 : 𝑚𝐴⇒𝑛𝐴 =⇒ 𝑀 ∼ 𝑁 : 𝑚𝐴⇒𝑛𝐴 .

6 CATEGORICAL SEMANTICS
We give a sound and complete categorical semantics for the sum-

free, star-free and function-symbol-free fragment of the RMC, il-

lustrating how the core calculus provides a term language and

operational interpretation of Frobenius monoids, and thus of a

natural class of string diagrams. Following this, we show that the

corresponding fragments with linear and "Cartesian" variable poli-

cies provide a term language for symmetric monoidal and Cartesian

categories, respectively. The extension of the categorical seman-

tics to include non-deterministic sum follows easily, but we leave

to future work the categorical interpretation of iteration and of

algebraic terms.

Frobenius monoids are used as a categorical abstraction for mod-

elling a range of computational phenomena, many of interest to

programming language theorists. While the literature contains

computational interpretations of compact closed categories [18]

and certain accounts of operational semantics of string diagrams

[11, 12], to the knowledge of the authors, the RMC gives the first

syntactic account of Frobenius monoids via a notion of 𝛽-reduction,

and the first operational account of Frobenius monoids via a stack

machine. To highlight the correspondence with string diagrams, we

work with a single location, but the results extend easily to multiple

locations [3].

Notation. Given a category C and objects 𝑋,𝑌 ∈ C we denote by

C(𝑋,𝑌) the corresponding homset.Wewrite the identity morphism

on 𝑋 as id𝑋 , or simply 𝑋 . Composition is written in diagrammatic

order, using infix (;). We denote the tensor product of a symmetric
monoidal category (SMC) C by ⊗, its unit by 𝐼 and its symmetry

natural transformation as sym [55]. Components of natural trans-

formations are indexed by subscripts, which we sometimes omit.

We elide all associativity and unit isomorphisms associated with

monoidal categories and sometimes. Recall that a commutative

monoid in a given SMC is an object 𝑋 together with a multiplica-

tion 𝜇 : 𝑋 ⊗ 𝑋 → 𝑋 and a unit 𝜂 : 𝐼 → 𝑋 satisfying the expected

associativity, commutativity and unit equations, and a cocommuta-

tive comonoid is defined dually. We denote by CMon the category

of commutative monoids. We will use string diagrams throughout

this section to describe (co-)monoids in SMCs.

Definition 6.1 (Frobenius monoid). In an SMC (C, ⊗, 1), an extra-
special commutative Frobenius monoid (𝑋, 𝛿, 𝜖, 𝜇, 𝜂) consists of a
commutative monoid (𝑋, 𝜇, 𝜂) and a cocommutative comonoid

(𝑋, 𝛿, 𝜖) that satisfy the Frobenius, special, and extra equations, given
below in the string-diagrammatic language of Figure 4.

=

=

= id𝐼

=

The categorical abstraction of relations which is modelled by the

RMC is that of extra-hypergraph categories, as defined below. This is
a slight variant of the usual definition of hypergraph category [32],

which additionally requires that the relevant Frobenius structures

LICS ’24, July 8–11, 2024, Tallinn, Estonia C. Barrett, D. Castle, and W. Heijltjes

𝜇 : 2→ 1 𝜂 : 0→ 1𝜖 : 1→ 0𝛿 : 1→ 2

∃𝑥 . ⟨𝑥⟩ ; [𝑥] . [𝑥] : 1⇒2 ∃𝑥 . ⟨𝑥⟩ : 𝑛⇒0 ∃𝑥 . ⟨𝑥⟩ ; ⟨𝑥⟩ ; [𝑥] : 2⇒1 ∃𝑥 . [𝑥] : 0⇒1

𝑀 𝑁

𝑀 ;𝑁 : 𝑘⇒𝑛

𝑀 ;𝑁 : 𝑘 → 𝑛

𝑀 : 𝑘 +𝑚⇒𝑘 + 𝑛 ∃⇀𝑥 . ⟨↼𝑥⟩ ;𝑀 ; [⇀𝑥] : 𝑚 + 𝑘⇒𝑛 + 𝑘 ∃𝑥𝑦. ⟨𝑥⟩ ; ⟨𝑦⟩ ; [𝑥] ; [𝑦] : 2⇒2

𝑘 ⊗ 𝑀 : 𝑘 ⊗𝑚 → 𝑘 ⊗ 𝑛 𝑀 ⊗ 𝑘 :𝑚 ⊗ 𝑘 → 𝑛 ⊗ 𝑘 sym : 2→ 2

𝑛𝑘

𝑀𝑚 𝑛

𝑀𝑚 𝑛𝑘 𝑘

𝑘𝑘

Figure 4: Equipment of the Relational Machine Category: string diagrams, categorical combinators, and RMC-terms.

satisfy the extra equation. Indeed, a paradigmatic example of such

a category is that of sets and relations.

Definition 6.2. [Extra-hypergraph category] An extra-hypergraph
category is a SMC C in which each object 𝑋 ∈ C is equipped with

an extra-special commutative Frobenius structure (𝛿𝑋 , 𝜖𝑋 , 𝜇𝑋 , 𝜂𝑋),
which together satisfy the following coherences:

𝛿𝑋⊗𝑌 = (𝛿𝑋 ⊗ 𝛿𝑌); (𝑋 ⊗ sym𝑋,𝑌 ⊗ 𝑌) 𝜖𝑋⊗𝑌 = 𝜖𝑋 ⊗ 𝜖𝑌
𝜇𝑋⊗𝑌 = (𝑋 ⊗ sym𝑋,𝑌 ⊗ 𝑌); (𝜇𝐴 ⊗ 𝜇𝑌) 𝜂𝑋⊗𝑌 = 𝜂𝑋 ⊗ 𝜂𝑌

and the unit coherence that 𝜂𝐼 = id𝐼 = 𝜖𝐼 . A functor of extra-

hypergraph categories is a strong symmetric monoidal functor that

additionally preserves the Frobenius structures.

We can define the hypergraph categorical structure of the RMC

by assigning terms to string diagrams as in Figure 4. We take objects

to be the natural numbers, and wires to represent the input and

output stacks, with the head of the stack at the top. In contrast to the

𝜆-calculus, categorical composition of terms is given by sequential

compostion𝑀 ;𝑁 rather than by substitution. Right-action 𝑘 ⊗ 𝑀
of the tensor product is given by stack expansion (as described in

Lemma 5.3). Left-action𝑀 ⊗ 𝑘 lifts the 𝑘 arguments from the stack

as variables
⇀
𝑥 , to restore them after evaluating𝑀 on the remaining

stack. The remaining equipment is familiar from the discussion in

the introduction of this paper.

