
The Functional Machine Calculus

Willem Heijltjes
Talk proposal — HOPE’21

The Functional Machine Calculus (FMC) is a new approach to combin-
ing the λ-calculus with computational effects. This is an important problem
in theoretical computer science, as its solutions may form the basis of typed,
higher-order programming languages, with perhaps as ultimate aim the unifi-
cation of the imperative and functional programming paradigms. It has a rich
history, including Plotkin’s seminal study of call–by–name and call–by–value
λ-calculus, Moggi’s solution using monads, now at home in the Haskell pro-
gramming language and a staple of programming theory, the semantic charac-
terization of algebraic effects by Plotkin, Power, and others in Lawvere theories
and premonoidal categories, the related arrow calculus by Hughes, Levy’s call–
by–push–value paradigm and its later refinements in Ehrhard and Guerrieri’s
bang-calculus and Egger, Møgelberg, and Simpson’s enriched effect calculus,
and recently Plotkin and Pretnar’s effect handlers.

The solution presented by the FMC consists of two natural modifications to
the λ-calculus, locations and sequencing.

Locations The abstraction and application constructs of the λ-calculus are pa-
rameterized in a set of locations. This allows a natural encoding of the alge-
braic effects of input, output, and mutable higher-order store, where a location
may represent an input stream, an output stream, or a storage cell, and oper-
ations for effects are encoded as combinations of abstractions (as consumers)
and applications (as producers) for the corresponding location. Probabilities
and non-determinism are included as special cases of input. Effects are eval-
uated by standard β-reduction, but via their algebraic laws, not their opera-
tional semantics. The usual problem of non-confluence is then avoided, and
β-reduction remains confluent without imposing a strategy. Traditional simple
types are parameterized in the same set of locations, to give a new type system
for effects.

Sequencing The variable construct of the λ-calculus is separated into a variable-
with-continuation and an end-of-instructions construct. Conceptually, where a
variable in the λ-calculus represents a value, a variable in the FMC represents
a command or a computation, after termination of which the program contin-
ues with the next sequence of instructions. The modification gives a natural
encoding of imperative sequencing and skip, and gives control over execution,
allowing to express lazy and eager evaluation of computation and of effects. It
is sufficient to encode Moggi’s computational metalanguage and Levy’s call–
by–push–value. As a programming language, the FMC is akin to Haskell’s
do-notation, generalized to allow any number of return values (as opposed to

1

exactly one) and with a new type system that gives information about how
effects are used.

A second perspective on the FMC is as an instruction language for a stack
machine, a common simplification of the Krivine Abstract Machine omitting
environments. An application pushes its argument to the stack, and an abstrac-
tion pops the top element off the stack and substitutes it for its bound variables.
Locations are represented in the machine by multiple stacks (or streams), one
for each location, which may naturally model input streams, output streams,
and storage cells. Sequencing gives concatenation of instruction sequences and
the empty instruction sequence. In this way, the machine gives an operational
semantics for the calculus. Typing gives an abstract account of the net con-
sumption and production behaviour of the machine, where a type derivation
is a direct proof of termination of the machine.

Attached is a preliminary draft detailing the current state of development.

2

The Functional Machine Calculus

Willem Heijltjes

(Draft, May 2021)

Abstract

This paper presents the Functional Machine Calculus (FMC) as a simple
model of higher-order computation with effects, including mutable store,
input and output, and probabilistic and non-deterministic computation as
special cases of input. The FMC is derived from the lambda-calculus via
two independent generalizations. One enables the encoding of effects into
the calculus; the other provides control when they are executed, and en-
codes the imperative features of “sequencing” and “skip”.

These generalizations are particularly natural from the perspective of
the FMC as an instruction language for a simple stack machine (a simpli-
fied Krivine Abstract Machine, and the “M” in “FMC”). The first general-
ization corresponds to allowing multiple stacks, which may represent stor-
age cells and input and output streams to capture the operational seman-
tics of effects. The second generalization gives composition of instruction
sequences, and the empty sequence as a unit.

The FMC naturally encodes various previous approaches, including
Plotkin’s Call-By-Value lambda-calculus, Moggi’s Computational Metalan-
guage, and Levy’s Call-By-Push-Value. The calculus is confluent, which is
possible because beta-reduction encodes the evaluation of effects via their
algebraic equations, not their operational semantics. Different evaluation
strategies in the lambda-calculus are captured by different encodings into
the FMC.

The FMC can be simply typed, and a simple, direct proof shows that
types confer termination of the stack machine, or equivalently of weak
head reduction. Types give a natural solution to the problem of types for
higher-order store.

1 Introduction

The λ-calculus [2, 1] is one of our most effective models of computation, due to
a combination of features that includes in particular: a compact, intuitive syn-
tax; confluent reduction; powerful typing disciplines that confer strong nor-
malization and other properties; and its amenability to formal reasoning, i.e.,
semantics. On its own, however, the λ-calculus models only pure, isolated
calculation. Real-world computation is interactive and involves computational

3

effects: input and output, mutable store, non-determinism and probabilities, ex-
ceptions, continuations, concurrency, and more. In the presence of effects, the
good properties of the λ-calculus are not naturally preserved, and to recover
them is an important challenge.

When primitive operations for effects are introduced naïvely, confluence
fails. The distinction between reduction strategies becomes significant, and
since eager or lazy evaluation yield different results, an implementation needs
to offer both, to give explicit control over when effects are called. Common in
practice (e.g. in Scheme, ML, Scala) is to use call–by–value as primary strategy,
supplemented with constructions to delay evaluation, such as closures, corou-
tines, thunks, or laziness annotations. The semantic study of effects has yielded
several alternatives: Moggi’s celebrated account of effects as monads [10], taken
up in Haskell; Levy’s call-by-push-value paradigm [8], which interprets both
call–by–name and call–by–value so that effects can safely be introduced; related
solutions based in linear logic such as the enriched effect calculus by Egger, Møgel-
berg, and Simpson [4] and the bang-calculus by Ehrhard and Guerrieri [5]; and
Plotkin and Pretnar’s highly versatile effect handlers [13]. What these solutions
have in common, however, is that they introduce a significant amount of struc-
ture, in the form of primitive operations for effects and constructions to control
evaluation behaviour, contrary to the original simplicity of the λ-calculus.

Here, I propose a new solution, the Functional Machine Calculus (FMC), that
stands out for its radical simplicity. The highlights are as follows.

Syntax The FMC generalizes the λ-calculus via two natural modifications: one,
to parametrize application and abstraction in a set of locations; and two,
to include a natural notion of sequencing by generalizing the variable con-
struct. The calculus remains as simple and compact as the λ-calculus itself.

Effects The computational effects of mutable higher-order store, input, and
output, are encoded in the parameterized application and abstraction con-
structs, with each effect assigned a separate location. Non-determistic and
probabilistic computation are included as special cases of input.

Abstract machine The FMC is an instruction language for an abstract ma-
chine in the style of Krivine [7], the “M” in FMC, which provides its op-
erational semantics. The first modification, locations, is embodied in the
machine by multiple stacks (or streams), which represent input streams,
output streams, and memory cells (as stacks of depth at most one). The
second, sequencing, naturally gives sequencing of machine instructions.

Confluence Reduction is by a modified β-rule. This remains confluent, which
is possible because it evaluates effects via their algebraic equations (as de-
scribed by Plotkin and Power [11]), and not via their operational semantics.

Strategies Because the calculus is confluent, to give different (eager or lazy)
evaluation behaviour requires giving different terms. Different evaluation
regimes for the λ-calculus thus require different interpretations into the

4

FMC; the λ-calculus is embedded as a fragment, while Plotkin’s call–by–
value λ-calculus [12] is interpreted.

Related calculi For the given effects, the FMC interprets call–by–push–value,
the bang-calculus, and the computational metalanguage.

Types The FMC can be simply typed, where typeability is direct proof of ter-
mination of the abstract machine.

The FMC originates in an attempt to restore confluence with effects, following
recent work that does so for probabilistic λ-calculi by Dal Lago, Guerrieri, and
the author [3].

2 Encoding effects

From the perspective of the Krivine Abstract Machine (KAM), the λ-calculus
is an instruction language for an abstract machine with a single stack. An ap-
plication N M pushes its argument M onto the stack and continues with the
function N . An abstraction λx.N pops the first element M off the stack and
binds it to x in N . Considering effects in the context of such a stack machine, a
key observation is that various effects can be modelled through push and pop
actions:

• Reading from input is a pop action from a stream.

• Writing to output is a push action to a stream.

• Updating a storage cell is a pop action, discarding the old value, followed
by a push action, instating the new value.

• Reading from a storage cell is a pop action, retaining the popped value for
use, followed by a push action of the same value, to reinstate the cell.

Where these operations differ from each other, and from regular abstraction
and application, is the source and target for their pop and push actions. To cap-
ture these effects it is then sufficient to parameterize abstraction and application
in a set of global locations, to represent input and output streams, storage cells,
and the original application stack of the machine. The stack machine, for its
part, will feature a separate stack, or stream, for each location. Stacks repre-
senting storage cells will then be bounded to a depth of one, for input and out-
put the machine will have streams, and by considering further input streams as
probabilistically or non-deterministically generated such operations may also
be modelled.

The poly-λ-calculus implements this idea, below, with application and ab-
straction parameterized in a set A of locations, ranged over by a, b, c, The
notation adjusts that of the λ-calculus to add locations and to emphasize the
stack machine interpretation. That is, an abstraction λx.N is written as 〈x〉. N ,

5

and parameterized in a location a as a〈x〉. N . Similarly, an application NM be-
comes [M]. N , with the argument M first to emphasize that it pushes M and
continues as N , and is parameterized in a as [M]a.N . For reduction, a re-
dex is formed only by an application and abstraction on the same location, as
[M]a. a〈x〉. N , but more generally these may be separated by applications and
abstractions on other locations.

