UNIVERSITY OF

)BATH

Gundersen, T., Heijltjes, W. and Parigot, M. (2013) Atomic
lambda-calculus : A typed lambda-calculus with explicit sharing.
In: Proceedings of the 28th Annual ACM/IEEE Symposium on
Logic in Computer Science. IEEE, pp. 311-320. ISBN
9781479904136

Link to official URL (if available):
http://dx.doi.org/10.1109/LICS.2013.37

Opus: University of Bath Online Publication Store
http://opus.bath.ac.uk/

This version is made available in accordance with publisher policies.
Please cite only the published version using the reference above.

See http://opus.bath.ac.uk/ for usage policies.

Please scroll down to view the document.

http://opus.bath.ac.uk/
http://opus.bath.ac.uk/

Atomic lambda-calculus:

a typed lambda-calculus with explicit sharing

Tom Gundersen
CNRS & Université Paris Diderot
Bat. Sophie Germain, 8 Place FM/13
75013 Paris
teg@jklm.no

Abstract—An explicit-sharing lambda-calculus is presented,
based on a Curry-Howard-style interpretation of the deep infer-
ence proof formalism. Duplication of subterms during reduction
proceeds ‘atomically’, i.e. on individual constructors, similar to
optimal graph reduction in the style of Lamping. The calculus
preserves strong normalisation with respect to the lambda-
calculus, and achieves fully lazy sharing.

I. INTRODUCTION

Computation in the lambda-calculus is notoriously unpre-
dictable in its use of computational resources. Central to
restraining unnecessary computation within terms is to exercise
strategic control over duplication and deletion: to perform
computation within a subterm before it is duplicated, and to
avoid computation within subterms that will be deleted.

Several formalisms have been developed to deal with this
problem. Firstly, there are the explicit-substitution calculi [1]:
term calculi that allow greater control over the substitution
process, inherent in -reduction, by representing substitutions
explicitly in the syntax of the calculus. Secondly, there is the
study of explicit sharing, which includes various techniques
to allow the sharing of common subterms within a A-term,
such as pointer graphs [17], labelling systems, and optimal
reduction graphs [13]; see also [7] or [5] for an overview.
Many of them can be expressed in term calculi, using for
instance let-expressions (see e.g. [11], [4]).

This paper presents a term calculus of the latter kind, the
atomic lambda-calculus, based on a Curry—Howard interpreta-
tion of a deep-inference proof system for intuitionistic logic.
It is a linear lambda-calculus with a let-construct, called a
sharing, extended with a further construction, the distributor.
The distributor is a computational interpretation of the medial-
rule of deep inference [8], that allows reduction steps to be
atomic, i.e. apply to individual constructors.

The atomic lambda-calculus preserves strong normalisation
with respect to the lambda-calculus (Theorem 27), preserves
typing under translation with the lambda-calculus (Proposi-
tion 2) and preserves typing under reduction (Theorem 12).
Additionally, it implements, in a natural way, a form of fully
lazy sharing [17], [11] (Proposition 31).

Many individual components of the atomic lambda-calculus,
such as the sharing-construct and many rewrite rules, are
familiar from the literature, in particular from functional pro-
gramming (see e.g. [14]) and from recent explicit-substitution

Willem Heijltjes
University of Bath
Claverton Down
Bath BA2 7TAY
w.b.heijltjes @bath.ac.uk

Michel Parigot
CNRS & Université Paris Diderot
Bat. Sophie Germain, 8 Place FM/13
75013 Paris
parigot@pps.univ-paris-diderot.fr

calculi based on proof nets [12], [3]. The main innovation is
the distributor, and the rewrite rules that govern it (rules 6,
10, and 11 in Section IV). These enable the duplication of
an abstraction Az in a term Az.t independently of the body ¢,
replacing the abstraction by a distributor while duplication of
t is in progress. As a consequence of small-step (as opposed
to big-step) duplication, the global rewriting dynamics of the
atomic lambda-calculus differ markedly from that of explicit-
substitution calculi. Details will be provided in Section IV,
where also the divergence with optimal reduction graphs will
be illustrated.

A preliminary version of this work has been presented in
French in [10].

II. DEEP INFERENCE

The distinguishing feature of deep-inference formalisms
is that logical inference is applied within context, i.e. that
it is not restricted to the main connective. An alternative
approach consists in applying logical connectives at the level of
derivations as well as formulae. The open deduction formalism
[9] is designed around this principle. In open deduction, a
derivation from a premise A to a conclusion C (over the
connectives conjunction and implication) is constructed as
follows,

A
A A A A A g
I o= a a0 =11 5
C Ol CQ Cl C’2 M

C

with from left to right: (i) a formula where C = A; (ii) a
conjunction where A = A; A As and C' = Cy A Cy; (iii)
an implication where A = C; — As and C = Ay — Cs
(note that, for the negative part - the antecedent - of the
implication, premise and conclusion are inverted); and (iv)
a rule-composition, where a derivation from A to B and one
from B’ to C are combined using an inference rule r from B
to B’. The general composition of a derivation from A to B
and one from B to C is a derived operation.

Open deduction is a general formalism, like the sequent
calculus is, in which proof systems for different logics can be
formulated by choosing a particular collection of connectives

and inference rules. Here, we consider a formulation of minimal
logic obtained by simply embedding its usual natural deduction
system in open deduction. The dynamics will nevertheless be
different, because the proof normalisation possibilities offered
by open deduction will be used. The basic inference rules are
abstraction, application, and (n-ary) contraction, below.

B AN(A— B) A

AS(ArB)" B An. AA"

This deductive system provides a typing of the following
basic calculus, consisting of linear lambda terms with explicit
contractions, that forms the basis of the atomic lambda-calculus.

