
Conflict nets: Efficient locally canonical MALL proof nets

Dominic Hughes

Logic Group
University of California, Berkeley

Willem Heijltjes

Department of Computer Science
University of Bath

Abstract

Proof nets for MLL (unit-free multiplicative linear logic) and ALL

(unit-free additive linear logic) are graphical abstractions of proofs
which are efficient (proofs translate in linear time) and canoni-
cal (invariant under rule commutation). This paper solves a three-
decade open problem: are there efficient canonical proof nets for
MALL (unit-free multiplicative-additive linear logic)?

Honouring MLL and ALL canonicity, in which all commutations
are strictly local proof-tree rewrites, we define local canonicity for
MALL: invariance under local rule commutation. We present new
proof nets for MALL, called conflict nets, which are both efficient
and locally canonical.

Categories and Subject Descriptors F.4.1 [Mathematical Logic
and Formal Languages]: Mathematical Logic—Proof theory

Keywords linear logic, proof nets, MALL, multiplicative-additive
linear logic

1. Introduction

Proof nets for MLL (unit-free multiplicative linear logic [13]) are
geometric abstractions of MLL proofs. For example, the two proofs

P,P Q,Q
⊗

P,P⊗Q,Q R,R
⊗

P,P⊗Q,Q⊗R,R

P,P

Q,Q R,R
⊗

Q,Q⊗R,R
⊗

P,P⊗Q,Q⊗R,R

translate to the same MLL proof net, with 3 axiom links:

P P⊗Q Q⊗R R

The net abstracts away the arbitrary choice of order between the
independent ⊗ rules, one introducing P⊗Q and the other Q⊗R,
in separate parts of the sequent. MLL proof nets are canonical in
the sense that they are invariant under rule commutation: proofs
differing by a commutation of adjacent rules have the same net.
For example, the net above is invariant upon commuting adjacent
⊗ rules.

Similarly, proof nets for ALL (unit-free additive linear logic) in
binary-relation formulation [18, 21, 25, 26] are canonical geometric
abstractions of ALL proofs. For example, the two ALL proofs

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, contact

the Owner/Author(s). Request permissions from permissions@acm.org or Publications Dept., ACM, Inc., fax +1 (212)

869-0481.

LICS ’16 July 5–8, 2016, New York, NY, USA

Copyright © 2016 held by owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-4391-6/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2933575.2934559

P,P P,P
&

P&P,P
⊕1

P&P,P⊕Q

P,P
⊕1

P,P⊕Q

P,P
⊕1

P,P⊕Q
&

P&P,P⊕Q

differ by a ⊕1/& rule commutation and translate to the same ALL

proof net, with 2 axiom links:

P&P P⊕Q

Both MLL and ALL proof nets are efficient: a proof translates to a
net in linear time. This paper solves a problem which has been open
since the inception of linear logic [13]:

• Problem: are there efficient canonical proof nets for MALL (unit-
free multiplicative-additive linear logic)?

Our solution has two parts:

1. Honouring MLL and ALL canonicity, in which every rule commu-
tation is a strictly local rewrite in a proof tree, we define local
canonicity for MALL: invariance under local rule commutation.

2. We introduce new MALL proof nets, called conflict nets, which
are both efficient and locally canonical.

1.1 Local canonicity

Each rule commutation of MLL and ALL is a local rewrite in a proof
tree. For example, here is an MLL rule commutation which raises a
⊗-rule up over the `-rule immediately above it:

P,P Q,Q
⊗

P,P⊗Q,Q

R,R S,S
⊗

R,R⊗S,S
`

R⊗S,R`S
⊗

P, P⊗Q,Q⊗(R⊗S),R`S
`

P`(P⊗Q),Q⊗(R⊗S),R`S

→

P,P Q,Q
⊗

P,P⊗Q,Q

R,R S,S
⊗

R,R⊗S,S
⊗

P,P⊗Q,Q⊗(R⊗S),R,S
`

P, P⊗Q,Q⊗(R⊗S),R`S
`
P`(P⊗Q),Q⊗(R⊗S),R`S

This commutation is a strictly local rewrite: the two upper sub-
proofs of P,P⊗Q,Q and R,R⊗S,S (shaded grey) remain intact,
as does the continuation below the commutation (also shaded). All
six rule commutations of MLL and ALL are shown in Fig. 1. The ex-
ample above is an instance of the /̀⊗-commutation in Fig. 1 with
Γ=P,P⊗Q, A=Q, B=R⊗S, ∆ empty, C=R, and D=S.

MALL has four additional rule commutations. Faithful to MLL

and ALL locality, three of them are also local, for example,

Γ,A,B,C Γ,A,B,D
&

Γ,A,B,C&D
`

Γ,A`B,C&D

→

Γ,A,B,C
`

Γ,A`B,C

Γ,A,B,D
`
Γ,A`B,D

&
Γ,A`B,C&D

This commutation duplicates the `-rule locally, but does not du-
plicate either of the subproofs of Γ,A,B,C or Γ,A,B,D. The three
local rule commutations of MALL are in Fig. 2.

Γ,A,B,C,D
`

Γ,A,B,C`D
`

Γ,A`B,C`D

↔

Γ,A,B,C,D
`
Γ,A`B,C,D

`
Γ,A`B,C`D

Γ,A,C Γ,A,D
&

Γ,A,C&D

Γ,B,C Γ,B,D
&

Γ,B,C&D
&

Γ,A&B,C&D

↔

Γ,A,C Γ,B,C
&

Γ,A&B,C

Γ,A,D Γ,B,D
&

Γ,A&B,D
&

Γ,A&B,C&D

Γ,A

B,∆,C D,Σ
⊗

B,∆,C⊗D,Σ
⊗

Γ,A⊗B,∆,C⊗D,Σ

↔

Γ,A B,∆,C
⊗

Γ,A⊗B,∆,C D,Σ
⊗

Γ,A⊗B,∆,C⊗D,Σ

Γ,Ai,Bj
⊕j

Γ,A1,B1⊕B2⊕i
Γ,A1⊕A2,B1⊕B2

↔

Γ,Ai,Bj
⊕i

Γ,A1⊕A2,B,Cj
⊕j

Γ,A1⊕A2,B1⊕B2

Γ,A

B,∆,C,D
`

B,∆,C`D
⊗

Γ,A⊗B,∆,C`D

↔

Γ,A B,∆,C,D
⊗

Γ,A⊗B,∆,C,D
`

Γ,A⊗B,∆,C`D

Γ,A,Ci Γ,B,Ci
&

Γ,A&B,Ci⊕i
Γ,A&B,C1⊕C2

↔

Γ,A,Ci
⊕i

Γ,A,C1⊕C2

Γ,B,Ci
⊕i

Γ,B,C1⊕C2
&

Γ,A&B,C1⊕C2

Figure 1. The rule commutations of MLL (left) and ALL (right). Each is a local rewrite in a proof tree.