Definition 1. The poly-λ-calculus PΛ is given by

N,M ····= x | [M]a.N | a〈x〉. N

with from left to right: a variable, an application or push action on a where N is
the function and M is the argument, and an abstraction or pop action on a where
x becomes bound in N . Reduction is by the rule

[M]a.A1 . . . An. a〈x〉. N A1 . . . An. {M/x}N

where each Ai is an action not along a, and {M/x}N is a capture-avoiding
substitution of M for x in N .

The regular λ-calculus is embedded via a reserved location λ, which may
be omitted for brevity.

λx.N
∆
= λ〈x〉. N = 〈x〉. N

N M
∆
= [M]λ.N = [M]. N

We will use the poly-λ-calculus to explore the encoding of effect operators.
Glancing ahead, since it is confluent, and since the operational semantics for
the effect operators will be given by a poly-stack Krivine Abstract Machine,
it forces a strict call–by–name semantics on them. The second modification,
sequencing, will allow the encoding of call–by–value evaluation, and will give
the Functional Machine Calculus.

First, we consider the abstract machine. To represent it in a simple, uniform
format, transitions are given by a horizontal rule, and initial and final states
as transitions without source, respectively without target, so that a run can be
pictured as a column of states. Since it’s purpose is mainly to give an opera-
tional semantics, and not an implementation, it is simplified from the KAM to
avoid environments, instead using substitutions directly.

Definition 2. The poly-stack abstract machine (PAM) has states (S,N) where N
is a poly-λ-term and S : A → PΛN is the memory, a function assigning to each
location a ∈ A a stack or stream of poly-λ-terms Sa ∈ PΛN. Empty stacks are
given as εa, a stack with top element M and remaining stack Sa is given as
Sa ·M , and the stack Sa is separated from the remaining memory S as S;Sa.
Initial states, final states, and transitions are as follows, and a double line will
indicate multiple steps.

(ε , N)
(S , x) (S ; εa , a〈x〉. N)

6

(S ; Sa , [M]a.N)
(S ; Sa ·M , N)

(S ; Sa ·M , a〈x〉. N)
(S ; Sa , {M/x}N)

The abstract machine further illustrates why in the reduction rule, the ap-
plication and abstraction may be separated by actions on other locations: in a
run, these affect other, independent stacks only, and the redex matches a con-
secutive push and pop on the same stack. Actions on different stacks may then
also permute without affecting the overall computation, provided that bind-
ing of variables is preserved. This suggests a natural equivalence ∼ on terms,
defined below, where a 6= b.

[M]a. [N]b. P ∼ [N]b. [M]a. P

a〈x〉. [N]b. P ∼ [N]b. a〈x〉. P if x /∈ fv(N)

a〈x〉. b〈y〉. P ∼ b〈y〉. a〈x〉. P

By these permutations the actions separating a redex may be moved up past
the application,

[M]a.A1 . . . An. a〈x〉. N ∼ A1 . . . An. [M]a. a〈x〉. N

since on the left no Ai binds in M (though to prevent capture, some variables
may need to be renamed. Then if terms are considered modulo∼ the reduction
step becomes (almost) a standard β-reduction:

[M]a. a〈x〉. N {M/x}N

However, with the current definition of β-reduction, which does allow a “split”
redex, the equivalence ∼ is not necessary for reduction. We now consider en-
coding effects into the poly-λ-calculus.

Input: Reading from input is given by a pop action in〈x〉. N on a dedicated
input location in ∈ A. To simulate an input stream of terms I1, I2, I3, . . . a term
N is evaluated in the context of a stream of push actions [Ii]in,

. . . [I3]in. [I2]in. [I1]in. N

so that reduction binds the first input term I1 to the variable x of the first input
operation in〈x〉 in the term:

. . . [I3]in. [I2]in. [Ii]in. A1 . . . An. in〈x〉. N
. . . [I3]in. [I2]in. A1 . . . An. {I1/x}N

where each Ai is an action not on in. Similarly, the stack machine is initial-
ized with the stream Sin = · · · I3 · I2 · I1 to give an operational reading via the
following transition.

(S ; · · · I3 · I2 · I1 , in〈x〉. N)
(S ; · · · I3 · I2 , {I1/x}N)

7

Output: Writing a term M to output is by a push action [M]out. N on a ded-
icated output location out ∈ A. There is no corresponding pop action; instead,
that a term N reduces to M while outputting a series of terms O1, O2, . . . , On
is given by a reduction leaving an initial sequence of push actions:

N [O1]out. [O2]out . . . [On]out.M .

The operational reading is illustrated for the ith output in a reduction, by a
machine transition

(S ; εout ·O1 · · ·Oi−1 , [Oi]out. N)
(S ; εout ·O1 · · ·Oi−1 ·Oi , N)

.

Note the peculiarity that output should be considered a queue, not a stack: the
first output will be at the bottom of the stack, but would be at the head of a
queue. We will come back to this in the Conclusion, Section 9.

Higher-order mutable store: A subset C ⊆ A of locations is designated as
storage cells, whose associated stacks are expected to hold at most one value.
The standard operations update c :=M ;N , which updates the cell c with value
M and then continues as N , and read !c, which reads the value from the cell c
and executes it, are encoded as follows,

c :=M ;N
∆
= c〈_〉. [M]c.N

!c
∆
= c〈x〉. [x]c. x

where (_) represents a variable that does not occur in M or N . Following the
earlier informal description, the update c :=M is encoded by a popping and
discarding the value held by the cell c, and then pushing the new valueM . The
read operation !c is encoded by first popping the value of the cell c and binding
it to the local variable x, then restoring the value to c with a push action, and
finally executing it. The abstract machine gives the formal operational perspec-
tive:

c :=M ;N : (S ; εc · P , c〈_〉. [M]c.N)
(S ; εc , [M]c.N)
(S ; εc ·M , N)

!c : (S ; εc · P , c〈x〉. [x]c. x)
(S ; εc , [P]c. P)
(S ; εc · P , P)

Since the machine does not reduce under abstractions, and both encoded op-
erators start with an abstraction, the stack for each cell location c ∈ C must be
initialized with a (dummy) value. For reduction, this is not necessary, except
to obtain a tight correspondence with the machine. Then if C = {c1, . . . , cn}, a
term N should be evaluated in the context of a push action of a dummy value
? for each ci:

[?]c1. . . . [?]cn. N .

8

Observe the interesting situation that the machine implements what is normally
the reduction behaviour of the update and read operators. Reduction in the
calculus implements two familiar algebraic laws,

c :=N ; c :=M ;P = c :=M ;P

c :=M ; !c = c :=M ;M .

which are central to the algebraic characterization of state, and by extension
to the idea of algebraic effects [11]. The reductions are as follows, with reduced
redexes underlined.

c :=N ; c :=M ;P = c〈_〉. [N]c. c〈_〉. [M]c. P

c〈_〉. [M]c. P

= c :=M ;P

c :=M ; !c = c〈_〉. [M]c. c〈x〉. [x]c. x

c〈_〉. [M]c.M

= c :=M ;M

Non-deterministic and probabilistic computation: This account follows [3],
where more details can be found. Non-deterministic and probabilistic choice
can be modelled along the lines of input, with two dedicated locations nd, rnd ∈
A. The associated pop actions nd〈x〉. N and rnd〈x〉. N expect a Boolean value
T = λx. λy. x or F = λx. λy. y for x, in Church encoding as we have not intro-
duced primitives, which can be used inside N to project a subterm xMP onto
one value M or another P . The machine is then initialized with input streams
of Booleans Bi, one non-deterministically generated for nd and one probabilis-
tically generated for rnd. Reduction similarly takes place in a corresponding
context of push actions:

. . . [B3]nd. [B2]nd. [B1]nd. N

. . . [B3]rnd. [B2]rnd. [B1]rnd. N .

The algebraic properties that make the choice for each Bi as T or F into a
probabilistic or non-deterministic one are then encoded in how these context
streams are generated. For instance, a non-deterministic or fair probablistic
generarator can be simulated via the following rules (which would apply at
top-level only, and not in context).

N nd [T]nd. N + [F]nd. N

N rnd [T]rnd. N ⊕ 1
2

[F]rnd. N

A traditional non-deterministic sum + and fair probabilistic sum⊕, internal to
the calculus, can then be encoded by

N +M
∆
= nd〈x〉. xM N

N ⊕M ∆
= rnd〈x〉. xM N .

9

(εa · ? ; ελ , a〈_〉. [2]a. [a〈_〉. [3]a. 〈x〉. x]. 〈f〉. [a〈y〉. [y]a. y]. f)

(εa · 2 ; ελ , [a〈_〉. [3]a. 〈x〉. x]. 〈f〉. [a〈y〉. [y]a. y]. f)

(εa · 2 ; ελ · (a〈_〉. [3]a. 〈x〉. x) , 〈f〉. [a〈y〉. [y]a. y]. f)

(εa · 2 ; ελ , [a〈y〉. [y]a. y]. a〈_〉. [3]a. 〈x〉. x)

(εa · 2 ; ελ · (a〈y〉. [y]a. y) , a〈_〉. [3]a. 〈x〉. x)

(εa · 3 ; ελ · (a〈y〉. [y]a. y) , 〈x〉. x)

(εa · 3 ; ελ , a〈y〉. [y]a. y)

(εa · 3 ; ελ , 3)

Figure 1: An example run of the Poly-stack Abstract Machine

Example 3. Consider the following example. Numbers can be taken either as prim-
itives or as Church numerals, and the colour-coding helps visualize the encoding of
operations into the poly-λ-calculus and their reduction.

a := 2 ; (λf. f !a) (a := 3 ;λx. x)
=

a〈_〉. [2]a. [a〈_〉. [3]a. 〈x〉. x]. 〈f〉. [a〈y〉. [y]a. y]. f

The example reduces as follows. The matching application and abstractions of reduced
redexes are underlined, which may be separated by actions on other locations.

a〈_〉. [2]a. [a〈_〉. [3]a. 〈x〉. x]. 〈f〉. [a〈y〉. [y]a. y]. f

a〈_〉. [2]a. [a〈y〉. [y]a. y]. a〈_〉. [3]a. 〈x〉. x
a〈_〉. [2]a. a〈_〉. [3]a. a〈y〉. [y]a. y

a〈_〉. [3]a. a〈y〉. [y]a. y

a〈_〉. [3]a. 3

= a := 3 ; 3

The corresponding run of the machine is given in Figure 1, with a stack λ for regular
abstraction and application, and a stack for the cell a initialized with ?.

