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Abstract—We present Intuitionistic Combinatorial Proofs
(ICPs), a concrete geometric semantics of intuitionistic logic
based on the principles of the second author’s classical Com-
binatorial Proofs.

An ICP naturally factorizes into a linear fragment, a graphical
abstraction of an IMLL proof net (an arena net), and a parallel
contraction-weakening fragment (a skew fibration). ICPs relate to
game semantics, and can be seen as a strategy in a Hyland-Ong
arena, generalized from a tree-like to a dag-like strategy.

Our first main result, Polynomial Full Completeness, is that
ICPs as a semantics are complexity-aware: the translations to and
from sequent calculus are size-preserving (up to a polynomial).
By contrast, lambda-calculus and game semantics incur an
exponential blowup. Our second main result, Local Canonicity, is
that ICPs abstract fully and faithfully over the non-duplicating
permutations of the sequent calculus, analogously to the first and
second authors’ recent result for MALL.

I. INTRODUCTION

The research we present here started out with the goal
of understanding the computational content behind classical
combinatorial proofs [1], [2] by attempting to elicit an intu-
itionistic counterpart. While our primary result, a definition
of intuitionistic combinatorial proof (ICP), achieves this
goal, perhaps even more interesting are some unanticipated
connections to prior art. An ICP turned out to be a chimera
which can be viewed variously as:

(1) a canonical representation of an intuitionistic sequent
calculus proof modulo non-duplicating rule permutations;

(2) an abstract IMLL' proof net [3] skew-fibred over an
intuitionistic formula;

(3) an abstract innocent strategy [4] skew-fibred over an
arena, admitting disciplined sub-strategy sharing;

(4) a A-calculus term admitting disciplined sub-term sharing.

While (1) and (2) are fleshed out in this paper (Sections II-
VII), (3) and (4) represent new and unexplored avenues for
future work, prompting more questions than answers; we
report initial results on (3) in Section VIII. We refer to our
main result (1) as polynomial full completeness, since it
is a full completeness (or full abstraction) result in which
the surjection from intuitionistic sequent proofs to ICPs is
a polynomial-time function. (We also provide a polynomial-
time right inverse to the surjection.) This contrasts with other
abstract representations of intuitionistic sequent proofs, such as

ntuitionistic multiplicative linear logic.
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game semantics or A-calculus terms, whose surjections incur
an exponential blow-up. Thus ICPs provide a semantics of
intuitionistic proofs which not only respects structure, but also
respects complexity.

ICP full completeness is also faithful: two sequent proofs are
equivalent modulo non-duplicating rule transpositions if and
only if they have the same ICP. Due to the intimate relation-
ship between duplicating rule permutations and exponential-
blowup, our polynomial full and faithful completeness theorem
can be recast as:

« ICPs provide the most abstract representation of intuition-
istic sequent proofs possible, subject to the constraint that
the translation from sequent calculus is polynomial time.

Combinatorial proofs. Combinatorial proofs were introduced
by the second author as a syntax-free reformulation of classical
propositional logic [1], [2]. For example, here is a combina-
torial proof of Peirce’s Law ((P = Q)= P) = P:

TD;TDP

The lower graph abstracts the formula (one vertex per propo-
sitional variable, edges encoding conjunctive relationships);
the upper graph has two colour classes, e @ and m m, each
expressing an axiom P = P; the dotted lines define a skew
fibration from the upper graph to the lower graph, a lax notion
of graph fibration. The upper graph captures the axioms and
logical rules in a proof, the lower graph captures the formula
proved, and the skew fibration captures all contraction and
weakening, simultaneously and in parallel [2], [5].

The intuitionistic setting required reformulating combinato-
rial proofs with directed edges for implicative relationships.
We model a formula or sequent as a partitioned dag (directed
acyclic graph) called an arena, akin to an arena in game
semantics [4], [6]. Here is a sequent and its arena:

(P=P)=QF QAQ o —>o—"2 B

The five atom-occurrences become five vertices, and vertices
are in the same partition (shown as a shaded region) if they
are associated with the same atom (P or Q). Here are two



ICPson (P=P)=QF QAQ:

The lower graph, the base, is the arena of the sequent being
proved. The upper graph, the cover, is also an arena, an
abstraction of an IMLL proof net which we call an arena
net: each partition has two elements, and can be viewed as an
axiom link. The dotted lines, defining the skew fibration, can
be thought of as indicating where the two ends of each axiom
link end up in the intuitionistic sequent.

It can be convenient to represent partitions using colours or
labels, for example, rendering the two ICPs above as

Here we have chosen vertex colour (and shape) on the cover,

and the original atom labels on the base. Leaving base graphs

implicit, we can render the combinatorial proofs concisely:
>

R o=
(P=P)=Q F QAQ (P=P)=Q F QAQ

Using this notation, Figure 1 shows step-by-step translations
of intuitionistic sequent calculus proofs into the respective
ICPs above. Figure 2 shows the corresponding lambda calculus
translations. The resulting lambda terms are identical (modulo
bound variable renaming), and the right translation duplicates
Az.z. Because of iterated duplications, translation to a lambda
term is exponential-time in the size of the proof. In contrast,
translating the right proof to an ICP involves no duplication.

Abstract innocent strategies, shared sub-strategies, and im-
plicit time. We illustrate a surjection from ICPs (Section VIII)
to innocent strategies with an example. Below we have taken
the ICP above-left and drawn the top row of its cover below-
left, and the bottom row below-right.

(P=P)=QF QNQ (P=P)=QF QNQ

K/V//”

7

Each is a maximal 4-move play in an arena dialogue game
alternating between O and P with time flowing downwards and
justification pointers back up to previous moves. Each play is
a P-view (O-shortsighted), and taken together the two P-views
constitute an innocent strategy. Thus we can view an ICP as
an abstract innocent strategy (the cover), skew-fibred over an
arena. The sibling ICP drawn earlier above-right induces the
same two P-views, hence the same innocent strategy. However,

since the “top row” *#—>*x—>e—e and “bottom row” *—>k—>e—>e
share *—*, the cover is an abstract innocent strategy with
a shared sub-strategy (the *—k part). As abstract innocent
strategies, ICPs leave time implicit. For example, the ICPs
A8 AT
(P=P)=P+F P (P=P)=P+ P

each unfold into a single play (maximal P-view), respectively

(P=P)=PF P (P=P)=P+ P

a4

There is no explicit linear ordering in the covers: time appears
spontaneously during the unfolding of the play.

Abstract IMLL nets. As remarked earlier, every ICP cover
is an arena net, an abstraction of an IMLL proof net in the
connective-free spirit of Retoré [7]. To illustrate the relation-
ship to IMLL proof nets, observe that the arena net below-left
is the arena of the formula below-right.

