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Abstract

This paper presents the Functional Machine Calculus (FMC) as a simple model of higher-order computation with “read-
er/writer” effects: higher-order mutable store, input/output, and probabilistic and non-deterministic computation.
The FMC derives from the lambda-calculus by taking the standard operational perspective of a call–by–name stack machine as
primary, and introducing two natural generalizations. One, “locations”, introduces multiple stacks, which each may represent
an effect and so enable effect operators to be encoded into the abstraction and application constructs of the calculus. The
second, “sequencing”, is known from kappa-calculus and concatenative programming languages, and introduces the imperative
notions of “skip” and “sequence”. This enables the encoding of reduction strategies, including call–by–value lambda-calculus
and monadic constructs.
The encoding of effects into generalized abstraction and application means that standard results from the lambda-calculus
may carry over to effects. The main result is confluence, which is possible because encoded effects reduce algebraically rather
than operationally. Reduction generates the familiar algebraic laws for state, and unlike in the monadic setting, reader/writer
effects combine seamlessly. A system of simple types confers termination of the machine.

Keywords: lambda-calculus, computational effects, confluence, concatenative programming

1 Introduction

Higher-order programming and computational effects are ubiquitous in modern programs. Understanding
them, and in particular their potent combination, is therefore an important challenge to computer science.
Higher-order functional programming enjoys an elegant foundational theory in the λ-calculus, where β-
reduction gives rise not only to operational semantics—by imposing an evaluation strategy—but also to an
equational theory which may be regarded as definitive for higher-order functions. For computational effects,
however, there are many approaches and, as yet, no single definitive theory. Such a theory would ideally
include a convenient syntax, expressing a natural and convincing semantics, and supporting reasoning
tools and methods such as type-systems and compile-time optimizations, while remaining amenable to
refinement, extension and variation.

The rich history of approaches to the problem of computational effects in a higher-order setting includes
Landin’s pioneering work [17], which cemented the central position of λ-calculus, and highlighted the
difficulty of reconciling the drive for a complete theory with the practice of programming: Landin focussed
on a call-by-value strategy and used thunks to delay evaluation where necessary. A more modular and
flexible account was provided by Moggi’s use of monads [25], which has influenced not only theoretical
work but also the design of the Haskell programming language. However, a fundamental problem with
monads is that they don’t compose, and in practice multiple effects are combined by building a stack of
monad transformers, which can become unwieldy for the programmer. Many alternatives and refinements
have been proposed, including uniqueness types [32], continuations [10], encodings in (intuitionistic) linear
logic [3,22] and in process calculi [23,13], premonoidal categories [31,30,20], Call–By–Push–Value [18] and
its variants in linear logic [8,9], Arrows [14], algebraic effects [27,1], and effect handlers [29].
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This paper offers a new solution to this challenge: the Functional Machine Calculus (FMC). It includes
the effects of state, input/output, and probabilistic and non-deterministic computation—here referred to
collectively as reader/writer effects. The FMC consists of two independent generalizations of the λ-calculus,
locations and sequencing, that individually give two fragments, the poly-λ-calculus and the sequential λ-
calculus. It enjoys a clean equational theory supported by a confluent reduction semantics, and expresses
both effects and higher-order features in the same terms, retaining the simplicity of the λ-calculus while
being powerful enough to capture the reality of higher-order programming with multiple effects. We provide
operational semantics in terms of an abstract machine, and a type system that confers termination of the
machine. The remainder of this section will introduce both generalizations. Throughout the paper, proofs
are omitted when they are straightforward.

1.1 Locations

The main objective of this work has been to preserve confluence, following the recent presentation of a
confluent probabilistic λ-calculus by Dal Lago, Guerrieri, and Heijltjes [4]. This is perhaps surprising, as λ-
calculi with effects are known to be non-confluent. The apparent contradiction disappears by disentangling
the operational and the algebraic aspects of evaluation. In λ-calculus, β-reduction is algebraic (or more
precisely, β-equivalence is), while stack machines such as Krivine’s [15] give an operational semantics. For
effects, looking up a global variable or generating a random value is operational, while effect operators
may interact algebraically via the laws of Plotkin and Power [27].

global, operational local, algebraic

λ-calculus stack machines β-reduction

effects update, lookup, read, write, random algebraic effect equations

Our starting point is the observation that for both the λ-calculus and reader/writer effects, the opera-
tional side can be given by push and pop actions on global stacks or streams. In a simple stack machine for
the λ-calculus, application M N pushes its argument N to the stack and continues as M , and abstraction
λx.M pops a term N from the stack and binds it to x, to continue as {N/x}M (the capture-avoiding
substitution of N for x in M). Then, the following effects are also modelled via stacks or streams:

• reading from input is a pop from an input stream;

• writing to output is a push to an output stream;

• a memory cell c is modelled by a stack of depth one, where
· update c :=N pops from c, discarding the value, then pushes the new value N ;
· lookup !c pops the value N from c, pushes N to reinstate c, and then returns N ;

• probabilistic and non-deterministic generators can be modelled as separate input streams.

This idea is captured in the poly-λ-calculus: we introduce a set of locations to represent independent stacks
or streams on the machine, and parameterize abstraction and application in this set to act as pop and
push actions on the corresponding stack. Effect operators are then encoded in these constructs according
to the above scheme. Beta-reduction, generalized to multiple locations, remains confluent, and for encoded
effect operators it gives rise to the expected algebraic laws [27]. However, this encoding of effects forces
their call–by–name semantics, while programming with effects requires control over when they are called.
This is the purpose of the second generalization, sequencing.

1.2 Sequencing

The literature offers several ways to control reduction behaviour in higher-order languages, including
continuation encodings between cbv and cbn [28], and call–by–push–value (cbpv) [18] which encodes both.
To complement locations, our approach takes the stack machine as primary. Viewing the λ-calculus as
a language of machine instruction sequences, the sequencing generalization extends it with composition
and the empty sequence, analogous to imperative “sequence” and “skip”; not by introducing these as
primitives, but again by generalizing the calculus in a subtle way so that they arise naturally. Such designs
have arisen several times before: in the first-order κ-calculus of Hasegawa [11], generalized to higher-order
in the context of premonoidal categories [30]; as the Λs-calculus in an analysis of compilers [7]; and in
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higher-order stack programming languages, also called concatenative languages [12], such as Joy [36],
λ-FORTH [21], Cat [6], and closest to our design, Factor [26].

Douence and Fradet demonstrate how their Λs encodes Plotkin’s cbv λ-calculus [28] as well as Moggi’s
monadic constructs [24,25], illustrating how this design gives control over reduction. We will recall these
encodings in Sections 3.2 and 3.3, and demonstrate the encoding of cbpv and Arrows [14].

1.3 The Functional Machine Calculus

The FMC combines both generalisations, locations and sequencing, in a simple model of higher-order
computation with multiple effects. Its design and solid foundations in semantics mean that several im-
portant properties of the λ-calculus are preserved. The aim of this paper is introductory: it presents the
syntax, operational semantics, and fundamental ideas and results with an emphasis on explanation and
examples. In a forthcoming paper we will deepen these results with a strong normalization theorem, a
domain-theoretic semantics of the untyped calculus, and semantics of the typed calculus in premonoidal
and in Cartesian closed categories. The main results for the FMC as presented here are the following:

Confluence Beta-reduction is confluent, with evaluation behaviour expressed in syntax.

Algebraic effects The algebraic laws for reader/writer effects arise from reduction.

Compositionality Reader/writer effects combine seamlessly, due to the use of independent locations.

Types Simple types cover (higher-order) effect operations and confer termination of the machine.

2 The poly-lambda-calculus

We introduce a set of locations A, ranged over by a, b, c, . . . , to indicate the different stacks or streams for
each effect. Abstraction and application are parameterized in A to give the corresponding pop and push
actions. We write application M N as [N ].M to emphasize the operational reading (push N and continue
as M), to easily attach a location a, and to give unique parsing—cf. De Bruijn [5]. Abstraction λx.N is
written 〈x〉. N to emphasize the duality with application.