3 The functional machine calculus

The poly-λ-calculus forces a call–by–name interpretation on effect operators.
For the calculus to be practically useful, it will also need to allow call–by–value
behaviour. We will explore what is needed through another example.

10

Example 4. Naïve effectful reduction gives different results for call–by–name and
call–by–value, as shown by the following example.

a := 2 ; (λx. !a) (a := 3 ; 5)
cbn 2

cbv 3

With cbv, the argument a := 3 ; 5 is evaluated and updates the cell a with the value 3
before !a is called; with cbn, the argument is deleted without evaluation, and the value
stored at a remains 2 when !a is called. The encoding in the poly-λ-calculus follows
the cbn-reduction:

a〈_〉. [2]a. [a〈_〉. [3]a. 5]. 〈x〉. a〈y〉. [y]a. y

a〈_〉. [2]a. a〈y〉. [y]a. y

a〈_〉. [2]a. 2

= a := 2 ; 2

Building on this example, a key observation is that its call–by–value be-
haviour is captured by a slightly different term:

a〈_〉. [2]a. a〈_〉. [3]a. [5]. 〈x〉. a〈y〉. [y]a. y

a〈_〉. [3]a. [5]. 〈x〉. a〈y〉. [y]a. y

a〈_〉. [3]a. a〈y〉. [y]a. y

a〈_〉. [3]a. 3

= a := 3 ; 3

Since the aim is confluence, the interpretation of cbn and cbv would have to be
through different translations. However, while the above is a perfectly valid
term of the poly-λ-calculus, it is unavailable as a translation from the term in
Example 4. That is because the subterm a := 3 ; 5 of Example 4 corresponds in
the desired cbv-term to a fragment a〈_〉. [3]a. [5], as underlined below, that is
not a subterm, since it is not a poly-λ-term.

a〈_〉. [2]a. a〈_〉. [3]a. [5]. 〈x〉. a〈y〉. [y]a. y

To see what modifications are required to make a〈_〉. [3]a. [5] into a subterm,
consider replacing it with a free variable z, for which a〈_〉. [3]a. [5] may then be
substituted again:

a〈_〉. [2]a. z. 〈x〉. a〈y〉. [y]a. y .

The change needed is the following. In the λ-calculus and poly-λ-calculus, a
term is a sequence of abstractions and applications, ending in a variable; this
is called the spine of the term. To allow the above term, variables need to occur
within the sequence as well. To adapt the syntax, the variable construct x is
decomposed into a variable–with–continuation x.N and an end–of–instructions

11

construct ?, so that the original variable constructor is recovered as x. ?. This
will allow the above construction, and a translation along the desired lines, as
there will now be the following terms.

a〈_〉. [2]a. z. 〈x〉. a〈y〉. [y]a. y. ? a〈_〉. [3]a. [5]. ?

This decomposition of the variable, as a modification to a λ-calculus, will be
called sequentiality. Applied to the poly-λ-calculus, it gives the Functional Ma-
chine Calculus.

Definition 5. The Functional Machine Calculus (FMC) is given by the grammar

M,N ····= ? | x.N | [M]a.N | a〈x〉. N

with from left to right an end or nil, a (sequential) variable, an application or push
action on the location a, and an abstraction or pop action on the location a which
binds x in N . Reduction is by the β-rewrite rule

[M]a.A1 . . . An. a〈x〉. N A1 . . . An. {M/x}N

where each Ai is an action not on a and {M/x}N is a capture-avoiding substitu-
tion of M for x in N , defined by

{L/y} ? = ?
{L/y} y.N = L. {L/y}N
{L/y}x.N = x. {L/y}N

{L/y} [M]a.N = [{L/y}M]a. {L/y}N
{L/y} a〈y〉. N = a〈y〉. N
{L/y} a〈x〉. N = a〈z〉. {L/y}{z/x}N (z is fresh)

where capture-avoiding composition M.N is defined by

? .N = N
(x.M). N = x. (M.N)

([L]a.M). N = [L]a. (M.N)
(a〈x〉.M). N = a〈z〉. (({z/x}M). N) (z is fresh) .

Terms are considered modulo α-equivalence. Usually the trailing . ? of a
term will be omitted, so that x is shorthand for x. ?, [M]a for [M]a. ?, and a〈x〉
for a〈x〉. ?. The equivalence that permutes actions on different locations, (∼),
translates directly to the FMC.

Definition 6. The Functional Abstract Machine (FAM) has states (S,N) where N
is a FMC-term and S : A → FMCN is the memory function assigning to each
location a ∈ A a stack or stream of FMC-terms Sa ∈ FMCN. Initial states, final
states, and transitions are as follows.

(ε , N)
(S , ?) (S , x.N) (S ; εa , a〈x〉. N)

(S ; Sa , [M]a.N)
(S ; Sa ·M , N)

(S ; Sa ·M , a〈x〉. N)
(S ; Sa , {M/x}N)

12

Programming in the FMC Separating the constructs ? and x.N introduces
sequencing or composition M.N , with ? as the unit. This allows to naturaly ex-
press the difference between lazy and eager evaluation: [M]. N passes the term
M along toN without executing it, as a thunk, whileM.N executes firstM and
then N , passing on the result of M to N . The result of M must be pushed onto
a stack, and popped by N ; it is expected that M is of the form M ′. [R], and N
of the form 〈x〉. N ′, to pick up the result R as x.

To work in this paradigm, natural operations for state (for a memory cell c),
output, input, and random choice are as follows.

get c = c〈x〉. [x]c. [x]
set c = 〈x〉. c〈_〉. [x]a
print = 〈x〉. [x]out
read = in〈x〉. [x]
rand = rnd〈x〉. [x]

For a cell location c, the term get c retrieves the value stored at c and pushes it
onto the main stack. The term set c pops the last result from the main stack,
and updates c with that value. The term rand transports a random value from
rnd onto the main stack, and print takes the last result to the output stream.

Primitives such as Booleans and integers, follow a similar pattern, operat-
ing as a standard stack calculus. Values are >, ⊥, 0, 1, −1, 2, −2, . . . , and the
primitive operations of addition +, multiplication ×, and conditional if pop
the required number of items from the main stack, and reinstate their result.
Reduction implements this behaviour as follows. For brevity, any actions on
other locations are omitted, which the full reduction rule would allow between
the operator and any inputs. (That is, reduction is given modulo ∼.)

[j]. [i].+ [k] where k = i+ j

[N]. [M]. [>]. if [M]

[N]. [M]. [⊥]. if [N]

This results in an imperative style of programming similar to Haskell’s do-
notation, but with the difference that a term can have any number of return
values, by pushing multiple items to the stack - or none. Likewise, a function
may consume any number of previously returned values.

Example 7. Consider the following example, where x = M . N abbreviates a redex
[M]. 〈x〉. N , and the random values of rnd are taken to be natural numbers.

f = (rand . set a . get a) . f . f . + . print

The term assigns f to be the function that draws a random number, stores it in cell a,
and reads the value at a again as its return value. It then executes f twice, sums the
results, and prints that. The decoded term and its reduction are as follows. After the
first four steps the context . . . [5]rnd. [2]rnd. [?]a is made explicit, which initializes the

13

cell a with ? as the null value and provides the random numbers 2 and 5.

[rnd〈x〉 . [x] . 〈y〉. a〈_〉. [y]a . a〈z〉. [z]a. [z]] . 〈f〉 . f . f . + . 〈p〉. [p]out
[rnd〈x〉 . . a〈_〉. [x]a . a〈z〉. [z]a. [z]] . 〈f〉 . f . f . + . 〈p〉. [p]out

[rnd〈x〉 . a〈_〉 . [x]a. [x]] . 〈f〉 . f . f . + . 〈p〉. [p]out
rnd〈x〉. a〈_〉. [x]a. [x] . rnd〈x〉. a〈_〉. [x]a. [x] . + . 〈p〉. [p]out

rnd〈x〉. a〈_〉. [x] . rnd〈x〉. [x]a. [x] . + . 〈p〉. [p]out

. . . [5]rnd. [2]rnd. [?]a . rnd〈x〉. a〈_〉. [x] . rnd〈x〉. [x]a. [x] . + . 〈p〉. [p]out
. . . [5]rnd. [2]rnd . rnd〈x〉. [x] . rnd〈x〉. [x]a. [x] . + . 〈p〉. [p]out

. . . [5]rnd . [2] . rnd〈x〉. [x]a. [x] . + . 〈p〉. [p]out
. . . [2] . [5]a. [5] . + . 〈p〉. [p]out

. . . [5]a. [7] . 〈p〉. [p]out
. . . [5]a . [7]out

The overal result is to consume the random inputs 2 and 5, update the cell a with the
value 5, and send 7 to output.

The two modifications that make the FMC, locations and sequentiality, are
independent, and conservative: they can be undone by forcing A = {λ} and,
respectively, forcing sequential variables and nil to always occur together. This
gives three fragments of the FMC, where that without locations but with se-
quentiality will be called the sequential λ-calculus:

• The λ-calculus:
N,M ····= x. ? | [M]. N | 〈x〉. N

• The poly-λ-calculus:

N,M ····= x. ? | [M]a.N | a〈x〉. N

• The sequential λ-calculus:

N,M ····= ? | x.N | [M]. N | 〈x〉. N

The decomposition of the variable is a subtle but profound change to the
λ-calculus, whose consequences are hard to oversee immediately. Reassurance
that it is well behaved will come from properties proved later. First, I will argue
that from the perspective of the abstract machine, and that of the ultimate aim
of unifying functional and imperative computation, it is also a natural adapta-
tion.