70 03 (P—Q)—=R)®(P—Q)) — R

We have suggestively used linear implication —o and conjunc-
tion ® in place of = and A: the resulting binary IMLL formula
constitutes an IMLL net in the sense of Lamarche [3].
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II. ARENAS

Our first objective is to give a graphical representation of
intuitionistic formulas, as a counterpart to the cographs for
classical formulas in [1]. We will call our graphs arenas, for
the similarities with game semantics [4], [6], [8].

In implication-only intuitionistic logic, formulas are natu-
rally interpreted as a tree: A3 = ... = A, = P generates the
tree with P as the root and (inductively) the trees for each A;
as subtrees. For example:

Q/' P/’
P=Q=R P—>Q—R
P—Q—R P
(P=Q)=R (P=Q=R)=(P=Q)=P=R

The currying isomorphism A= B = C = (A A B) = C then
naturally gives the interpretation of conjunction, as the sibling
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Fig. 1. Translating two intuitionistic sequent calculus proofs to intuitionistic combinatorial proofs (ICPs). The translation is relatively simple to describe: (1)
place a pair of tokens atop the propositional variables in each axiom, with a rightward directed edge; (2) trace the tokens down through the proof; (3) each
left implication rule and right conjunction rule inserts edges between tokens above the active formulas (details in Section IV).

z:PFx:P y:PkFy:P

FAv.x: P=P w:QFw:Q FAy.y: P=P

v:QFv:Q

fi:(P=P)=Q F fi(Az.x):Q

f2: (P=P)=Q F f20yy):Q

J1:(P=P)=Q, fo: (P=P)=Q F (filAz.2),f2(0y.y)) : QAQ

f:(P=P)=Q F (fQz2),f(Myy)) : QAQ

v1:QF v :Q v2:QFv2:Q
z:PkFz:P v1:Q, v2:Q F (vi,v2) @ QAQ
FAz.z: P=P v:Q F (v,v): QAQ
f:(P=P)=Q F (f(Az.2),f(Az.2)) : QAQ

Fig. 2. Translating the same two intuitionistic sequent calculus proofs into A-calculus terms. Note that the two terms are the same (up to bound variable
renaming). On the right, the subterm Az.z from the left sub-proof is duplicated, because of extensionality. In contrast, the translation to a combinatorial proof
does not require such a duplication: on the right of Figure 1, the final rule keeps only one pair of tokens over P = P, from the left sub-proof.

relation. However, a choice must be made for how to interpret
a conjunction as the consequent of an implication, P=(QAR):
via distribution A= (BAC) = (A= B) A (A= C) as below
left, relaxing trees to forests; or as below right, relaxing trees
to directed acyclic graphs, or dags.

P—Q P/'Q
P—R ™R
(P=Q)A(P=R) P=(QAR)

We make a fundamental choice to reject distribution:

Complexity awareness. We wish to be complexity aware,
but distribution may incur exponential growth.

IMLL proof nets. We aim to interpret IMLL proof nets,
but distribution is not valid in IMLL.

Our arenas will be dags. While every tree corresponds to a
formula, not every dag does. We need two conditions, akin
to the Py-free [9], [7] (or N-free [10]) condition of cographs
[10]: the L-free and X -free conditions. We define arenas after
some preliminaries.

We generate formulas A, B, C, ... from a countably infinite
set of atoms {P,Q,R,...} by the binary connectives A
(conjunction) and = (implication). By convention A binds
more strongly than = and parentheses associate to the right:

ANB=C=(ArB)=C
AABAC=An(BAC)
A=B=C=A=(B=0C).

A graph G is a finite set V(G) of vertices and a binary edge
relation —¢, abbreviated to — if G is clear. A path of length
n from v to w is a vertex sequence ug...u, with ug=wv,

Uy, =w and u;_1; > u; for 1 <i<n. Write v ->* w if there is
a path from v to w, and v—"" w if there is a path of length n.

A graph G is acyclic, or a dag, if v >" v implies n = 0. A
root is a vertex r with no outgoing edges, 7 /.

A graph G is partitioned if it carries an equivalence ~¢g
on vertices (written ~ if G is clear). An equivalence class
is a partition. An L-labelled graph G is one equipped with
a labelling \g: V(G) — L (written X if G is clear), which
induces partitioning via v ~ w <= A(v) = A(w).

Definition 1 (Arena). A pre-arena is a non-empty dag that is
L-free: v<u—x—w implies v—>w; and
d-free : u<x —>v<y—>w implies T —w or y—> u.

An arena is a pre-arena with a partitioning.

/.\ e —>0 .<>1.
L-free: e ,® >-free: “e  or e
\o oéo o';»o

Example 2. The dag below-left is both L-free and X-free; that
below-centre, Y-free only; that below-right, neither.

Z

Example 3. The arena with vertices {u, v, w, z}, edge relation
u—>v—>r<w-<u, and equivalence classes {u,v} and {w, z}
is shown below, in three ways: (i) with explicit vertex names,
and with equivalence (ii) as shading, and (iii) as vertex shape.

o —>0——>0

\
~

o——>o

\

£

oO—>0——0

u;v v\(ﬂ ./.\. I/I\A
\w/:UNm \o/ \A/

We shall model a formula A first as an atom-labelled arena
| A], i.e. one whose partitioning is given by labelling vertices
with propositional atoms. By forgetting the labels (but not the
partitioning), we then obtain the arena [A].

Definition 4 (Arena of a formula). For (L-labelled) dags G
and H, write G+ H for their disjoint union, and define the



subjunction G>H of G onto H as G+H plus an edge from
every root of G to every root of H.

% B%

The (atom-)labelled arena | A| of a formula A is given by:
| P| is a single vertex labelled P, and

[ArB| = [A]+[B]  [A=B|=[A]>|B].

G+H:

The arena [A] of A is the underlying arena of | A|, which
forgets the labelling but retains the partitioning.

Proposition 5. For every formula A: |A] is a well-defined
labelled arena, and [A] is a well-defined arena.

Proof. A routine induction on the size of the formula. O

Observe that a formula with n atom-occurrences and d distinct
atoms generates an arena with n vertices and d partitions.

Example 6. Consider the formulas

A = (P=P)=Q)1Q) = (RA((S=8)=5)
B = (P=P)=Q)=Q) = ((S=5)=9) R)
C = (Q=Q)=R)=R) = (T=T)=T)18).

The labelled arena | A| =| B] is below-left; |C'] is below-right.