However, the fourth, the ⊗/&-commutation, fails to be local
because it duplicates an entire proof tree Π:

Π...
Γ,A

B,∆,C B,∆,D
&

B,∆,C&D
⊗

Γ,A⊗B,∆,C&D

→

Π...
Γ,A B,∆,C

⊗
Γ,A⊗B,∆,C

Π...
Γ,A B,∆,D

⊗
Γ,A⊗B,∆,D

&
Γ,A⊗B,∆,C&D

Accordingly, we distinguish two canonicity properties for a system
of MALL proof nets:

• Local canonicity: invariant under local rule commutations.

• Strong canonicity: invariant under all rule commutations.

The slice nets of Hughes and van Glabbeek [25, 26] are strongly
canonical, but not efficient. Conflict nets, summarized below, are
locally canonical and efficient.

1.2 Conflict nets: a whirlwind tour

This subsection is intended as a quick impressionistic overview of
conflict nets, omitting details.

A conflict net is an axiom linking with a cotree alternating
between conflict

>

and concord a nodes, e.g.

P
(

P⊗(Q&Q)
)

`(Q⊕R)

a
b

c

a

a
>

b c

There are three axiom links a b c, between which
>

is an additive
relationship (akin to a &-rule in a proof) and a is a multiplicative
relationship (akin to a ⊗-rule).

1.2.1 Efficient translation

Translation is simple and efficient (linear time):

• axiom rules descend to axiom links (just like MLL and ALL)

• ⊗/& rules join the two cotrees at a new root a/
>

, respectively.1

For example, here is a rule-by-rule translation of a MALL proof to
the conflict net displayed above:

1 Adjacent as or
>

s that result are collapsed, to recover a/
>

alternation.

P P

a

Q Q

b

⊕1

Q Q⊕R

b

Q Q

c

⊕1

Q Q⊕R

c

&

Q&Q Q⊕R

b
c

>

b c

⊗

P P⊗(Q&Q) Q⊕R

a b
c

a
a

>

b c

`

P
(

P⊗(Q&Q)
)

`(Q⊕R)

a b
c

a
a

>

b c

1.2.2 Coalescence correctness

Geometric correctness is coalescence, a form of rewriting that can
be thought of as abstract, top-down sequentialization, generalizing
additive coalescence [18] and multiplicative contractibility [8]. A
conflict net is correct if it coalesces to a single link on all formula
roots. An example is below. Details are in §5; our goal here is only
to convey an overall impression:

P
(

P⊗(Q&Q)
)

`(Q⊕R)

a b
c

a
a

>

b c

P
(

P⊗(Q&Q)
)

`(Q⊕R)

&
a bc

a
a bc

P
(

P⊗(Q&Q)
)

`(Q⊕R)

⊕1

a bc

a
a bc

P
(

P⊗(Q&Q)
)

`(Q⊕R)

⊗
abc

abc

P
(

P⊗(Q&Q)
)

`(Q⊕R)

`

abc
abc

The conflict net is correct because the final link touches the roots
of both formulas in the sequent, and nothing else.

1.2.3 Faithfulness to MLL and ALL

Proof nets for MLL [13] and ALL in binary-relation formulation [18,
21, 25, 26] are consummate categorically, representing the free unit-
free star-autonomous category [19, 20] and the free binary product-
coproduct category [21]. Conflict nets remain faithful to both, by
including them as sub-systems: an MLL /ALL net is a conflict net

Γ,A

B,∆,Ci
⊕i

B,∆,C1⊕C2⊗
Γ,A⊗B,∆,C1⊕C2

↔

Γ,A B,∆,Ci
⊗

Γ,A⊗B,∆,Ci ⊕i
Γ,A⊗B,∆,C1⊕C2

Γ,Ai,B,C
`

Γ,A1,B`C
⊕i

Γ,A1⊕A2,B`C

↔

Γ,Ai,B,C
⊕i

Γ,A1⊕A2,B,C
`

Γ,A1⊕A2,B`C

Γ,A,B,C Γ,A,B,D
&

Γ,A,B,C&D
`
Γ,A`B,C&D

↔

Γ,A,B,C
`

Γ,A`B,C

Γ,A,B,D
`

Γ,A`B,D
&

Γ,A`B,C&D

Figure 2. The additional local rule commutations of MALL. Each
is a local rewrite in a proof tree.

with one a/
>

. For example, the MLL net at the beginning of the
paper is

P P⊗Q Q⊗R R

a b c

a

a b c

1.2.4 Strongly normalizing cut elimination

Cut elimination extends that of both MLL and ALL and is strongly
normalizing. The example below duplicates a cut Q∗Q then tra-
verses the copies:

P P⊗Qa Q∗Q Q&Qb

c

d a

a b
>

c d

↓

P P⊗Qa

Q∗Q

Q∗Q

Q&Q

cḃ

db̃
a

a
>

a

ḃ c

a

b̃ d

↓ ↓

P P⊗Qa Q&Q

ḃc

b̃d a

a
>

ḃc b̃d

1.3 The dichotomy: efficient versus strongly canonical

Define proof nets as rigid if they do not compress proofs: the size
of a net is at least linear in the size of a proof. For example, standard
MLL nets and ALL nets described above are rigid: an MLL/ALL

proof with n axiom rules becomes a proof net with n axiom links.
A rigid MALL proof net system cannot be both efficient and

strongly canonical: repeatedly raising ⊗ rules up over & rules
blows up the size of a proof, so translation to strongly canonical
nets must be exponential time.2 Both slice nets [25, 26] and conflict
nets are rigid. Where slice nets are strongly canonical but not
efficient, conflict nets are efficient but not strongly canonical.

1.4 Related work

Box nets. Girard’s box nets [13] are efficient but not canonical: the
two ALL proofs displayed earlier have distinct box nets. Box nets
are faithful to MLL nets, but not to ALL nets.

2 This dichotomy is generally believed to hold even without rigidity. Current
research by Mark Bagnol aims to formalize such a result.

(P&P)⊕(Q&Q)
(

(Q⊕(Q⊕R))&P
)

&P

1
(P&P)⊕(Q&Q)

⊕
1t

&pt

tp
P

tp
P

⊕
1

ts

&qts

tsqP tsqP

⊕
2

ts

&rts

Q
tsr

Q
tsr

1
((Q⊕(Q⊕R))&P)&P

&t1

&st

ts
Q⊕(Q⊕R)

⊕
1

tsr

tsr
Q

⊕
2

tsr

⊕
1

tsr

tsr
Q

P
ts

P
t

tsr

tsr

tsp

tsp

tq

tq

Figure 3. Illustrating the unwieldiness of monomial nets. Above:
an ALL net, which is a special case of a conflict net (with a single

>

node, omitted). Below: the corresponding monomial net.

Monomial nets. Girard’s monomial nets [14, 30] are neither effi-
cient nor locally canonical. Efficiency fails because monomials en-
code all paths through a &-rule tree: see Prop. 16. Local canonicity
fails since proof translation is not deterministic. With Girard’s (non-
surjective) deterministic translation [14, p.7], which never merges
monomials, local canonicity also fails: commuting any rule up over
a &-rule yields a different monomial net. Monomial nets are faith-
ful to MLL nets but not ALL nets. For a discussion of other issues
with monomial nets, see [25, 26]. The lack of ALL faithfulness man-
ifests in a degree of unwieldiness: see Fig. 3.