Definition 1. The basic calculus A; is given by the grammar

u |

where (i) each variable may occur at most once, (ii) in Az.t
the variable = must occur in ¢ and becomes bound, and (iii)
in u[zy,...,z, < t] each z; must occur in u and becomes
bound. Terms of the basic calculus are called basic terms.

tu,v = x| Azt | u[Ty, ..., Ty]

The four constructors are called variable, abstraction, appli-
cation, and sharing respectively, and are displayed graphically
below. A nullary sharing u[+ t] is called a weakening.

!

@ Ty | oo | Tp
|
t

§ N
] i

In Figure 1 a system of typing derivations for the basic
calculus is given, in the open deduction formalism, constituting
a deduction system for minimal logic. Note that derivations
are rotated 180° compared to the graphical depictions of
the terms. For a given set {a,b,c, ...} of atomic formulae,
the following two grammars define minimal formulae and
conjunctive formulae respectively.

— N —

~+

A,B,C :=a | A—> B LA :=A|T|TAA

In the type system for the basic calculus, as shown in Figure 1,
a variable x may be typed by any minimal formula A, while
the other constructors each correspond to an inference rule,
used within the context of further derivations. A term ¢ with
free variables z1,...,z, is typed by a derivation from an
assumption A7* A ... A A%~ to a conclusion C; a typing
judgement t : C' will express that ¢ is typeable by a derivation
with conclusion C. In addition, it can be observed that a
derivation occurring as the antecedent of an implication is
always a minimal formula.

Before introducing the atomic lambda-calculus, the basic
calculus will be related to the standard lambda-calculus (A),
defined below (using a distinct alphabet for clarity).

M,N = z | XN | (N)M

Where applicable, all variables will be assumed fresh.

A*AD A u | A t
A AT — ﬂt g AEB
B B
x .t (t)u

ATIA LA AT

C

u[Ty, ..., Ty]

Fig. 1. Typing the basic calculus

The function (—) : A — A, interprets lambda-terms as
basic terms. Intuitively, it replaces each abstraction Az.— in a
term by Az. — [x!,... 2" < x|, where 2!, ..., 2™ replace the
occurrences of z. Let | N|, denote the number of occurrences of
rin N, and if [N|, = n let N denote N with the occurrences
of x replaced by fresh, distinct variables xt, ..., z™. First, the
translation of a closed term N is (N)’, defined below.

(2)' == ((M)N)" = ((M)")(ND'
Az.(N) if [N|, =1
(\z.N)' =
Az (N2) [zt 2™ «—a] if N[, =n#1

For an arbitrary term NV, if z1,..., 2 are the free variables
of N such that |[N|,, = n; > 1, the translation (N is

n n
(N2 25 [l

PR P] [T

xp* <)

Note that in the case of a linear abstraction \x.t, where ©
has a single occurrence in ¢, no sharing [z} < z] is introduced
in the translation. This anticipates the evaluation of a unary
sharing u[x < t] by a linear substitution of ¢ for (rule 7 in
Section IV). Closed terms in the image of (—|) are the closed
basic terms generated by the grammar below.

t =z | Azt | (Hu | Ixt[zy,... ¢z, + 2]

(n#1)
Proposition 2. For any \-term M, if M : A then (M) : A.

III. THE ATOMIC LAMBDA-CALCULUS

The atomic lambda-calculus will extend the basic calculus
with an additional construct, based on two further, standard,
inference rules, co-contraction and medial [16]:

AV..VA (A1 V 45) = (B1 A By)
A Y (A1 = B1) A (A2 — By)

The medial rule is a linearised version of a distribution law,
where only two of the four possible conjuncts A; — B, are

retained in the conclusion. In deep inference, the medial rule
is the one which enables to reduce contractions to their atomic
case [8]. The two rules allow the following rewrite step in
open deduction.

AV A . B,
A A BAB

(A B A(ASDB)
Here, a contraction inference on a formula A — B is
replaced by a medial, a contraction on B (the consequent
of the implication), and a co-contraction (its antecedent). The
reduction step can be seen to correspond to the duplication of
a A-node in optimal reduction graphs.

- -
| I I
A -
| I
The white fan-in nodes correspond to the contractions and the
grey fan-out node corresponds to the co-contraction, while the
assumption A — B in the derivation above left may reasonably
be represented by a A-node. The medial corresponds to the
two A-nodes in the graph on the right taken together.
To avoid introducing disjunctions and to maintain the
restriction that the antecedent of an implication is a minimal

formula, instead of co-contraction and medial the following
distribution rule (d) is used, combining the former two.

AXA' — (BAC)

)m

A— B
(A— B)A(A— B)

A— (BACQ)
A= BArAso)d

(A=B)A(A=C

The proof reduction step to be implemented in the atomic

lambda-calculus is as follows (rewrite rule (10) in Section IV).

B

B — A
ANB D AEB
A— ﬂ ~ A— p
¢ X oA’

(A=-C)NA—=C) (A—>C)/\(A—>C)d
The point of doing this is the following. Above left a
contraction is applied to a subderivation for a term Ax.t
The reduction step allows to push the contraction past the
abstraction, inside the body ¢, without duplicating any part of
t itself. The abstraction Az becomes shared between the two
conjuncts in C'AC, while the contraction continues to duplicate
t stepwise. When it reaches the A-inference at the top, the
distribution inference can be eliminated by the reduction step
below (omitting the assumption of the A-rule for simplicity),
corresponding to rewrite rule (11) in Section IV.