Q R
\
S—S5—S5 T—T—T

The arena [A] = [B] = [C] of all three is below, with
partitioning through shading (left) and vertex shape (right).

o—>0—>0—>0 o—>0—>A—> ¢

° A

o—>0—>0 ————n

Our main theorem for arenas is that every arena arises as
the interpretation of some formula. We state it here, but leave
the proof to the end of this section.

Theorem 7 (Arena surjectivity). The translation [—] from
formulas to arenas is surjective.

We establish that the representation of a formula A by an
arena [A] factors out the standard isomorphism (%) on for-
mulas generated by currying, associativity, and commutativity

(below), together with renaming of atoms (as in Example 6).

(AAB)=C = A=(B=C)
An(BAC) = (AAB)AC
AnB = BnrA

Theorem 8 (Arena canonicity). [A]=[B] if and only if A= B.

Proof. A straightforward induction, via labelled arenas. [

We provide intuition for the L-free and X-free conditions.
In a labelled arena | A], an edge P — ) (identifying vertices
with their labels for convenience) means A has a subformula
of the form ..P.. = ..Q)..; call this a subformula constraint.

The L-pattern of the L-free condition is the overlap of the
configurations below. Each gives a subformula constraint:

et < N A “ N
P P S
W
R R
(..P.=..Q..)=..5.. .P.=(.Q..A.R..)
The formula below reconciles these constraints, and it implies
the edge R — S. This explains the L-free condition.

(..P.=(..Q..A..R..))=..5..

/Q\
P

N7
R

S

The X -pattern is the overlap of these two configurations:
P<R P—R
s s
QT QT
.P.=(.R..A..S..) .Q.=(..8.A.T.)

The constraints are resolved in the following formula, which
replaces ..S.. above left by the formula above right.

P.=(.R.AL.Q..=(..5..A..T.))))
PR
g
A
Q—T
The formula implies the edge P — 7. In addition to the
symmetric case, which implies () > R, a third solution is

.P.=.Q..=(.R.A.5.1.T.)

which implies both edges, and is thus subsumed by the other
solutions. This explains the X-free condition.

We continue exploring the formal consequences of the L-
free and X-free conditions, to then prove that every arena is the
translation of an intuitionistic formula (Theorem 7). A reader
interested mainly in the definition of combinatorial proof may
skip ahead to the next section (Section III).

The depth d(v) of a vertex v is the length of the longest path
from v. A dag is stratified if v —w implies d(v) = d(w) + 1,
i.e., every path from v to a root has length d(v).

Lemma 9. An L-free dag is stratified.

Proof. For a contradiction assume G is not stratified. Then it
contains a configuration u < v —w with d(u) < d(w). Hence
d(w) > 1. Let x be the first node on a longest path from
w, i.e. w—x with d(z) = d(w) — 1. An edge from u to z
would imply d(u) > d(z)+1 = d(w), a contradiction. Hence,



U < v—>w —x but not u -z, and G is not L-free. O

For an edge v — w, we call v an antecedent of w and w a
consequent of v. Write (v—>") for the set {z | v >" x}, the
n-fold consequents of v; and (v—*) = J,,~(v—>"). Define
(="v) analogously. The smallest subgraph of G containing
the vertex v closed under —, i.e., induced by the vertex set
(v—*), is the cone of v. A stratified dag is full if from one
level to the next, it contains all edges, i.e., x -y whenever x
is at depth n 4+ 1 and y is at depth n.

Lemma 10. In an L-free dag every cone is full.

Proof. We will show that z—vy whenever v—z and v—>'T1y
by induction on ¢. The case ¢ = 0, where x = v, is immediate.
For the inductive step, let v -2y via v ! w - x —y. For
any z’ such that v—?T1 2/, by the inductive hypothesis w—>2'.
Then w, z, ',y form an L, forcing ' — vy, as required. [

The X-freeness condition of (pre-)arenas governs how cones
may or may not overlap. Two vertices v and w meet at a vertex
u if u is a vertex of greatest depth belonging to both cones,
thus v =" u and w - u for least n and m. We say u is a
meeting vertex or meet of v and w. X-freeness implies that
where two cones meet, one becomes included in the other; that
is, their meeting vertices belong entirely to one or the other.

Lemma 11. Let v, w, and y be vertices in a pre-arena. If
v—>"y <" w then (v>") C (w—>") or (w—>") C (v>").

Proof. We proceed by contradiction. Let

-1

"_1a—>y<—b<—m w

v —>
and assume v—>"x <" w and v A" z <™ w. Since cones are
full (Lemma 10), we have a >z and b— 2. Then a,b, x,y, 2
form a ¥, a contradiction. O

A consequence is that at any depth, but in particular at depth
zero (the roots), a pre-arena can be partitioned into sections of
largest cones, where nodes in separate sections do not share
an antecedent. Different sections correspond to composition
with +, while a largest cone can be decomposed along .

Theorem 12. A dag is a pre-arena if and only if it is
constructed from single vertices by the operations + and 1.

Proof. First, observe that that a single vertex is a pre-arena,
and both properties (L-free and X-free) are preserved by +
and . Conversely, we must show that a pre-arena F is either
a single vertex or is composed from two pre-arenas G and H
as G+H or as G > H. We proceed by induction on the size
of F, the base case being trivial. If the roots of F can be
partitioned into two sets with no common antecedent, then F
has the form G+ H. Otherwise, by Lemma 11 there is a largest
cone (v—*) which includes all roots. Let n be the depth of
v, so that (v—>") are the roots, and Y = (v>""1) is a set of
nodes connecting to all roots. Then F has the form G >#H for
G the subgraph over the nodes {z | z >* y,y € Y}. O

Proof of Theorem 7. Immediate by Theorem 12. O

Remark 13 (Empty arenas). We are very close to modelling
the conjunctive unit T by the empty dag. We have unit
cancellation AAT = A and O-ary currying T=A4 = A
via the equations G+ & G respectively @ > G = G, but
a formula A=T is problematic. Subjunction currently gives
G > @ = G, incorrectly reducing it to A. One solution is to
admit O-ary distribution, A=T = T, by defining the special
case G @ = @ instead. While complexity is not an objection,
others remain: the isomorphism is not valid in IMLL; it would
mean rejecting binary but admitting 0-ary distribution; and it
creates a rather ad-hoc case distinction for subjunction ().
We opt to simply not model T, and reject empty arenas, even
though this makes interpreting the weakening rule of sequent
calculus slightly inconvenient; we use empty dags for this.

III. ARENA NETS

The cover part of an intuitionistic combinatorial proof will
be an arena net: an IMLL proof net [3] over an arena instead
of a formula, in the same way that classical combinatorial
proofs [1] use MLL proof nets over a cograph [7] instead of
a formula. We will first give our definition.