Definition 6.3. The Relational Machine Category, RMC[Σ], of
RMC-terms, is defined by the following data.

• Objects: natural numbers

• Morphisms: RMC[Σ] (𝑚,𝑛) is the set of closed simply-typed

terms𝑀 : 𝑚⇒𝑛 over Σ, modulo (=).
• Identity: at type 𝑛, the term ★ : 𝑛⇒𝑛
• Composition: for terms𝑀 : 𝑘⇒𝑚 and 𝑁 : 𝑚⇒𝑛, their com-

position is𝑀 ;𝑁 : 𝑘⇒𝑛
• Tensor product: on objects𝑚 ⊗ 𝑛 =𝑚 + 𝑛, with unit 𝐼 = 0.

• The right- and left-action of the tensor product on mor-

phisms, the symmetry, and the Frobenius monoids at type 1

are given by Figure 4. The associators and unitors are given

by the identity.

Note that it suffices to define a Frobenius monoid on the gen-

erating object 1, with Frobenius monoids at 𝑛 defined using the

compatibility conditions of Definition 6.2.

Theorem 6.4 (Soundness). The Relational Machine Category
RMC[Σ] is an extra-hypergraph category.

It is immediate from the axioms of Kleene algebra that RMC[Σ]
is also CMon-enriched, i.e., every homset RMC[Σ] (𝑛,𝑚) is a com-

mutative monoid with addition (+) and unit 0 and composition of

morphisms distributing over addition. This is an easy and appro-

priate extension of the model to incorporate non-determinism.

Completeness of the categorical semantics for the core fragment

follows an easy normal form argument. Let ∅ denote the empty

signature.

Theorem 6.5 (Hypergraph completeness). The subcategory of
sum-free, star-free terms of RMC[∅] is equivalent to the free extra-
hypergraph category.

Here, and below, the free category in question is generated over

a single object (and the empty set of morphisms).

By restricting the variable policy of this fragment appropriately,

we similarly recover term languages for symmetric monoidal and

Cartesian categories. Let linear RMC-terms to be those for which

each occurring variable appears exactly once in a push and once in a
pop. Then, since linear RMC-terms containing no function symbols

are exactly permutations, we have the following.

Theorem 6.6 (Linear completeness). The subcategory of linear,
sum-free, star-free terms of RMC[∅] is equivalent to the free symetric
monoidal category.

We similarly take the Cartesian RMC-terms to be those for which

each bound variable occurs exactly once in a pop (but possibly

in many pushes), and in which no pop contains anything other

than a variable. Observe further that an RMC-signature Σ is just

an algebraic signature with no equations, which can be used to

generate a free Cartesian category. Then a simple normal form

argument proves the following.

Theorem 6.7 (Cartesian completeness). The subcategory of
sum-free, star-free terms of RMC[Σ] is equivalent to the free Cartesian
category generated over Σ.

The Relational Machine Calculus LICS ’24, July 8–11, 2024, Tallinn, Estonia

Consideration of the case where the signature includes an equa-

tional theory is left for future work: although it is unproblematic

in the Cartesian case, the general case would require working with

unification modulo a theory.
We conclude this section by giving some simple examples of

RMC-terms and their corresponding string diagrams. Following

existing work on string diagrams for (the positive fragment of)

Tarski’s calculus of relations [6, 10, 13, 38, 75], we give terms and

diagrams whose anticipated relational denotation is given by top
(i.e., everything is related), intersection, and converse. The remaining

operations of the calculus of relations are already included in the

grammar of regular expressions (see subsection 3.1). Top (⊤) and
intersection (∩) are encoded as below.

∃𝑥 . ∃𝑦. ⟨𝑥⟩ ; [𝑦] ∃𝑥 . ∃𝑦. ⟨𝑥⟩ ; [𝑥] ;𝐸 ; ⟨𝑦⟩ ; [𝑥] ; 𝐹 ; ⟨𝑦⟩ ; [𝑦]

𝐹

𝐸

⊤ 𝐸 ∩ 𝐹

The compositions 𝜂;𝛿 and 𝜇; 𝜖 form the cups and caps of a (self-

dual) compact closed structure. By 𝛽-reduction we have that 𝜂;𝛿 =

∃⇀𝑥 . [⇀𝑥] ; [⇀𝑥], and dually, as shown below.

= =

∃𝑥 . [𝑥] ; [𝑥] ∃𝑥 . ⟨𝑥⟩ ; ⟨𝑥⟩
We then have the following proposition characterizing the converse

of a typed RMC-term.

Proposition 6.8 (Typed Duality). For closed𝑀 : 𝑚⇒𝑛 we have
𝑀† = ∃⇀𝑥⇀

𝑦. ⟨↼𝑥⟩ ; [⇀𝑦] ;𝑀 ; ⟨↼𝑥⟩ ; [⇀𝑦] : 𝑛⇒𝑚, where |⇀𝑥 | = 𝑛, |⇀𝑦 | =𝑚.

𝑀

𝑚

𝑛

𝑀† 𝑚𝑛 =

7 RELATIONAL SEMANTICS
In this section, we investigate in detail the relational semantics of

the typed RMC. Although the denotational semantics is very close

to the input/output behaviour of the big-step semantics, there are

some differences: forgetting the output substitution, and the inter-

pretation of ∃𝑥 . 𝑀 and ⟨𝑡⟩. The former is interpreted semantically

as the union of all possible interpretations of 𝑥 as some closed term

𝑡 , leaving the latter to become a simple equality check predicate;

there is no need for unification since free variables are dealt with

by (possibly infinite) non-determinism of the interpretation of ∃𝑥 .
For simplicity, we again work with a single location, but the

results generalize easily. Now, let us recall the extra-hypergraph

structure of the category of sets and relations.

Definition 7.1. The category Rel of sets and relations forms an

extra-hypergraph category where the tensor product is given by

the Cartesian product, the unit given by the singleton set {𝜀}, and a
Frobenius monoid on each object 𝐴 given by 𝛿𝐴 = {(𝑥, (𝑥, 𝑥)) | 𝑥 ∈

𝐴}, 𝜖𝐴 = {(𝑥, 𝜀) | 𝑥 ∈ 𝐴} and with 𝜇𝐴 and 𝜂𝐴 by their respective

converses.