T
A A — A T
A%MAM ~ A%M /\A%ﬂ
c C C
Asoraso)d

During the duplication process, some subderivations can be
permuted above the A-inference in the way illustrated below,
corresponding to rewrite rule (6) in Section IV. These need not
be duplicated, but can remain shared, a feature that is central
to obtaining fully lazy sharing.

B B

B\ I
A= an | ~ c__
C A= (AAC)

To implement reductions of this kind, two constructs are
needed: one corresponding to the distribution inference, and
one to allow terms of conjunction type.

Definition 3. The aromic lambda-calculus A, extends the
basic calculus with the distributor constructor. The following
mutually recursive grammars simultaneously define the atomic
lambda terms and the terms of multiplicity n, or n-terms, for
every n > 0, written ¢".

tu,v = | wuf[zy,...,zn « Ayt™] *
" = (b, tn) | [T, T) o
| t"[x1, .. T Ay]

where (i) each variable may occur at most once, (ii) in (*)
each variable z; must occur in » and becomes bound, and y
must occur in t" and becomes bound, and (iii) in (**) and
(***) each variable x; must occur in ¢" and becomes bound.

The distributor is illustrated below; it is depicted as a box
encompassing n lambda-nodes and a co-contraction (or co-
sharing), emphasising the connection with optimal reduction
graphs. An n-term is drawn as a subgraph with n input wires.

The crucial problem in making optimal reduction graphs
possible, first solved in [13], is to decide when a sharing meets
a co-sharing whether they duplicate one another, or annihilate.
In the atomic lambda-calculus the distributor, containing the co-
sharing, maintains its own scope, making this decision problem
trivial. On the other hand, the lambda-nodes contained in the
distributor box, unlike in optimal reduction graphs, cannot be
part of a redex.

The sharing and distributor constructors together will be
referred to as closures and abbreviated [y],[d]; a sequence
of closures will be denoted [I']. An n-term is of the form
(t1,...,tn)[T]: a sequence of closures applied to an n-tuple of
atomic lambda-terms. The ' projection 7;(t") of an n-term
t" = (t1,...,t,)['] is the smallest atomic lambda-term

til< x1] ... [« 2T,

ie. z1,..., %, are the free variables of all ¢; (¢ # j) that are
bound by [T'].

Typing derivations for the distributor and for tuples are given
in Figure 2. The derivations for the two constructors ¢"[],
closures on n-terms, coincide with those for closures on atomic
lambda terms (u[y]) when the conclusion C' is replaced by
Ci A...ANC), (and u by t™).

The function [-] : A, — A, called denotation, maps
the atomic lambda-calculus onto the lambda-calculus. Actual
substitutions (of ¢ for « in u) are denoted u{t/x}, and a family
of substitutions {t1/x1}...{t,/z,} is denoted {¢;/z;}1<i<n.

[«] = «
D] = Az.[u]
[(w)t] = (D]

o] = [ul{[t]/zi}i<i<n

s T = Ayt = [ul{Ay.[mi(t")]/7ibi<i<n

Atomic lambda terms will be considered up to the congru-
ence induced by (1) below, denoted (~).

thlo] ~][] (1)

Note that due to the uniqueness of variables, both terms are only
well-defined if both [v] and [¢] bind only in ¢; the congruence
is then illustrated below. A barred arrow ({) denotes a bundle
of wires, and is used in place of ellipsis where space is scarce.

[u[z1, ..

[u[z, ...

The following facts are easily observed.
Proposition 4. If u ~ v then [u] = [v].
Proposition 5. If u ~ v and u : A, then v : A.

Although the atomic lambda-calculus has its roots in distin-
guishing features of the open deduction formalism, a sequent-
calculus typing system is available, displayed in Figure 3, for
which subject reduction holds [10]. There, the contexts I' and
A denote sets of typing judgements on variables, x : A. A
proof of a sequent x1 : Ay,...z, : A, F ¢ : C can be seen
to construct an open-deduction derivation from A; A ... A A,
to C' for the term ¢. The inference rules for closures applied
to terms of multiplicity n are similar to the regular rules for
closures, replacing u with t" and C with Cy A ... A C,.

IV. SHARING REDUCTIONS

The central feature of the atomic lambda-calculus is to
implement reduction steps that are atomic, i.e. that apply to
individual constructors. While there are obvious similarities in
notation and design between the atomic lambda-calculus and

C
[Ty, ..., Ty — AY.t")
Iy Iy
131 ﬂ Ao A th
Ay A,
(t1y. oy tn)

Fig. 2. Typing the atomic lambda-calculus

explicit substitution calculi, the dynamics of the former is in
some sense orthogonal to that of the latter. The difference in
dynamics is given by the reduction rules for closures, which
will be discussed over the course of this section.

Definition 6. The relation ~~g is the rewrite relation on A,
induced by rewrite rules (2)—(11).

The first set of rewrite rules, (2)—(6) below, moves closures
towards the ouside of the term; in particular, they can be
brought out of the scope of a distributor, allowing rule (11) to
be applied. The direction of rewriting is directly opposite that
of explicit-substitution calculi, in which explicit substitutions
move towards the inside of the term. Moreover, the rewrite
rules (2)-(6) are equalities on the graphical representation,
while rewriting in explicit-substitution calculi is not, as it may
duplicate closures. In view of a closure as abstract notation
representing a redex, the rewrite rules (2)—(6) correspond to
permutations as explored for the standard lambda-calculus in
(151, [2].