The parity of a vertex v is the parity of its depth, even or
odd, which we indicate by v° respectively v®. The parity of
an edge is that of its target, even (v®--»w?), indicated by a
dashed arrow, or odd (v° — w*).

Definition 14 (Arena Net). An arena G is linked if every
partition is of the form {v®, w°}, inducing a link v® ~ w°.
Its link graph a is the graph of its vertices, odd edges, and
links. An arena net is a linked arena G satisfying:
e Acyclicity: The link graph a ii acyclic.
o Functionality: Every path in G from an odd vertex v*®
to a root includes a vertex w® such that v® -->w°.

For simplicity, we will take the vertices of a linked arena
[A] to be the atoms P,Q, R,... of A themselves, annotated
for even and odd; then each link is of the form P® — P°.

Example 15. Below are three arena nets.

7N
7N Q.‘")‘VQO h
p*- PP s AT
R R -1/
N A

We will show that arena nets are isomorphic to IMLL proof
nets, up to the formula equivalence (22) factored out by arenas.
First, we give a concise treatment of IMLL. Formulas are

AB,C := P|AeB|A—DB

and sequent proofs are generated by the rules in Figure 3.
An IMLL proof net [3] forgets the rule structure of a proof,
retaining just the conclusion formula, plus which atoms are
linked by an axiom. We capture this as follows:

Definition 16 (IMLL proof nets). An IMLL proof net is the
conclusion formula of a proof with distinct propositional atoms
for each axiom.



A, B+C IA+B
PFP T,AesBFC T FA-B
r-rA A+B TI'FA BAFRC
[AFAeB I[LA—=B,AFC

Fig. 3. A sequent calculus for IMLL

®,F GFH O FFG
oo O F+GFH DFFoG
dFF UrG ®FF GUFH
DU FF1G P, FoG, U FH

Fig. 4. A sequent calculus for arena nets

Describing a proof net as a special formula streamlines the
translation to arena nets. First, we interpret IMLL formulas as
arenas in the same way as intuitionistic ones:

[AeB| =[A|+|B] [A—=B|=[A|>[B].

Definition 17. (IMLL-constructed arenas) An arena [A] is
IMLL-constructed if A is an IMLL proof net.

Example 18. The arena nets in Example 15 are the interpre-
tations of the following proof nets:

PP Q—-R—-(Q&R) (

By applying the translation [—] to the formulas of the
sequent rules in Figure 3, we obtain a sequent calculus for
arenas, in Figure 4. Here, ® and U are multisets of arenas,
and each axiom creates a distinct partition, as indicated by
shading. The following propositions are straightforward.

®(5—=T) =T

Proposition 19. An arena is IMLL-constructed if and only if
it is generated by a proof in the calculus of Figure 4.

Proposition 20. An IMLL-constructed arena is an arena net.

The remainder of this section will be devoted to demonstrat-
ing that every arena net is IMLL-constructed (Theorem 25).
The standard correctness criterion for IMLL is Lamarche’s
essential net condition [3]. Our functionality condition (see
Definition 14) is a direct adaptation to arenas. To prove the
correspondence with IMLL nets, we will relate it to the
original essential net condition.

The condition relies on a special notion of path over a
formula tree. We will use step and walk when traversing a
formula, to distinguish from edge and path as used on dags.
We refer to a position in the tree by its subformula. In line with
the previous notion of parity, a subformula is even respectively
odd if it occurs within the antecedent of an even respectively
odd number of linear implications. Steps in a formula tree are
then as follows:

A B A B A B A B
even: %/ \ Y odd:  \ / N/

—o ® —o ®

Observe that these steps generate three kinds of walk: neutral
walks up or down the formula tree, even walks crossing an
even implication (using the dashed step above), and odd walks
crossing an odd implication. Note that at most one implication
can be crossed (no walk can first go up and then down a tree).
We will assume that in a formula, atoms occur in pairs of
an even and an odd occurrence P*®, P°. Each pair generates
an axiom link, a step from P°® to P°. An essential walk is a
composite of odd walks, neutral walks, and axiom links.

Theorem 21 (Lamarche). A formula A is an IMLL proof net
if and only if it satisfies the following correctness condition:
o No essential walk through the proof net is a cycle;

o For even B — C' all essential walks from B to A visit C.

(The latter is the essential net condition [3].) The key obser-
vation in connecting arena nets to IMLL proof nets is that
the even and odd walks through a formula A correspond to
the even and odd edges of the arena [A], where even arena
edges have the opposite direction of even formula walks. The
following lemmas formalize this correspondence.

Lemma 22. The roots of [A] are those atoms with a neutral
walk to A.

Proof. By induction on A. The case A = P is immediate; if
A = B ® C the roots are those of B and C, which both have
a step to A; if A = B — C the roots of A are those of C,
which has a step to A. O

Lemma 23. There is an even edge P -->(Q) (respectively an
odd edge P — Q) in [A] if and only if there is an even walk
from Q to P (respectively an odd walk from P to Q) in A.

Proof. By induction on A. The case [P] is immediate. For
[B®C] = [B]+[C], any edge P — Q must be created in
[B] or [C], while there are no walks between B and C'. For
[B — C] = [B]>[C], the parity of an edge created in [B] is
inverted, as are the parity and direction of a walk in B (note
that a walk between atoms P and () must first go down then
up a tree, and so traverse exactly one implication). Next, the
even edge P-->( is created if P is a root of [B] and @ a root
of [C]. By Lemma 22, this is exactly when there are walks
from P to B and from @ to C; since the direction of walks
is inverted in B, this gives an even walk from @ to P across
B — C, as required. O

Example 24. Below is an IMLL net:
(P~P)~Q)eR - Qo ((R—S)—S5)

We make parity, steps, and axiom links explicit below left,
and give its interpretation as an arena net below right.

P/_\ID B g N N
° o o ° P®--> P° — ® > 0)°
S NS AP
\ Y/
ﬂ/ R* 0° o R
N V4
® ® D
Y / Ro > So e So

S N A
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T, ArBF o™
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I'A B,AFC
T, A=B,A F C

I A+ B
T - A=B "

=L

Fig. 5. The cut-free sequent calculus LIp

Theorem 25. For a linked arena [A] these are equivalent:

1) [A] is an arena net;
2) A is an IMLL proof net;
3) [A] is IMLL-constructed.

Proof. We show that 1) implies 2) below; 2) implies 3) by
Theorem 21; and 3) implies 1) by Proposition 20.