Definition 2.1 The poly-λ-calculus is given by the grammar

M, N ::= x | [N ]a.M | a〈x〉.M

with from left to right a variable, an application or push action on location a with function M and
argument N , and an abstraction or pop action on location a that binds x in M . Terms are considered
modulo α-equivalence. The regular λ-calculus embeds via a dedicated main location λ ∈ A, omitted from
terms for brevity; so we may write λx.M or 〈x〉.M for λ〈x〉.M , and M N or [N ].M for [N ]λ.M .

The poly-stack machine is given by the following data. A stack of terms S is written with the top
element to the right; we define them inductively below left, but they should better be considered as
coinductive, to include streams. A memory SA is a family of stacks or streams in A, defined below left.
We write SA;Sa to identify the stack for a in SA. A state is a pair (SA,M), and the transitions or steps
are given as top–to–bottom rules below centre. A run of the machine is a sequence of steps, written as
(SA,M)⇓(TA, N) or with a double line as below right.

S ::= ε | S·M
SA ::= {Sa | a ∈ A}

( SA ; Sa , [N ]a.M )

( SA ; Sa·N , M )

( SA ; Sa·N , a〈x〉.M )

( SA ; Sa , {N/x}M )

( SA , M )

( TA , N )

2.1 Encoding effects

Consider the following λ-calculus with effects. We will encode it in the poly-λ-calculus, with its lazy or
cbn semantics. At the end of this section we will consider what would be needed to encode its eager or
cbv semantics. (We assume familiarity with the operational semantics of λ-calculus and of effects; for an
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introduction see e.g. Winskel [37].)

M,N,P ::= x | M N | λx.M λ-calculus

| read | write N ;M input/output

| c := N ;M | !c state update and lookup

| N ⊕M | N +M probabilistic and non-deterministic sum

The cbn-encoding will follow the description in the introduction. The constructs of the above language
are introduced as defined constructs (“sugar”) into the poly-λ-calculus.

Input/output: Input uses a dedicated input location in ∈ A and is encoded by read
∆
= in〈x〉. x. The

machine is initialized with a stream Sin = · · ·N3 ·N2 ·N1 (infinite to the left), and the pop transition gives
the expected operational semantics, below left. Writing to output uses a dedicated output location out ∈ A
and is encoded by write N ;M

∆
= [N ]out.M . Evaluation then generates an output stream N1, N2, . . . (finite

at any step) by the push machine transition, below right.

( SA ; Sin ·N , in〈x〉. x )

( SA ; Sin , N )

( SA ; Sout , [N ]out.M )

( SA ; Sout ·N , M )

State: A memory cell is modelled by a location c ∈ A. The associated stack is expected to hold at
most one value, which is preserved by the encoding of the operators, and not enforced externally. Update

and lookup are encoded by c :=N ;M
∆
= c〈 〉. [N ]c.M and !c

∆
= c〈x〉. [x]c. x where the underscore ( )

represents a variable that does not occur in M or N . In the machine, the stack for each cell is initialized
with a (dummy) value, and the transitions then give the expected operational semantics.

( SA ; εc · P , c〈 〉. [N ]c.M )

( SA ; εc , [N ]c.M )

( SA ; εc ·N , M )

( SA ; εc ·M , c〈x〉. [x]c. x )

( SA ; εc , [M ]c.M )

( SA ; εc ·M , M )

Probabilistic and non-deterministic sums: Following the probabilistic case [4], probabilistic and

non-deterministic sums are included via dedicated locations rnd, nd ∈ A by N ⊕M ∆
= rnd〈x〉. xM N and

N + M
∆
= nd〈x〉. xM N . The machine is initialized with the corresponding streams of Church-encoded

Booleans λx. λy. x and λx. λy. y, generated probabilistically for rnd and non-deterministically for nd. The
machine steps are as expected.

Example 2.2 Consider the following example term and its cbn encoding in the poly-λ-calculus. (Numbers
can be seen informally as constants, or as Church numerals.)

a := 2 ; (λx. !a) (a := 3 ; 0) = a〈 〉. [2]a. [a〈 〉. [3]a. 0]. 〈x〉. a〈y〉. [y]a. y

Its cbn reduction gives 2. It evaluates in the machine as follows (where the cell a is initialized with zero).

( εa·0 ; ελ , a〈 〉. [2]a. [a〈 〉. [3]a. 0]. 〈x〉. a〈y〉. [y]a. y )

( εa ; ελ , [2]a. [a〈 〉. [3]a. 0]. 〈x〉. a〈y〉. [y]a. y )

( εa·2 ; ελ , [a〈 〉. [3]a. 0]. 〈x〉. a〈y〉. [y]a. y )

( εa·2 ; ελ·a〈 〉. [3]a. 0 , 〈x〉. a〈y〉. [y]a. y )

( εa·2 ; ελ , a〈y〉. [y]a. y )

( εa ; ελ , [2]a. 2 )

( εa·2 ; ελ , 2 )
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2.2 Beta-reduction

In the λ-calculus, β-reduction lets successive push- and pop-actions interact. Generalizing to multiple
locations, these must be actions on the same stack, while other stacks may be accessed in-between. The
β-rule is then as below, where each Xi is an abstraction or application not on location a, and (if the former)
not capturing in N . Reduction is closed under any context. (A formal definition is given in Section 4.)

[N ]a.X1 . . . Xn. a〈x〉.M X1 . . . Xn. {N/x}M

Example 2.3 The term from example 2.2 reduces as follows, with reduced redexes underlined.

a〈 〉. [2]a. [a〈 〉. [3]a. 0]. 〈x〉. a〈y〉. [y]a. y a〈 〉. [a〈 〉. [3]a. 0]. 〈x〉. [2]a. 2 a〈 〉. [2]a. 2 = a := 2 ; 2

Analogous to β-reduction, η-reduction is as below, where each Xi is an abstraction or application not
on location a, and x does not occur free in any of the Xi nor in M .

a〈x〉. X1 . . . Xn. [x]a.M η X1 . . . Xn.M

As an alternative to these rule schemes, terms may be taken modulo an equivalence ∼ generated by
the permutations below left, and β- and η-reduction defined only on adjacent operators, as below right.
Observe that the machine semantics immediately validates these equivalences. We will use the below
formulation to consider the relation with algebraic effects, but otherwise use the above formulation.

[M ]a. [N ]b. P ∼ [N ]b. [M ]a. P

〈x〉a. [N ]b. P ∼ [N ]b. 〈x〉a. P if x /∈ fv(N)

〈x〉a. 〈y〉b. P ∼ 〈y〉b. 〈x〉a. P

[N ]a. a〈x〉.M β {N/x}M
a〈x〉. [x]a.M η M if x /∈ fv(M)

Beta-reduction is confluent, as will be shown more generally for the FMC in Section 4. This is possible
because it follows the algebraic laws for effects [27] instead of their operational semantics. For instance,
laws for the interaction of lookup and update correspond to the following reductions.

c :=M ; c :=N ;P = c〈 〉. [M ]c. c〈 〉. [N ]c. P c〈 〉. [N ]c. P = c :=N ;P

c :=M ; !c = c〈 〉. [M ]c. c〈x〉. [x]c. x c〈 〉. [M ]c.M = c :=M ; M

The seven algebraic laws for global state of Plotkin and Power [27, p. 348] arise in our setting from β/η-
reduction and ∼. Their notation has update uloc,v(M) of location loc with value v in M , and lookup
lloc(M)v of the value v at location loc using the value v as a parameter in M . These are encoded in the
poly-λ-calculus as below, using abstraction with x instead of parametrization in v in the lookup case.
Values v may be taken as arbitrary poly-λ-terms.

ua,v(M)
∆
= a〈 〉. [v]a.M la(M)x

∆
= a〈x〉. [x]a.M

Proposition 2.4 The poly-λ-calculus with βη ∪ ∼ generates the algebraic laws for state.

Proof. By the following equations, where a 6= b and in equation 7, x /∈ fv(v).