Azt[y] ~s (Axt)[y] ifz€FV(E) (2

(uly])t ~s ((w)t)[7] 3)

(Wt[y] ~s (W)t)[7] 4)

ulzy, ..., xn <t s ulzn, . @,] (5)
w1, ... Ty AYt[Y]] s ulze, .. zn «— Ayt][]

ifyeFV(t) (6)

The presence of the rules (2)—(6) is justified by the need
to lift closures out of a distributor, as opposed to duplicating
them. This requires to lift closures out of every constructor,
except tuples, for which no rule is added. In a second set of

ax F,IA}_tB F"tA—)B A"U,A@ FlFtl:Al]-—‘nktnAn <>
z: ARz A I'FMzt:A— B INAFE (t)u: B Ty, T bty tn) i AT AN Ay
Txy...opp: A u: C AFt:AA xr1:A—By,...,0,: A= B, Fu:C A,y:AFt":Bl/\.../\Bnd
T AR uxy, ...,z] : C Ty AR ulxy, ..., zn « Ayt™] : C
Fig. 3. Sequent calculus inference rules for the atomic lambda-calculus
rewrite rules, unary sharings are applied as substitutions, and
consecutive sharings are compounded, illustrated below. [
o= | |
ule 1] s uft/c}) —)) A A
w1, oy Ty — Yil[Y1s e Ym —] s ‘ — 7 l J
’ » N 7 I rJMm . WS .
UYLy - Yim 1, Tl e oo Ty Yk 1y -5 Ym St (8)
‘ \Y% \V4
s = 7S The graphical illustrations may help seeing why the reduction

Note that while unary sharings, in rule (7), do not occur in
terms translated from the lambda-calculus, they are created
during reduction, e.g. by combining a binary sharing with a
weakening in rule (8).

The atomic duplication steps central to the calculus are given
in a third set of rewrite rules, (9)—(11), below, each followed
by a graphical illustration. The definition of rule (11) uses the
abbreviation Z for zq,..., 2.

ulry, ...,y — (V)] g
w{(yi)zi/xiti<i<nlVYi, -, Yn < V)21, .. 20] (9)
o
Lo @%@
| T I
u[ry, ..., Ty Axt] g
u[rr, .oy = A Y1, Yn) Y1,y — t]] (10)
- _
[- (=
1 ~ |
UL, Ty = AY(E1, L) [F Y]] s
u{ Ny ti[Z; <= yil/Titi<i<n

where {Z;} = {Z} NFV(¢;) for every i <n (11)

rules are (almost) exhaustive: in (9), a sharing meets an
application; in (10), a sharing meets an abstraction; and in
(11) a sharing meets a co-sharing, at the end of the scope of
a distributor. The remaining case is when a sharing meets a
distributor, in a term

Ym «— Azt .

u[r1, ..y Tn — yillyr, - -

The appropriate reduction step would be the one illustrated
below: it closes the confluence diagram where two sharing
nodes, one above another, meet an abstraction. The case is
redundant, as the distributor will eventually be eliminated, and
for simplicity the corresponding rule will be omitted.

| ...] e
~

q v\

In several aspects, the graphical representation of the
reduction in the atomic lambda-calculus resembles sharing-
graph reduction. However, there are a few differences, which
lead to significantly different overall reduction behaviour.
Firstly, in sharing graphs, applications are duplicated by co-
sharing nodes, not sharing nodes, as illustrated below left.
Secondly, unlike the atomic lambda-calculus, sharing graphs
allow the mutual duplication of a sharing and a co-sharing,
illustrated below right.

A)
AT

,7
e——

q

—
—

It is interesting to consider the nullary instances of the
duplication rules in isolation. They are:

t[+ (u)v] ~~g t[+ u][+ v]
t+ Azu] ~~g tle= Az ([« ul]
tle Ay Qe yll st

With the other sharing rewrite rules, these implement reduction
paths of the following kind, where FV(u) = {x1,...,2,}.

te—u] w5 tl— 1] ... [24

It should be noted that the rule (7) allows to reduce unary
sharings by actual substitutions, instead of reducing them
atomically as the other sharings. This rule is in fact not
necessary to compute the terms. It is only an optimisation,
that one can choose to include or not include in the atomic
lambda-calculus.

The central properties of sharing reductions are treated below.

Proposition 7. Sharing reductions preserve typing.
Proposition 8. The reduction ~~g is strongly normalising.

The proof of Proposition 8 is postponed until Section V, as
it is best expressed using notation introduced in that section.
Atomic lambda terms in normal form with respect to ~>g are
said to be in sharing normal form. These correspond closely to
the terms in the image of (—), as expressed in the following
proposition—here, the reason for the restriction to closed terms
is to exclude atomic lambda terms with free variables inside a
weakening (e.g., z[+ y]).

Proposition 9. For N € A and closed, sharing-normal t € A,
[(N)] =N It =t IM e A . t= (M) .

Proposition 10. If t ~>g u, then [t] = [u].

Taken together, these propositions yield the following theorem.

Theorem 11. The reduction relation ~g is strongly normal-
ising and confluent.

Proof: By Proposition § (~+g) is strongly normalising; by
Proposition 9 normal forms are in 1-1 correspondence with
denotations; and by Proposition 10 denotation is preserved
under reduction. It follows that (~>g) is confluent. [|

V. BETA-REDUCTION

The definition of S-reduction in the atomic lambda-calculus,
written (~»g) for clarity, is identical to that of the regular
lambda-calculus; it is given and illustrated below.