Slice nets. As discussed in §1.3, slice nets [25, 26] are strongly
canonical, so necessarily inefficient (since they are rigid). They are
faithful to both MLL and ALL nets.

Complexity trade-off. For MALL proof nets there is a complex-
ity trade-off between proof translation, sequentialization and cut-
elimination. The following table shows how monomial, slice and
conflict nets negotiate this trade-off:

Monomial Slice Conflict

P-time sequentialization ✗ X X

P-time proof translation X ✗ X

P-time cut elimination ? X ✗

Monomial net translation if P-time and sequentialization (retrieving
a proof) is exponential (Prop. 18, §7). Slice nets attain strong canon-

icity by sacrificing P-time translation3; cut elimination and sequen-
tialization are P-time. Conflict nets reflect sequent calculus: proof
translation and sequentialization are P-time, and the cost of com-
putation resides in cut-elimination, which is exponential (see [32],
and also Prop. 17, §7, for the complexity of MALL cut-elimination).

Other related work. There is an established tradition in mathemat-
ics, computer science and proof theory of using graphs to abstract
syntax, exemplified by Kelly–Mac Lane graphs for coherence in
monoidal closed categories [28], connections/matings in classical
logic [2, 5], string diagrams to represent maps in braided categories
[27], and Girard’s programme of finding proof nets for linear logic
[13].

Semantically canonical proof nets have been described for sev-
eral fragments of linear logic, starting with MLL [13]. For ALL,
canonical representations appeared in various guises: coherence
spaces [21], the connections method in proof search [12], coher-
ence for categories with sums and products [10], and in the style
of string diagrams [1]. Canonical proof nets further appeared for
the additive fragment with units (ALLU) [16]; for polarised lin-
ear logic [29] and tensorial logic [33]; and for the multiplicative-
additive fragment without units (MALL) [25, 26]. Canonical forms
for MALL can be obtained in the sequent calculus via focussing [6].
Other MALL nets include contractible proof nets [31] and ludics
nets [7, 11].

Conflict nets are a variant of combinatorial proofs for classical
logic [22, 23]: each conflict net can be viewed [24] as a maximal
map (homomorphism) of contractible coherence spaces (P4-free
graphs), from axioms to sequent. The crude draft [24] on conflict
nets had the data structure of a conflict net, but lacked both a clean
correctness criterion (here coalescence) and cut elimination.

Recent work has emphasised the interplay between canonicity
and complexity. Correctness of MLL proof nets is linear-time [15],
as is correctness for ALLU proof nets [18], while the problem is NL-
complete for strongly canonical MALL proof nets [9]. The interplay
is particularly strong for proof equivalence problems, which may
be decided by via translation to canonical proof nets: for MLL with
units the problem is PSPACE-complete [17], effectively ruling out
canonical proof nets, while for MALL it is LOGSPACE-complete [3].

2. MALL

Formulas A,B, . . . are built from literals (propositional variables
P,Q, . . . and their duals P, Q, . . .) by tensor A⊗B, par A`B, with
A&B and plus A⊕B. Duality extends to formulas by A⊗B =
B`A, A`B = B⊗A, A&B = B⊕A and A⊕B = B&A.4 We
identify a formula with its parse tree, labelled with literals on leaves
and connectives on internal vertices. A sequent Γ or ∆ is a disjoint
union of formulas (a labelled forest), using comma (,) for disjoint
union. For example P&Q,(P⊗P)`(R⊗R),Q is the labelled forest

&

P Q

`

⊗

P P

⊗

R R Q

Proofs are built via the following rules [13]:

P,P

Γ,A,B
`

Γ,A`B

Γ,A B,∆
⊗

Γ,A⊗B,∆

Γ,A A,∆
cut

Γ,∆

Γ,Ai
⊕i

Γ,A1⊕A2

Γ,A Γ,B
&

Γ,A&B

3 Multi-focussing yields strongly canonical forms within sequent calculus
[6], inducing the same exponential blow-up.
4 We define the dual of A⊗B as B`A, rather than A`B, to preserve
planarity during cut elimination, making examples easier to draw.

3. Cotrees and axiom linkings

A link on a sequent Γ , or Γ-link, is a subsequent of Γ , i.e., a
subgraph which is a well-formed sequent. For example, if ∆ is the
sequent

P`Q (S⊕T)⊗(Q⊗R) T&S

then here is a link Λ on ∆:

P Q Q⊗R

We usually draw a link graphically as a horizontal line with vertical
line segments picking out the root vertices of the subformulas
inside the sequent. For example, we draw the link Λ above as:

P`Q (S⊕T)⊗(Q⊗R) T&S

We write the union of disjoint links Λ and Ω as juxtaposition ΛΩ.
A cotree T on Γ is a tree of conflict

>

and concord a nodes
with a Γ -link at each leaf:

T ····= Λ |
>

(F) | a(F)

where Λ is any Γ-link and F is a finite non-empty multiset of
cotrees, each an argument of the node. A coforest is a multiset
of cotrees, and F,G denotes the disjoint union of coforests F and G.
For example, if Γ is the sequent

P&Q Q⊗R R⊕S

then here is a cotree T on Γ :

>

(

P Q⊗R R⊕S,a(QQ,RR),Q Q⊗R S
)

The a node has two arguments (the links QQ and RR) and the

>

node has three arguments (the link P Q⊗R R⊕S , the cotree
a(QQ,RR) , and the link Q Q⊗R S). We generally draw both
the links and the cotree in graphical form. For example, the above
cotree T becomes:

P&Q Q⊗R R⊕S

a
b c

d >

a a

b c

d

A node is unary if it has a single argument. A cotree alternates if no
node is unary, no

>

nodes are adjacent, and noa nodes are adjacent.
For example, the cotree T1 = a

(

a,b,
>

(a(c,d),e,f)
)

below-left

alternates but T2 = a
(

a
(

>

(a(a)),b
)

,
>

(

>

(a(c,d))
)

,
>

(e,f)
)

below-right does not:

a

a b
>

a

c d

e f

T1 = ⌊T2⌋

a

a

>

a

a

b

>

>

a

c d

>

e f

T2

The alternating form ⌊T⌋ of a cotree T is the canonical alternating
cotree associated with T: collapse unary nodes, adjacent

>

nodes,
and adjacent a nodes. For example, the tree T1 above-left is the
alternating form ⌊T2⌋ of the cotree T2 above-right. Formally, the
alternating form of a cotree is the result of exhaustively applying
the following rewrites on subcotrees, where T is any cotree and F
and G are coforests:

>

(T) → T
>

(

>

(F),G
)

→
>

(F,G)

a(T) → T a
(

a(F),G
)

→ a(F,G)

Z1 ··· Zk X⊕Y

a

Z1 ··· Zk X⊕Y

b

Z1 ··· Zk X`Y

c

X1 ··· Xk X⊗Y Y1 ··· Yn

a b

a

a b

⊕1

⊕2

`

⊗

Z1 ··· Zk X⊕Y

a

Z1 ··· Zk X⊕Y

b

Z1 ··· Zk X`Y

c

X1 ··· Xk X⊗Y Y1 ··· Yn

c

a

c

a

a

>

a

Z1 ··· Zk X&Y

a

b >

a b

1

1

&

a a
Z1 ··· Zk X&Y

c
c

··· a1

··· a2

··· am

···

X & Y

b1 ···
b2 ···

bn ···
···

>

a1 am bn b1

>

··· a1

··· a2

··· am

···

X & Y

b1 ···
b2 ···

bn ···
···

>

>

a1 am

>

bn b1

Figure 4. Coalescence steps. In the 1-steps a is a link whose subsequent is not displayed. In all steps but
>

-coalescence, the links target the
(roots of the) subformulas shown. In the

>

-coalescence step, the full horizontal extent of the formulas X and Y are shown as boxes, and the
links target (roots of) subformulas of X and Y.