We show that the functionality condition on arenas corre-
sponds to the essential net condition for IMLL proof nets.
Consider an even subformula B — C' in A and a walk from
B to A; we will show it visits C. From B, this walk must
first reach an odd atom P} in B, then traverse a sequence
of alternating axiom links (on atoms P; through P,) and odd
walks in A, and finally go from P; to A straight down the
syntax tree. In [A], by Lemma 22, P} is a root of [B], and by
Lemma 23, every walk from P} to P ; has a corresponding
odd edge in [A]. This gives a path in [A], consisting of an
odd edge Py — P2, for each i, plus the links P ~ P7. By
the functionality condition, this path must visit a consequent
of P?; let this be P°. The consequents of P; are the roots
of [C], so that by Lemma 22, there is a neutral walk in
A from P? to C. Observe that this neutral walk allows no
possibility to deviate: it does not cross an odd implication,
and the only branching occurs at odd conjunctions. It then
follows that the walk in A from B must pass from P to C,
as required. That there is no cyclic essential walk follows by
similar (but simpler) reasoning from the acyclicity condition
in arena nets. O

IV. INTUITIONISTIC COMBINATORIAL PROOFS

In this section we define intuitionistic combinatorial proofs
and show how to translate sequent calculus proofs into ICPs.
We work with conjunction-implication intuitionistic sequent
calculus, given in Figure 5. A sequent I' - C' is a pair of a
formula multiset I' = Ay, ..., A,, (written as list, separated
by comma) and a formula C'. We extend the mapping [-] to
sequents by defining the labelled arena of a sequent by

[Avs o An B O = ([Ad] + - + A ) > [C]
and by letting [I" - C'] be the underlying arena of |I' - C'].

The meeting depth m(v,w) of distinct vertices v and w in
an arena is the maximal depth of a vertex u with v =" u<*w

when such wu exists, and —1 otherwise. Distinct vertices v and
w are conjuncts, denoted v Aw, if m(v,w) is odd.

Definition 26 (Skew fibration). A skew fibration [: G — H,
of an arena G over an arena H, is a function f: V(G) — V(H)
which preserves

edges: v—>gw implies f(v)—>y f(w)
equivalence: v ~g w implies f(v) ~y f(w)
roots:  rg implies  f(r) A

conjuncts: v Agw implies f(v) Ay f(w)

and satisfies the following skew lifting condition [1]:
o if f(v) Ay w there exists u with v Ag w and f(u) K yw.

Remark 27. In the next section we show that instead of
demanding the preservation of roots, we could also demand the
preservation of parity. Even though preservation of parity is
the weaker condition, we added preservation of roots to Defini-
tion 26 because it is conceptually simpler and easier to check.

Definition 28. An intuitionistic combinatorial proof or ICP
is a skew fibration f of an arena net G over an arena H. An
ICP of a formula A (resp. sequent [' - A) is an ICP over its
arena [A] (resp. [I" - A])). We denote this by f: G — [A] or
f:Gg—[rEA].

For translating sequent proofs to combinatorial proofs, we
need the following operations on mappings between dags:

1 = {(e,0)}:0 >0
firfo = fiUfa:Gi>Ga = HivHe (G2, Ho # D)
Jitfo = fiUfe:G1+Gy — Hi+Ho
1.2 = LUf:Gi+G = H (H =H1=Ha)
Dy = 0: 09— H

(illustrated below), to construct ICPs inductively.

G1 > Gy G1 + Go Gi + G %)
i fo A |f2 f]\/fQ
Hi>Ho Hi+Ho H H (1
1 fi> fo f1+fo [f1, fa] Dy
We use the notation ky,...,k, F f for (k1+ -+ +k,)> f.

More generally, we let

ki: Ke = [Bi]s. o kn: Ky = [Bu]F f: F=[Cl @
stand for

(kit - Fkp)o fr (Kit - +K) 0 F = [TEC] 3)

where ' is B;,...,B,. This notation allows us to use
lower case Greek letters ¢, ), ... for multisets of expressions
ki: K; — [B;], separated by comma, in the same way as we
use upper case Greek letters for multisets of formulas.

Remark 29. Observe that even though (ki + -+ +k,) > f is
an ICP, i.e. it is a skew fibration and (}C; + - - - +K,,)>F is an
arena net, the components k;: K; — [B;] and f: F — [C]
do in general not have this property.
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o, k: F—=[A],1: G—=[B] F h: H—[C]
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o, k:G—=[A] F f: H—[B]
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o, [k,1]: F+G—=[A] + f: H — [B]

<]

¢ b fiH—=[B]
Y, Day: ®—>[[A]] Fof: H—>[[B]]

1) The two vertices in the net form a link

2) k # 9[p)
3) ¢ = g1:G1 = [Dil,...,9n: Gn — [Dy] and
vy = @: & = [D1],...,9: @ = [D,]

Fig. 6. Interpretation of sequent proofs as ICPs

Definition 30 (Interpretation). Figure 6 defines inductively
the interpretation [r] of a sequent proof 7 in LIp (shown
in Figure 5) as a sequent of mappings between dags [r] =
ki,...,k, F f. The component maps k1, ..., k,, [ are called
the doors of [[r].

In Section VI we will show that (i) [7] is always an ICP,
(ii) the size of [r] is polynomial in the size of =, and (iii)
for each ICP ¢ there is a LIp sequent proof = with 7] = ¢
whose size is polynomial in the size of g. For obtaining these
results, we need to first investigate the properties of the doors
of [x], which is the purpose of the next section.

V. SKEW FIBRATIONS

The purpose of this section is to show for skew fibrations
a similar result as for arenas in Theorems 7 and 12. More
precisely, we will show that all skew fibrations are generated
from 1 and & via >, +, and [+, -], shown in (1), and that each
map that is constructed in a certain way from these primitives
is indeed a skew fibration. This result is central for all appli-
cations of ICPs, it justifies the notation we introduced in the
previous section, and it allows us to prove sequentialization.

Recall that a pre-arena is a non-empty L-free and X-free
dag. A map f: G — H is a pre-arena morphism if it preserves
edges and the parity of vertices. Note that G and H do not
need to be pre-arenas; it suffices that they are stratified. In
particular, they can be empty.

For two distinct vertices v and w of a pre-arena G recall
that v and w are conjuncts, denoted v Aw, if m(v,w) is odd.
Analogously, define v and w as disjuncts, denoted vY w, if
m(v,w) is even. We write v ¥ w (resp. v ¥ w) if v and w are
not conjuncts (resp. disjuncts).> Note that v ¥ w iff v Aw or
v=w, and v X w iff vYw or v = w.