1. la(ua,y(x))y = a〈y〉. [y]a. a〈 〉. [y]a. x β a〈y〉. [y]a. x η x

2. la(la(Mx,y)x)y = a〈y〉. [y]a. a〈x〉. [x]a.Mx,y β a〈y〉. [y]a. {y/x}Mx,y = la(My,y)y

3. ua,v(ua,v′(x)) = a〈 〉. [v]a. a〈 〉. [v′]a. x β a〈 〉. [v′]a. x = ua,v′(x)

4. ua,v(la(Mx)x) = a〈 〉. [v]a. a〈x〉. [x]a.Mx β a〈 〉. [v]a. {v/x}Mx = ua,v(Mv)

5. la(lb(Mx,y)y)x = a〈x〉. [x]a. b〈y〉. [y]b.Mx,y ∼ b〈y〉. [y]b. a〈x〉. [x]a.Mx,y = lb(la(Mx,y)x)y

6. ua,v(ub,v′(x)) = a〈 〉. [v]a. b〈 〉. [v′]b. x ∼ b〈 〉. [v′]b. a〈 〉. [v]a. x = ub,v′(ua,v(x))

7. ua,v(lb(Mx)x) = a〈 〉. [v]a. b〈x〉. [x]b.Mx ∼ b〈x〉. [x]b. a〈 〉. [v]a.Mx = lb(ua,v(Mx))x

2
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2.3 Poly-types

A simple type for a poly-term represents its expected inputs, taken from multiple independent locations.
Correspondingly, the antecedent of an implication is parameterized in a location, and implications on
distinct locations may permute.

Definition 2.5 Simple poly-types are given by the grammar below left, where o (omicron) is a base type
and a(σ)→τ an arrow type, and considered modulo the congruence ∼ given below right.

ρ, σ, τ ::= o | a(σ)→τ a(ρ)→b(σ)→τ ∼ b(σ)→a(ρ)→τ (a 6= b) .

The typing rules are as follows, where a context Γ is a finite function from variables to types.

Γ, x : τ ` x : τ

Γ, x : σ ` M : τ

Γ ` a〈x〉.M : a(σ)→τ

Γ ` N : σ Γ ` M : a(σ)→τ

Γ ` [N ]a.M : τ

Observe that the congruence ∼ means that a term M : a(ρ)→b(σ)→τ may be prefixed by a push action
[N ]a where N : ρ or by one [P ]b where P : σ (or both, in either order).

2.4 Towards encoding call–by–value semantics

The poly-λ-calculus gives control over when effects are called, as we demonstrate by the following example.

Example 2.6 Consider the following example term, which is a normal form with cbn semantics.

f (c := 2 ; 0) (!c) (c := 3 ; 1)

With cbv, the arguments may be evaluated left to right, reducing to f 0 2 1, or right to left, which gives
f 0 3 1. The two readings are encoded as follows (using regular applications to f for readability).

c〈 〉. [2]c. c〈x〉. [x]c. c〈 〉. [3]c. f 0x 1 c〈 〉. [3]c. f 0 2 1

c〈 〉. [3]c. c〈x〉. [x]c. c〈 〉. [2]c. f 0x 1 c〈 〉. [2]c. f 0 3 1

The encodings rely on repositioning an update c := 1 as a prefix, and for a lookup !c, on separating
the global actions c〈x〉. [x]c from the variable x where the value is used. (The latter idea gives the cbv
semantics in the probabilistic case [4].) However, it is unlikely that an encoding that only repositions effect
operations can encode the cbv semantics of λ-calculus with effects. Consider the following example.

Example 2.7 With a cbv semantics, the term

a := (λx. b := 1 ;x) 0 ; !b

first reduces the redex, to give a := (b := 1 ; 0) ; !b, which then evaluates by updating b := 1, then a := 0,
and reading !b as 1. To obtain this semantics in the poly-λ-calculus by manipulaton of effect operations
would require lifting b := 1 out of a redex—a process which is likely undecidable in general.

The poly-λ-calculus thus gives control over effects, but not evaluation behaviour in general. It is an
open question whether this is sufficient for practical purposes—one we cannot answer here. Instead, we
will consider sequencing as a natural way to include cbv semantics.

3 The sequential lambda-calculus

As an instruction sequence for a stack machine, a λ-term is a string of push and pop actions that must end
in a variable. But the machine would naturally accept any sequence of actions and variables. Relaxing
the variable restriction would further enable composition of sequences. This design of λ-calculus with
sequential composition appears several times in the literature and in practice: as the calculus Λs [7], as
the higher-order κ-calculus [30], and in concatenative programming languages such as Factor [26]. We call
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this generalization of the λ-calculus sequencing, and implement it by introducing a skip (or nil) construct
and making the variable a prefix.

Definition 3.1 The sequential λ-calculus is given by the following grammar.

M, N, P ::= ? | x.M | [N ].M | 〈x〉.M

We may omit the trailing . ? from terms for readability. Capture-avoiding composition N ;M is given by

? ;M = M x.N ;M = x. (N ;M) [P ]. N ;M = [P ]. (N ;M) 〈y〉. N ;M = 〈y〉. (N ;M)

where in the last case y is not free in M . Capture-avoiding substitution {M/x}N is as follows.

{M/x}? = ? {M/x}[P ]a.N = [{M/x}P ]a. {M/x}N
{M/x}x.N = M ; {M/x}N {M/x}a〈x〉. N = a〈x〉. N
{M/x}y.N = y. {M/x}N (x 6= y) {M/x}a〈y〉. N = a〈y〉. {M/x}N (x 6= y, y /∈ fv(M))

Beta-reduction is otherwise standard, by closing the rule below left under all contexts. The abstract
machine has states (S,M) of a stack and a term, and the transitions below right.

[N ]. 〈x〉.M {N/x}M
( S , [N ].M )

( S·N , M )

( S·N , 〈x〉.M )

( S , {N/x}M )

Example 3.2 Consider the following example terms.

〈x〉. [x]. [x] 〈x〉. 〈y〉 [〈x〉. [x]]. 〈f〉. f. f. f

The first duplicates the top item on the stack; the second removes two items; the third pushes the term
〈x〉. [x] (which picks up and returns an item), pops it as f , and runs it three times.

Observe that the changes to evaluation are absorbed by substitution and composition, while β-reduction
and machine evaluation remain unchanged. There is nevertheless a change in perspective from the λ-
calculus, in that the return values or outputs of a computation are pushed to the stack, rather than left as
the remainder of the term. Machine evaluation for a term M with input stack S is expected to terminate
in ? (just as imperative computation successfully terminates in a skip command) with an output stack T ,
i.e. (S,M)⇓(T, ?). Then ? gives the identity run (of zero steps), and M ;N gives composition of runs.

Proposition 3.3 If (R,M)⇓(S, ?) and (S,N)⇓(T, ?) then (R,M ;N)⇓(T, ?).

3.1 Sequential types

The type system for the sequential λ-calculus follows that of the κ-calculus [30]; similar type systems have
also been studied for stack languages [33]. The type of a term describes the input/output behaviour of
its machine evaluation: it consists of an implication between a vector of input types, one for each element
consumed from the stack, and a vector of output types, one for each item returned to the stack.

Definition 3.4 Sequential types are defined by:

ρ, σ, τ , υ ::=
⇀
σ⇒

⇀
τ

⇀
τ ::= τ1 . . . τn

Vector concatenation is by juxtaposition,
⇀
σ

⇀
τ , and the reverse of a vector

⇀
τ = τ1 . . . τn is

↼
τ = τn . . . τ1.

Typing rules for the sequential λ-calculus are given below. A stack is typed by a type vector, where
Γ ` ε·M1· · ·Mn : τ1 . . . τn if Γ ` Mi : τi for each i ≤ n.

Γ ` ? :
↼
τ ⇒

⇀
τ
?

Γ, x :
↼
ρ⇒

⇀
σ ` M :

↼
σ

↼
τ ⇒

⇀
υ

Γ, x :
↼
ρ⇒

⇀
σ ` x.M :

↼
ρ

↼
τ ⇒

⇀
υ

var
Γ, x : ρ ` M :

↼
σ⇒

⇀
τ

Γ ` 〈x〉.M : ρ
↼
σ⇒

⇀
τ

abs
Γ ` N : ρ Γ ` M : ρ

↼
σ⇒

⇀
τ

Γ ` [N ].M :
↼
σ⇒

⇀
τ

app
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Example 3.5 The terms in Example 3.2 can be typed as follows.