(Az.u)t ~g u{t/z}

[{}er, e = ({3, 2)

[Ae.w{-}] = Az M{-},0)

[(u{-})t] = (M{-})[t]. o)

[(Ouf-}] = ([thM{-},0)
[tlyr, - s ym < u{H] = (M {-}/yiti<i<m, o)
[wf{ -}y, sym <] = (M{}7, 070y, 20y)

where 7 = {[t]/yi}1<i<n
y Ym < /\Z-tm]ﬂ = (M{'}T> UT‘{UM ~»-~,In})

where 7 = {[m;(t™)]/yi }1<i<m

y Ym <«)‘Z-tm{'}m =
([N /yihi<i<ms o1 Omliay,.zn))
where (N;, 0;) = [A..mi(t™{-})]

[uf-}y1, -

[[t[yl, e

Fig. 4. The denotation [—] of atomic term contexts (Definition 15)

However, its effect is very different: in the atomic lambda-
calculus [-reduction is a linear operation, since the bound
variable x occurs exactly once in the body u. Any duplication
of the term ¢ in the atomic lambda-calculus proceeds via the
sharing reductions (~g).

Theorem 12. [-reduction preserves typing.

Proof: The proof is standard: by constructing matching
typing derivations for either side of the reduction rule. []
In order to relate reduction steps in the atomic lambda-
calculus to steps in the lambda-calculus, a notion of one-
hole context is introduced for atomic lambda terms. The hole,
denoted by {-}, may be seen as a special, unique subterm,
indicating a certain position within a term. For use with closures,
a hole will be indexed with a sequence of variables z1,...,z,
the free variables of the hole. Graphically, these may be pictured
as a bundle of output wires, as follows.

Definition 13. Atomic term contexts AL are constructed by
the grammar of atomic lambda terms extended with the hole
construct {-}, .., . in which the variables z1,...,x, are
considered free, and which must occur exactly once in an
atomic term context.

t{'}wh...,xn = .. ‘ {'}11,‘-.’%

The atomic lambda term ¢{u} is obtained from the term context
t{-}21.....w,, Dy substituting for the hole, under the condition
that FV(u) = {z1,..., 2, }.

The subscript indicating the free variables of a hole will be
omitted where possible. The purpose of the hole is to identify
a specific subterm w in an atomic lambda term t{u}, and in
particular to obtain independent translations of ¢{-} and w into
the lambda-calculus. There are two important details to this
translation. Firstly, since the hole may occur in a subterm that
is shared, a corresponding context in the lambda-calculus may
need any number of holes. Secondly, a free variable of a hole
in an atomic context may be bound by a closure [y] (but also
by an abstraction Az). Since in translation the action of [v] is
naturally captured by a substitution, the translation of an atomic
term context t{-};, . ., Will be a pair (N{-}, o) of a regular
lambda-term context (defined below), and a substitution map
o that replaces the variables x1, ..., x, with regular lambda
terms. Then if the context ¢{-},, . translates to (N{-},0)
and the atomic lambda term v with free variables {z1,...,z,}
translates to M, the translation of t{u} will be N{Moc}, the
context N{-} where the holes are filled by the lambda term
obtained by applying o to M.

Definition 14. Lambda term contexts A1’} extend the lambda-
calculus A with the hole constructor {-}.

N{Y o= |)
For lambda term contexts there will be no restriction on the

number of occurrences of the hole, nor will the hole contain
free variables.

Definition 15. The denotation [u{-}4,,. .. ,] of an atomic
term context is a pair (M{-},o), where M{-} € At} and
o:{x1,...,2,} — A is a substitution map. The function [—]
is inductively defined in Figure 4, for Ju{-}] = (M{-},0).

Lemma 16. If [u{-}s, . .1 = (M{-},0) and FV(t) =
{z1,..., 2.} then [u{t}] = M{[t]o}.

Proof: Simple case analysis.]
A first use of contexts is the proof of Proposition 8, that
was postponed in Section IV.

Proposition 8 (restatement). The reduction ~~g is strongly
normalising.

Proof: Each closure [v] in a term w is assigned two
measures: the depth, which is the distance from the subterm
to the root of the term when the term is viewed as a directed
acyclic graph modulo Equation (1); and the weight, which
for a distributor is 2, and for a sharing is defined as follows.
Given a sharing [y] = [z1,..., %, < t] within a term v, let
u = s{t} and let Ju{-}] = (N{-},0). The weight of [y] is
then the size of [t]o, measured in the number of abstractions
and applications. Note that both measures are invariant under
the congruence (~).

The measure for a term ¢ is the pair (weights,depths)
consisting of the multiset of the weights of all closures in
t, and the multiset of the depths of all closures. A simple case
analysis shows that for every sharing reduction rule either

o the depth of one closure [d] is reduced, while all weights
and all other depths in the term remain unchanged (rewrite

rules (2)—(6)); or
« one sharing is removed, while the weights of the others
remain unchanged (rewrite rules (7)—(8)); or
« one or more closures [d] are replaced with some of strictly
lower weight: in rewrite rule (9), one sharing of weight n
is replaced by two of weight n — 1; in rewrite rule (10) a
sharing of weight (n > 1) is replaced by a distributor (of
weight 1/2) and a sharing of weight n — 1; and in rewrite
rule (11) a distributor of weight 1/2 (plus a sharing of
weight zero) are replaced by several sharings of weight
ZEero.
It follows that the measure of a term is strictly decreasing
under ~~g, proving the statement. []
One f-reduction step in the atomic lambda-calculus corre-
sponds to zero or more (-steps in the regular lambda-calculus.

Lemma 17. [f t ~5 u then [t] ~7F [u].

Proof: An atomic lambda term with a [-redex is of
the form v{(Az.u)t}. Let [v{-}] = (M{-},0); then, using
Lemma 16 (and with n the number of holes in M{-}),

[o{(Azw)t]}] = M{((Az.[u])[t])o}
5 M{([ul{[t]/=})o}
= [vfu{t/z}}] . -
Moreover, any 3-step in the denotation of an atomic lambda

term may be simulated in the atomic lambda-calculus by a
combination of sharing reductions and a S-reduction.

Theorem 18. If N ~»g M then (N)) ~~g~7% (M).