Example 31. In the pre-arena below, since u, v, and w

pairwise meet at w, we have u Av AwAu, and since y has

no meet with z or z, we have z Ay Az. Other vertices are

disjuncts: for example, u,  and z pairwise meet at z, with

even depth, so uYzxY z.
UO — wo . yO

“ (u,/\v:>w):>yA(a;:>z)

o —-> 50

v frd

Definition 32. Let f: G — 7 be an pre-arena morphism
where G and H are both pre-arenas. We say that f is an even
skew fibration if the following two conditions are fulfilled:

o f preserves A, i.e., v Aw implies f(v)A f(w), and

o if f(v) Aw' then there exists u with v Au and f(u) X w'.
Now let k: G — H be a pre-arena morphism where H is a
pre-arena and G is either a pre-arena or empty. Then k is an
odd skew fibration if we have:

o k preserves Y, i.e., vYw implies k(v)Y k(w), and
e if k(v) Yw’' then there exists u with vYu and k(u) ¥ w'.

Example 33. Below are six examples. The left column shows
even skew fibrations, the middle column odd skew fibrations,
and the examples in the right column are neither even nor
odd skew fibrations. A map can be an even and an odd skew
fibration at the same time only if it is an identity map.

’ e ’
.—». .—».—». .—».
%, oo 7’ .\o

Below we use f and g to denote even skew fibrations, and
k and [ for odd skew fibrations. We immediately have:

Proposition 34. Let f: F — F and g: G — G’ be even skew
fibrations, and let k: K — K' and |: L — L' be odd skew
fibrations.

1) 1y is an even and odd skew fibrations for all ‘H.

2) Dy is an odd skew fibrations for all H.

3) f+g9: F+G — F +G' is an even skew fibration.

4) k+1: K+ L — K'+ L' is an odd skew fibration.

2The A-relation corresponds to the R-edges in Rétoré’s proof nets [7].



5) IfK' =L =*H then [k,l]: K+ L — H is an odd skew
fibration.

6) k> f: K> F — K'vF' is an even skew fibration.

7) [ok: FoK — F' v K'is an odd skew fibration.

Proof. This follows straighforwardly from the definitions. [
The converse is the main result of this section:

Theorem 35. Every even skew fibration is of one of the forms:

1 f+y kv f “)
And every odd skew fibration is of one of the following forms:
1 k+1 frok [k, 1] Dy (5)

where f and g are even skew fibrations and k and | are odd
skew fibrations.

The remainder of this section is dedicated to the proof.

Two vertices v and w in a dag are connected if they are
connected in the underlying undirected graph, i.e., there is a
path from v to w if we forget the direction of the edges.

Lemma 36. Let h: G — H be a graph morphism. If v and w
are connected in G, then h(v) and h(w) are connected in H.

Lemma 37. Let h: G — H be a pre-arena morphism where
G is a pre-arena and H = H'+H" such that H' and H"
are both pre-arenas. Then h = I/ +h" with h': G’ — H' and
W' G" — H" for some G' and G" with G = G'+G". (Note
that one of G' and G" can be empty.)

Proof. Straightforward, making use of Lemma 37 and the fact
that 4+ produces disconnected parts of the pre-arena. [

We say that a pre-arena morphism h: G — H preserves
depth if for all vertices v in G we have d(v) = d(h(v)). We
say that h preserves roots if d(v) = 0 implies d(h(v)) = 0.

Lemma 38. Even skew fibrations preserve roots.

Proof. Let f: G — H be an even skew fibration and let v be a
root of G. For a contradiction, assume f(v) is not a root of H.
However, f(v) is even, since v is even. Hence, there is an odd
vertex y in H such that there is a path from f(v) to y and from
y to a root z of H. We have f(v) Ay in H. Hence, there is a
vertex w in G, such that v Au (and therefore also f(v) A f(u))
and f(u) Xy. If f(u) and f(v) are not connected, then f(u)
and y are not connected, and hence f(u) Ay. Therefore f(u)
and f(v) must be connected. This means that there must be a
path from f(u) to the root z (because of Lemmas 10 and 11).
Then the two paths from f(u) to z and from f(v) to z must
meet at a vertex x at odd depth. Consequently f(u) and y
either meet at x or at y. Since both are at odd depth we have
f(u) Ly, a contradiction. O

Lemma 39. Odd skew fibrations preserve roots.
Proof. Similar to the proof of Lemma 38 but simpler. O
Lemma 40. Even and odd skew fibrations preserve depth.

Proof. Via Lemma 38 and 39, and induction on the depth. [

Lemma 41. Let G = G1 > Gy and H = H' > H" where Gy,
Go, H', and H"" are arenas, and let h: G — H be an even or
odd skew fibration. Then h = h' > h" with h': G’ — H' and
h': G" — H" for some G and G" with G = G' > G". (Note
that G’ but not G" can be empty.)

Proof. This is similar to Lemma 37, but makes additional
crucial use of Lemma 40. O

Proof of Theorem 35. The proof proceeds by case analysis.
We show here only the case where : G — H is an even skew
fibration and H = H'>H" for some H’ and H''. We define two
vertex sets V' = V(G)NV(H') and V" = V(G) NV (H").
Then we have that V" £ & because h preserves roots. If
V' = @ then h"': G — H"' is an even skew fibration and we
have h = @3 > h”. Now assume V' # @&. Then G cannot be
a single vertex and can also not be of shape G; + G2 because
then it would not preserve A. Hence, G = Gy > Go, such that
we can apply Lemma 41 and get h = h/>h" with h': G/ — H'
and h": G" — H" for some G’ and G with G = G’ > G".
Since h preserves depth and A, so do i/ and h”. Now let
v € V(G") and w € V(H") such that h(v) Aw. Then there is
a u € V(G) such that u Av and h(u) ¥ w. Hence u € V(G")
because otherwise Y v. Hence, 1" is an even skew fibration.
The same argument applies to i/, but we conclude that i’ is an
odd skew fibration since the parity of all vertices is inverted.
All other cases are similar. O

Observe that a map on arenas is a skew fibration (Defi-
nition 26) if and only if it is an even skew fibration (Defi-
nition 32) that preserves the equivalence relation. It follows
from Theorem 35 that if the expression in (2) is an ICP, then
ki, ..., k, are odd skew fibrations, and f is an even skew
fibration. This is crucial for sequentialization.

VI. POLYNOMIAL FULL COMPLETENESS

In this section we will define sequentialization, the trans-
lation from ICPs to sequent proofs. We establish that both
sequentialization and de-sequentialization are size-preserving
(up to a polynomial): our polynomial full completeness result.

For convenience, we use [ :: A to abbreviate [: G — [A],
and similarly ¢ ::I" for a sequence ¢ of such maps.

We describe sequentialization as a rewrite relation, where
intermediate stages of the translation process are captured
as sequent proofs containing (still-to-be-translated) ICPs as
subproofs. We formalize this by adding a special axiom (icp)
to the sequent calculus, given below, which incorporates an
ICP p::T" I f:: A (depicted in a box for easy recognition) as
a sub-proof of I' - A. Such a proof will be a hybrid proof.