〈x〉. [x]. [x] : τ⇒ττ 〈x〉. 〈y〉 : τσ⇒ [〈x〉. [x]]. 〈f〉. f. f. f : τ⇒τ

Observe that because stacks are last-in first-out, the identity function on the top two stack items is the
term 〈x〉. 〈y〉. [y]. [x] : τσ⇒στ , whereas the function that swaps them is 〈x〉. 〈y〉. [x]. [y] : τσ⇒τσ.

Example 3.6 The term λx. x x = 〈x〉. [x]. x can be typed by assigning x a type that does not consume
input, i.e. of the form (⇒

⇀
τ ). The self-application xx = [x]. x then has the type ⇒(⇒

⇀
τ )

⇀
τ , which reflects

that the return values accumulate: if evaluating x returns the stack T :
⇀
τ , then [x]. x returns the stack

consisting of x prepended to T . The type derivation is below. Note that the term (λx. xx)(λy. yy) is not
typeable: the argument λy. yy needs a type that takes input, and then so should x.

x : ⇒
⇀
τ ` ? :

↼
τ ⇒

⇀
τ
?

x : ⇒
⇀
τ ` x. ? : ⇒

⇀
τ

var
x : ⇒

⇀
τ ` ? :

↼
τ (⇒

⇀
τ )⇒(⇒

⇀
τ )

⇀
τ
?

x : ⇒
⇀
τ ` x. ? : (⇒

⇀
τ )⇒(⇒

⇀
τ )

⇀
τ

var

x : ⇒
⇀
τ ` [x. ?]. x. ? : ⇒(⇒

⇀
τ )

⇀
τ

app

` 〈x〉. [x. ?]. x. ? : (⇒
⇀
τ )⇒(⇒

⇀
τ )

⇀
τ

abs

Remark 3.7 [Due to Chris Barrett] Observe that all sequential types τ are inhabited by at least the
element ⊥τ : τ , defined below (note that the base case n = m = 0 gives ? : (⇒)). This is in contrast with
the simply-typed λ-calculus, where not all types are inhabited due to the presence of the uninhabited base
type o.

⊥τ = 〈xn〉 . . . 〈x1〉. [⊥τ1 ] . . . [⊥τm ] where τ = σn . . . σ1⇒τ1 . . . τm

3.2 Encodings of call–by–name calculi

The (regular, call–by–name) λ-calculus is included as a fragment of the sequential λ-calculus. We extend
this embedding with types and with products, and to Moggi’s computational metalanguage [25] following
Douence and Fradet [7]. The main observation is that implications embed as input-only sequential types,
and products as output-only types, below left. The formal, inductive encoding is then below right.

τ1→ · · · →τn→o = τ1 . . . τn ⇒ o
∆
= (⇒) ρ→(

↼
σ⇒

⇀
τ )

∆
= ρ

↼
σ⇒

⇀
τ

τ1× · · · ×τn = ⇒ τn . . . τ1 1
∆
= (⇒) σ×τ

∆
= ⇒ τσ

Following the types, product terms encode as follows.

(M,N)
∆
= [N ]. [M ] πi(P )

∆
= P ; 〈x1〉. 〈x2〉. xi ()

∆
= ?

The computational metalanguage extends the λ-calculus with monadic type formers T (σ), and a return
construct [M ]T and a let construct letT parameterized in T . In the interpretation in the sequential λ-
calculus, the return value of a monadic function is pushed to the stack. A monadic function type is then
interpreted as one with a single output, as below left. The language constructs are encoded as below right.
It is easily verified that this extends correctly to type derivations and reductions.

τ1→ · · · →τn→T (σ) = τ1 . . . τn⇒σ [M ]T
∆
= [M ] letT x⇐N in M

∆
= N ; 〈x〉.M

3.3 Encodings of call–by–value calculi

The cbv λ-calculus [28] and the computational λ-calculus λc [24], which extends the former with a monadic
type constructor T and with the term constructs return and let, have an encoding in the κ-calculus [7,30].
We recall this for the sequential λ-calculus, and observe that it naturally extends to types. The cbv-
interpretion of types is naturally viewed in two stages. First, types in isolation are translated as follows.

ov = (⇒) (σ→τ)v = σv⇒τv T (σ)v = ⇒ σv

8
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Evaluation of a λc-term returns a value, which in the encoding is pushed to the stack. A typed term M : τ
will then translate as Mv : ⇒ τv, with a single output type. Terms of the computational λ-calculus are
then interpreted as below. Again it is easily verified that this extends correctly to type derivations and
reduction. The machine behaviour of encoded terms can be seen to follow the SECD-machine [16].

xv = [x] (λx.M)v = [〈x〉.Mv] ([M ]T )v = [Mv]

(M N)v = Nv ;Mv ; 〈x〉. x (letT x⇐N in M)v = Nv ; 〈x〉.Mv

3.4 Arrows, call–by–push–value, and kappa-calculus

The sequential λ-calculus may encode the related formalisms of Arrows, cbpv, and κ-calculus. For reasons
of space, we will not recall these calculi in detail and only provide an outline to the interested reader.

Hughes’s Arrows [14] take the λ-calculus with products and extend it with a second implication σ τ ,
which we interpret directly as that of the sequential λ-calculus, σ⇒τ . Arrow terms have three constructors,
encoded as below. The first lifts a regular term M : ρ→σ to an arrow term; the second composes two arrow
terms P : ρ σ and Q :σ τ ; and the third applies the arrow term P to the first element of a pair.

arr M : ρ σ
∆
= 〈x〉. [[x].M ] : ρ⇒σ

P≫Q : ρ τ
∆
= P ;Q : ρ⇒τ

first P : (ρ×τ) (σ×τ)
∆
= 〈x〉. [x. P ] : (⇒τρ)⇒(⇒τσ)

The perspective that emerges from this encoding is that the arrow calculus corresponds to a version of the
sequential λ-calculus with binary products instead of stacks (which may be considered n-ary products).

Characteristic of cbpv [18,19], and also featured in κ-calculus, is the separation of computations and
values. In the sequential λ-calculus this distinction is present, too, if implicitly: values live on the stack,
and computations run the machine. To make it explicit, we may extend the calculus with thunk and force
constructs !M and ?V , and their reduction rule, as below left. Term constructs of cbpv (without products
or sums) then embed as below right.

V , W ::= x | !M

M, N ::= ? | ?V.M | [V ].M | 〈x〉.M
!?N.M N ;M

thunk M
∆
= !M force V

∆
= ?V

return V
∆
= [V ] N to x. M

∆
= N ; 〈x〉.M

λx.M
∆
= 〈x〉.M V ‘M

∆
= [V ].M

Types for cbpv feature a monadic functor F and a value functor U . The latter could be introduced into
sequential types as below left, though the structure of the arrow type ⇒ makes it redundant. Types then
further encode as call–by–name types, below right.

σ, τ ::=
⇀
σ⇒

⇀
τ

⇀
τ ::= Uτ1 . . . Uτn ρ→(

↼
σ⇒

⇀
τ )

∆
= ρ

↼
σ⇒

⇀
τ Fσ

∆
= ⇒σ

The higher-order κ-calculus [30] is closely related to the sequential λ-calculus. Types are the same as
sequential types: an implication between type vectors. Terms omit the unit ? and have composition M ;N
as a primitive (rather than prefixing). The remaining constructs encode as follows.

push V
∆
= [V ] κx.M

∆
= 〈x〉.M mkthunk M

∆
= !M apply

∆
= 〈x〉. ?x

9
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3.5 String diagrams

We may view typed sequential λ-terms as string diagrams. A term M : ρ1 . . . ρm⇒σn . . . σ1 is rendered as
below. The wires represent the input and output stacks, with the first element at the top.

ρ1 σ1
ρm σn

M

We will use these diagrams to illustrate how types compose. First, strict composition is the composition
of terms M :

↼
ρ⇒

⇀
σ and N :

↼
σ⇒

⇀
τ into M ;N :

↼
ρ⇒

⇀
τ , below left. This does not give the most general form

of composition. For that, we combine it with the following notion of expansion. If a term takes an input
stack R to an output stack S, then when given a larger stack UR it returns US, with U untouched. Then
if M :

↼
ρ⇒

⇀
σ also M :

↼
ρ

↼
υ⇒

⇀
υ

⇀
σ, illustrated below right.