The relational semantics of typed RMC-terms can easily be read

off their normal forms: for example, compare the relational seman-

tics of 𝛿, 𝜖, 𝜇 and 𝜂 with the RMC-terms interpreting the same mor-

phisms in Figure 4. We define it formally as an extra-hypergraph

functor ⟦−⟧ : RMC[Σ] → Rel. Let 𝑇0 be the set of closed al-

gebraic terms built over Σ, i.e. containing no variables. To inter-

pret open terms, we define a valuation 𝑣 : Var → 𝑇0 on the set

of variables Var; the valuation 𝑣{𝑥 ← 𝑡} assigns 𝑡 to 𝑥 and oth-

erwise behaves as 𝑣 . We elide the isomorphism between closed

algebraic terms 𝑡 in the syntax of RMC-terms and 𝑡 ∈ 𝑇0. We ex-

tend the action of 𝑣 to algebraic terms with variables Γ so that

𝑣 (𝑓 (𝑡1, . . . , 𝑡𝑛)) = 𝑓 (𝑣 (𝑡1), . . . , 𝑣 (𝑡𝑛)). In the following, we con-

sider relations 𝐴 → 𝐵 as functions 𝐴 → P(𝐵), where P is the

powerset functor, and we will write 𝑓 𝑛 : 𝑋 → 𝑋 for the n-fold

composition of a function 𝑓 : 𝑋 → 𝑋 and𝑋𝑛
for the n-fold product

of a set 𝑋 .

Definition 7.2 (Relational semantics). The relational semantics of
the typed RMC is defined inductively on types by ⟦𝑛⟧ = 𝑇0𝑛 . We

define the relation ⟦𝑀 : 𝑚⇒𝑛⟧𝑣 inductively on the type derivation

of terms as follows, and may abbreviate this as ⟦𝑀⟧𝑣 .
⟦★ : 𝑛⇒𝑛⟧𝑣 (𝑆) = [𝑆]

⟦𝑀 ;𝑁 : 𝑘⇒𝑛⟧𝑣 (𝑆) = [𝑈 | 𝑇 ∈ ⟦𝑀⟧𝑣 (𝑆), 𝑈 ∈ ⟦𝑁⟧𝑣 (𝑇)]
⟦0 : 𝑚⇒𝑛⟧𝑣 (𝑆) = []

⟦𝑀 + 𝑁 : 𝑚⇒𝑛⟧𝑣 (𝑆) = ⟦𝑀⟧𝑣 (𝑆) ⊔ ⟦𝑁⟧𝑣 (𝑆)
⟦[𝑡] : 𝑛⇒𝑛 + 1⟧𝑣 (𝑆) = [𝑆 𝑣 (𝑡)]

⟦⟨𝑡⟩ : 𝑛 + 1⇒𝑛⟧𝑣 (𝑆 𝑢) =
{
[⇀𝑠] if 𝑡 = 𝑣 (𝑢)
[] otherwise

⟦∃𝑥 . 𝑀 : 𝑚⇒𝑛⟧𝑣 (𝑆) =
⊔
𝑡 ∈𝑇 0
⟦𝑀⟧𝑣{𝑥←𝑡 } (𝑆)

⟦𝑀∗ : 𝑛⇒𝑛⟧𝑣 (𝑆) =
⊔
𝑛∈N
⟦𝑀⟧𝑛𝑣 (𝑆)

Given a closed term𝑀 , its relational semantics ⟦𝑀⟧ (written with-

out a subscript) is given by ⌊ ⟦𝑀⟧𝜀⌋ , where 𝜀 is the empty valuation.

From the following lemma, soundness of the semantics follows.

Lemma 7.3 (Substitution). For any𝑀 : 𝑚⇒𝑛, we have

⟦𝑀 : 𝑚⇒𝑛⟧𝑣{𝑥←𝑡 } = ⟦{𝑡/𝑥}𝑀 : 𝑚⇒𝑛⟧𝑣 .

Lemma 7.4 (Relational semantics is hypergraph functor).

The relational semantics ⟦−⟧ : RMC[Σ] → Rel is a well-defined
extra-hypergraph functor.

In fact, if we additionally consider RMC[Σ] and Rel as CMon-
enriched categories, with the monoid on homsets in Rel given by

the union of relations, it is easy to see the relational semantics

functor is also CMon-enriched functor.

8 ENCODING COMPUTATIONAL MODELS, II
We conclude with further encodings of computational models,

demonstrating the use of locations, an innovation of the Functional

Machine Calculus [4, 42] that may capture stateful behaviour.

LICS ’24, July 8–11, 2024, Tallinn, Estonia C. Barrett, D. Castle, and W. Heijltjes

8.1 Guarded Command Language
In 1975 Dijkstra introduced the Guarded Command Language (GCL):
a simple non-deterministic imperative programming language [28].

The eponymous guarded command 𝐵 → 𝑆 is given by a sequence

of statements 𝑆 to be evaluated when the guard Boolean expression

𝐵 is true. Statements are atomic actions — here, we consider writing

to a memory cell (𝑎 := 𝑁) — or are sets of guarded commands

wrapped in conditional (if) or iteration (do) keywords. The former

construct executes (non-deterministically) one of the statements

whose guard is true, and aborts execution if none are. The iteration

construct successively executes (again, non-deterministically) one

of the statements whose guard is true, and terminates successfully

when none are. Reading from a memory cell 𝑎 is denoted !𝑎. The

full grammar of the GCL is given below:

Boolean Expressions: 𝐵 F tt | ff | . . .
Numeric Expressions: 𝑁 F 𝑛 | !𝑎 | . . .
Guarded Commands: 𝐶 F abort | 𝐶1□𝐶2 | 𝐵 → 𝑆

Statements: 𝑆 F skip | 𝑆1; 𝑆2 | if 𝐶 | do 𝐶 | 𝑎 B 𝑁

where 𝑛 ∈ Z and 𝑎 ranges over a set of variable names.
3
Input and

output is performed by manipulation of memory cells, which we

take to hold integers: so, in standard imperative style, programs are

called for their side-effects.

The embedding of the GCL in the RMC is given below.