Sequencing: Imperative languages are built around a sequence operator,
usually (;), that strings together commands, and while it is possible to intro-
duce this into the λ-calculus as a primitive, a true merger of the two paradigms

14

may be expected to feature sequencing as a more fundamental notion. The
capture-avoiding composition of the sequential λ-calculus fits this description well.
Like sequencing, it is right-associative (modulo capture-avoidance), and it has
the end term ? as a unit, like the empty command skip is for sequencing. We
may add the following definitions for clarity and completeness:

M ;N
∆
= M.N skip

∆
= ?

Machine termination: From the perspective of the machine, the variable
construct of the λ-calculus serves a dual purpose: to be substituted for, and to
terminate a sequence of instructions. There is no reason why these rôles should
not be separated: it is perfectly fine for an instruction sequence to end with a
push or pop action. More strongly, there is every reason to separate these rôles,
since they are opposites: a variable that needs to be substituted for implies the
continuation of a run, not its termination. Even more strongly: by merging these
rôles, successful termination of the machine is ruled out, and a run may only
end with a free variable or an abstraction on an empty stack, both of which are
really errors. Arguably, then, the only final state of the machine should be that
with the end construct, with those for variable and abstraction classed as failure
to terminate successfully. A formal reason is that a run

(ε , N)

(S , ?)

can be continued, in the sense that a run for the composition N.M would start
as above, and then continue to evaluate M in the state (S,M). A run ending
in a variable or abstraction is and remains stuck, and cannot be recovered by
composition.

Values and commands: Calculi that combine functional and imperative
features are often forced to distinguish values and commands. The former are
computations that return an answer, associated with the functional side; the
latter are computations that do not return an answer, whose main purpose is
to modify the state, or some other effect. From the present perspective, com-
mands would be characterized by the machine terminating successfully in an
end, and values such as regular λ-terms would have runs ending in a variable
or abstraction, which is then returned. The effect of decomposing the variable
is then to include commands into the calculus.

However, the previous point on machine termination gave a stronger conclu-
sion: that ending in a variable or abstraction is not a value, but an error. This
conforms to the expectation that a value should available for use by a further
computation, while as argued above, a run ending in an abstraction or variable
cannot be recovered. But then, if all terms are commands or errors, how do
they return anything useful, apart from through mutable store? The answer is
that in a run

(ε , N)

(S ; Sλ , ?)

15

the stack Sλ for regular abstraction and application should be considered to
hold the return values, since in a further composition N.M , these are exactly
what is picked up by the abstractions of M . This perspective renders the dis-
tinction between values and commands moot, since their features are compati-
ble: a successful run leaves return values on the λ-stack, but not on the main
sequence of the term, the spine, as traversed by the machine.

4 Confluence

For an intuition why the FMC retains conflence, we consider both modifica-
tions, sequencing and locations, in turn. Sequencing creates a new configuration
N. x.M to consider. Reduction on this term is either reduction in N (with sub-
stitutions in x.M) or reduction in M , and so this does not create new critical
pairs. Note that the application and abstraction of a redex may only be sepa-
rated by actions, not by a variable, so that for example [M]. x. 〈y〉. N is not a
redex.

Reduction with locations creates two configurations of interlocking redexes,
of the following two forms:

[M]a . . . [N]b . . . b〈y〉 . . . a〈x〉. P

[M]a . . . [N]b . . . a〈x〉 . . . b〈y〉. P

But these are equivalent under ∼ to the more familiar form:

[M]a. a〈x〉 . . . [N]b. b〈y〉 P

The confluence proof is then standard by the parallel-reduction technique by
Martin-Löf, Tait, and Takahashi [16].

Theorem 8. Reduction is confluent.

Proof. See Appendix A.

5 Types

Simple types for the FMC will be subtly different from familiar type systems
for the λ-calculus. This is almost by necessity: the cbn and cbv λ-calculus have
the same simple types, but different interpretations in the FMC, so we cannot
expect to unambiguously derive types for the FMC this way. And unlike previ-
ous approaches, the FMC is not rooted in a semantics from which types might
be construed. Instead, we will continue as we have: following operational con-
siderations. Remarkably, this will lead to a simple conjunction–implication sys-
tem, semantically a Cartesian closed category, without any primitive monadic
functors, though parametrized in locations. Avoiding the complication of para-
metricity, we will start with types for the sequential λ-calculus.

16

Definition 9. Sequential types are given by the following grammar, where the
only constructor is an implication.

ρ, σ, τ , υ ····= σn . . . σ1 ⇒ τ1 . . . τm

That is, a type ρ consists of a vector σn . . . σ1 of antecedents and a vector
τ1 . . . τm of consequents, each of which may be empty. Type vectors will be writ-
ten ⇀

σ = σ1 . . . σn, with the same vector in reverse as ↼
σ = σn . . . σ1, so that a type

is given as ↼
σ ⇒

⇀
τ . A type vector can intuitively be seen as a conjunction, and a

type can be interpreted with standard implication and conjunction as follows.

(σn ∧ . . . ∧ σ1)→(τ1 ∧ . . . ∧ τm)

We extend vector notation to variables, ⇀
x = x1, . . . , xn, and to simultaneous

substitutions: if T = ε ·N1 · · ·Nn then

{T/⇀x} = {N1/x1, . . . , Nn/xn} .

The intuitive meaning of a type is to describe the behaviour of the stack
machine. A term will have a type, and a stack a vector of types. Then if N has
type ↼

σ ⇒
⇀
τ and S has the types ⇀

σ, the machine will have a run

(S , N)

(T , ?)

producing a stack T with the types ⇀
τ . Thus, a type describes the net behaviour

of the abstract machine: only the initial and final configurations, and not the
intermediate stack use.

Definition 10. A sequential term N is typed by Γ ` N : τ according to the rules
in Figure 2, where Γ is a context of typed variables

Γ =
⇀
x :

⇀
σ = x1 : σ1, . . . , xn : σn .

A stack S = ε ·N1 · · ·Nn is typed Γ ` S :
⇀
τ if ⇀

τ = τ1 . . . τn and Γ ` Ni : τi for
1 ≤ i ≤ n.

Example 11. The term λx. x x = 〈x〉. [x. ?]. x. ? can be typed by assigning x a type
of the form ⇒⇀

τ that does not consume input. In this way, the self-application does not
create a clash. The corresponding most general derivation (without instantiating ⇀

τ) is
as follows.

x : ⇒
⇀
τ ` ? :

↼
τ ⇒

⇀
τ
?

x : ⇒
⇀
τ ` x. ? : ⇒

⇀
τ

var
x : ⇒

⇀
τ ` ? :

↼
τ(⇒

⇀
τ)⇒ (⇒

⇀
τ)

⇀
τ
?

x : ⇒
⇀
τ ` x. ? : (⇒

⇀
τ)⇒ (⇒

⇀
τ)

⇀
τ

var

x : ⇒
⇀
τ ` [x. ?]. x. ? : ⇒ (⇒

⇀
τ)

⇀
τ

app

` 〈x〉. [x. ?]. x. ? : (⇒
⇀
τ)⇒ (⇒

⇀
τ)

⇀
τ

abs

17

Γ ` ? :
↼
τ ⇒

⇀
τ
?

Γ, x :
↼
ρ⇒

⇀
σ ` N :

↼
σ

↼
τ ⇒

⇀
υ

Γ, x :
↼
ρ⇒

⇀
σ ` x.N :

↼
ρ

↼
τ ⇒

⇀
υ

var

Γ `M : ρ Γ ` N : ρ
↼
σ ⇒

⇀
τ

Γ ` [M]. N :
↼
σ ⇒

⇀
τ

app

Γ, x : ρ ` N :
↼
σ ⇒

⇀
τ

Γ ` 〈x〉. N : ρ
↼
σ ⇒

⇀
τ

abs

Figure 2: Natural-deduction typing rules for the sequential λ-calculus

For effects, this is crucial: the call–by–name read construct !a = a〈x〉. [x]a. x is just
λx. xx but on a different location a, and should in many cases be typeable. For any-
thing which does not consume input from a, it would. But the fixed point combinators
of Example ?? are not typeable, nor is (λx. xx)(λx. xx), since the argument matching
the first λx takes input.

Primitives can be typed by extending types with constants κ, which will
here include B for Booleans and Z for integers.

ρ, σ, τ , υ ····= κ | ↼
σ ⇒

⇀
τ

The types for primitives are then as follows.

>, ⊥ : B if : τ τ B⇒ τ (for any τ)

. . . ,−1, 0, 1, . . . : Z + , × : Z Z⇒ Z

The type system creates a natural distinction between values of type κ and com-
putations of type ↼

σ ⇒
⇀
τ . The pure calculus, without constants, has only com-

putations, and the type system does not allow variables to range over values,
since the typing rule for x.N requires x to have a computation type. To manip-
ulate values, we need to re-introduce a typed variable without continuation,
x : κ, as a term. For this and the typed constants k : κ and f :

↼
ρ⇒

⇀
σ we have the

following typing rules, and the corresponding machine transition for f , which
determines for every input stack R :

⇀
ρ an output stack S :

⇀
σ.

Γ, x : κ ` x : κ Γ ` k : κ

Γ ` N :
↼
σ

↼
τ ⇒

⇀
υ

Γ ` f.N :
↼
ρ

↼
τ ⇒

⇀
υ

(T ·R , f.N)

(T · S , N)

The following proposition establishes four basic properties, including the
familiar subject reduction. The expansion property states that if a term expecting
a stack R :

⇀
ρ is given a stack T ·R :

⇀
τ

⇀
ρ, then it returns the remaining stack T :

⇀
τ

untouched.

18

Proposition 12. Typed terms satisfy the following properties:

• Expansion: if Γ ` N :
↼
ρ⇒

⇀
σ then Γ ` N :

↼
ρ

↼
τ ⇒

⇀
τ

⇀
σ.

• Composition: if Γ ` N :
↼
ρ⇒

⇀
σ and Γ `M :

↼
σ ⇒

⇀
τ then Γ ` N.M :

↼
ρ⇒

⇀
τ .