↼
ρ

⇀
τM N

↼
ρ

⇀
σ

↼
υ

⇀
υ

M

These constructions combine to give the general case, where in M ;N the type of M or N may be expanded.
Note that in the regular λ-calculus only the first case arises, as the second case requires multiple outputs.

↼
ρ

⇀
τ

⇀
υ

M
N

↼
ρ

⇀
τ

⇀
υ

M
N

Definition 3.8 Type composition σ ·τ is the partial operation given below, and is undefined otherwise.

(
↼
ρ⇒

⇀
σ) · (

↼
σ

↼
υ⇒

⇀
τ ) = (

↼
ρ

↼
υ⇒

⇀
τ )

(
↼
ρ⇒

⇀
υ

⇀
σ) · (

↼
σ⇒

⇀
τ ) = (

↼
ρ⇒

⇀
υ

⇀
τ )

Observe that the first equation in Definition 3.8 corresponds to the left composition diagram above,
and the second equation to the right diagram, where in both cases

⇀
σ gives the types of the connecting wires

between M and N . The following proposition establishes these basic properties, as well as the familiar
subject reduction.

Proposition 3.9 Typed terms satisfy the following properties:

• Strict composition: if Γ ` M :
↼
ρ⇒

⇀
σ and Γ ` N :

↼
σ⇒

⇀
τ then Γ ` M ;N :

↼
ρ⇒

⇀
τ .

• Expansion: if Γ ` M :
↼
ρ⇒

⇀
σ then Γ ` M :

↼
ρ

↼
υ⇒

⇀
υ

⇀
σ.

• Composition: if Γ ` M : σ and Γ ` N : τ and σ ·τ is defined, then Γ ` M ;N : σ ·τ .

• Substitution: if Γ ` M : σ and Γ, x : σ ` N : τ then Γ ` {M/x}N : τ .

• Subject reduction: if Γ ` N : τ and N M then Γ ` M : τ .

3.6 Machine termination

A remarkable aspect of the type system is how it gives a direct connection with termination of the machine.
To expose this, we formalize the intuitive meaning of types as describing the initial and final stack of a
run of the machine.

Definition 3.10 The set run(
↼
σ⇒

⇀
τ ) is the set of terms M such that for any stack S ∈ run(

⇀
σ) there

is a stack T ∈ run(
⇀
τ ) and a run of the machine (S,M)⇓(T, ?), where run(τ1 . . . τn) is the set of stacks

ε ·N1 · · ·Nn such that Ni ∈ run(τi).

Note that a successful run requires the term to be closed, so a set run(τ) contains only closed terms.
The following lemma shows that run(τ) is always inhabited by the term ⊥τ (see Remark 3.7).

Lemma 3.11 For any type τ the set run(τ) is inhabited: ⊥τ ∈ run(τ).

10
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If M : τ implies M ∈ run(τ), then a type derivation is a termination proof of the machine. This is
Theorem 3.13, and proving it gives a concrete Tait-style reducibility proof [34], where run(τ) takes the
rôle of the reducibility set for τ . By using the properties of machine runs the proof is then a simple, direct
induction on type derivations.

Vector notation is extended to variables,
⇀
x = x1 . . . xn, to contexts as

⇀
x :

⇀
τ = x1 : τ1, . . . , xn : τn = Γ,

and to simultaneous substitutions: if S = ε ·M1 · · ·Mn then {S/⇀x} = {M1/x1, . . . ,Mn/xn}. We write
concatenation of stacks S and T by juxtaposition, S T .

Lemma 3.12 If
⇀
w :

⇀
ω ` M : τ then for any W ∈ run(

⇀
ω), {W/⇀

w }M ∈ run(τ).

Proof. By induction on the type derivation. In each case, let Γ =
⇀
w :

⇀
ω, let W be a stack in run(

⇀
ω), and

let M ′ = {W/⇀
w}M .

• If the derivation is a ?-rule for Γ ` ? :
↼
τ ⇒

⇀
τ then there is a trivial zero-step run (T, ?)⇓(T, ?).

• If the derivation ends in the variable rule below left, then for any N ∈ run(
⇀
ρ⇒

⇀
σ), the inductive

hypothesis gives a run for {N/x}M ′ from any TS ∈ run(
⇀
τ

⇀
σ) to some U ∈ run(

⇀
υ) (second item

below). For N there is a run from any R ∈ run(
⇀
ρ) to some S ∈ run(

⇀
σ) (third item below). These

runs compose into one for {W/⇀
w,N/x}x.M = N ; {N/x}M ′ as below right, expanding the stack on

the run for N by T . Note that we may assume x /∈ fv(W ) (otherwise we rename x).

Γ, x :
↼
ρ⇒

⇀
σ ` M :

↼
σ

↼
τ ⇒

⇀
υ

Γ, x :
↼
ρ⇒

⇀
σ ` x.M :

↼
ρ

↼
τ ⇒

⇀
υ

var
( TS , {N/x}M ′ )

( U , ? )

( R , N )

( S , ? )

( TR , N ; {N/x}M ′ )

( TS , {N/x}M ′ )

( U , ? )

• If the derivation ends in the application rule below left, then by the inductive hypothesis for N we
have N ′={W/⇀

w}N ∈ run(ρ), and for M we have a run from M ′ and any stack S ∈ run(
⇀
σ) with N ′

added on top, to some T ∈ run(
⇀
τ ). This gives the run for {W/⇀

w}[N ].M = [N ′].M ′ below right.

Γ ` N : ρ Γ ` M : ρ
↼
σ⇒

⇀
τ

Γ ` [N ].M :
↼
σ⇒

⇀
τ

app

( S , [N ′].M ′ )

( S ·N ′ , M ′ )

( T , ? )

• If the derivation ends in the abstraction rule below left, then for any N ∈ run(ρ) and S ∈ run(
⇀
σ)

the inductive hypothesis gives a run for {N/x}M ′ to some T ∈ run(
⇀
τ ). This gives the run for

{W/⇀
w}〈x〉.M = 〈x〉.M ′ below right.

Γ, x : ρ ` M :
↼
σ⇒

⇀
τ

Γ ` 〈x〉.M : ρ
↼
σ⇒

⇀
τ

abs

( S ·N , 〈x〉.M ′ )

( S , {N/x}M ′ )

( T , ? )
2

The following theorem is then immediate.

Theorem 3.13 For a typed, closed term M :
↼
σ⇒

⇀
τ and stack S :

⇀
σ the machine terminates.

4 The functional machine calculus

The combination of both generalizations, locations and sequencing, gives the Functional Machine Calculus.

Definition 4.1 The Functional Machine Calculus (FMC) is given by the below grammar, with from left
to right the constructors nil, a (sequential) variable, an application or push action on the location a, and
an abstraction or pop action on a which binds x in M . Terms are considered modulo α-equivalence.

M, N, P ::= ? | x.M | [N ]a.M | a〈x〉.M

11
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Composition N ;M and substitution {N/x}M are as for the sequential λ-calculus. The machine is as
for the poly-λ-calculus: a state is a pair (SA,M) of a memory and a term, and the transitions are:

( SA ; Sa , [N ]a.M )

( SA ; Sa·N , M )

( SA ; Sa·N , a〈x〉.M )

( SA ; Sa , {N/x}M )

Beta-reduction is as for the poly-λ-calculus: a redex consists of a successive application and abstraction on
the same location, separated by any number of actions on other locations. We will now make this formal.

Head contexts H are defined as below left. The term obtained by replacing the hole {} in H with M
is denoted H.M , where a binder a〈x〉 in H captures in M . The binding variables bv(H) of H are those
variables x where H is constructed over a〈x〉. The set of locations used in a term or context is denoted
loc(M) respectively loc(H). Then Beta-reduction is defined by the rewrite rule schema below right, where
a /∈ loc(H) and bv(H) ∩ fv(N) = ∅, and is closed under all contexts.

H ::= {} | [M ]a.H | a〈x〉. H [N ]a.H. a〈x〉.M H. {N/x}M

We will first consider the untyped calculus. We give the cbv encoding of effects and provide an intuition
for programming in the FMC, then establish confluence and connect machine evaluation to β-reduction.
We then consider simple types. Constants will be used informally, in examples.