⟦tt⟧ = [⊤] ⟦!𝑎⟧ = ∃𝑥 . 𝑎⟨𝑥⟩ ; [𝑥]𝑎 ; [𝑥]
⟦ff⟧ = [⊥] ⟦𝑎 B 𝑉⟧ = ⟦𝑉⟧ ;∃𝑥𝑦. 𝑎⟨𝑥⟩ ; ⟨𝑦⟩ ; [𝑦]𝑎
⟦𝑛⟧ = [𝑛] ⟦𝐵 → 𝑆⟧ = ⟦𝐵⟧ ; ⟨⊤⟩ ; ⟦𝑆⟧

⟦abort⟧ = 0 ⟦𝐶1 □𝐶2⟧ = ⟦𝐶1⟧ + ⟦𝐶2⟧
⟦skip⟧ = ★ ⟦𝑆1; 𝑆2⟧ = ⟦𝑆1⟧ ; ⟦𝑆2⟧
⟦if 𝐶⟧ = ⟦𝐶⟧ ⟦do 𝐶⟧ = ⟦𝐶⟧∗

Encodings of global memory cells are familiar from the FMC [42]:

locations model mutable variables, whose value is held as the single

item on the corresponding stack. The result of an expression, in-

cluding reading from store, is pushed to the main (unnamed) stack;

a store update replaces the stored value with the top value on the

main stack.

Proposition 8.1 (The RMC implements GCL). If the GCL suc-
cessfully executes a guarded command 𝐶 on input memory 𝑆𝐴 , with
output memory 𝑇𝐴 , then there exists an RMC run

(𝑆𝐴 , ⟦C⟧ , 𝜀)
(𝑇𝐴 , ★ , 𝜀)

.

Note that our encoding in fact outputs (non-deterministically)

the memory at every stage of the computation, and not only the

memories at the end of a successful GCL execution.

8.2 Turing Machines
We demonstrate an encoding of a Turing machineM with a set

of states 𝑆 , initial state 𝑖 ∈ 𝑆 , halting state ℎ ∈ 𝑆 , alphabet Σ,
blank symbol 0 ∈ Σ, and transition function 𝛿 : (𝑆 \ {ℎ}) × Σ →
3
Note, we make several simplifications with regards to the original grammar. In

particular, guarded commands and lists of statements are allowed to be empty. We

consider only a meagre set of expressions, but, with a little more work, e.g. operators
such as addition or comparison may be accounted for.

𝑆 ×Σ×{𝑳, 𝑹}. To do so, we work with an RMC signature consisting

of 𝑆 ∪ Σ and three locations 𝑙, 𝑟 , and 𝑞, used to record the tape to

the left of the head, the tape under and to the right of the head (in

reverse), and the current state, respectively.

A Turing machineM then encodes as follows. Below left are

the encodings of tape moves𝑚 ∈ {𝑳, 𝑹} and of a transition in 𝛿

as a five-tuple 𝑑 = (𝑠, 𝑎, 𝑠′, 𝑎′,𝑚). ThenM encodes as an iterated

non-deterministic sum of transitions, below right.

⟦𝑳⟧ = ∃𝑥 . 𝑙 ⟨𝑥⟩ ; [𝑥]𝑟
⟦𝑹⟧ = ∃𝑥 . 𝑟 ⟨𝑥⟩ ; [𝑥]𝑙
⟦𝑑⟧ = 𝑞⟨𝑠⟩ ; 𝑟 ⟨𝑎⟩ ; [𝑠′]𝑞 ; [𝑎′]𝑟 ; ⟦𝑚⟧

⟦M⟧ =
(∑︁
𝑑∈𝛿
⟦𝑑⟧

)∗
Instantiating the tape in both directions 𝑆𝑙 and 𝑆𝑟 with streams of

blank symbols
4
, we have the following result.

Proposition 8.2 (The RMC implements Turing machines). A
Turing machineM halts with tape 𝑇𝑙 and 𝑇𝑟 to the left and right of
the head, respectively, if and only if there exists a machine run

(𝑆𝑙 · 𝑆𝑟 · 𝑠𝑞 , ⟦M⟧ , 𝜀)
(𝑇𝑙 ·𝑇𝑟 · ℎ𝑞 , ★ , 𝜀)

.

8.3 Interaction Nets
Interaction nets are a graphical model of computation first intro-

duced as a generalisation of multiplicative proof nets [52]. A term

calculus for interaction nets [30] is given as follows. A net is a
pair ⟨𝑇 | Δ⟩ where 𝑇 is a stack of algebraic terms over a signature

Σ, and Δ = {𝑡1 � 𝑢1, . . . , 𝑡𝑛 � 𝑢𝑛} is a set of formal equations.

Each variable occurs at most twice in a net. Rewriting of nets is

performed according to a set of rules R, with each rule a pair of

terms 𝑓 (𝑆) ⊲⊳ 𝑔(𝑈) such that 𝑓 ≠ 𝑔 and with each variable occur-

ring exactly twice. The set R is further required to be deterministic:
there is at most one rule for each pair of 𝑓 and 𝑔; and symmetric:
if 𝑓 (𝑆) ⊲⊳ 𝑔(𝑈) then 𝑔(𝑈) ⊲⊳ 𝑓 (𝑆). Variables are local to each rule,

and are instantiated with fresh variables during computation.

The evaluation relation (R) is generated by the following rules,
adapted from [30]. We write 𝑇 � 𝑈 for the pairwise equations of 𝑇

and𝑈 of equal length, and 𝜀 the empty set of equations.

⟨𝑇 | Δ, 𝑥 � 𝑢⟩ R ⟨{𝑢/𝑥}𝑇 | {𝑢/𝑥}Δ⟩
⟨𝑇 | Δ, 𝑢 � 𝑥⟩ R ⟨{𝑢/𝑥}𝑇 | {𝑢/𝑥}Δ⟩

⟨𝑇 | Δ, 𝑓 (𝑅) � 𝑔(𝑉)⟩ R ⟨𝑇 | Δ, 𝑅 � 𝑆,𝑈 � 𝑉 ⟩ (𝑓 (𝑆) ⊲⊳ 𝑔(𝑈))

To encode interaction nets we use two locations 𝑙, 𝑟 to hold the

left and right sides of each equation in Δ = {𝑡1 � 𝑢1, . . . , 𝑡𝑛 � 𝑢𝑛},
which is then interpreted as the memory below left. Below it is the

interpretation of a rule in R, where ⇀
𝑥 are the variables occurring in

𝑆 and𝑈 . A set of rules R is encoded as below right. The terms 𝑇 in

a configuration ⟨𝑇 | Δ⟩ are held on the unnamed main location.