-

r-A

Definition 42 (Hybrid proofs). The calculus of hybrid proofs
is the sequent calculus Llp extended with the icp axiom.

Note that embedding the ICP f :: A into a hybrid proof forces
an interpretation of the arena [A] as a fixed formula A, which
may be chosen up to isomorphism. We define sequentialization
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Fig. 7. Sequentialization

via a rewrite relation (~~) on hybrid proofs, given in Figure 7,
which interprets constructions on ICPs as proof rules. The
side conditions for [=-L] and [AR], which split an ICP in two,
ensure that both parts are ICPs. They use the following notion:

Definition 43. Two sequences 6, v of doors of an ICP ¢ I f
are separate, 0 || 1, if their covers do not share a partition.

Definition 44 (Sequentialization). The sequentialization
rewrite relation (~) on hybrid proofs is given by the rules
in Figure 7. An ICP sequentializes (~) by:

e
FA
Sequentialization and de-sequentialization (Figure 6, Defini-

tion 30) are near-inverses. In one direction they cancel out:

Theorem 45. If [ ~ 7 then [n] = f.

fuA~m —

Proof. By inspection of both translations. O

In the other direction, from sequent proof to ICP to sequent
proof, note:

o The rule [=-L] is a counterpart only to the first version of
[=-L] in Figure 6, where the consequent % of the introduced
implication f > k:: A= B is non-empty.

o The rule [c] requires that both components k, of [k, ] are
non-empty, to avoid non-termination via k = [k, &].

To prove that ICPs sequentialize, we show that (~~) reduces

any ICP in a hybrid proof, so that its normal forms are standard

LIp proofs. We use a result that corresponds to the “splitting

tensor lemma” in the proof net literature [11], [12].

For an ICP ¢ :: " I f:: A, call the doors in ¢ input doors,
and f an output door. An input door is open if it is:

o a weakening @ :: A,

e a contraction [k,l]:: A where k,| # &,

e a conjunction k+1:: AANB, or

o an implication [ > k:: A= B that is splitting: it occurs as

poul, fokaA=B A Fh:C where ¢, f || k,¢,h.

An output door is open if it is:
o an implication k> [ :: A=B, or
e a conjunction f+ g:: ArDB that is splitting: it occurs as

puly A f+g:ANB where o, f || 9,9 .

By the correspondence with MLL, we call an input implication
and output conjunction a fensor, and an input conjunction and
output implication a par. A door that is not open is closed. By
the inductive characterization of even and odd skew fibrations
(Theorem 35), a closed door is either atomic 1:: P, or a
tensor that is not splitting. Observe that a sequentialization
step applies to every ICP with an open door.

Lemma 46 (Splitting tensor). An ICP is either an axiom or
has an open door.

Proof. An ICP that contains a weakening, contraction, or par,
has an open door. Otherwise, it consists of atomic doors
1: ¢ — [P] and tensors: input f>k: F>K — [A=B]
and output f+g: F+G — [An B]. The (top-level) structure
of the ICP is then mirrored in its arena net. Since the latter
is IMLL-constructed (by Theorem 25), the ICP is either an
axiom, or has a splitting tensor. O

Theorem 47 (Sequentialization). For every ICP f:: A there
is a sequent proof w such that f:: A ~~T.

Proof. By the splitting tensor lemma (Lemma 46), to any ICP
in a hybrid proof a sequentialization step applies. By arena
net sequentialization (Theorem 25) and the inductive charac-
terization of even and odd skew fibrations (Theorem 35), the
result of a sequentialization step is again a hybrid proof. [

With Theorem 45, de-sequentialization is surjective:

Corollary 48 (Surjectivity). Every ICP is the image [] of a
sequent proof .

Our main result is that, in addition to the above, both
translations [—] and (~+) are polynomial. Intuitively, a sequent
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proof and an ICP have comparable size because the axioms
of a sequent proof m make up the partitions of the arena net
of [r] (unless they are deleted by a [=-L] translation step),
while the conclusion of 7 directly gives the base arena of [7].

Formally, we define the size of sequent proofs and of ICPs
in the standard way. The size |[' - A| of a sequent I' - A is
the number of symbols in it, and the size || of a proof = is
the sum of the sizes of the sequents in it. The size |G| of an
arena G is the number of its vertices. Finally, the size |g| of
an ICP g: G — [A] is |G| + |[A]|. By inspecting Figures 6
and 7, we immediately have the following:

Theorem 49 (Polynomial full completeness). There are poly-
nomials p and q such that:

o |[7]] < p(|7|) for every sequent proof ;
o if [~ then || < q(|f]).

VII. LOCAL CANONICITY

The sequent calculus admits many proof transformations
between proofs that, morally or semantically, denote the same
object. We will consider these from the perspective of com-
plexity, and reject those transformations that incur exponential
growth. We factor out the remaining, computationally feasible
transformations: our local canonicity result.

We will distinguish several kinds of transformations, and
identify whether they are local, i.e. do not affect the rest of
the proof. First, the interaction of =L with contraction and
weakening gives rise to two non-local (but semantically sound)
transformations we call unfolding (u) and excising (e), which
duplicate respectively delete subproofs, in Figure 8.

Iterated unfolding induces exponential growth, despite the
fact that we are working with cut-free proofs, and we reject it
on complexity grounds. Figure 1 in the Introduction illustrates
how two sequent proofs that differ by this rewrite step give
rise to distinct ICPs. Note also that dag-arenas are crucial here.
An interpretation of the left-hand side would be of the form:

k:G—[B],l: H—[B],¢v Fh
ok fiF—=[A] [k, l]: G+H — [B],v Fh
o, [o[k1]: Fr(G+H) = [A=B],¢ Fh
Tree-arenas must express F > (G+H) as (F>G)+(F>H),
however, forcing the application of unfolding.

[=L]

For excising, the weakened formula B would be interpreted
as @: g — [B]. Since we cannot admit the construction
F > (as it equates to F), we cannot interpret the left-hand
side. Instead, the interpretation of a sequent proof as an ICP,
in Figure 6, applies excising by way of the second [=-L] rule:
reducing ¢ to the empty ¢ in that rule corresponds to deleting
the subproof of I' - A in the excising rule of Figure 8.

Define a permutation ~,, as the exchange of two consecu-
tive inferences on distinct formulas in a sequent; e.g.:

B,A,C FD I'A B/ACFD

I'A BAFC=D " ~, T,A=B,A,CFD
[LA=B,AFC=D © [,A=B,AFC=D X

Each permutation is a simple, local exchange of independent

inferences, since we use a context-splitting (multiplicative) and

not context-sharing (additive) formulation of the sequent rules.