Proof: A lambda-term with a (-redex is of the form
M{(Ax.N)P}, where M{-} has exactly one hole. Let
(M{-}) = wv{}; then, by the definition of (—) and by
Proposition 9,

(M{Ox.N)P}) = v{OAwN)[z1,. .., 20 < 2])(P)}
g v{(N)[z1, ... 20 < (P)]}
w5 v{IN{P/z})}

= (M{N{P/z}})
where n # 1 is the number of occurrences of x in N. The
case for n = 1 is trivial.]

VI. PRESERVATION OF STRONG NORMALISATION

The main result for the atomic lambda-calculus presented
here will be the preservation of strong normalisation with
respect to the lambda-calculus (PSN). The challenge, as with
many implementations of sharing, is that reduction in the
atomic lambda-calculus may take place inside a weakening. A
beta-step within a weakening is simulated by zero beta-steps
in a corresponding lambda term, where weakenings are not
retained, thus frustrating the direct construction of an infinite
lambda reduction from an infinite atomic reduction.

To separate the problem of weakened reductions from
the details of the sharing mechanism, a lambda-calculus
with explicit weakening is introduced, the w-calculus, as an

intermediate between the atomic lambda-calculus and the
lambda-calculus.! A beta-step in the atomic lambda-calculus
will correspond to at least one step in the w-calculus; then

PSN for the latter will imply the same for the former.
Definition 19. The w-terms of the w-calculus are

T,UV =z | XeIT* | ()YV | TxU] | e
where (*) z € FV(T).

A variable or subterm inside a weakening [+ U] is weakened.
The bullet (o) will interpret the variable bound in a nullary
distributor, such as y in [I'] in the example illustrated below.

P

]

[« Ay [T]]

Definition 20. The function [—],, interprets atomic lambda
terms as w-terms.

[2]w =2 [Pat]e=A[tle [u@®)]w = [u]w)[v]w
o[[u]w ifn=0
[tz1, ... 20 + ullw = [l [u]] |
[tlw{l[u]w/xi}1<i<n otherwise
[tlwr, < Ayt"]]w =
[t]]w{e/y} it n=0, t" = ()[I']

otherwise

[t]wA Ay [mi(t™)]w/%i f1<i<n

As an interpretation of the atomic lambda-calculus, the w-
calculus is denotational with respect to sharing, but operational
with respect to weakening: sharing is modelled by duplication
(via substitution), while deletion is via an elaborate set of
rewrite rules, designed to mimick the behaviour of the atomic
lambda-calculus. Beta-reduction in the w-calculus is as normal,
and terms are taken up to permutation of weakenings:

\e.TYWU g T{UJx} t[U] V] ~y tle= V][U] .

Deletion of weakenings (~-,,) proceeds as follows.

Mo T+ U] ~y A2eT)[«U] ifx¢FV(U)
U=THV ~w (U)V)[T]
(OWV=T] = (U)V)[T]
T=U[V]] ~w TU]V]
T x.U] ~y T[U{e/x}]
T=(U)V] o TUJV]
Tieo] ~uw T
T[«U] ~y T if U is a subterm of T'

A similar technique is used in [3]; unfortunately, their weakening calculus
is not general enough for the present purpose.

The above rules correspond directly to rules in (~g),
as is easily observed; the final rule merits an explanation.
Firstly, it corresponds to rewrite rule (8) for the case where
a weakening is incorporated into a sharing. Secondly, the
side-condition ensures that the occurrence requirement (*) of
Definition 19 is maintained; it could be relaxed, requiring only
that FV(U) C FV(T). Thirdly, in the translation [—],, from
the atomic lambda-calculus to the w-calculus any weakening
within the scope of a sharing, e.g. [« v] in t[z,y + u[+ v]],
is duplicated. In contrast, rewriting within the atomic lambda-
calculus never causes duplication of weakenings. The rule
allows deletion of duplicated weakenings, maintaining commu-
tativity of translation and rewriting. The latter is expressed by
the following lemma.

Lemma 21. If t ~g u then [t]w
[t]ew ~3% [ulw-

Proof: Omitted. []
The natural translation from a w-term to a lambda-term,
which discards all weakenings [+ U], is denoted |—]. The
interpretation of a lambda-term as a w-term by the function
(—)w is defined below.

“’“’E [u]w- If t ~s u then

(2)w =2 (V)M = ((N)w) (M)
Az (N)w if z € FV(N)
We-Nw = {/\x.(]N[)wk—x] otherwise

The following are easily observed.

Proposition 22. For N € A and t € A,,

L[tlw] = [(N)w = [(ND]

PSN for the w-calculus will be shown using the notion of a
perpetual strategy [6]. The main property of such a reduction
strategy is that, from a given term, if it reaches a normal
form, then this term is strongly normalising. By translating a
non-normalising perpetual reduction on w-terms to an infinite
reduction on lambda terms, PSN then follows.

NNDwJ =N.

Definition 23. The perpetual strategy on a w-term U is the
sequence U = Uy ~» Us ~~ ... defined by U;11 = w(U;):

w(x) = z

w(Az.T) = dxw(T)

w(TU) = (Tw(U) if 7' normal
M. T)w(U) if x weakened and

w((AzT)U) = U not normal
T{U/x} otherwise

w(((TU)V) (w((THU))V if (T)U not normal

w((T=V)U) = (T)U[«V]

W(TeU]) = { w(T)[«-U] if U normal
(T)[+w(U)] otherwise

where normal is with respect to ~g and the rewrite rule
(T[+ VDU ~y (DU)[+V] .