⟦{𝑡𝑖 � 𝑢1}𝑖≤𝑛⟧ = (𝑡1 . . . 𝑡𝑛)𝑙 · (𝑢1 . . . 𝑢𝑛)𝑟
⟦𝑓 (𝑆) ⊲⊳ 𝑔(𝑈)⟧ = ∃⇀𝑥 . 𝑙 ⟨𝑓 (𝑆)⟩ ; 𝑟 ⟨𝑔(𝑈)⟩

⟦R⟧ =
(∑︁
𝑟 ∈R
⟦𝑟⟧

)∗
4
It also easy enough to simulate an infinite tape with stacks, using special end-of-stack

markers ⊥ and ⊤. The encoding of a read of 𝑎 ∈ Σ then additionally checks for the

end of either stack, pushing markers along as needed: that is, in the case of 𝑎 = 0,

using 𝑟 ⟨𝑎⟩ + (𝑟 ⟨⊥⟩ ; [⊥]𝑙) + (𝑟 ⟨⊤⟩ ; [⊤]𝑟) instead of 𝑟 ⟨𝑎⟩.

The Relational Machine Calculus LICS ’24, July 8–11, 2024, Tallinn, Estonia

Proposition 8.3 (Interaction nets embed). For a set of rules
R and a configuration ⟨𝑇 | Δ⟩ we have that ⟨𝑇 | Δ⟩ ∗

R ⟨𝑈 | 𝜀⟩ if
and only if

(𝑇 · ⟦Δ⟧ , ⟦R⟧ , 𝜀)
(𝑈 · 𝜀𝑙 · 𝜀𝑟 , ★ , 𝜀)

.

8.4 Petri Nets
Petri nets are a type of discrete event dynamic system, first in-

troduced in [65] as a graphical model of concurrency. They have

since found real-world applications in a range of areas, including

transport, manufacturing, fault diagnosis, and power systems [64].

We define a Petri net as a pair (𝑃,𝑇) of finite sets of places 𝑃
and transitions 𝑇 ⊂ M𝑓 (𝑃) × M𝑓 (𝑃), whereM𝑓 denotes finite

multisets. A state 𝑠 ∈ M𝑓 (𝑃) is a distribution of tokens over the
places 𝑃 . A transition 𝑡 = (𝑡−, 𝑡+) may fire as follows, where ⊆, (\)
and ⊎ are multiset inclusion, difference, and union respectively.

𝑠 ↦→ (𝑠 \ 𝑡−) ⊎ 𝑡+ (𝑡− ⊆ 𝑠)
Petri nets encode directly in the RMC with a signature Σ = {◦}
consisting of only a constant ◦ for tokens, and the set of places 𝑃 as

the locations. A state 𝑠 embeds as the memory ⟦𝑠⟧ = 𝑆𝑃 consisting

of stacks of tokens, where each stack 𝑆𝑝 holds the number of tokens

at 𝑝 in 𝑠 . Writing [𝑝1, . . . , 𝑝𝑛] for a multiset of places, transitions

embed as below, and a Petri net as the term ⟦(𝑃,𝑇)⟧ = (∑𝑡 ∈𝑇 ⟦𝑡⟧)∗.
⟦ ([𝑝1, . . . , 𝑝𝑛], [𝑞1, . . . , 𝑞𝑚]) ⟧ =

𝑝1⟨◦⟩ ; . . . ;𝑝𝑛 ⟨◦⟩ ; [◦]𝑞1 ; . . . ; [◦]𝑞𝑛
Proposition 8.4. For a Petri net (𝑃,𝑇) and states 𝑠, 𝑠′ ∈ M𝑓 (𝑃),

we have 𝑠 ↦→∗ 𝑠′ if and only if

(⟦𝑠⟧ , ⟦(𝑃,𝑇)⟧ , 𝜀)
(⟦𝑠′⟧ , ★ , 𝜀)

.

9 CONCLUSION AND FURTHER RESEARCH
We believe that by exposing the duality of relational programming

in syntax we have arrived at a natural and convincing founda-

tional model of the paradigm. We hope that the RMC will allow the

development of tools and reasoning techniques for relational pro-

gramming, similar to those founded in the 𝜆-calculus which have

proved so important for functional programming: type systems and

denotational semantics, operational semantics, equational reason-

ing and confluent reduction. In this paper, we proved fundamental

results supporting this new calculus, focussing on showing it meets

the design criteria set out and justified in the introduction. We now

outline several areas of future work.

9.1 Further Research
Foundations for functional logic programming. It appears straight-
forward to conceive of a higher-order RMC, based on the higher-

order 𝜅-calculus and Functional Machine Calculus (FMC) [4, 42, 67],

which would have potential as a foundational model of functional
logic programming. Already, the FMC, which seeded this work,

has shown how to seamlessly integrate the higher-order 𝜅-calculus

with global state, by the use of locations — which are also present

in the RMC. Thus, there is potential, even, for a unification of logic,

functional and imperative programming.

Bridging programming languages and string diagrams. String
diagrams have found practical applications in an increasing range

of domains [23, 47, 57, 61]. This often involves their implementation

at scale: for example, the ZX-diagrams used for quantum circuit

optimization may have on the order of 10
4
–10

7
nodes. As string

diagrams grow, tools to represent and reason about them become

more important [7, 8]. This can be seen by the introduction of circuit

description languages which allow the high-level specification of

algorithms which can yet be compiled down to circuit (or diagram)

level [33, 54], as well as by the interest in techniques for string

diagram rewriting using hypergraphs and DPO-rewriting [7, 8].

However, term rewriting is well established in comparison to its

graphical counterpart, and could serve to complement hypergraph

rewriting techniques. The RMC gives a principled foundation to

programming languages for string diagrams — at least for the class

given by Frobenius monoids. A higher-order RMC would allow the

factorization of large diagrams and their compact representation.

Although the class of string diagrams this paper deals with is

limited, we believe it is possible to extend the RMC in a way which

gives a unifying account of — and uniform syntax and operational

semantics to — a wide class of string diagrams via unification mod-
ulo theory. For example, by considering values from the theory

of commutative monoids, and performing unification modulo this

theory, we can represent as computations string diagrams of graph-
ical resource algebra [9]; by considering values from the theory of

Abelian groups, we can represent as computations string diagrams

of graphical linear algebra and the phase-free ZX calculus. In each

of these cases we have a constant 0, a binary function symbol +,
and terms

[0] ∃𝑥𝑦. ⟨𝑥⟩ ; ⟨𝑦⟩ ; [𝑥 + 𝑦]
⟨0⟩ ∃𝑥𝑦. ⟨𝑥 + 𝑦⟩ ; [𝑦] ; [𝑥]

providing a second commutative monoid structure and its dual,

with the expected equational theory induced by the operational

semantics of unification modulo. We hope further for links to (dif-

ferential) linear logic and monoidal differential categories via the

observation that the free commutative (co-)monoid (co-)monad

models the exponential modality [5].