3.1 Axiom linkings

An axiom link is a link of the form PP for some literal P. A cotree
is axiomatic if every link is an axiom link. An axiom linking is an
axiomatic, alternating cotree. For example, here is an axiom linking
on the sequent P&P,P⊗R,R&R :

P&P P⊗R R&R

a b
c

d
f

e
g

>

a

a
>

b c

a

d e

a

f g

Note that d and f are instances of the same axiom link, as are b and
e, and c and g.

3.2 Notation conventions

We employ the following conventions for variables and disjoint
union throughout the paper:

Sequents Links Coforests

Formulas A B C D Formulas X Y Cotrees T U

Sequents Γ ∆ Σ Links ΛΩ Coforests F G

Γ,A⊗B,∆ Λ X⊗Y Ω F,T,G

4. Translating a proof to an axiom linking

When we add a node between alternating cotrees T and U to form

>

(T,U) or a(T,U) the resulting cotree need not alternate. We
obtain binary operations

>̇

and ȧ which preserve alternation by
collapsing to alternating form:

T
>̇

U = ⌊
>

(T,U)⌋ T ȧ U = ⌊a(T,U)⌋

For example (T1ȧT2)ȧ((U1>̇U2)>̇U3) = a(T1,T2,>(U1,U2,U3)).
Both operations are associative and commutative, so we can write
the same cotree as T1ȧ(U3>̇U1 >̇U2)ȧT2 .

Definition 1. A cut-free MALL proof Π of Γ translates to the axiom
linking JΠK on Γ, defined by:

r
P,P

z
= PP

u
v

Π

Γ,A,B

Γ,A`B

}
~ = JΠK

u
v

Π1

Γ,A

Π2

B,∆

Γ,A⊗B,∆

}
~ = JΠ1K ȧ JΠ2K

u
v

Π

Γ,Ai

Γ,A1⊕A2

}
~ = JΠK

u
v

Π1

Γ,A

Π2

Γ,B

Γ,A&B

}
~ = JΠ1K >̇ JΠ2K

An example of step-by-step translation from a proof to an axiom
linking was shown in §1.2.1.

5. Conflict nets and coalescence

Fix a sequent Γ . The coalescence relation () is the rewrite rela-
tion on cotrees on Γ generated by the following rewrites, illustrated
graphically in Fig. 4, where T T ′ generates a coalescence step
U U ′ if U yields U ′ by replacing a subtree T with T ′.

ΛXY ΛX`Y (`)

ΛXi ΛX1⊕X2 (⊕i)

a(F,ΛX,YΩ) a(F,ΛX⊗YΩ) (⊗)

>

(ΛX,ΛY) ΛX&Y (&)

a(Λ)

>

(Λ)

 Λ

 Λ
(1)

>

(FX,FY) >

(

>

(FX),>(FY)
)

(
>

)

where the (
>

) rewrite has the following conditions:

P&P P⊗R R&R

a b
c

d
f

e
g

>

a

a
>

b c

a

d e

a

f g

P&P P⊗R R&R

&

a bc

d
f

e
g

>

a

a bc

a

d e

a

f g

P&P P⊗R R&R

⊗

abc

d
f

e
g

>

a

abc

a

d e

a

f g

P&P P⊗R R&R

1

abc

d
f

e
g

>

abc a

d e

a

f g

P&P P⊗R R&R

⊗

1
abc

d e
fg

>

abc a

d e

fg

P&P P⊗R R&R

⊗

1
abc

de
fg >

abc de fg

P&P P⊗R R&R

>

abc

de
fg

>

>

abc

>

de fg

P&P P⊗R R&R

1

abc

de
fg

>

abc
>

de fg

P&P P⊗R R&R

&

abc

defg >

abc defg

P&P P⊗R R&R

&
abcdefg

abcdefg

Figure 5. Verifying a conflict net via coalescence.

• FX and FY are non-empty multisets of links.

• FX,FY contains three or more links.

• Γ contains a subformula X&Y such that:

- every link in FX chooses X

- every link in FY chooses Y

where a link chooses X if it intersects X but not Y, and vice versa.

A cotree T coalesces to T ′ if T ∗ T ′ (where ∗ is the reflexive-
transitive closure of), and it coalesces if it coalesces to Γ (the
cotree comprising a single link Γ). Figure 5 shows an axiom linking
coalescing, involving (⊗), (&), (1) and (

>

) rewrites. Section §1.2.2
includes an example involving (`), (⊕), (⊗) and (&) rewrites
(leaving two (1) steps implicit).

A pre-net T : : Γ is a sequent Γ and a cotree T on Γ.

Definition 2. A conflict net is a pre-net whose cotree is an axiom
linking which coalesces.

5.1 Sequentialization

Coalescence is essentially top-down sequentialization: each axiom
link in a conflict net corresponds to an axiom rule in a proof
and each coalescence step introduces a rule. To record the proof
produced by coalescence, a version of conflict nets is introduced
where leaves carry proofs, rather than merely sequents.

A deductive cotree on Γ is the generalization of a cotree on Γ in
which each leaf is a MALL proof of a subsequent of Γ, rather than
just a subsequent. A deductive cotree on Γ projects to an ordinary
cotree by replacing each proof by its concluding subsequent of Γ .
Conversely, an axiomatic cotree may be considered a deductive
cotree by taking each link P P to be the corresponding axiom rule.
Coalescence extends to deductive cotrees by combining each of the
four rewrite steps (`), (⊕), (⊗), and (&) with its corresponding
MALL rule: apply the rule to the proofs in the redex to form a proof
of the sequent in the contractum. For example, in (⊗) a proof of
Λ,Ω,X⊗Y is formed by applying the ⊗-rule to the proofs of Λ,X
and Ω,Y in the redex. The rewrites (1) and (

>

) leave proofs intact.

Definition 3. A deductive conflict net T : : Γ sequentializes to a
proof Π with conclusion Γ if it coalesces to Π : : Γ .

Sequentialization is the inverse of proof translation:

Theorem 4. A conflict net T : : Γ sequentializes to a MALL proof Π
if and only if JΠK = T and Π has conclusion Γ .