4.1 Call–by–value with effects

We extend the encoding (−)v of the computational λ-calculus of Section 3.3 to effects as follows. (The
case for N ⊕M is the same as for cbn, as it expects a Church boolean for x.)

readv = in〈x〉. [x]

(write N ;M)v = Nv ; 〈x〉. [x]out.Mv

(c := N ;M)v = Nv ; 〈x〉. c〈 〉. [x]c.Mv

!cv = c〈x〉. [x]c. [x]

(N ⊕M)v = rnd〈x〉. [Mv]. [Nv]. x

Example 4.2 The term from Example 2.2, below, is given a cbv interpretation as follows.

a := 2 ; (λx. !a) (a := 3 ; 0) cbv 3

Integers are values, and the translation will use iv = [i]. An update with an integer then simplifies by:

(a := i ;M)v = [i]. 〈x〉. a〈 〉. [x]a ;M a〈 〉. [i]a ;M

The cbv-translated term, after applying this reduction to the two updates, further reduces as follows.

a〈 〉. [2]a. a〈 〉. [3]a. [0]. [〈x〉. a〈y〉. [y]a. [y]]. 〈z〉. z a〈 〉. [3]a. [3]

Example 4.3 The term from Example 2.7,

a := (λx. b := 1 ;x) 0 ; !b cbv 1

12
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translates and reduces as follows (with the same shortcut for update as above).

[0]. [〈x〉. b〈 〉. [1]b. [x]]. 〈y〉. y. 〈z〉. a〈 〉. [z]a. b〈u〉. [u]b. [u]

[0]. 〈x〉. b〈 〉. [1]b. [x]. 〈z〉. a〈 〉. [z]a. b〈u〉. [u]b. [u]

b〈 〉. [1]b. a〈 〉. [0]a. b〈u〉. [u]b. [u]

b〈 〉. a〈 〉. [0]a. [1]b. [1]

∼ a := 0 ; b := 1 ; 1

4.2 Programming in the FMC

As in the sequential λ-calculus, programming in the FMC naturally follows the concatenative paradigm.
A term M is viewed as a function taking an input memory SA to an output memory TA by a run of
the machine (SA,M)⇓(TA, ?). Functions standardly operate on the main stack λ, and it is then natural
to consider effect operators that transfer values between the main stack and other locations, as the cbv
translations of effect operators do. We introduce the following operations for input and output, a random
generator, and a memory cell c. We further add definitions or let, as a redex.

print
∆
= 〈x〉. [x]out

read
∆
= in〈x〉. [x]

rand
∆
= rnd〈x〉. [x]

get c
∆
= c〈x〉. [x]c. [x]

set c
∆
= 〈x〉. c〈 〉. [x]c

(x=N) ;M
∆
= [N ]. 〈x〉.M

Constant operations such as the conditional if pop the required number of items from the main stack, and
reinstate their result, as is standard for stack languages. For example:

( SA;Sλ · 2 · 3 , + .M )

( SA;Sλ · 5 , M )

( SA;Sλ · P ·N · ⊥ , if.M )

( SA;Sλ · P , M )

The FMC then operates similarly to a stack calculus for arithmetic: an expression 1+((2+3)×4) is given
as a term [4]. [3]. [2]. + . × . [1].+ which indeed returns 21. This results in an imperative programming
style similar to Haskell’s do-notation, with the difference that terms may have any number of return values,
and consume any number of previously returned values.

Example 4.4 Consider the following example, where rnd is taken to randomly sample natural numbers.

(f = rand ; set c ; get c) ; f ; f ; + ; print

The term assigns f to be the function that draws a random number, stores it in cell c, and reads the value
at c again as its return value. It then executes f twice, sums the results, and sends that to output. The
overall actions should be to take two random inputs i and j, to update the cell c with the last value j, and
to output i + j. In Figure 1 the term is first interpreted as an FMC-term and reduced to normal form,
where each line is a beta-step, and then evaluated on the machine, where the initial memory provides the
two expected inputs on rnd and one on c. (For compactness we give locations as a header and show only
necessary stack elements.)

4.3 Confluence

In demonstrating confluence for the λ-calculus, the difficulty is reduction inside an argument: duplicating
or deleting it creates converging reductions of different length. By contrast, spine reduction, which reduces
in every context except argument position, is diamond (peaks converge in one step).

While the two extensions of the FMC, locations and sequencing, do create new configurations of over-
lapping redexes, the situation is fundamentally the same. Spine reduction, defined analogously as reduction
in every context except argument position, is diamond, and the remaining problem is the same as for the
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[rnd〈x〉. [x]. 〈y〉. c〈 〉. [y]c. c〈z〉. [z]c. [z]]. 〈f〉. f . f . + . 〈p〉. [p]out

[rnd〈x〉. c〈 〉. [x]c. c〈z〉. [z]c. [z]]. 〈f〉. f . f . + . 〈p〉. [p]out

[rnd〈x〉. c〈 〉. [x]c. [x]]. 〈f〉. f . f . + . 〈p〉. [p]out

rnd〈x〉. c〈 〉. [x]c. [x] . rnd〈y〉. c〈 〉. [y]c. [y] . + . 〈p〉. [p]out

rnd〈x〉. c〈 〉. [x] . rnd〈y〉. [y]c. [y] . + . 〈p〉. [p]out

out rnd c λ

( ; 6 · 7 ; ? ; , rnd〈x〉. c〈 〉. [x]. rnd〈y〉. [y]c. [y]. + . 〈p〉. [p]out )

( ; 6 ; ? ; , c〈 〉. [7]. rnd〈y〉. [y]c. [y]. + . 〈p〉. [p]out )

( ; 6 ; ; , [7]. rnd〈y〉. [y]c. [y]. + . 〈p〉. [p]out )

( ; 6 ; ; 7 , rnd〈y〉. [y]c. [y]. + . 〈p〉. [p]out )

( ; ; ; 7 , [6]c. [6]. + . 〈p〉. [p]out )

( ; ; 6 ; 7 , [6]. + . 〈p〉. [p]out )

( ; ; 6 ; 7 · 6 , + . 〈p〉. [p]out )

( ; ; 6 ; 13 , 〈p〉. [p]out )

( ; ; 6 ; , [13]out )

( 13 ; ; 6 ; , ? )

Fig. 1. Reduction followed by machine evaluation of the term in Example 4.4

λ-calculus. The calculus thus remains confluent, which will be proved by the standard parallel reduction
technique of Tait and Martin-Löf (see [2]) and Takahashi [35].

The new configurations are the following. Sequencing introduces terms of the form N ;x.M , with
reduction in M or in N , where the latter may induce substitutions in x.M . But reduction in N may not
duplicate a redex in M , and vice versa, so a peak of this kind converges immediately.

Locations create two new overlapping configurations,

nested: [N ]a. [P ]b. b〈y〉. a〈x〉.M

interleaved: [N ]a. [P ]b. a〈x〉. b〈y〉.M

but both resolve immediately: in each case the two reducts will converge in one step to {N/x}{P/y}M .
Because of this, the problem of confluence amounts to the problem of reduction in arguments, which

may be duplicated or deleted, as it does in the regular λ-calculus. We formalize this observation in the
following proposition (which is independent of the confluence result). Spine reduction is given by closing
the β-step under all contexts except in argument position. That is, reduction in each of x.M , [N ]a.M ,
and 〈x〉.M may take place in M , but not in N .

Proposition 4.5 Spine reduction is diamond.

The full confluence proof is a standard application of parallel reduction, and is given in Appendix A.

Theorem 4.6 Reduction is confluent.

4.4 Simple types for the FMC

As with sequential types, FMC types will represent the input/output behaviour of the machine. Since a
memory is a family of stacks, types will use families of type vectors.