Weighted relations. Although there are a wide range of languages

with a relational semantics, the range of languages taking aweighted
relational semantics [53, 76] of some form is vast. Broadly conceived,

these include linear-algebraic [2, 77], probabilistic and quantum

𝜆-calculi [71], and classes of string diagrams modelling similar do-

mains [6, 10, 13, 23, 24, 38, 47]. In fact, the RMC generalizes easily

to include weighted terms and thus weighted non-determinism. Re-

stricting this general non-determinism in order to give accounts of

stochastic or unitary processes in probabilistic or quantum domains,

respectively, is less immediate and will require more sophisticated

type systems, as in [17, 69]. However, Frobenius monoids have

already been used to axiomatize the exact conditioning operation

of probabilistic programming languages (albeit in the finite dimen-

sional case) [27], and thus investigation into a probabilistic machine
calculus appears warranted [68]. Quantum processes also admit

Frobenius monoids as a fundamental primitive[23, 24, 47]; further-

more, they include as essential aspects both non-determinism and

reversiblity, and thus investigation into a quantummachine calculus
appears warranted, too.

LICS ’24, July 8–11, 2024, Tallinn, Estonia C. Barrett, D. Castle, and W. Heijltjes

REFERENCES
[1] Michael Arntzenius and Neelakantan R. Krishnaswami. Datafun: a functional

datalog. In Proc. 21st ACM SIGPLAN International Conference on Functional
Programming (ICFP), pages 214–227. ACM, 2016.

[2] Ali Assaf, Alejandro Díaz-Caro, Simon Perdrix, Christine Tasson, and Benoît

Valiron. Call-by-value, call-by-name and the vectorial behaviour of the algebraic

lambda-calculus. Logical Methods in Computer Science, 10(4), 2014.
[3] Chris Barrett. On the Simply-Typed Functional Machine Calculus: Categorical

Semantics and Strong Normalisation. PhD thesis, University of Bath, 2023.

[4] Chris Barrett, Willem Heijltjes, and Guy McCusker. The Functional Machine

Calculus II: Semantics. In 31st EACSL Annual Conference on Computer Science
Logic (CSL), volume 252 of LIPIcs, pages 10:1–10:18, 2023.

[5] Richard Blute, J. Robin B. Cockett, and Robert A. G. Seely. Differential categories.

Mathematical Structures in Computer Science, 16(6):1049–1083, 2006.
[6] Filippo Bonchi, Alessandro Di Giorgio, and Alessio Santamaria. Deconstruct-

ing the calculus of relations with tape diagrams. Proceedings of the ACM on
Programming Languages, 7(POPL):1864–1894, 2023.

[7] Filippo Bonchi, Fabio Gadducci, Aleks Kissinger, Paweł Sobociński, and Fabio

Zanasi. String diagram rewrite theory I: Rewriting with Frobenius structure.

Journal of the ACM, 69(2), 2022.

[8] Filippo Bonchi, Fabio Gadducci, Aleks Kissinger, Paweł Sobociński, and Fabio

Zanasi. String diagram rewrite theory II: Rewriting with symmetric monoidal

structure. Mathematical Structures in Computer Science, 32(4):511–541, 2022.
[9] Filippo Bonchi, Joshua Holland, Robin Piedeleu, Paweł Sobociński, and Fabio

Zanasi. Diagrammatic algebra: From linear to concurrent systems. Proceedings
of the ACM on Programming Languages, 3(POPL), 2019.

[10] Filippo Bonchi, Robin Piedeleu, Paweł Sobociński, and Fabio Zanasi. Graphical

affine algebra. In Proc. 34th Annual ACM/IEEE Symposium on Logic in Computer
Science (LICS), pages 1–12. IEEE, 2019.

[11] Filippo Bonchi, Robin Piedeleu, Paweł Sobociński, and Fabio Zanasi. Contextual

equivalence for signal flow graphs. In Jean Goubault-Larrecq and Barbara König,

editors, Proc. Foundations of Software Science and Computation Structures (FOS-
SACS) - 23rd International Conference, volume 12077 of Lecture Notes in Computer
Science, pages 77–96. Springer, 2020.

[12] Filippo Bonchi, Robin Piedeleu, Paweł Sobociński, and Fabio Zanasi. Bialgebraic

foundations for the operational semantics of string diagrams. Information and
Computation, 281:104767, 2021.

[13] Filippo Bonchi, Jens Seeber, and Paweł Sobociński. Graphical conjunctive queries.

In Proc. 27th EACSL Annual Conference on Computer Science Logic (CSL), volume

119 of LIPIcs, pages 13:1–13:23, 2018.
[14] V. Breazu-Tannen, D. Kesner, and L. Puel. A typed pattern calculus. In Proc. Eighth

Annual IEEE Symposium on Logic in Computer Science (LICS), pages 262–274, 1993.
[15] Paul Brunet and Damien Pous. Algorithms for Kleene algebra with converse.

Journal of Logical and Algebraic Methods in Programming, 85(4):574–594, 2016.
[16] Ana C. Calderon and Guy McCusker. Understanding game semantics through

coherence spaces. Electronic Notes in Theoretical Computer Science, 265:231–244,
2010.

[17] Kostia Chardonnet, Alexis Saurin, and Benoît Valiron. A Curry-Howard corre-

spondence for linear, reversible computation. In Bartek Klin and Elaine Pimentel,

editors, Proc. 31st EACSL Annual Conference on Computer Science Logic (CSL),
volume 252 of LIPIcs, pages 13:1–13:18. Schloss Dagstuhl - Leibniz-Zentrum für

Informatik, 2023.

[18] Chao-Hong Chen and Amr Sabry. A computational interpretation of compact

closed categories: reversible programming with negative and fractional types.

Proceedings of the ACM on Programming Languages, 5(POPL):1–29, 2021.
[19] Vikraman Choudhury, Jacek Karwowski, and Amr Sabry. Symmetries in re-

versible programming: from symmetric rig groupoids to reversible programming

languages. Proceedings of the ACM on Programming Languages, 6(POPL):1–32,
2022.