Proof. Suppose T : : Γ sequentializes to Π : : Γ . Define cotree equiv-
alence by T ∼ U if and only if ⌊T⌋ = ⌊U⌋, i.e., the cotrees have
the same alternating form. In each deductive coalescence step, the
redex and contractum translate to equivalent pre-nets (i.e., pre-nets
with equivalent cotrees). For sequentializing T : : Γ to Π : : Γ this
means Π translates to a conflict net T ′ : : Γ with T ∼ T ′. Since T ′

and T are both alternating, Π translates to T : : Γ .
Conversely, suppose JΠK = T. We show by induction on Π

that every subtree of T sequentializes to a subproof of Π, whence
T : : Γ sequentializes to Π. The base case with Π an axiom rule is
immediate. Observe that if T : : Γ T ′ : : Γ for Γ a subsequent of
Γ ′ then T : : Γ ′ T ′ : : Γ ′. There are four cases [`] [⊕] [⊗] [&]
according to the structure of Π, respectively:

Π′

Λ,X,Y

Λ,X`Y

Π′

Λ,Xi

Λ,X1⊕X2

Π1

Λ,X

Π2

Y,Ω

Λ,X⊗Y,Ω

Π1

Λ,X

Π2

Λ,Y

Λ,X&Y

Case [`]. JΠK = JΠ′K and by induction JΠ′K : : Λ,X,Y sequen-
tializes to Π′. By the observation above JΠ′K : :Λ,X`Y coalesces to
Π′ : :Λ,X`Y which coalesces in one step to Π : :Λ,X`Y.

Case [⊕] is like [`].
Case [⊗]. JΠK = JΠ1KȧJΠ2K. There are four cases, depending

on whether the root of each JΠiK is a or not; without loss of
generality let JΠ1K = a(F) with JΠ2K not a-rooted, so JΠK =
a(F,JΠ2K). By induction JΠ1K : : Λ,X sequentializes to Π1, and
JΠ2K : : Y,Ω to Π2. Then JΠK on the sequent Λ,X⊗Y,Ω coalesces
via a(F, JΠ2K) ∗ a(Π1,Π2) a(Π) Π.

Case [&]. JΠK = JΠ1K>̇JΠ2K. There are again four cases; with-
out loss of generality let JΠ1K =

>

(F) with JΠ2K not
>

-rooted, so
JΠK =

>

(F, JΠ2K) where F = T1, . . . ,Tm. By induction and prior
observations JΠ1K and JΠ2K over Λ,X&Y coalesce to Π1 and Π2. We
construct a coalescence sequence over Λ,X&Y :

>

(F, JΠ2K) ∗
>

(Σ1, . . .,Σm,Π2)

>

(
>

(Σ1, . . .,Σm),
>

(Π2))
∗
>

(Π1,Π2) Π

The stronger induction hypothesis ensures each Ti coalesces to a
subproof Θi of Π1. The above sequence works if the side conditions
of the (

>

) rewrite hold: we must show that the conclusion of each
Θi intersects X. This follows by induction on Π1. Since a ⊗-rule
would create aa-rooted cotree, Π is constructed from the subproofs
Θi using only `, ⊕ and & rules. The conclusion of Π1 is Λ,X, so
the conclusion of each Θi must intersect X. Thus JΠK : : Λ,X&Y
sequentializes to Π via the above coalescence sequence.

5.2 Local canonicity

Two proofs are homeomorphic, denoted Π≃ Π′, if Π yields Π′ by
a sequence of (0 or more) local rule commutations (displayed in
Figures 1 and 2).

Theorem 5 (Local Canonicity). Homeomorphic proofs translate to
the same conflict net: Π≃ Π′ implies JΠK = JΠ′K.

Proof. A routine induction on the size of the proof.

5.3 Confluence of coalescence

For coalescence to be a reasonable correctness criterion and sequen-
tialization procedure we require:

• If one coalescence path succeeds, all paths eventually succeed.

• Two sequentializations of the same net must be homeomorphic.

The former means that testing any one coalescence path is sufficient
to determine correctness, as opposed to testing all possible paths.
This is essential for coalescence to be tractable.

The two properties can be summarised as saying that sequen-
tialization for conflict nets should be confluent modulo local rule
commutations: Theorem 6 below. Note, however, a subtlety: coales-
cence is confluent for conflict nets, but not necessarily for pre-nets;
if coalescence fails, it can fail in many different ways.

Theorem 6. If T : : Γ sequentializes to Π : : Γ and T coalesces to
T ′ then T ′ sequentializes to some Π′ : : Γ with Π′ ≃ Π .

`⊕⊗ & 1
>

>

4 4 · · · 5
1 · · · · ·
& 3 3 · ·
⊗ 2 2 2
⊕ 1 1
` 1

Proof. We show that critical pairs of coalescence on deductive
conflict nets converge modulo homeomorphism
of the proofs at each link. The table shown right,
pairing coalescence rewrites against each other,
gives an overview: a number refers to a case
considered in the proof, while a dot · indicates
that rewrites do not form a critical pair. We do
not for example consider

ΛX

>

(ΛX)
>

(ΛX⊕Y)

a critical pair, as the (1) step leaves the link ΛX intact.

Case 1. A critical pair of (`) and (⊕) steps converges by:

ΛXY Z ΛXY Z⊕W

Λ X`Y Z Λ X`Y Z⊕W

The induced proofs differ by `/⊕ commutation. The critical pairs
for two (`) steps or two (⊕) steps converge similarly.

Case 2. A critical pair of (⊗) and (`) steps converges by:

a(F,ΛX,ΩY ZW) a(F,ΛX,ΩY Z`W)

a(F,ΛΩX⊗Y ZW) a(F,ΛΩX⊗Y Z`W)

The induced proofs differ by a ⊗/` commutation. The critical pairs
of the (⊗) step with the (⊕) or (⊗) step converge similarly.

Case 3. For the (&) step, the critical pair with the (⊕) step
converges as follows.

>

(ΛXZ,ΛY Z) ΛX&Y Z

>

(ΛXZ⊕W,ΛY Z)

>

(ΛXZ⊕W,ΛY Z⊕W) ΛX&Y Z⊕W

The induced proofs differ by a &/⊕ commutation. The critical pair
with the (`) step converges similarly, and there is no critical pair
with the (⊗) step. The (&) step cannot form a critical pair with itself
since its

>

node must be binary.

Case 4. For the (
>

) step, the critical pair with the (⊕) step con-
verges as follows.

>

(FX,FY,ΛZ)
>

(FX,FY,ΛZ⊕W)

>

(
>

(FX),>(FY,ΛZ))
>

(
>

(FX),>(FY,ΛZ⊕W))

The side-condition to the initial (
>

) step above is that some formula
in ΛZ must be a subformula of Y in X&Y in the sequent Γ over
which the cotrees are formed. This condition remains valid for
ΛZ⊕W: since Z occurs in Z⊕W and Y in X&Y, Z 6= Y; then
if Z is a subformula of Y, so is Z⊕W. The critical pair with the (`)
step converges similarly, and no critical pairs are formed with the
(⊗), (&), and (1) steps.

Case 5. The critical pair of the (
>

) step with itself is

T =
>

(FXZ,FXW,FYZ,FYW)
>

(
>

(FXZ,FXW),
>

(FYZ,FYW))

>

(
>

(FXZ,FYZ),>(FXW,FYW))

where the sequent Γ on which the cotrees are formed has subfor-
mulas X&Y and Z&W such that each of the links in FXZ contains
subformulas of X and Z, and similarly for FXW , FYZ, and FYW . We
show by induction on the width of T that both sides sequentialize
to homeomorphic proofs.