• Subject substitution: if Γ `M : σ and Γ, x : σ ` N : τ then Γ ` {M/x}N : τ .

• Subject reduction: if Γ ` N : τ and N M then Γ `M : τ .

Proof. The first three properties are by induction on N , and the last by induc-
tion on the context of the reduction step.

A remarkable aspect of the type system is how it gives a direct connection
with termination of the machine. To expose this, we formalize the intuitive
meaning of types as describing the initial and final stack of a run of the ma-
chine.

Definition 13. The set RUN(
↼
σ ⇒

⇀
τ) is the set of terms N such that for any stack

S ∈ RUN(
⇀
σ) there is a stack T ∈ RUN(

⇀
τ) and a run of the machine

(S , N)

(T , ?)

where RUN(τ1 . . . τn) is the set of stacks ε ·N1 · · ·Nn such that Ni ∈ RUN(τi).

IfN : τ impliesN ∈ RUN(τ), then a type derivation is a termination proof of
the machine. This is Theorem 14, and proving it gives an interestingly concrete
Tait-style reducibility proof [15], where RUN(τ) takes the rôle of the reducibility
set for τ . By using the properties of machine runs, such as expansion and com-
position as given for types in Proposition 12, the proof is then a simple, direct
induction on type derivations.

Theorem 14. If ⇀
w :

⇀
ω ` N : τ then for any W ∈ RUN(

⇀
ω), {W/⇀

w }N ∈ RUN(τ).

Proof. By induction on the type derivation. In each case, let Γ =
↼
w :

↼
ω, let W be

a stack in RUN(
⇀
ω), and let N ′ = {W/↼

w}N .

• If the derivation is a ?-rule for Γ ` ? :
↼
τ ⇒

⇀
τ then there is a trivial zero-step

run from the state (T , ?) to itself.

• If the derivation ends in

Γ, x :
↼
ρ⇒

⇀
σ ` N :

↼
σ

↼
τ ⇒

⇀
υ

Γ, x :
↼
ρ⇒

⇀
σ ` x.N :

↼
ρ

↼
τ ⇒

⇀
υ

var

then for any M ∈ RUN(
⇀
ρ⇒

⇀
σ), the inductive hypothesis gives a run for

{M/x}N ′ from any T · S ∈ RUN(
⇀
τ

⇀
σ) to some U ∈ RUN(

⇀
υ) (below left). For

M there is a run from any R ∈ RUN(
⇀
ρ) to some S ∈ RUN(

⇀
σ) (below right).

(T · S , {M/x}N ′)
(U , ?)

(R , M)

(S , ?)

19

These runs compose into one for {W/⇀
w, M/x}x.N = M. {M/x}N ′ as be-

low, expanding the stack on the run for M by T .

(T ·R , M. {M/x}N ′)
(T · S , {M/x}N ′)

(U , ?)

• If the derivation ends in

Γ `M : ρ Γ ` N : ρ
↼
σ ⇒

⇀
τ

Γ ` [M]. N :
↼
σ ⇒

⇀
τ

app

then by the inductive hypothesis, M ′={W/⇀
w}M ∈ RUN(ρ), and there is a

run for N ′ from M ′ and any S ∈ RUN(
⇀
σ) to some T ∈ RUN(

⇀
τ). This gives

the following run for {W/⇀
w}[M]. N = [M ′]. N ′.

(S , [M ′]. N ′)

(S ·M ′ , N ′)

(T , ?)

• If the derivation ends in

Γ, x : ρ ` N :
↼
σ ⇒

⇀
τ

Γ ` 〈x〉. N : ρ
↼
σ ⇒

⇀
τ

abs

then for any M ∈ RUN(ρ) and S ∈ RUN(
⇀
σ) the inductive hypothesis gives

a run for {M/x}N ′ to some T ∈ RUN(
⇀
τ). This gives the following run for

{W/⇀
w}〈x〉. N = 〈x〉. N ′.

(S ·M , 〈x〉. N ′)
(S , {M/x}N ′)

(T , ?)

Corollary 15. For a typed term the machine terminates.

Appendix C will show that reduction () on typed sequential λ-terms is
strongly normalizing, by typing the continuation encoding of Section 8 with
second-order types.

6 Poly-types

It remains to lift sequential types to the FMC. This is conceptually simple: anal-
ogously to the change from a single-stack to a multiple-stack abstract machine,
a type for the FMC will be an implication not between single type vectors ⇀

τ , but
a family of vectors ⇀

τA = {⇀τa | a ∈ A} parameterized in the set of locations A.

20

Γ ` ? :
↼
τA ⇒

⇀
τA

?

Γ, x :
↼
ρA ⇒

⇀
σA ` N :

↼
σA

↼
τA ⇒

⇀
υA

Γ, x :
↼
ρA ⇒

⇀
σA ` x.N :

↼
ρA

↼
τA ⇒

⇀
υA

var

Γ `M : ρ Γ ` N : a(ρ)
↼
σA ⇒

⇀
τA

Γ ` [M]a.N :
↼
σA ⇒

⇀
τA

app

Γ, x : ρ ` N :
↼
σA ⇒

⇀
τA

Γ ` a〈x〉. N : a(ρ)
↼
σA ⇒

⇀
τA

abs

Figure 3: Natural-deduction typing rules for the Functional Machine Calculus

Definition 16. Poly-types ρ, σ, τ , υ are given by:

τ ····=
↼
σA ⇒

⇀
τA

⇀
τA ····= {

⇀
τa | a ∈ A}

⇀
τ ····= τ1 . . . τn

The following notation is further added:

• concatenation: ⇀
σA

⇀
τA = {⇀σa

⇀
τa | a ∈ A};

• injection: a(
⇀
τ) is the family given by a(

⇀
τ)a =

⇀
τ and a(

⇀
τ)b = ε (the empty

type vector) if a 6= b.

Definition 17. An FMC-term is typed Γ ` N : τ by a poly-type τ in a context Γ
by the type system in Figure 3.

Example 18. The injection construct a(
⇀
τ) gives a natural way of writing types in

practice. We may type the term from Example 7 as follows. The type expresses that it
pops two integers from rnd and one from a, and pushes one integer to a and one to out.
(Note that there are other ways of writing the same type.)

f = (rand . set a . get a) . f . f . + . print : rnd(Z Z) a(Z)⇒ a(Z) out(Z)

Various subterms can be given the following types, for any types σ and τ , which ul-
timately must specialize to Z in the context of the term. As with terms, the default
location λ is omitted, with λ(

⇀
τ) written simply as ⇀

τ .

rand = rnd〈x〉. [x] : rnd(τ)⇒ τ
set a = 〈x〉. a〈_〉. [x]a : τ a(σ)⇒ a(τ)
get a = a〈x〉. [x]a. [x] : a(τ)⇒ a(τ) τ

rand . set a . get a : rnd(τ) a(σ)⇒ a(τ) τ
f =(rand . set a . get a) . f . f : rnd(τ τ) a(τ)⇒ a(τ) τ τ

Theorem 19. For a typed FMC-term the Functional Abstract Machine terminates.

Proof. Analogous to the proof of Theorem 14.

21

7 Encoding call–by–(push–)value

Various calculi have been proposed to capture both call–by–value and call–
by–name strategies, to which effects are be added to make use of this feature.
Here, we will consider Plotkin’s call–by–value [12], Moggi’s Computational
Metalanguage [10], Ehrhard and Guerrieri’s Bang Calculus [5], and Levy’s call–
by–push–value [8].

Call–by–value: The call–by–value λ-calculus [12] is a restriction of the λ-
calculus that limits β-reduction to the case where the argument is a value V , a
variable or an abstraction:

V,W ····= x | λx.N (λx.M)V v {V/x}M

Definition 20. The call-by-value translation Nv of a λ-term N into an FMC-term
is given by:

xv = [x]

(λx.N)v = [〈x〉. Nv]

(N M)v = Mv. Nv. 〈x〉. x

The idea of this translation is that a value is the result of a successful com-
putation, which returns it by pushing it on the stack. The interpretation of an
application NM first evaluates the argument Mv, pushing the result onto the
stack; then the same for the function Nv, leaving both returned values on the
stack; and finally the function is called by popping it from the stack and execut-
ing it.

Theorem 21. If M v N then Mv Nv.

Proof. Let (λx.M)V v {V/x}M and let Vv = [N]. Then

[N]. [〈x〉.Mv]. 〈y〉. y [N]. 〈x〉.Mv

{N/x}Mv

= ({V/x}M)v

where the last equality is a straightforward induction on M with the following
base case.

{N/x}xv = {N/x}[x] = [N] = Vv = ({V/x}x)v

The store operators update and read are given a call–by–value interpretation
as follows.

(a :=N)v = N. 〈x〉. a〈_〉. [x]a

(!a)v = a〈x〉. [x]a. [x]

The behaviour of update is to evaluate N , pop its return value from the stack
as x, and use that to replace the first element on the stack for a. The behaviour
of read is as for the call–by–name interpretation, except the value that is read is
put on the stack instead of evaluated immediately.

22

Example 22. The call–by–value reduction from Example 4,

a := 2 ; (λx. !a) (a := 3 ; 5) cbv 3

is captured as follows. Numbers may again be taken as constants or Church numerals;
in both cases, they are values, and the translation will use iv = [i]. The two update
operations are then translated and simplified as follows:

(a := 2)v = [2]. 〈x〉. a〈_〉. [x]a a〈_〉. [2]a

(a := 3)v = [3]. 〈x〉. a〈_〉. [x]a a〈_〉. [3]a

The remaining cbv-interpretation and reduction of the example is as follows.

a〈_〉. [2]a. a〈_〉. [3]a. [5]. [〈x〉. a〈y〉. [y]a. [y]]. 〈z〉. z
a〈_〉. [3]a. [5]. [〈x〉. a〈y〉. [y]a. [y]]. 〈z〉. z
a〈_〉. [3]a. [5]. 〈x〉. a〈y〉. [y]a. [y]

a〈_〉. [3]a. a〈y〉. [y]a. [y]

a〈_〉. [3]a. [3]

(a := 3 ; 3)v

The computational metalanguage: Moggi’s computational metalanguage [10]
extends the call–by–name λ-calculus with two constructs, parameterized in a
monad T : return [N]T , which for any T is included as [N] in the FMC; and let,
included as follows, again for any T :

letT x⇐N inM = N. 〈x〉.M

The translation directly gives the required reduction:

letT x⇐ [N]T inM = [N]. 〈x〉.M {N/x}M

The use of effects in this setting is illustrated by an example.