[20] Horatiu Cirstea and Claude Kirchner. Combining first and higher-order compu-

tations using rho-calculus: Towards a semantics of ELAN. In Dov M. Gabbay

and Maarten de Rijke, editors, Proc. Frontiers of Combining Systems, Second Inter-
national Workshop (FroCoS), pages 95–120. Research Studies Press/Wiley, 1998.

[21] J. Robin B. Cockett and Stephen Lack. Restriction categories I: categories of

partial maps. Theoretical Computer Science, 270(1-2):223–259, 2002.
[22] E. F. Codd. A relational model of data for large shared data banks. Communications

of the ACM, 13(6):377–387, 1970.

[23] Bob Coecke and Ross Duncan. Interacting quantum observables: Categorical

algebra and diagrammatics. New Journal of Physics, 13(4):043016, 2011.
[24] Bob Coecke, Dusko Pavlovic, and Jamie Vicary. A new description of orthogonal

bases. Mathematical Structures in Computer Science, 23(3):555–567, 2013.
[25] John Horton Conway. Regular algebra and finite machines. Chapman and Hall

Mathematics Series. Chapman and Hall, 1971.

[26] Daniel de Carvalho. Execution time of 𝜆-terms via denotational semantics and

intersection types. Mathematical Structures in Computer Science, 28(7):1169–1203,
2018.

[27] Elena Di Lavore and Mario Román. Evidential decision theory via partial markov

categories. In Proc. 38th Annual ACM/IEEE Symposium on Logic in Computer
Science (LICS), pages 1–14. IEEE, 2023.

[28] Edsger W. Dijkstra. Guarded commands, nondeterminacy and formal derivation

of programs. Communications of the ACM, 18(8):453–457, 1975.

[29] Thomas Ehrhard and Laurent Regnier. The differential lambda-calculus. Theoret-
ical Computer Science, 309(1-3):1–41, 2003.

[30] Maribel Fernández and Ian Mackie. A calculus for interaction nets. In Gopalan

Nadathur, editor, Proc. Principles and Practice of Declarative Programming, Inter-
national Conference (PPDP’99), volume 1702 of Lecture Notes in Computer Science,
pages 170–187. Springer, 1999.

[31] Andrzej Filinski. Declarative continuations: an investigation of duality in pro-

gramming language semantics. In David H. Pitt, David E. Rydeheard, Peter

Dybjer, Andrew M. Pitts, and Axel Poigné, editors, Proc. Category Theory and
Computer Science, volume 389 of Lecture Notes in Computer Science, pages 224–249.
Springer, 1989.

[32] Brendan Fong and David I. Spivak. Hypergraph Categories. CoRR, abs/1806.08304,
2018.

[33] Peng Fu, Kohei Kishida, Neil J. Ross, and Peter Selinger. Proto-quipper with

dynamic lifting. Proceedings of the ACM on Programming Languages, 7(POPL):309–
334, 2023.

[34] Murdoch James Gabbay and Vincenzo Ciancia. Freshness and name-restriction

in sets of traces with names. In Martin Hofmann, editor, Proc. Foundations of
Software Science and Computational Structures (FOSSACS)- 14th International
Conference, volume 6604 of Lecture Notes in Computer Science, pages 365–380,
2011.

[35] Dan R. Ghica and Guy McCusker. The regular-language semantics of second-

order idealized ALGOL. Theoretical Computer Science, 309(1):469–502, 2003.
[36] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.
[37] Jean-Yves Girard. Normal functors, power series and 𝜆-calculus. Annals of Pure

and Applied Logic, 37(2):129–177, 1988.
[38] Tao Gu and Fabio Zanasi. Functorial semantics as a unifying perspective on logic

programming. In Proc. 9th Conference on Algebra and Coalgebra in Computer
Science (CALCO), volume 211 of LIPIcs, pages 17:1–17:22. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2021.

[39] Michael Hanus. Functional Logic Programming: From Theory to Curry. In Andrei

Voronkov and Christoph Weidenbach, editors, Programming Logics: Essays in
Memory of Harald Ganzinger, Lecture Notes in Computer Science, pages 123–168.

Springer, Berlin, Heidelberg, 2013.

[40] Masahito Hasegawa. Decomposing typed lambda calculus into a couple of

categorical programming languages. In Proc. Category Theory and Computer
Science (CTCS), 6th International Conference, volume 953 of Lecture Notes in
Computer Science, pages 200–219. Springer, 1995.

[41] Masahito Hasegawa. Models of Sharing Graphs: A categorical semantics of let and
letrec. PhD thesis, University of Edinburgh, United Kingdom, 1997.

[42] Willem Heijltjes. The Functional Machine Calculus. In Proc. 38th Conference on
the Mathematical Foundations of Programming Semantics (MFPS), volume 1 of

ENTICS, 2022.
[43] Jason Hemann and Daniel P. Friedman. microkanren : A minimal functional core

for relational programming. InWorkshop on Scheme and Functional Programming
(Scheme ’13), 2013.

[44] J. R. Hindley. The Church Rosser Property and a Result in Combinatory Logic. PhD
thesis, University of Newcastle-upon-Tyne, 1964.

[45] C. A. R. Hoare, Ian J. Hayes, Jifeng He, Carroll Morgan, A. W. Roscoe, Jeff W.

Sanders, Ib Holm Sørensen, J. Michael Spivey, and Bernard Sufrin. Laws of

programming. Communications of the ACM, 30(8):672–686, 1987.

[46] C. A. R. Hoare and Stephan van Staden. The laws of programming unify process

calculi. Science of Computer Programming, 85:102–114, 2014.
[47] Emmanuel Jeandel, Simon Perdrix, and Renaud Vilmart. Completeness of the

ZX-calculus. Logical Methods in Computer Science, 16(2), 2020.
[48] Robin Kaarsgaard and Mathys Rennela. Join inverse rig categories for reversible

functional programming, and beyond. Electronic Proceedings in Theoretical Com-
puter Science, 351:152–167, 2021.

[49] Jan Willem Klop, Vincent van Oostrom, and Roel de Vrijer. Lambda calculus with

patterns. Theoretical Computer Science, 398(1):16–31, May 2008.

[50] Dexter Kozen. On Hoare logic and Kleene algebra with tests. ACM Transactions
on Computational Logic, 1(1):60–76, 2000.