By assumption, T sequentializes, starting with (without loss of
generality) the rightward step above. Since both the rightward and
downward steps apply, no link intersects both X and Y, or both Z
and W.

First we show that no Fi can be empty. Suppose FXZ is empty;
since the downward step from T applies, FYZ is non-empty. Then
a(FXZ,FXW) may coalesce to a link containing W, but not Z&W,
whilea(FYZ,FXW) may coalesce to a link containing Z&W (or Z),
but not only W. This contradicts the assumption that T coalesces
via the rightward step above.

Next, consider the case where each Fi is unary; then Fi is a
proof link Πi with conclusion Λi. Permuting (`) steps and (⊕)
steps above (&) steps (case 3. above) and (

>

) steps (case 4. above),
we may assume the conclusions Λi are ΛXZ, ΛXW, ΛY Z, and
ΛYW respectively. The critical pair from T converges as follows.

>

(ΛXZ,ΛXW,ΛYZ,ΛYW)
>

(
>

(ΛXZ,ΛXW),
>

(ΛYZ,ΛYW))

>

(
>

(ΛXZ,ΛYZ),>(ΛXW,ΛYW))
>

(ΛXZ&W,ΛY Z&W))

>

(ΛX&Y Z,ΛX&YW) ΛX&Y Z&W

For the inductive step, we will show that if Fi is not unary,
then

>

(Fi) coalesces to Λi; whence the case is as above. We will
only need to consider

>

(FXZ,FXW) as the case for
>

(FYZ,FYW)
follows by symmetry.

Using the assumption that
>

(FXZ,FXW) coalesces (since T
coalesces via the rightward step above), and ignoring (⊕) and (`)
steps as previously, consider the first (

>

) step. If this applies to the
subformula Z&W, coalescence must be via a sequence

>

(FXZ,FXW)
>

(
>

(FXZ),>(FXW)) ∗
>

(ΛXZ,ΛXW)

Then each
>

(Fi) coalesces to Λi, and the critical pair from T
converges as above.

Otherwise, the first (
>

) step on
>

(FXZ,FXW) is on a subfor-
mula U&V . Let it be the step

>

(FXZ,FXW)
>

(
>

(FXZU,FXWU),>(FXZV,FXWV)) .

By the same reasoning as above, none of the Fi can be empty. Then
the following (

>

) step for Z&W also applies:

>

(FXZ,FXW)
>

(
>

(FXZU,FXZV),>(FXWU,FXWV)) .

By induction hypothesis, these two steps converge (modulo home-
omorphism), which means there must be a sequence

>

(
>

(FXZU,FXZV),>(FXWU,FXWV))
∗
>

(ΛXZ,ΛXW) .

Then
>

(FXZ) and
>

(FXW) coalesce to ΛXZ and ΛXW respectively,
and similarly for FYZ and FYW , and the critical pair from T con-
verges as above. �

5.4 Complexity of coalescence

Confluence is essential for coalescence to be tractable, since it
becomes sufficient to verify just one coalescence sequence, instead
of having to try every possibility. To establish that coalescence is
P-time (polynomial-time decidable), we will look at:

A. the maximal length of a coalescence sequence, and

B. the cost of finding and executing the next step.

We will take the size of a conflict net to be the size of the cotree
plus the size of the sequent. In what follows we are not aiming
to give an efficient algorithm; we aim purely for a straightforward
and accessible demonstration that coalescence is a reasonable cor-
rectness condition.

For A observe that the number of (1) and (
>

) steps is bounded
linearly by the number of other steps: there is at most one (1) step
created by each (⊗) and (

>

) step, and at most one (
>

) step for each
(&) step. The other coalescence rewrites, (⊗), (`), (&), and (⊕),
are limited to one application per connective per link. This gives a
quadratic bound to the length of any coalescence path.

For B, each step other than (
>

) involves only local pattern-
matching and rewriting, which means a single traversal of the
conflict net can find and execute such a step. A (

>

) redex in a pre-
net T : : Γ can be found and coalesced as follows.

1. Find a node
>

(Λ1, . . .,Λn) whose children have all been coa-
lesced to links Λi. This is linear-time.

2. For each Λi, for every subformula X&Y of Γ , mark X or Y when
Λi intersects it. This is a simple walk from the formulas in Λi

towards the roots of Γ ; at most linear-time for Λi, and quadratic
for
>

(Λ1, . . .,Λn).

3. Find a subformula X&Y with X and Y both marked, and either
X or Y marked for every i 6n; then partition

>

(Λ1, . . .,Λn)
accordingly. This is linear-time.

Together, these algorithms for A and B give a time complexity of
O(n4), which justifies the following proposition:

Proposition 7. Conflict net correctness is P-time.

It is likely that more efficient algorithms are possible. Correctness
of MLL proof nets is linear-time [15], and this likely extends to
coalescing a subtree a(Λ1, . . .,Λn), which additionally involves
only (⊕) rewrite steps.

5.5 ALL coalescence

Coalescence for MALL departs from coalescence in purely additive
linear logic [18]. Conflict nets restricted to ALL coincide with ALL

proof nets, with a single
>

node covering the axiom links. However,

coalescence for ALL has the following rewrite in place of the two
rewrites (

>

) and (&).

>

(F,ΛX,ΛY)
>

(F,Λ X&Y) (A)

The difference between (A) and (&) is that the former allows a
context F, while the latter only applies to binary

>

nodes. The
rewrite (A) is analogous to the (⊗) rewrite.

For ALL, where sequents consist of exactly two formulas, (A)
is confluent [18] in the manner of Theorem 6: if one path succeeds,
all paths do. But for sequents of three formulas or more, as occurs
in MALL, it is not confluent. Consider the sequent

P&P,Q&Q,R&R

and the flat cotree T that takes all eight slices as links,

T =
>

(PQR, PQR, PQR, PQR, PQR, PQR, PQR, PQR)

This coalesces via (A) if the &-formulas are treated in order, first
P&P, then Q&Q, then R&R. However, coalescing one instance of
P&P, one of Q&Q, and one of R&R produces a deadlock:

T ∗

A >

(PQR, P&P Q R, P Q&Q R, P Q R&R, PQR)

No further (A) steps are possible, breaking confluence.
For MALL coalescence, replacing rule (A) with (

>

) and (&)
solves this issue, yielding confluence (Theorem 6).

Where MLL contractibility (⊗) and (`), and ALL coalescence
(⊕) and (A), are top-down, the example above suggests top-down
coalescence is impossible for MALL. Our coalescence combines
one bottom-up rule (

>

) with an otherwise top-down procedure.

6. Cut elimination

In this section we extend the syntax of formulas and sequents with
a binary cut connective ∗, restricted to occur in outermost position
between dual formulas. Thus every cut formula has the form A∗A
with A cut-free.

Definition 8. A conflict net with cut is a conflict net with coales-
cence extended by

a(F,ΛA,AΩ) : : Γ,A∗A a(F,ΛΩ) : : Γ (∗)

This step deletes a cut formula A∗A reached during coalescence.
Thus successful coalescence results in a cut-free sequent, and a cut
formula is never contracted in the context of a (&) step. The latter
means cut formulas are not shared between slices. This is important
for cut-elimination, which will manipulate cut formulas.