This strategy can be characterised as leftmost-outermost. In
the final case, for T[+ U], the choice to reduce first in U
before reducing 7' is inconsequential to the argument: as will
be shown, for the relevant cases U will already be normal.
A crucial property of this strategy is that when it applies
a reduction inside a subterm 7 of a term U, then further
reduction inside 7" will be independent of reduction outside
it; in particular, T will not be duplicated, nor have its free

variables instantiated. This is expressed in the following lemma.

Contexts for w-terms U{-} are used in the standard way
except, as with atomic term contexts, the hole may carry free
variables {-}4,, . »,, which will be left implicit.

Lemma 24. [f w(U{T}) = U{w(T)} and U{T} ~ V, then
V=U{T"} with U{} ~U'{} and T ~ T".
Proof: By induction on the definition of w.]

Lemma 25. If U has an infinite reduction then so does w(U).

Proof: Let U = Uy, Us, ... be an infinite reduction path,
and let U = U’{S} with S the smallest subterm of U such
that w(U'{S}) = U'{w(S)}. Assume that S is of the form
(T« W])V; the case where S = (Ax.V)T are analogous,
while S cannot be a variable as then U would be -normal.

If the redex S is never reduced in the path Uy, Us,...
then one of U'{}, T, W or V must have an infinite path by
Lemma 24, and so must U'{(T)V [+ W]}.

If the redex S is reduced in the k-th step, then by Lemma 24
the first k£ + 1 terms of the infinite reduction path are

Ul, UQ, ey Uk{(Tk[(— Wk])Vk}, Uk{(Tk)VkB_ Wk]}

where U'{} ~* Up{}, T ~* T}, V ~* Vi, and W ~>* Wy,
Then U'{(T)V[+ W1} ~* Up{(T) Vi [« Wi]}. |

Lemma 26. If a lambda-term N is SN, so is the w-term (N) .

Proof: By contradiction. Let U = (N)),, have an infinite
reduction path; then its perpetual strategy U = Uy, Us,...
has an infinite number of beta steps. Moreover, in each U;
every weakening is S-normal: in U weakenings are of the
form [«—x] with x a variable, and if x is instantiated with T
in U;_1 ~» U; then 1) by the definition of w, T is B-normal,
and 2) by Lemma 24 no free variable in 7' is instantiated
in any U; (j > 4). Since all §-steps in Uy, Us,... occur
outside weakenings, the reduction |Uy |, [Uz],... on N = |U]
(Proposition 22) contains infinitely many S-steps.]

Theorem 27. The atomic lambda-calculus satisfies PSN.

Proof: Let N € A be SN. By Lemma 26 (N)),, is SN; by
Proposition 22 (N),, = [(NN)]w; it follows by Lemma 21 that
(N) is SN. |

VII. FULLY LAZY SHARING

The atomic lambda-calculus provides fine-grained control
over which parts of a shared subterm to duplicate during
normalisation. A natural strategy is to only reduce closures
when necessary in order to perform beta reductions, and to
prefer pushing closures towards the outside of the term rather

than duplicating them. This strategy, which is detailed below,
implements fully lazy sharing. The notion of fully lazy sharing,
for an implementation of the regular lambda-calculus, requires
that in the duplication of a lambda-term the maximal free
subexpressions remain shared [17], [11] (see also [14], [S]).
The latter, for a term Az.N, are the largest subterms of N
containing neither nor any free variable that is bound in V.

Definition 28. A (maximal) V -free subexpression t of u, for
a set of variables V, is a (maximal) subterm ¢ of u such
that FV(t) C FV(u) — V. A free subexpression is a O-free
subexpression, and a maximal free subexpression of a term
Az.N is a maximal {z}-free subexpression of V.

The skeleton (or iterated scope or extended scope) of a
regular lambda term Az.N is Az.N’, where N’ is the result of
replacing the maximal {z}-free subexpressions M, ..., M,
of N by fresh variables yq,...,y,. Then

Az.N = Ax. N Mi/yi}. .. {Mpn/yn} .

For the atomic lambda-calculus, the notion of skeleton will
only be needed for basic terms; it is defined similarly, except
that a skeleton is sharing-normal, and excludes the top-level
sharings of free variables. A formal inductive definition is
given below.

A variant of a term ¢ is any term obtained from ¢ by changing
the name of certain (bound or free) variables. A variant is fresh
if its variables are fresh, and ¢* will denote a fresh variant of ¢
obtained by replacing each variable x in ¢ by a fresh one z°.

Definition 29. The V-skeleton skely (t) of a basic term ¢, with
V' a set of variables that do not occur bound in ¢, is defined
inductively as follows (where y is a fresh variable).

skely (z) =

skely (Az.u) = Ax.(skely gy (u) [zt .. 2™ + z]) *
skelv((u)v) =
if FV((u)v) NV = @; otherwise
(skelv(u)) it FV(u)NV =9

(y)skely (v)
(skely (u))skely (v)
skely (u[Z + v]) =
y if FV(u[Z +v])NV =10
skely (u) if FV(v)NV =0 and FV(u) NV # 0
skelyugz (u)o otherwise **

ifFVu)NnV =g
otherwise

where (*) the variants 2!, 2™ originate in the substitutions
o in the final case above, and (**) o = {(skely (v))?/xi}1<i<n-
The skeleton skel(t) of a term ¢ is defined as skelg(t).