Example 23. We will look at two interpretations, one for cbn and one for cbv, of the
non-confluent term of Example 4,

a := 2 ; (λx. !a) (a := 3 ; 5)

in the metalanguage with state monad. Monadic update a :−N = a〈_〉. [N]a. [?]
returns a unit, and read gives a monadic return value, read a = a〈x〉. [x]a. [x]. The
cbn version and its FMC embedding, below, return [2].

let _⇐ a :− 2 in (λx.read a) (let _⇐ a :− 3 in [5])

a〈_〉. [2]a. [?]. 〈_〉. [a〈_〉. [3]a. [?]. 〈_〉. [5]]. 〈x〉. a〈z〉. [z]a. [z]

The cbv version, below, returns [3].

let _⇐ a :− 2 in (let _⇐ a :− 3 in (λx.read a) [5])

a〈_〉. [2]a. [?]. 〈_〉. a〈_〉. [3]a. [?]. 〈_〉. [[5]]. 〈x〉. a〈z〉. [z]a. [z]

23

An interesting observation is that for metalanguage terms embedded into
the FMC, redexes are properly nested, which means that the restricted reduction
relation [M]a. a〈x〉. N {M/x}N becomes sufficient. This relates to the fact
that the metalanguage has a separate monad for each effect, while effects can
mix freely in the FMC.

The bang-calculus: The bang-calculus [5] is a simplification of call-by-push-
value based on linear logic. It, too, encodes both call–by–value and call–by–
name. The syntax distinguishes values V,W as a subset of terms S, T , as given
by the following grammars.

S, T ····= V | λx.T | 〈T 〉S | der T V,W ····= x | T !

There are two reduction rules:

〈λx. T 〉V b {V/x}T der(T !) ! T

Definition 24. The bang-translation Tb of a bang-term T into an FMC-term is
given by:

xb = [x]

(T !)b = [Tb]

(λx. T)b = 〈x〉. Tb
(〈T 〉S)b = Sb. Tb

(der T)b = Tb. 〈x〉. x

Some interesting aspects stand out about this translation. One is how the
bang-calculus allows many of the key constructions of the sequential λ-calculus,
such as a term ending in a push action in T !, and sequencing in 〈T 〉S. The main
missing construct is the sequential variable x.N , but this can be simulated by a
dereliction and sequencing: 〈T 〉 (der x). This gives a partial return translation
for the sequential λ-calculus, below, which covers all terms except ? and those
ending in a pop action, 〈x〉. ?. The other thing that stands out is how close also
the reduction relations are, which is expressed in the two subsequent theorems.

Definition 25. The sequencing translation Ns is a partial interpretation of the
sequential λ-calculus into the bang-calculus, given by:

(x.N)s = 〈Ns〉 (der x) (x. ?)s = der x

([M]. N)s = 〈Ns〉 (Ms)
! ([M]. ?)s = (Ms)

!

(〈x〉. N)s = λx.Ns

Theorem 26. If T b S or T ! S then Tb Sb.

Proof. Let Vb = [N]. Then:

(〈λx. T 〉V)b = [N]. 〈x〉. Tb {N/x}Tb = ({V/x}T)b

(der(T !))b = [Tb]. 〈x〉. x Tb

24

Theorem 27. If N M and Ns exists then Ns b ! Ms.

Proof. The reduction is below. The last step follows because in a translation Ns

every variable occurs as derx, and {T !/x}derx = der (T !) ! T .

([M]. 〈x〉. N)s = 〈λx.Ns〉 (Ms)
!

b {(Ms)
!/x}Ns

! ({M/x}N)s

Call–by–push–value: Call–by–push–value (cbpv) [8, 9] is an earlier approach
to combining call–by–name and call–by–value that stands out for the thorough
study of its semantics. Following its many models, it features a strict separation
between computations and values, which is semantically helpful but leads to an
elaborate syntax. Here we consider only the core fragment, without products
and coproducts. We follow the exposition in [9].

Definition 28. The terms of call–by–push–value and their translation N Z⇒ Np

into the FMC are as follows.

Values V,W ····= x Z⇒ x
return V Z⇒ [Vp]
thunkM Z⇒ [Mp]

Terms M,N ····= λx.M Z⇒ 〈x〉.Mp

V ‘M Z⇒ [Vp].Mp

let V be x . M Z⇒ [Vp]. 〈x〉.Mp

N to x . M Z⇒ Np. 〈x〉.Mp

forceM Z⇒ Mp. 〈x〉. x

The FMC then simulates cbpv. The following theorem gives the big-step
semantics M ⇓ T , with the terminal term T of the form λx.M or return V ,
and demonstrates the simulation.

Theorem 29. If M ⇓ T then Mp Tp.

Proof. On the left is the big-step semantics of cbpv (see [9, Figure 4]), with
premises stacked for space; on the right are the corresponding reductions in

25

the FMC.

return V ⇓ return V [Vp] = [Vp]

λx.M ⇓ λx.M 〈x〉.Mp = 〈x〉.Mp

[V/x]M ⇓ T

let V be x. M ⇓ T

[Vp]. 〈x〉.Mp [Vp/x]Mp

Tp

M ⇓ return V
[V/x]N ⇓ T

M to x. N ⇓ T

Mp. 〈x〉. Np [Vp]. 〈x〉. Np

[Vp/x]Np

Tp

M ⇓ T

force thunkM ⇓ T

[Mp]. 〈x〉. x Mp

Tp

M ⇓ λx.N
[V/x]N ⇓ T

V ‘M ⇓ T

[Vp].Mp [Vp]. 〈x〉. Np

[Vp/x]Np

Tp

Since the big-step semantics does not reduce under abstractions, the simu-
lation in the FMC guarantees a corresponding run of the Functional Abstract
Machine. Of the two types of terminal, as argued earlier we may consider
(λx.N)p = 〈x〉. Np an error (if it halts the machine, not as output for the big-
step semantics), and (return V)p = [Vp] a successful return value. That is, if
M ⇓ return V then:

(ε , Mp)

(ε · Vp , ?)

With the machine as operational semantics, also the effects of cbpv can be in-
corporated. Following [9, Figure 5] output and store are considered. For output,
cbpv extends the semantics with a string m of characters c, concatenated with
+, giving the following rule for the print command.

M ⇓ m,T

print c.M ⇓ [c] +m,T

In the FMC, the print c command is the push action [c]out, andm is modelled
by the out-stream. The corresponding run of the machine is the following.

(S ; Sout , [c]out.Mp)
(S ; Sout · c , Mp)

(S ; Sout · c ·m , Tp)

For store, cbpv adds a single memory location cell storing values s, s′, s′′ ∈
S and commands for update cell := s and read read-cell-as {s.Ms}s∈S ,

26

where the construction {s.Ms}s∈S is a function from S to cbpv-terms. The big-
step semantics then carries a stored value s.

s′,M ⇓ s′′, T

s,cell := s′.M ⇓ s′′, T

s′,Ms′ ⇓ s′′, T

s′,read-cell-as {s.Ms}s∈S ⇓ s′′, T

Since the FMC features higher-order store, we will consider s, s′, s′′ as arbi-
trary terms. The update construct is then as for the call–by–name version,
cell〈_〉. [s]cell, with the following machine run to interpret the semantics.

(S ; εcell · s , cell〈_〉. [s′]cell.Mp)

(S ; εcell · s′ , Mp)

(S ; εcell · s′′ , Tp)

For the read construct, we consider the family {Ms}s∈S as interpreted by a term
Mp with a free variable x expecting a value s, so that Ms is interpreted by
{s/x}Mp. Then the interpretation of read-cell-as {s.Ms}s∈S is given by
cell〈x〉. [x]cell.Mp, with the following machine run.

(S ; εcell · s′ , cell〈x〉. [x]cell.Mp)

(S ; εcell · s′ , {s′/x}Mp)

(S ; εcell · s′′ , Tp)

8 Sequencing and linear continuations

Continuations are a powerful technique to structure control flow in a functional
program. For instance, they can be used to encode call–by–value and call–by–
name into each other [12]. The sequential λ-calculus is readily encoded into
the λ-calculus using linear continuations. A sequential term is encoded by
J−Kk with reference to a variable k, the continuation variable, which replaces
the end ? of the term. Then sequencing M.N is interpreted by substituting the
continuation variable k of JMKk with JNKk.

Definition 30. The continuation encoding J−K from sequential λ-terms to λ-
terms is as follows, where k in JNKk is fresh.

J?Kk = k

Jx.NKk = x JNKk
J[M]. NKk = JNKk JMK
J〈x〉. NKk = λx. JNKk

JNK = λk. JNKk

Proposition 31. JM.NKk = {JNKk/j}JMKj .

27

Proof. By induction on N .

Proposition 32. If N M then JNK JMK.

Proof. First, it is shown that

{JMK/x}JNKk J{M/x}NKk .

This follows by induction on N , where the interesting case is N = x. P , which
is given by:

{JMK/x}Jx.P Kk = {JMK/x}(x JP Kk)
= JMK {JMK/x}JP Kk JMK J{M/x}P Kk
= (λj.JMKj) J{M/x}P Kk {J{M/x}P Kk/j}JMKj
= JM.{M/x}P Kk = J{M/x}x.P Kk

where the reduction in the second line is by the inductive hypothesis and the
penultimate equality is by Proposition 31. The remaining cases are immediate
by induction. Then to prove the statement, let [N]. 〈x〉.M → {N/x}M . The
encoding has the required reduction:

(λx. JNKk) JMK {JMK/x}JNKk J{M/x}NKk .