Definition 4.7 FMC-types ρ, σ, τ , υ are given by:

τ ::=
↼
σA⇒

⇀
τA

⇀
τA ::= {⇀τ a | a ∈ A}

⇀
τ ::= τ1 . . . τn
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Γ ` ? :
↼
τA⇒

⇀
τA

?
Γ ` N : ρ Γ ` M : a(ρ)

↼
σA⇒

⇀
τA

Γ ` [N ]a.M :
↼
σA⇒

⇀
τA

app

Γ, x :
↼
ρA⇒

⇀
σA ` M :

↼
σA

↼
τA⇒

⇀
υA

Γ, x :
↼
ρA⇒

⇀
σA ` x.M :

↼
ρA

↼
τA⇒

⇀
υA

var
Γ, x : ρ ` M :

↼
σA⇒

⇀
τA

Γ ` a〈x〉.M : a(ρ)
↼
σA⇒

⇀
τA

abs

Fig. 2. Typing rules for the Functional Machine Calculus

The typing rules for the FMC are in Figure 2. They use the following notation. Concatenation of two
vector families is pointwise,

⇀
σA

⇀
τA = {⇀σa

⇀
τ a | a ∈ A}, and he empty vector is denoted ε. A slice

⇀
τA|a of

a family
⇀
τA = {⇀τ a | a ∈ A} is the vector

⇀
τ a, and a slice τa of a type τ =

↼
ρA⇒

⇀
σA is the type

↼
ρ|a ⇒

⇀
σ|a

(i.e. τa restricts τ to a single location a). Composition is slice-wise: σ ·τ = {σ|a ·τ |a | a ∈ A}. Finally, a
singleton a(

⇀
τ ) is a type vector at a single location, with all other locations empty, defined by a(

⇀
τ )|a =

⇀
τ

and a(
⇀
τ )|b = ε for a 6= b. A singleton λ(

⇀
τ ) on the main location λ may be written as

⇀
τ .

Poly-types embed as types of the form
↼
τA⇒ by the definitions o

∆
= (⇒) and a(σ)→(

↼
τA⇒)

∆
= a(σ)

↼
τA⇒ ,

and sequential types embed directly as types over only the location λ. The properties proved of sequential
types in Section 3 carry over straightforwardly: strict composition, expansion, composition, substitution,
subject reduction, and termination of the machine.

Example 4.8 The singleton construct a(
⇀
τ ) gives a natural way of writing types in practice. The term

from Example 4.4 may be typed as follows, where Z is a base type of integers.

(f = rand ; set c ; get c) ; f ; f ; + ; print : rnd(Z Z) c(Z)⇒c(Z) out(Z)

The type expresses that the term pops two integers from rnd and one from c, and pushes one integer to c
and one to out. (Note that there are other ways of writing the same type, since singleton types on different
locations may permute.) Below left are the types of the defined subterms, and the full type is built up
below right by composing these.

+ : Z Z⇒Z
rand = rnd〈x〉. [x] : rnd(Z)⇒Z
print = 〈x〉. [x]out : Z⇒out(Z)

set c = 〈x〉. c〈 〉. [x]c : Z c(Z)⇒c(Z)

get c = c〈x〉. [x]c. [x] : c(Z)⇒c(Z) Z

rand ; set c : rnd(Z) c(Z) ⇒ c(Z)

rand ; set c ; get c : rnd(Z) c(Z) ⇒ c(Z) Z
(f =rand ; set c ; get c) : (⇒)

(f = . . .) ; f ; f : rnd(Z Z) c(Z) ⇒ c(Z) Z Z
(f = . . .) ; f ; f ; + ; print : rnd(Z Z) c(Z) ⇒ c(Z) out(Z)

The third term is only a redex, which pushes and then pops a value, giving it an empty type (⇒). The
type of the fourth term is that of f ; f . Separating the self-composition of the type of f for each location
exposes how the inputs on rnd and outputs on λ accumulate, while the output and input on c interact:

rnd(Z) ⇒ · rnd(Z) ⇒ = rnd(Z Z) ⇒

c(Z) ⇒ c(Z) · c(Z) ⇒ c(Z) = c(Z) ⇒ c(Z)

⇒ Z · ⇒ Z = ⇒ Z Z

By way of illustration, in Haskell the same example may be written as follows.

example :: RandT StdGen (StateT Int IO) ()

example = do

let f = do x <- rand; lift (put x); lift get

y <- f

z <- f

lift (lift (print (y+z)))
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To combine the effects of I/O, state, and random generation, the Haskell example uses a stack of monad
transformers. The effects are then layered in a fixed order, and to access each effect the function lift is
used to move to the next layer. Thus, the rand action requires no lifting since the random generator is at
the top of the transformer stack; the state actions put and get must be lifted once; and the print action
must be lifted twice, since I/O is at the bottom of the transformer stack.

The example highlights the following differences between monad transformers and the FMC. Firstly,
reader/writer effects in the FMC combine seamlessly, without requiring their organisation in a stack, and
are accessed by their locations instead of a lifting function. Secondly, sequential composition in the FMC is
a basic operation, with a close connection between the syntax and its execution, where Haskell do-notation
is syntactic sugar for more involved monadic operations. Thirdly, the FMC type system accounts for the
effectful operations that a term performs, where monad transformer types indicate which effects may be
present, but not which operations they perform.

Of course, where monads are universal, the FMC is presently restricted to reader/writer effects. How
to broaden the range of effects covered in the FMC is an important direction for future work.

5 Further work

We have given an exploratory overview of the Functional Machine Calculus with the most essential results:
the natural capture of algebraic laws for effects by reductions and permutations; the encoding of related
formalisms for controlling execution behaviour such as monadic constructs, cbpv, κ-calculus, and Arrows;
confluence; and termination of the machine with simple types. A forthcoming paper will strengthen these
results with domain-theoretic and categorical semantics, and strong normalization with simple types.

Present and future work aims to extend the FMC beyond reader/writer effects and with standard
features. One direction is to include sum types, datatypes, and error handling, where it looks possible to
capture all three in a uniform way. A second direction is to introduce parallel composition and explore
the relation with process calculi, where our type system promises to give something closely related to
session types. A third direction is local mutable store, by introducing a new construct for locations,
and generalizing locations to regions to capture mutable data structures (arrays, graphs), which then
leads naturally into an exploration of dependent types for the FMC. A fourth direction is to explore
the connection with string diagrams, and to introduce constructs to capture diagrammatic reasoning, for
example interaction nets or quantum diagrammatic systems.

An important theoretical challenge is type inference. This appears to be open also for the sequential
λ-calculus: existing algorithms for concatenative languages are limited [33,6], and (we believe) unable to
find the type for the self-application in Example 3.6.
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A The confluence proof

This section gives a complete proof of confluence using parallel reduction. The particular approach is to
extend the syntax of terms with marked redexes, to define parallel reduction and to identify residuals.

Definition A.1 A marked redex is one whose application and abstraction are marked by the symbols ( )
and ( ), as follows.

[N ]a .H. a〈x〉.M .

A redex-marked or marked term M is one where a selection of redexes is marked. For a marked term
consisting of a head context and a term (H.M) , the marking of both components separately is indicated
by H and M . The marked reduct (M ) of a marked term M is defined as follows.

(?) = ? ([N ]a.M ) = [(N ) ]a. (M )

(x.M ) = x. (M ) (a〈x〉.M ) = a〈x〉. (M )

([N ]a .H . a〈x〉.M ) = {(N ) /x}(H .M )

A parallel reduction step M (M ) relates a marked term to its marked reduct, and an unmarked term
to all its marked reducts: M (M ) for each marking M of M .

To reduce clutter, a marked reduct (M ) may be abbreviated as M .

Proposition A.2 A parallel reduction step is a beta-reduction: M (M ) whenever M is a marking
of M .

Proof. By induction on the size of M .

• Unit case: immediate by (?) = ?.

• Variable case: if M M then x.M x.M .

• Unmarked application case: if M M and N N then [N ]a.M [N ]a.M .

• Unmarked abstraction case: if M M then a〈x〉.M a〈x〉.M .

• Redex case: if (H.M) (H.M) and N N then

[N ]a .H . a〈x〉.M [N ]a .H . a〈x〉.M
H . {N /x}M

= {N /x}(H .M )

{N /x}(H.M) .

where in the second line, a ∈ loc(H) by the definition of a redex, and for the equality on the third line,
H does not bind in N and x is not free in H, by α-equivalence.

2

To show that parallel reduction is diamond, a term is reduced according to two markings, and . These
are then applied simultaneously and interchangeably, and may be considered a single marking = :

(M ) = M = (M )

If this term is reduced relative to one marking, the other is preserved: (M ) = ((M ) ) . The proof then
amounts to showing that reducing by each marking is commutative and the same as reducing along both
markings simultaneously:

(M ) = M = (M )

Lemma A.3 Parallel reduction commutes with composition: M ;N = (M ;N) .