For sequentialization, the deductive variant of the above coales-
cence step combines the two subproofs with a cut rule. For proof
translation, the cut rule translates to the same cotree as a ⊗ rule,

u
v

Π1

Λ,A

Π2

A,Ω

Λ,Ω

}
~ = JΠ1K ȧ JΠ2K

but the sequent over which the tree is formed is extended with A∗A.
Thus, a proof Π of Γ with cuts translates to JΠK : : Γ,C1,. . .,Cn

where the formulas Ci = Ai∗Ai are the cut formulas of Π.
Since the (∗) rewrite is similar to the (⊗) rewrite, Theorem 6

extends straightforwardly to conflict nets with cut:

Theorem 9. Sequentialization for conflict nets with cut is confluent
modulo homeomorphism.

6.1 Cut elimination

Cut elimination comprises four rewrite steps, three removing a
cut (atomic, ⊗/`, and &/⊕), and a duplication step. Duplication
corresponds to raising a cut rule over a & rule in sequent calculus,
which duplicates the cut and its subproof:

Π

Γ,A

A,∆,B A,∆,C
&

A,∆,B&C
cut

Γ,∆,B&C
→

Π

Γ,A A,∆,B
cut

Γ,∆,B

Π

Γ,A A,∆,C
cut

Γ,∆,C
&

Γ,∆,B&C

For the corresponding duplication in conflict nets, the question is
what to duplicate. The notion of subproof is not directly applicable
to conflict nets, but it is accessible via coalescence: since any co-
alescence sequence (eventually) produces a sequentialization, any
subtree or subforest that coalesces to a single link corresponds to a
subproof in some sequentialization. Among subproofs suitable for
duplication, we choose the smallest:

Definition 10. In a neta(F) : : Γ the kingdom of a subformula A of
Γ , if it exists, is the smallest subforest KA of F such thata(KA) : : Γ
coalesces to a link ∆A : : Γ .

As in the MLL case, the kingdom of A corresponds to the smallest
subproof with A in the conclusion in any sequentialization: see
[4] for details. The kingdom of A may not exist, for example if
A occurs in a formula A&B generated by a

>

-rooted cotree in F.5

The following notions provide the local structure needed for cut-
elimination. A coforest F touches a formula A if a link in F inter-
sects A. Non-empty coforests FX and FY separate a subformula
X⊗Y, X&Y, or X⊕Y if every tree in FX touches X but not Y and ev-
ery tree in FY touches Y but not X. A cotree generates a subformula
Z if two immediate subtrees separate Z.

For example, if a cotree a(F) generates a subformula X⊗Y,
then the root of a(F) represents a sequent rule introducing the ⊗
between X and Y.

Definition 11 (Cut reduction). A pre-net T : : Γ,A∗A where T
generates the cut A∗A reduces as follows. In each case, alternation
may need to be restored.

Atomic step:

a(F,P
v
P
w
,P
x
P
y
) : : Γ,P

w
∗P
x

→ a(F,P
v
P
y
) : : Γ

where vertices vwxy are underset, to avoid ambiguity.

Multiplicative step:

T : : Γ,(A⊗B)∗(B`A) → T : : Γ,A∗A,B∗B

if T generates both A⊗B and (A⊗B) ∗ (B`A). This step applies
analogously to the symmetric cut (B`A) ∗ (A⊗B).

Additive step:

a(
>

(FA,FB),F) : : Γ,(A&B)∗(B⊕A)

↓

a(
>

(FA),F) : : Γ,A∗A

if FA and FB separate A&B and F does not touch B. This step
applies analogously to the symmetric cut (B⊕A) ∗ (A&B).

Duplication step: a(F,KA,>(FB,FC)) : : Γ ,Σ,A∗A

↓

a(F,
>

(a(KA,>(FB)),a(KA,>(FC)))) : : Γ ,Σ,A∗A,Σ,A∗A

if

• F,KA does not touch A,
• FB and FC separate a formula B&C not a subformula of A,

and where

• KA is the kingdom of A and Σ are the cuts it dominates (defined
below), and

5 One can adjust the definition of kingdom to always exist; we have no need.

• the left copy of Σ,A∗A is associated with FB and the left copy
of KA; the right copy with FC and the right copy of KA.

A simple example of cut duplication was shown in §1.2.4. Figure 6
shows an example with a larger duplicated kingdom. The domina-
tion order on a pre-net T : : Γ is generated by:

• the subformula ordering over Γ ,

• the subtree ordering over T,

• a link Λ in T dominates its Γ -subformulas,

• a subtree T ′ dominates a formula C if T ′ generates C.

Theorem 12. Cut reduction on conflict nets preserves sequential-
ization modulo cut reduction and homeomorphism.

Proof sketch. For each of the four steps T : : Γ → T ′ : : Γ we show
that if T : : Γ sequentializes there are coalescence paths for T and
T ′ that generate respective sequentializations Π and Π′ such that Π
cut-reduces to Π′ modulo homeomorphism. �

Proposition 13. A cut in a conflict net can always reduce.

Proof sketch. The net coalesces, so a cut A∗A must coalesce by a
(∗) stepa(F,ΛA,AΩ) a(F,ΛΩ). Case distinctions are needed
based on which coalescence steps produce ΛA and AΩ. �

6.2 Strong normalization

The idea that the additive connectives represent a choice for either
their left or their right component is naturally captured by the (stan-
dard) notion of slice: what remains of a proof net after removing
one branch for each additive connective. For conflict nets, a natural
notion of slice is one that chooses on

>

nodes. While we will not
formalize such a notion, as we have no direct need for it, we will
define a measure to count slices in this manner. Define the weight
‖T‖ of a cotree by:

‖Λ‖ = 1
‖a(T1, . . .,Tn)‖ =

∑
i ‖Ti‖

‖
>

(T1, . . .,Tn)‖ =
∏

i ‖Ti‖ .

This measure will be used to establish that cut reduction is termi-
nating. The idea is that upon duplication, the copies of a cut are
pushed into separate collections of slices. In other words, the dupli-
cated cuts are each shared amongst fewer slices than the original,
giving a natural measure for termination.

Definition 14. In a conflict net the weight of a cut A∗A is the
weight ‖TA‖ of the subtree TA that generates it, and its size is the
size sz(A) of A. The weight of a net is the multiset comprising the
pair (‖TA‖, sz(A)) for each cut.

Theorem 15. Conflict net cut elimination is strongly normalizing.

Proof. By Prop. 13 any cuts present in a net can be reduced. The
weight of a net decreases upon cut reduction. Any reduction path
may be completed to cut-free normal form.

7. Complexity results

The following examples support the comparison table in §1.4.

Proposition 16. Monomial nets are not efficient: proof translation
has super-linear complexity.

Proof sketch. Let Ai = Pi&Pi, Tk = A1⊗(. . .⊗(Ak−1⊗Ak) . . .)
and Γk = A1,. . .,Ak,Tk. One can construct a cut-free proof Πk

of Γk with all &-rules at the bottom and n = 2k.k axiom rules
whose monomial net θk must have n axiom links, each carrying
a monomial with k distinct eigenvariables. Thus θk is a factor k
larger than Πk. �

Proposition 17. MALL cut elimination is EXPTIME.