9 Conclusion

Going forward, there are a few immediate gaps in the basic theory of the FMC,
currently under investigation. It is expected that the FMC is semantically cap-
tured by closed Freyd categories, as described by Power and Thielecke [14], and
there is a close relation with Hughes’s concept of arrows in Haskell [6]. Strong
normalization of reduction for the FMC is still open, now only proved for the
sequential fragment, which is however less crucial with the current emphasis
on the abstract machine. Another salient topic is the complexity of type infer-
ence.

Then, at present the calculus is quite limited in its scope. Many topics are
waiting to be explored, from basic language features such as coproducts, data
types, and type polymorphism, to other computational effects such as excep-
tion handling and continuations, to matters of efficient implementation. An
interesting next direction would be concurrency and the relation with process
calculi, as the stack operations of the FMC are similar to those for communi-
cation along a channel. A hint that this is what is needed is glimpsed in the
peculiarities of input and output, which are now modelled as infinite streams,
where output appears reversed (the first output is at the bottom of the stack). It
appears that viewing an FMC computation as a sequential process, connected
by channels to separate, concurrent input and output processes, would give a
more accurate model.

28

Acknowledgment

I would like to thank Alex Simpson, Dominic Hughes, Giulio Guerrieri, Guy
McCusker, Jim Laird, John Power, and Ugo Dal Lago for valuable discussions.
This work was supported by EPSRC Project EP/R029121/1 Typed lambda-calculi
with sharing and unsharing.

References

[1] Hendrik Pieter Barendregt. The Lambda Calculus – Its Syntax and Semantics,
volume 103 of Studies in Logic and the Foundations of Mathematics. North-
Holland, 1984.

[2] Alonzo Church. The calculi of lambda-conversion. Princeton University
Press, 1941.

[3] Ugo Dal Lago, Giulio Guerrieri, and Willem Heijltjes. Decomposing prob-
abilistic lambda-calculi. In Jean Goubault-Larrecq and Barbara König, ed-
itors, Foundations of Software Science and Computation Structures, volume
12077 of LNCS, pages 136–156, Cham, 2020. Springer International Pub-
lishing.

[4] Jeff Egger, Rasmus Ejlers Møgelberg, and Alex Simpson. The enriched
effect calculus: syntax and semantics. Journal of Logic and Computation,
24(3):615–654, 2014.

[5] Thomas Ehrhard and Giulio Guerrieri. The bang calculus: An untyped
lambda-calculus generalizing call-by-name and call-by-value. In Proceed-
ings of the 18th International Symposium on Principles and Practice of Declara-
tive Programming (PPDP’16), pages 174–187, 2016.

[6] John Hughes. Generalising monads to arrows. Science of Computer Pro-
gramming, 37:67–111, 2000.

[7] Jean-Louis Krivine. A call-by-name lambda-calculus machine. Higher-
Order and Symbolic Computation, 20:199–207, 2007.

[8] Paul Blain Levy. Call-by-push-value: A functional/imperative synthesis, vol-
ume 2 of Semantic Structures in Computation. Springer Netherlands, 2003.

[9] Paul Blain Levy. Call-by-push-value: Decomposing call-by-value and call-
by-name. Higher-Order and Symbolic Computation, 19:377–414, 2006.

[10] Eugenio Moggi. Notions of computation and monads. Information and
Computation, 93(1):55–92, 1991.

[11] Gordon Plotkin and John Power. Notions of computation determine mon-
ads. In International Conference on Foundations of Software Science and Com-
putation Structures (FoSSaCS), pages 342–356. Springer, Berlin, Heidelberg,
2002.

29

[12] Gordon D. Plotkin. Call-by-name, call-by-value and the λ-calculus. Theo-
retical Computer Science, 1(2):125–159, 1975.

[13] Gordon D. Plotkin and Matija Pretnar. Handlers of algebraic effects. In Eu-
ropean Symposium on Programming (ESOP), pages 80–94. Springer, Berlin,
Heidelberg, 2009.

[14] A.J. Power and Hayo Thielecke. Closed Freyd- and κ-categories. In In-
ternational Colloquium on Automata, Languages, and Programming (ICALP),
volume 1644 of LNCS, pages 625–634. Springer, 1999.

[15] W.W. Tait. Intensional interpretations of functionals of finite type I. The
Journal of Symbolic Logic, 32(2):198–212, 1967.

[16] Masako Takahashi. Parallel reductions in lambda-calculus. Information
and Computation, 118(1):120–127, 1995.

30

A The confluence proof

This appendix will give the necessary definitions and lemmata to complete the
confluence proof.

Definition 33. A redex-marked or marked term N has a selection of its redexes
marked by matching symbols (,) as

[M]a .A1 . . . An. a〈x〉. N .

The marked reduct bN c of a marked term N is given by

b ? c = ? b[M]a.N c = [bM c]a. bN c

bx.N c = x. bN c ba〈x〉. N c = a〈x〉. bN c

b[M]a .A1 . . . An. a〈x〉. P c
=

{bM c/x}bA1 . . . An. P c

where in the last case x is not free in each Ai, if necessary by α-conversion. A
parallel reduction step N M is a reduction N bN c = M for some marking
of N .

Observe that a marked reduct is an unmarked term, since all marks have
been reduced. Then in the case of the redex:

{bM c/x}bA1 . . . An. P c = bA1 . . . An. {bM c/x}P c

Proposition 34. Parallel reduction is well-defined: N bN c.

Proof. By induction on the size of N . The redex case is by the reduction

[M]a .A1 . . . An. a〈x〉. P
[bM c]a .A1 . . . An. a〈x〉. P
A1 . . . An. {bM c/x}P

= {bM c/x}A1 . . . An. P

{bM c/x}bA1 . . . An. P c

where the equality in line four follows since x /∈ fv(N).

Lemma 35. For a doubly marked term, N , reducing each marking in turn gives the
same result as reducing both simultaneously: bbN c c = bN c.

Proof. By induction on N . The only non-trivial case is

N = [L]a .A1 . . . An . a〈x〉. P .

31

This is resolved as follows.

bbN c c = b[bM c]a . bA1 . . . An. a〈x〉. P c c

= {bbM c c/x}bbA1 . . . An. P c c

= {bM c/x}bA1 . . . An . P c

= bN c

The first step is the marked reduction on (). Observe that in bA1 . . . An. a〈x〉. P c
only actions Ai are removed, so that the abstraction a〈x〉 remains part of the
marked redex with [bM c]a . The second step is the marked reduction on (),
and the third is by the inductive hypothesis.

Proposition 36. Parallel reduction is diamond: if

M N P

then there is a term Q such that

M Q P .

Proof. Let N bN c = M and N bN c = P for two separate markings
N and N . Let N = N denote the term with both markings, and let both
marked reductions preserve the other marking to get the span

M = bN c (N) = (N) bN c = P .

Then letQ = bN c = bN c to obtain the desired reductions, using Lemma 35.

M = bN c bbN c c = Q = bbN c c bN c = P

Theorem 8 (Restatement). Reduction is confluent.

Proof. A reduction stepN M is a parallel stepN bN c = M by marking
the redex reduced. A span M N P is then one M N P . By
the diamond property, Proposition 36, this converges with parallel reductions,
M Q P , and then by Proposition 34 also with non-parallel reductions,
M Q P .

B Adequacy of the machine

In this appendix it will be shown how the machine corresponds to reduction.
To do so, a combined syntax is developed which embeds machine states into
the calculus.

32

Definition 37. The readback ‖Sa‖ of a stack is defined by ‖εa‖ = ? and ‖Sa ·N‖ =
[N]a. ‖Sa‖. The readback ‖S, N‖ of a state (S,N) is the term ‖S‖. N where ‖S‖
is the sequence ‖Sa‖ for every a ∈ A, prepended to N in no particular order.

Observe that readback is unique modulo ∼. To prove the adequacy of the
machine, a state (S,N) is embedded into the calculus. The calculus FMC with
states extends terms with

N, M ····= . . . | |S, N |.M

(where the ellipsis indicates that previous actions are still included). Write ‖N‖
for a term where every embedded state |S, M | is replaced with its readback
‖M, S‖. Reduction N M with states includes that of the plain calculus, ma-
chine transitions on an embedded state, and the following boundary transitions
on the boundary of an embedded state,

|ε, ?| ?

|S, x.N | x. |S,N |

|S ;Sa ·M,N | [M]a. |S ;Sa, N |

|S ; εa, a〈x〉. N | a〈x〉. |S ; εa, N |

[M]a.N. |S ; εa, a〈x〉. P | N. |S ; εa, {M/x}P |

where in the last step N consists of push and pop actions not along a. Observe
that the first four steps implement readback by a reduction N ‖N‖, so that
normal forms of reduction with states are normal forms of the plain calculus.

Proposition 38. IfN M with embedded states then ‖N‖ ‖M‖ or ‖N‖ = ‖M‖
(modulo ∼).

Proof. The case for a plain reduction step is immediate. There are two cases for
a step within an embedded state. If

(S ; Sa , [M]a.N)
(S ; Sa ·M , N)

then
‖S ;Sa, [M]a.N‖ = ‖S‖. ‖Sa‖. [M]a.N = ‖S ;Sa ·M,N‖

and if
(S ; Sa ·M , a〈x〉. N)
(S ; Sa , {M/x}N)

then
‖S ;Sa ·M,a〈x〉. N‖ = ‖S‖. ‖Sa‖. [M]a. a〈x〉. N

‖S‖. ‖Sa‖. {M/x}N

= ‖S ;Sa {M/x}N‖ .

33

The first four boundary steps are readback steps, for which N M implies
‖N‖ = ‖M‖. The last boundary step

[M]a.N. |S ; εa, a〈x〉. P | N. |S ; εa, {M/x}P |

gives
[M]a.N. ‖S ; εa, a〈x〉. P‖ = [M]a.N. ‖S‖. a〈x〉. P

N. ‖S‖. {M/x}P

= N. ‖S ; εa, {M/x}P‖

where ‖S‖ consists only of push actions not along a.