Proof. By induction on the size of M .

• Unit case: (?) ;N = ? ;N = N = (? ;N) .

19
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• Variable case: if M ;N = (M ;N) then

(x.M) ;N = x. (M ;N ) = x. (M ;N) = ((x.M) ;N) .

• Unmarked application case: if M ;N = (M ;N) then

([P ]a.M) ;N = [P ]a. (M ;N )

= [P ]a. (M ;N)

= (([P ]a.M) ;N) .

• Unmarked abstraction case: if M ;N = (M ;N) then

(a〈x〉.M) ;N = a〈x〉. (M ;N )

= a〈x〉. (M ;N)

= ((a〈x〉.M) ;N) .

• Marked redex case: if (H.M) ;N = ((H.M) ;N) and x /∈ fv(N) then

([P ]a .H. a〈x〉.M) ;N = ({P /x}(H.M) ) ;N

= {P /x}((H.M) ;N)

= (([P ]a .H. a〈x〉.M) ;N) .
2

Lemma A.4 Parallel reduction commutes with substitution: {N /x}M = ({N/x}M) .

Proof. By induction on the size of M .

• Unit case: immediate by {N/x}? = ?.

• Variable case: if {N /x}M = ({N/x}M) then by Lemma A.3,

{N /x}(x.M) = {N /x}(x.M )

= N ; {N /x}M
= N ; ({N/x}M)

= (N ; {N/x}M)

= ({N/x}(x.M)) .

• Unmarked application case: if {N /x}M = ({N/x}M) and {N /x}P = ({N/x}P ) then

{N /x}([P ]a.M) = {N /x}([P ]a.M )

= [{N /x}P ]a. {N /x}M
= [({N/x}P ) ]a. ({N/x}M)

= ([{N/x}P ]a. {N/x}M) .
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• Unmarked abstraction case: if {N /x}M = ({N/x}M) then

{N /x}(a〈y〉.M) = {N /x}(a〈y〉.M )

= a〈y〉. {N /x}M
= a〈y〉. ({N/x}M)

= (a〈y〉. {N/x}M) .

• Marked redex case: if {N /x}(H.M) = ({N/x}(H.M)) and {N /x}P = ({N/x}P ) then

{N /x}([P ]a .H. a〈y〉.M)

= {N /x}{P /y}(H.M)

= {{N /x}P /y}{N /x}(H.M)

= {({N/x}P ) /y}({N/x}(H.M))

= {({N/x}P ) /y}(({N/x}H). {N/x}M)

= ([{N/x}P ]a . ({N/x}H). a〈y〉. {N/x}M)

= ({N/x}([P ]a .H. a〈y〉.M)) .
2

Lemma A.5 For a doubly marked term, M , reducing each marking in turn gives the same result as
reducing both simultaneously: (M ) = M .

Proof. By induction on the size of M .

• Unit case: immediate by ((?) ) = ? = (?) .

• Variable case: if (M ) = M then

((x.M) ) = x. (M ) = x.M = (x.M) .

• Unmarked application case: if (M ) = M and (N ) = N then

(([N ]a.M) ) = [(N ) ]a. (M )

= [N ]a.M

= ([N ]a.M) .

• Unmarked abstraction case: if (M ) = M then

((a〈x〉.M) ) = a〈x〉. (M ) = a〈x〉.M = (a〈x〉.M) .

• Doubly-marked redex case: if (H.M ) = H.M and (N ) = N then

([N ]a .H. a〈x〉.M) ) = {(N ) /x}((H.M) )

= {N /x}(H.M)

= ([N ]a .H. a〈x〉.M) .
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• First singly-marked redex case: if (H.M ) = (H.M) and (N ) = N then, using Lemma A.4,

(([N ]a .H. a〈x〉.M) ) = ({N /x}(H.M) )

= {(N ) /x}((H.M) )

= {N /x}(H.M)

= ([N ]a .H. a〈x〉.M) .

• Second singly-marked redex case: the redex considered is

[N ]a .H . a〈x〉.M

where H does not use the location a or a free variable x. First, it is established that (H . a〈x〉.M ) is of
the form K . a〈x〉. N where (H .M ) = K .N for some head context K and term N . For readability
the marking will be suppressed, except on the abstraction a〈x〉. The proof is by induction on the
size of H.
· Unit case: if H = {} then let K = {} and N = M , which gives the following, as required.

(H. a〈x〉.M) = ( a〈x〉.M) (H.M) = M

= a〈x〉.M = N

= K. a〈x〉. N = K.N .

· Unmarked application case: if H = [P ]b.H ′ then the inductive hypothesis for H ′ and M gives K ′

and N . Let K = [P ]b.H ′, which gives the following, as required.

([P ]b.H ′. a〈x〉.M) ([P ]b.H ′.M)

= [P ]b. (H ′. a〈x〉.M) = [P ]b. (H ′.M)

= [P ]b.K ′. a〈x〉. N = [P ]b.K ′. N

= K. a〈x〉. N = K.N .

· Unmarked abstraction case: if H = b〈y〉. H ′ then the inductive hypothesis for H ′ and M gives K ′

and N . Let K = b〈y〉. H ′, which gives the following, as required.

(b〈y〉. H ′. a〈x〉.M) (b〈y〉. H ′.M)

= b〈y〉. (H ′. a〈x〉.M) = b〈y〉. (H ′.M)

= b〈y〉.K ′. a〈x〉. N = b〈y〉.K ′. N
= K. a〈x〉. N = K.N .

· First marked redex case: if H = [P ]b .H ′. b〈y〉. H ′′ then the inductive hypothesis for H ′. H ′′ and
M gives K ′ and N ′. Let K = {P /x}K ′ and N = {P /x}N ′, which gives the following, as required.

([P ]b .H ′. b〈y〉. H ′′. a〈x〉.M)

= {P /y}(H ′. H ′′. a〈x〉.M)

= {P /y}(K ′. a〈x〉. N ′)
= ({P /y}K ′). a〈x〉. {P /y}N ′

= K. a〈x〉. N

([P ]b .H ′. b〈y〉. H ′′.M)

= {P /y}(H ′. H ′′.M)

= {P /y}(K ′. N ′)
= ({P /y}K ′). {P /y}N ′

= K.N .
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Heijltjes

· Second marked redex case: if H = [P ]b .H ′ and M = H ′′. b〈y〉.M ′ then the inductive hypothesis
for H ′ and H ′′.M gives K ′ and N ′. Let K = {P /x}K ′ and N = {P /x}N ′, which gives the
following, as required.

([P ]b .H ′. a〈x〉. H ′′. b〈y〉.M)

= {P /x}(H ′. a〈x〉. H ′′.M)

= {P /x}(K ′. a〈x〉. N ′)
= ({P /x}K ′). a〈x〉. {P /x}N ′)
= K. a〈x〉. N

([P ]b .H ′. H ′′. b〈y〉.M)

= {P /x}(H ′. H ′′.M)

= {P /x}(K ′. N ′)
= ({P /x}K ′). {P /x}N ′)
= K.N .

This concludes the subproof. Returning to the main proof, let (H. a〈x〉.M) = K. a〈x〉. N where
(H.M) = K.N . The case concludes as follows.

(([N ]a .H. a〈x〉.M) ) = ([N ]a . (H. a〈x〉.M) )

= ([N ]a .K. a〈x〉. N)

= {(N ) /x}(K.N)

= {N /x}(H.M)

= ([N ]a .H. a〈x〉.M)
2

Lemma A.6 Parallel reduction is diamond: if N M P then N Q P for some Q.

Proof. Let M M = N and M M = P for two separate markings and of M . Then with both
markings on M the peak becomes

(M ) M (M ) .

Let Q = M so that by Lemma A.5 the peak converges as

(M ) M (M ) .

2

Theorem 4.6 (restatement) Reduction is confluent.

Proof. A reduction step M N is a parallel step M M = N by marking only the reduced redex.
A peak M N P in regular reduction is then immediately one in parallel reduction, M N P .
By the diamond property, Lemma A.6, this converges with parallel reductions, M Q P . By
Proposition A.2 a parallel reduction ( ) is a regular reduction ( ), so that the peak converges as M
Q P . 2
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