Q Q⊗(R⊗S)
a

S∗S S⊗P (P`R)∗(R⊗P) P⊕P R&R

f
g

b
c d e

h
i

a

a b c d e
>

a

f g

a

h i

Q Q⊗(R⊗S)
a S∗S

S∗S

S⊗P

(P`R)∗(R⊗P)

(P`R)∗(R⊗P)

P⊕P R&R

ḃ
ċ ḋ ė

f
g

b̃
c̃ d̃ ẽ h

i
a

a
>

a

ḃ ċ ḋ ė f g

a

b̃ c̃ d̃ ẽ h i

Figure 6. Illustrating cut duplication. Pattern-matching the definition of the duplication step: in the redex (the upper conflict net) A is P`R,
its kingdom KA is bcde, FB is the cotree fag, FC is the cotree hai, F is the cotree a (a single link), Γ is Q,Q⊗(R⊗S),S⊗P,P⊕P,R&R,

and Σ is S∗S. The kingdom bcde is duplicated, once as ḃċḋė (next to fag) and once as b̃c̃d̃ẽ (next to hai).

Proof. Let Ai = Qi⊗
(

(Pi⊗Pi+1)`Qi+1

)

and Γn = P1,Q1,A1&A1,

. . ., An&An,Qn+1⊗Pn+1. The ⊗s force a cut-free proof of Γn
to stack n &-rules, introducing A1&A1, . . . , An&An bottom-up,
for 6×2n–4 axioms, exponential in n. Using cut, Γn has a 10n+2
axiom proof, a cut-free proof of P1,Q1,A1,. . .,An,Qn+1⊗Pn+1

cut with n proofs of Ai,Ai&Ai.

Proposition 18. Monomial net sequentialization is EXPTIME.

Proof sketch. Monomial nets θn on Γn defined above grow linearly
in n; cut-free MALL proofs of Γn grow exponentially. �

Acknowledgements. Roberto Maieli for pointers on monomial
and box nets. Referees for constructive feedback. EPSRC Project
EP/K018868/1 Efficient and Natural Proof Systems. Wes Holliday
for hosting Dominic at UC Berkeley.

References

[1] J. B. Almeida, J. S. Pinto, and M. Vilaça. A local graph-rewriting
system for deciding equality in sum-product theories. ENTCS, 2007.

[2] P. B. Andrews. Refutations by matings. Trans. Comp., 25(8), 1976.

[3] M. Bagnol. MALL proof equivalence is Logspace-complete, via
binary decision diagrams. TLCA, 2015.

[4] G. Bellin and J. van de Wiele. Subnets of proof-nets in MLL−. In
Advances in Linear Logic, 1995.

[5] W. Bibel. An approach to a systematic theorem proving procedure in
first-order logic. Computing, 12(1), 1974.

[6] K. Chaudhuri, D. Miller, and A. Saurin. Canonical sequent proofs via
multi-focusing. In IFIP, 2008.

[7] P.-L. Curien and C. Faggian. An approach to innocent strategies as
graphs. Information and Computation, 2012.

[8] V. Danos. La Logique Linéaire appliquée à l’étude de divers processus

de normalisation. PhD thesis, Université Paris 7, 1990.

[9] P. J. De Naurois and V. Mogbil. Correctness of multiplicative additive
proof structures is NL-complete. In LICS, 2008.

[10] K. Dosen and Z. Petric. Bicartesian coherence. Studia Logica, 71(3),
2002.

[11] C. Faggian and F. Maurel. Ludics nets, a game model of concurrent
interaction. In LICS, 2005.

[12] D. Galmiche. Connection methods in linear logic and proof nets
construction. Theoretical Computer Science, 232, 2000.

[13] J.-Y. Girard. Linear logic. Theor. Comput. Sci., 50(1), 1987.

[14] J.-Y. Girard. Proof-nets: the parallel syntax for proof-theory. Logic

and Algebra, 1996.

[15] S. Guerrini. Correctness of multiplicative proof nets is linear. In LICS,
1999.

[16] W. Heijltjes. Proof nets for additive linear logic with units. In LICS,
2011.

[17] W. Heijltjes and R. Houston. No proof nets for MLL with units: Proof
equivalence in MLL is PSPACE-complete. In CSL-LICS, 2014.

[18] W. Heijltjes and D. J. D. Hughes. Complexity bounds for sum–product
logic via additive proof nets and Petri nets. In LICS, 2015.

[19] W. Heijltjes and L. Strassburger. Proof nets and semi-star-autonomous
categories. MSCS, 2014.

[20] R. Houston. Modelling linear logic without units. PhD thesis, Univer-
sity of Manchester, 2008.

[21] H. Hu. Contractible coherence spaces and maximal maps. Electronic
Notes in Theoretical Computer Science, 20, 1999.

[22] D. J. D. Hughes. Proofs Without Syntax. Annals of Math., 143, 2006.

[23] D. J. D. Hughes. Towards Hilbert’s 24th Problem: Combinatorial Proof
Invariants. In Proc. WOLLiC’06, volume 165 of LNCS, 2006.

[24] D. J. D. Hughes. Abstract p-time proof nets for MALL: Conflict nets.
http://arxiv.org/abs/0801.2421, 2008.

[25] D. J. D. Hughes and R. J. van Glabbeek. Proof nets for unit-free
multiplicative-additive linear logic (extended abstract). In LICS, 2003.

[26] D. J. D. Hughes and R. J. van Glabbeek. Proof nets for unit-free
multiplicative-additive linear logic. TOCL, 6(4), 2005.

[27] A. Joyal and R. Street. The geometry of tensor calculus, I. Advances
in Mathematics, 88, 1991.

[28] G. Kelly and S. Mac Lane. Coherence in closed categories. Journal of

Pure and Applied Algebra, 1, 1971.

[29] O. Laurent. Polarized proof-nets: Proof-nets for LC. In TLCA, 1999.

[30] O. Laurent and R. Maieli. Cut elimination for monomial MALL proof
nets. In LICS, 2008.

[31] R. Maieli. Retractile proof nets of the purely multiplicative and
additive fragment of linear logic. In LPAR, 2007.

[32] H. G. Mairson and K. Terui. On the Computational Complexity of
Cut-Elimination in Linear logic. In ICTCS, 2003.

[33] P.-A. Melliès. Game semantics in string diagrams. In LICS, 2012.

	Introduction
	Local canonicity
	Conflict nets: a whirlwind tour
	Efficient translation
	Coalescence correctness
	Faithfulness to mll and all
	Strongly normalizing cut elimination

	The dichotomy: efficient versus strongly canonical
	Related work

	MALL
	Cotrees and axiom linkings
	Axiom linkings
	Notation conventions

	Translating a proof to an axiom linking
	Conflict nets and coalescence
	Sequentialization
	Local canonicity
	Confluence of coalescence
	Complexity of coalescence
	all coalescence

	Cut elimination
	Cut elimination
	Strong normalization

	Complexity results