[51] Jean-Louis Krivine. A call-by-name lambda-calculus machine. Higher-Order and
Symbolic Computation, 20(3):199–207, September 2007.

[52] Yves Lafont. Interaction Nets. In Frances E. Allen, editor, Conference Record of
the Seventeenth Annual ACM Symposium on Principles of Programming Languages
(POPL), pages 95–108. ACM Press, 1990.

[53] Jim Laird, Giulio Manzonetto, Guy McCusker, and Michele Pagani. Weighted rela-

tional models of typed lambda-calculi. In Proc. 28th Annual ACM/IEEE Symposium
on Logic in Computer Science (LICS), pages 301–310. IEEE, 2013.

[54] Bert Lindenhovius, Michael W. Mislove, and Vladimir Zamdzhiev. Enriching a

linear/non-linear lambda calculus: A programming language for string diagrams.

In Anuj Dawar and Erich Grädel, editors, Proc. 33rd Annual ACM/IEEE Symposium

The Relational Machine Calculus LICS ’24, July 8–11, 2024, Tallinn, Estonia

on Logic in Computer Science (LICS), pages 659–668. ACM, 2018.

[55] Saunders Mac Lane. Categories for the working mathematician, volume 5 of

Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1998.

[56] Alberto Martelli and Ugo Montanari. An efficien unification algorithm. ACM
Transactions on Programming Languages and Systems, 4(2):258–282, 1982.

[57] Paul-André Melliès. Local states in string diagrams. In Rewriting and Typed
Lambda Calculi - Joint International Conference (RTA-TLCA), volume 8560 of

Lecture Notes in Computer Science, pages 334–348, 2014.
[58] Dale Miller and Gopalan Nadathur. Higher-order logic programming. In Ehud

Shapiro, editor, Proc. Third International Conference on Logic Programming, volume

225, pages 448–462, 1986.

[59] Robin Milner. Communicating and mobile systems - the Pi-calculus. Cambridge

University Press, 1999.

[60] Eugenio Moggi. Notions of computation and monads. Information and Computa-
tion, 93(1):55–92, 1991.

[61] Keiko Nakata and Masahito Hasegawa. Small-step and big-step semantics for

call-by-need. CoRR, abs/0907.4640, 2009.
[62] M. H. A. Newman. On theories with a combinatorial definition of "equivalence".

Annals of Mathematics, 43(2):223–243, 1942.
[63] C.-H. Luke Ong. Quantitative semantics of the lambda calculus: Some generali-

sations of the relational model. In Proc. 32nd Annual ACM/IEEE Symposium on
Logic in Computer Science (LICS), pages 1–12, 2017.

[64] Pawel Pawlewski. Petri Nets. IntechOpen, Rijeka, Feb 2010.
[65] Carl Petri. Kommunikation mit Automaten. PhD thesis, TU Darmstadt, 1962.

[66] Andrew M. Pitts and Ian David Bede Stark. Observable properties of higher order

functions that dynamically create local names, or what’s new? In Proc. Mathe-
matical Foundations of Computer Science, 18th International Symposium, MFCS’93,
volume 711 of Lecture Notes in Computer Science, pages 122–141. Springer, 1993.

[67] John Power and Hayo Thielecke. Closed Freyd- and kappa-categories. In Proc.
Automata, Languages and Programming, 26th International Colloquium, ICALP’99,
volume 1644 of Lecture Notes in Computer Science, pages 625–634. Springer, 1999.

[68] Wojciech Rozowski, Tobias Kappé, Dexter Kozen, Todd Schmid, and Alexan-

dra Silva. Probabilistic guarded KAT modulo bisimilarity: Completeness and

complexity. In Kousha Etessami, Uriel Feige, and Gabriele Puppis, editors, 50th
International Colloquium on Automata, Languages, and Programming (ICALP),
volume 261 of LIPIcs, pages 136:1–136:20. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2023.

[69] Amr Sabry, Benoît Valiron, and Juliana Kaizer Vizzotto. From symmetric pattern-

matching to quantum control. In Foundations of Software Science and Computation
Structures FOSSACS, pages 348–364. Springer, 2018.

[70] Peter Selinger. Control categories and duality: on the categorical semantics of the

lambda-mu calculus. Mathematical Structures in Computer Science, 11(2):207–260,
2001.

[71] Peter Selinger and Benoît Valiron. Quantum lambda calculus. In Simon Gay

and Ian Mackie, editors, Semantic Techniques in Quantum Computation, pages
135–172. Cambridge University Press, 1 edition, 2009.

[72] Zoltan Somogyi, Fergus Henderson, and Thomas Conway. The execution algo-

rithm of Mercury, an efficient purely declarative logic programming language.

The Journal of Logic Programming, 29(1):17–64, 1996.
[73] Dario Stein and Sam Staton. Compositional semantics for probabilistic programs

with exact conditioning. In Proc. 36th Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS), pages 1–13. IEEE, 2021.

[74] L. Sterling and E. Shapiro. The Art of Prolog. MIT Press, Cambridge, MA, 1986.

[75] Alfred Tarski. On the calculus of relations. Journal of Symbolic Logic, 6(3):73–89,
1941.

[76] Takeshi Tsukada and Kazuyuki Asada. Linear-algebraic models of linear logic

as categories of modules over Σ-semirings. In Christel Baier and Dana Fisman,

editors, Proc. 37th Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS), pages 60:1–60:13. ACM, 2022.

[77] Lionel Vaux. The algebraic lambda calculus. Mathematical Structures in Computer
Science, 19(5):1029–1059, 2009.

	Abstract
	1 Introduction
	1.1 Design criteria
	1.2 First-order lambda-calculus and duality
	1.3 The full calculus

	2 The Relational Machine Calculus
	2.1 Operational Semantics

	3 Encoding computational models, I
	3.1 Regular expressions
	3.2 Unification
	3.3 Kappa-calculus
	3.4 Pattern-matching
	3.5 Symmetric pattern-matching
	3.6 Prolog

	4 Equational Theory and Reduction
	4.1 The Equational Theory
	4.2 Reduction and Confluence

	5 The Simply-Typed RMC
	6 Categorical semantics
	7 Relational Semantics
	8 Encoding computational models, II
	8.1 Guarded Command Language
	8.2 Turing Machines
	8.3 Interaction Nets
	8.4 Petri Nets

	9 Conclusion and Further Research
	9.1 Further Research

	References