In the other direction:

Proposition 39. If N M then

(S , N)

(T , ?)
implies

(S , M)

(T , ?)
.

Proof. Let
[M]a.A1 . . . An. a〈x〉. N A1 . . . An. {M/x}N .

The machine run for the left-hand side looks as follows, since each Ai is an
action not on a.

(R ; Sa , [M]a.A1 . . . An. a〈x〉. N)
(R ; Sa ·M , A1 . . . An. a〈x〉. N)

(S ; Sa ·M , a〈x〉. N ′)
(S ; Sa , {M/x}. N ′)
(T , ?)

Then for the right-hand side there is the following corresponding run, since no
abstraction in Ai binds in M .

(R ; Sa , A1 . . . An. {M/x}N)

(S ; Sa , {M/x}. N ′)
(T , ?)

C SN for the sequential λ-calculus

To show their strong normalization, typed sequential λ-terms will be encoded
in second-order λ-calculus (Λ2). For sequential types, the sequent calculus of
Figure ?? is used, and a sequent-calculus type system for Λ2 is given in Fig-
ure 4. Here, the notation Γ ∪ x : τ allows x : τ ∈ Γ (whereas Γ, x : τ implies x is

34

Γ, x : τ ` x : τ
ax

Γ, x : σ ` N : τ

Γ ` λxσ.N : σ→τ
→R

Γ `M : ρ Γ, y : σ ` N : τ

Γ ∪ x : ρ→σ ` {xM/y}N : τ
→L

Γ ` N : τ

Γ ` Λa.N : ∀α. τ
∀R (α /∈Γ)

Γ, y : {σ/α}ρ ` N : τ

Γ ∪ x : ∀α. ρ ` {xσ/y}N : τ
∀L

Γ `M : σ Γ, x : σ ` N : τ

Γ ` {M/x}N : τ
cut

Figure 4: A sequent calculus for second-order λ-calculus

not in the domain of Γ). The encoding is the typed version of the continuation
encoding of Definition 30. To preserve this literally, apart from the definition in
Figure 4, the interpretation will omit the type abstraction Λα.N and applica-
tion N τ from Λ2-terms, as well as the type annotation τ on abstractions, λxτ .
These can be reconstructed from the type derivations. A sequential type will
be encoded into second-order polymorphic types as follows.

Jσn . . . σ1 ⇒ τ1 . . . τmK
=

∀α. (JτmK→ . . . Jτ1K→α)→JσnK→ . . . Jσ1K→α

Definition 40. The continuation encoding JτK and context encoding JτKα for a type
variable α, from sequential types to second-order types, are given by

JτK = ∀α. JτKα
J↼σ ⇒⇀

τ Kα = J⇀τKα→J↼σKα
Jτ1 . . . τnKα = JτnK→ . . . Jτ1K→α .

These translations are extended to contexts Γ and sequents as follows.

Jx1 : τ1, . . . , xn : τnK = x1 : Jτ1K, . . . , xn : JτnK
JΓ ` N : τ K = JΓK ` JNK : JτK

JΓ ` N :
↼
σ ⇒

⇀
τ Kα,k = JΓK, k : J↼τKα ` JNKk : J↼σKα

The translations J−Kα,k and J−K on a given sequent are related by a closing
derivation cls, consisting of a →R rule closing k and a ∀R rule closing α:

JΓ, N :
↼
σ ⇒

⇀
τ Kα,k

JΓ, N :
↼
σ ⇒

⇀
τ K

cls :=

JΓK, k : J↼τKα ` JNKk : J↼σKα
JΓK ` λk.JNKk : J↼τKα→J↼σKα

→R

JΓK ` λk.JNKk : ∀α. J↼τKα→J↼σKα
∀R

35

J?Kα,k = JΓK, k : J↼τKα ` k : J↼τKα
ax

JvarKα,k =
JΓK, k : J↼τ ↼

σKα ` k : J↼τ ↼
σKα

ax
JΓK, j : J↼

ρ
↼
σKα ` j : J↼

ρ
↼
σKα

ax

JΓK, x : J↼τ ↼
σKα→J↼

ρ
↼
σKα, k : J↼τ ↼

σKα ` x k : J↼
ρ

↼
σKα

→L

JΓK, x : ∀β. J↼τKβ→J↼
ρKβ , k : J↼τ ↼

σKα ` x k : J↼
ρ

↼
σKα

∀L

JappKα,k =
JΓK ` JMK : JτK JΓK, j : J↼σKα ` JNKj : J↼

ρKα
JΓK, k : JτK→J↼σKα ` {k JMK/j}JNKj : J↼

ρKα
→L

JabsKα,k =
JΓK, k : J↼τKα, x : JρK ` JNKk : J↼σKα
JΓK, k : J↼τKα ` λx.JNKk : JρK→J↼σKα

→R

JcutKα,k =
JΓK, k : J↼τKα ` JMKk : J↼σKα JΓK, x : J↼σKα ` JNKx : J↼

ρKα
JΓK, k : J↼τKα ` {JMKk/x}JNKx : J↼

ρKα
cut

Figure 5: Context interpretation of typing rules

Proposition 41 (Interpretation preserves types). If Γ ` N : τ then JΓ ` N : τK.

Proof. By the derivations in Figure 5, which translate the typing rules of the
sequential λ-calculus of Figure 2 into second-order λ-calculus.

Proposition 42 (Reduction commutes with typed interpretations). If Γ ` N : τ
and N M then JΓ ` N : τK JΓ `M : τK.

Proof. First, to show that the reduction {JMK/x}JNKk J{M/x}NKk preserves
types, the following must be shown.

JΓK ` JMK : JτK JΓK, k : J↼υKα, x : JτK ` JNKk : J↼σKα
JΓK, k : J↼υKα ` {JMK/x}JNKk : J↼σKα

cut

JΓK, k : J↼υKα ` J{M/x}NKk : J↼σKα

This is proved by induction on N . The base case N = x is given in Figure 6 as
the top reduction; the remaining cases are by permutation steps.

Then to prove the proposition, consider the typed version of the reduction
step N. [M]. 〈x〉. P N. {M/x}P , below.

Γ `M : ρ

Γ ` N :
↼
σ ⇒

⇀
τ

Γ ` 〈x〉. N : ρ
↼
σ ⇒

⇀
τ

Γ ` [M]. 〈x〉. N :
↼
σ ⇒

⇀
τ

Γ ` {M/x}N :
↼
σ ⇒

⇀
τ

36

The continuation interpretation of this reduction sequence is given in Figure 6
as the bottom reduction, using the typed reduction {JMK/x}JNKk J{M/x}NKk
in the second step.

Theorem 43. Typed sequential λ-terms are strongly normalizing.

Proof. If Γ ` N : τ had an infinite reduction, then by Proposition 42, so would
JΓK ` JNK : JτK. But this is a contradiction, since second-order λ-calculus is
strongly normalizing.

37

JΓK, j : J↼τKβ ` JMKj : J↼
ρKβ

JΓK ` λj.JMKj : J↼τKβ→J↼
ρKβ

→R

JΓK ` λj.JMKj : ∀β. J↼τKβ→J↼
ρKβ

∀R

JΓK, k : J↼τ ↼
σKα ` k : J↼τ ↼

σKα
ax

JΓK, j : J↼
ρ

↼
σKα ` j : J↼

ρ
↼
σKα

ax

JΓK, x : J↼τ ↼
σKα→J↼

ρ
↼
σKα, k : J↼τ ↼

σKα ` x k : J↼
ρ

↼
σKα

→L

JΓK, x : ∀β. J↼τKβ→J↼
ρKβ , k : J↼τ ↼

σKα ` x k : J↼
ρ

↼
σKα

∀L

JΓK, k : J↼τ ↼
σKα ` (λj.JMKj) k : J↼

ρ
↼
σKα

cut

JΓK, j : J↼τ ↼
σKα ` JMKj : J↼

ρ
↼
σKα

JΓK ` λj.JMKj : J↼τ ↼
σKα→J↼

ρ
↼
σKα

→R
JΓK, k : J↼τ ↼

σKα ` k : J↼τ ↼
σKα

ax
JΓK, j : J↼

ρ
↼
σKα ` j : J↼

ρ
↼
σKα

ax

JΓK, x : J↼τ ↼
σKα→J↼

ρ
↼
σKα, k : J↼τ ↼

σKα ` x k : J↼
ρ

↼
σKα

→L

JΓK, k : J↼τ ↼
σKα ` (λj.JMKj) k : J↼

ρ
↼
σKα

cut

JΓK, k : J↼τ ↼
σKα ` JMKk : J↼

ρ
↼
σKα

JΓK, k : J↼υKα, x : JτK ` JP Kk : J↼σKα
JΓK, k : J↼υKα ` λx.JP Kk : Jτ , ↼

σKα
→R

JΓK ` JMK : JτK JΓK, v : J↼σKβ ` JNKv : J↼
ρKβ

JΓK, j : Jτ , ↼
σKα ` {j JMK/v}JNKv : J↼

ρKα
→L

JΓK, k : J↼υKα ` {λx.JP Kk JMK/v}JNKv : J↼
ρKα

cut

JΓK ` JMK : JτK JΓK, k : J↼υKα, x : JτK ` JP Kk : J↼σKα
JΓK, k : J↼υKα ` {JMK/x}JP Kk : J↼σKα

cut
JΓK, v : J↼σKβ ` JNKv : J↼

ρKβ
JΓK, k : J↼υKα ` {{JMK/x}JP Kk/v}JNKv : J↼

ρKα
cut

JΓK, k : J↼υKα ` J{M/x}P Kk : J↼σKα JΓK, v : J↼σKβ ` JNKv : J↼
ρKβ

JΓK, k : J↼υKα ` {J{M/x}P Kk/v}JNKv : J↼
ρKα

cut

Figure 6: Reductions for the proof of Proposition 42

38