=L

Transformations of two rules applied to the same formula
in a sequent involve a contraction or weakening (since no two
logical rules apply to the same formula) and another left-
rule: =L, AL, ¢, or w. The interaction with =L gave rise
to unfolding and excising above. The remaining comonoid
transformations (~.) are given in Figure 9. These are local,
and correspond to the following equalities:

[k, ]|+ [m,n] =[k+m,l+n] o+0=0 [ko]=k

Finally, the formula isomorphisms (22), applied to the conclu-
sion of a proof, induce a further set of proof transformations,
the formula-isomorphism transformations. For example:
LHA AFB AFB C,AFD
I,A+FAAB "7 C,AFD A A B=C,AFD -

TA (ANB)=C,AFD T.A A=B=C.AFD

R

Definition 50 (Proof equivalence). Proof transformations gen-
erate the following equivalence relations on proofs:

Local rule-equivalence (~) is generated by permutations
(~p) and comonoid transformations (~).

~

Local equivalence (=) is generated by local rule-equivalence
(~) and formula-isomorphism transformations.

The following theorems (i) complete the relation between
sequentialization and de-sequentialization; (ii) observe that any
two sequentializations of the same ICP are locally equivalent;
and (iii) formalize local canonicity. Proofs are omitted.

Theorem 51. If [x] ~+ 7 then 7 (~ U ~5)* 7',

Theorem 52. If f ~+m and f ~+ p then m = p.

Theorem 53 (Local canonicity). ICPs canonically model
sequent proofs modulo local equivalence and excising:

[[=l] < =(u=udy,.



VIII. RELATION WITH INNOCENT STRATEGIES

We present a very natural surjection from ICPs to the Hyland-
Ong/Nickau arena innocent strategies [4], [6] corresponding
to A-calculus terms. We have the following relationships:

winning n-expanded
ICPs ———» innocent <+———  [-normal
surjection strategies bijection \ terms

The latter bijection is game semantics folklore; one formaliza-
tion can be found in [13] (which extends it to second-order).
We reformulate the bijection over our partitioned arenas below.

A sequence is justified [4] if every element but the first has
a pointer to an earlier element, its justifier, skipping an even
number of elements. An element preceded by an even (resp.
odd) number of others is an O-move (resp. P-move). A play in
an arena G is a justified sequence over V' (G) such that the first
move (if present) is a root in G, and a v-occurrence justifies a
w-occurrence only if v<gw. A play is O-shortsighted if every
pointer from an O-move skips no moves, and P-uniform? if
whenever v is the vertex of a P-move and w is the vertex of
the preceding O-move, then w ~¢g v. A (P-)view is a play
which is O-shortsighted and P-uniform.

The predecessor of a non-empty play is the result of deleting
the final move (and its pointer); the converse is the successor
relation. A winning innocent strategy in an arena G is a finite
predecessor-closed set o of views in G such that for every
view p in o, if p has even (resp. odd) length, then every (resp.
exactly one) successor of p is in 0.

Theorem 54. Winning innocent strategies in a formula A are
in bijection with n-expanded, 3-normal \-terms of type A.

Proof. A special case of the main theorem of [13, §7] (omit-
ting quantifiers). That theorem was in terms of atom-labelled
arenas which were forests; the inductive proof (itself a variant
of the definability proof in [4]) goes through with partitions
instead of atom labels, and with dags instead of forests. [

An abstract view in a arena net G is a (possibly-empty) reverse
—\
path in its link graph G, starting from the root.

Proposition 55. Let f: G — H be an ICP. The image under
[ of an abstract view in G is a view in H.

Proof. The Functionality condition of arena nets (Def. 14)
provides a target vertex for each justification pointer, which is
unique by the Acyclicity condition. P-uniformity holds because
every equivalence class in an arena net comprises an even and
an odd vertex, and skew fibrations preserve equivalence. [J

Theorem 56. Let f: G — H be an ICP. The image under f
of all abstract views in G is a winning innocent strategy in H.

Proof. Let o be the image under f of the abstract views in
G. Let p be a view in o ending with the vertex v = f(?).

3This is the copycat condition of [13], reformulated in a partioned arena.
The condition was called foken-reflecting in [14].

4For technical convenience and brevity we have formulated innocent
strategies directly as sets of views, and assume P-uniformity in all views.

If p has even length, by the ICP skew lifting condition, the
neighbourhood {w : v <3 w} in H is in bijection with
the neighbourhood {u : ¥ <g u} in G. Thus every possible
successor of p is in o. If p has odd length, ¥ is an even vertex
in G, hence an abstract view ending in v has only one possible
extending vertex, the mate v’ of ¥ (the opposite vertex in the
link of ¥). Thus there is a unique successor of p in o. O]

Corollary 57. For every formula A, there is a surjection from
ICPs of A to winning innocent strategies in A, hence (via
Theorem 54) to n-expanded, [3-normal \-calculus terms on A.

IX. CONCLUSION AND RELATED WORK

We have constructed intuitionistic combinatorial proofs, as a
concrete, geometric semantics of intuitionistic logic with good
properties: local canonicity (factoring out non-duplicating
conversions), as pioneered for MALL proof nets in [15], and
polynomial full completeness, a complexity-aware version of
full completeness. As a (locally) canonical semantics, ICPs
naturally link to many fundamental ideas in the literature.

ICPs are a close relative to proof nets [11], [3], and arena
nets can be seen as the IMLL version of the cograph-based
proof nets of Rétoré [7].

The stratification of a proof into separate logical and
structural (contraction/weakening) phases is analogous to Her-
brand’s Theorem [16] (as formulated for prenex forms in
Gentzen’s sharpened Hauptsatz or midsequent theorem [17]).
While impossible in sequent calculus [18], deep-inference
proof theory does allow such stratification [19], [20], [5], [21],
[22], as well as the embedding of classical skew fibrations [1],
[2] in deep-inference proofs.

In game semantics [4], [14] skew fibrations are mostly
implicit as the repeating of moves in an arena, though Boudes’
construction of thick subtree [23] is effectively a skew fibration
on trees, defined inductively. Many games models use tree-
arenas, with the notable exceptions of McCusker’s for FPC [8]
and event structures (see e.g. [24], [25]). Yet our graph-based
arena nets are a direct and natural interpretation of IMLL
proof nets, and the sharing they enable is the crucial ingredient
for our polynomial full completeness result.

Current work extends intuitionistic combinatorial proofs
with normalization (cut elimination), and extends them to first
order (see [26] for the classical case).
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