Lemma 30. For a set of variables V and a term t of the basic
calculus, a term ulxy,...,x, < t] can be reduced to

U{Sk&'v(t)i/mi}lgign[r] [A]

where [I'] is made up of, for each y € FV(t) NV, a sharing
of the form [y1,...,Ym < Yyl

Proof: The proof is by induction on ¢. For ¢ a variable, the
statement holds by the empty reduction. The remaining cases
are routine, following the inductive definition of skely (¢), with
the most interesting ones being the case for abstraction and
case for nested sharing:

Let t = Ay.v and s = skely g,y (v).

u[zy, ...,y — Ay.v]

g WX, Ty = ANYAYL, - Yn) YLy Y 0] (10)
g ulrn, . e e My(sh L 8™ [E - y][D][A]] (ih)
g ulr, . e e My(sh 8™ [E eyl [T][A] (6)
s u{ Ay 5[z <—y}/wz}1<z<n[J[A] (11)

= u{(skely (\y.v))"/z; }1<i<n[T][A]

where the Z; are as in rewrite rule (11).

Let t = wly1,...,Ym v], and consider the case where
FV(w)NV # @ and FV(o) NV # 0. Let ¥ =y1,...,ym and
let o = {(skely (v))’ /yj }1<j<m; then
u[‘rlv"wmn <_w[y17'~'aym (—U]]

Mg UL, T W)Y, -y Y V] 5)
~% uf{(skely gy (W) /zihi<icn i < 1] .- (G < Y]
M[Ad][ys, - -+, ym < 0] (ih)

$
0

u{(skelyugzy (W) /@i fr<i<alih < (skely (v))!]...
|G+ (skely (v))™][T1][A1][T2][Az] (ih)
uf (skely gy (w)o)' /xi}1<icn [T3][As][T1][A1][T2][Ag]
(ih)

¢
N

= uf(skely (wlyr, .., ym < v]))/zih<i<a[T][A]

where [['] = [['1][T'2][['s] and [A] = [A1][A3][As]. The last
application of the inductive hypothesis above follows from the
fact that skely (=) is idempotent. |

The strategy implemented in the proof of the above lemma
reduces basic terms to basic terms, eliminating every distributor

it introduces, as can be observed from the case for abstraction.

Proposition 31. The atomic lambda-calculus implements fully
lazy sharing: a basic term u|xy, ..., %, + Ay.t| reduces to a
basic term of the form

u{(skel(Ay.4))*/:}1ialT]
Proof: By Lemma 30. [|

VIII. CONCLUSIONS AND FURTHER WORK

The atomic lambda-calculus presented here is a typed term
calculus with explicit sharing. It implements reduction steps

that are atomic, similar to duplication in optimal reduction-
graphs, to obtain a form of fully lazy sharing. Originating in
a Curry—Howard style interpretation of the open deduction
formalism, the calculus exposes a connection between proof
reduction in deep inference and the sharing mechanisms of
optimal reduction graphs.

The motivation behind the atomic lambda-calculus has been
to capture the basic reduction behaviour of the medial-rule of
open deduction within a simple term construct, the distributor.
A natural direction for future work is to construct term calculi
corresponding to more fine-grained proof systems in open
deduction, in order to explore further possible proof reductions.

Acknowledgements: The authors would like to thank the
anonymous referees for their helpful and insightful comments.
This work was supported by the ANR-FWF project Structural.

REFERENCES
[

—

Martin Abadi, Luca Cardelli, Pierre-Louis Curien, and Jean-Jacques Lévy.
Explicit substitutions. Journal of Functional Programming, 1(4):375-416,
1991.

Beniamino Accattoli and Delia Kesner. The permutative lambda-calculus.
In LPAR, pages 23-36, 2012.

Beniamino Accattoli and Delia Kesner. Preservation of strong normali-
sation modulo permutations for the structural lambda-calculus. LMCS,
8(1), 2012.

Zena M. Ariola and Matthias Felleisen. The call-by-need lambda calculus.
Journal of Functional Programming, 7:265-301, 1997.

Thibaut Balabonski. A unified approach to fully lazy sharing. In POPL,
pages 469480, 2012.

Hendrik Pieter Barendregt. The Lambda Calculus — Its Syntax and
Semantics, volume 103 of Studies in Logic and the Foundations of
Mathematics. North-Holland, 1984.

Tomasz Blanc, Jean-Jacques Lévy, and Luc Maranget. Sharing in the
weak lambda-calculus revisited. In Reflections on Type Theory, Lambda
Calculus, and the Mind, pages 41-50, 2007.

Kai Briinnler and Alwen Tiu. A local system for classical logic. In
LPAR, volume 2250 of LNCS, pages 347-361, 2001.

Alessio Guglielmi, Tom Gundersen, and Michel Parigot. A proof calculus
which reduces syntactic bureaucracy. In RTA, pages 135-150, 2010.
Tom Gundersen, Willem Heijltjes, and Michel Parigot. Un lambda-calcul
atomique. In Journés Francophones des Langages Applicatifs, 2013.
R.J.M. Hughes. Super-combinators: a new implementation method for
applicative languages. In ACM Symposium on Lisp and Functional
Programming, pages 1-10, 1982.

Delia Kesner and Stéphane Lengrand. Resource operators for lambda-
calculus. Information and Computation, 205(4):419-473, 2007.

John Lamping. An algorithm for optimal lambda calculus reduction. In
POPL, pages 16-30, 1990.

Simon L. Peyton-Jones. The implementation of functional programming
languages. Prentice Hall, 1987.

Laurent Regnier. Une équivalence sur les lambda-termes. Theor. Comput.
Sci., 126(2):281-292, 1994.

Alwen Tiu. A local system for intuitionistic logic. In LPAR, 2006.
Christopher Peter Wadsworth. Semantics and Pragmatics of the Lambda-
Calculus. PhD thesis, University of Oxford, 1971.

[2

—

[3

—

[4

flnar

[5

[t}

[6

=

[7

—

[8

—_

[9

—

[10]

(11]

(12]
[13]
[14]
[15]

[16]
[17]

