
Graphical Representation of Canonical Proof:

Two case studies

Willem Bernard Heijltjes

Doctor of Philosophy

Laboratory for Foundations of Computer Science

School of Informatics

University of Edinburgh

2011

Abstract

An interesting problem in proof theory is to find representations of proof that do

not distinguish between proofs that are ‘morally’ the same.For many logics, the pre-

sentation of proofs in a traditional formalism, such as Gentzen’s sequent calculus, in-

troduces artificial syntactic structure called ‘bureaucracy’; e.g., an arbitrary ordering

of freely permutable inferences. A proof system that is freeof bureaucracy is called

canonicalfor a logic. In this dissertation two canonical proof systems are presented,

for two logics: a notion of proof nets for additive linear logic with units, and ‘classical

proof forests’, a graphical formalism for first-order classical logic.

Additive linear logic(or sum–product logic) is the fragment of linear logic consist-

ing of linear implication between formulae constructed only from atomic formulae and

the additive connectives and units. Up to an equational theory over proofs, the logic

describes categories in which finite products and coproducts occur freely. A notion of

proof nets for additive linear logic is presented, providing canonical graphical repre-

sentations of the categorical morphisms and constituting atractable decision procedure

for this equational theory. From existing proof nets for additive linear logic without

units by Hughes and Van Glabbeek (modified to include the units naively), canonical

proof nets are obtained by a simple graph rewriting algorithm calledsaturation. Main

technical contributions are the substantial correctness proof of the saturation algorithm,

and a correctness criterion for saturated nets.

Classical proof forestsare a canonical, graphical proof formalism for first-order

classical logic. Related to Herbrand’s Theorem and backtracking games in the style

of Coquand, the forests assign witnessing information to quantifiers in a structurally

minimal way, reducing a first-order sentence to a decidable propositional one. A simi-

lar formalism ‘expansion tree proofs’ was presented by Miller, but not given a method

of composition. The present treatment adds a notion of cut, and investigates the pos-

sibility of composing forests via cut-elimination. Cut-reduction steps take the form

of a rewrite relation that arises from the structure of the forests in a natural way.

Yet reductions are intricate, and initially not well-behaved: from perfectly ordinary

cuts, reduction may reach unnaturally configured cuts that may not be reduced. Cut-

elimination is shown using a modified version of the rewrite relation, inspired by the

game-theoretic interpretation of the forests, for which weak normalisation is shown,

and strong normalisation is conjectured. In addition, by a more intricate argument,

weak normalisation is also shown for the original reductionrelation.

iii

Acknowledgements

The past four years of my life have been defined by an opportunedecision to apply

for a position in Edinburgh, knowing nothing of the place except it was supposed

to rain quite a lot, and by the—in my opinion, brave—decisionby Alex Simpson to

accept my application. I am deeply grateful to him for makingthese years enjoyable,

productive, and possible. Alex provided me with the perfecttopic for my dissertation, a

hard combinatorial problem with a deep mathematical motivation—twice. Throughout

this period, he has been a fantastic guide through the world of logic and computer

science; I was the recipient of endless support, patience, and little yellow correction

tags. Needless to say, without Alex I would not be where I am now—behind my desk,

at 4am, making corrections to this document. But seriously,thank you.

I am also deeply thankful for all the good times I had with my colleagues and

friends: Julian and Teresa, whose slow-cooker makes the most fabulous Colombian

dishes; Fulvio and Micaela, true Romans; Lorenzo, who has never met a pun he didn’t

like; Grant, who is awesome; Giulia, who fully embraced the English language—and

in particular the words ‘cake’ and ‘ice-cream’; Ben, who, being the tallest man in the

world, has a computer screen still large enough to hide behind; Gavin, our token Scots-

man; Tom and John, who will hopefully explain Paris; Matteo,who always carries a

little—actually, a significant—bit of Italy with him; Ohad the ultimate; Jeff, who is

an Austrian, a Canadian, and a Scot, and judging by his capacity for holding alcohol,

the disjoint union of all three; Rob, Peggy, and Harry; Chris, the brave Celtish warrior

against bureaucracy; Miles, who now lives in Glasgow.

In addition, I would like to thank Robin Cockett, Roy Dyckhoff, Alessio Guglielmi,

John Longley, Richard McKinley, Michel Parigot, Albert Visser, and Philip Wadler.

Last, and most of all, I would like to thank my wife Saskia, whojoined me in this

adventure, and promised to join me in the next. On y va!

iv

Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text,and that this work has not

been submitted for any other degree or professional qualification except as specified.

(Willem Bernard Heijltjes)

v

Table of Contents

1 Canonical proof 1

1.1 Introduction . 1

1.2 Background . 3

1.3 Linear logic and proof nets . 7

1.4 Classical logic . 15

1.5 Synopsis . 20

I Proof nets for additive linear logic 23

2 Sum–product nets 25

2.1 Introduction . 25

2.2 Sum–product categories and additive linear logic 27

2.3 Sum–product nets . 32

2.4 Connecting nets and terms . 37

2.5 An equational theory over nets . 42

3 Saturated nets 51

3.1 Introduction . 51

3.2 Deciding equivalence of nets . 51

3.3 The category of saturated nets . 58

3.4 Correctness for saturated nets .. 67

3.5 Complexity . 69

4 The soundness proof 73

4.1 Introduction . 73

4.2 The first two cases . 75

4.3 Pointed and copointed nets . 79

vii

4.4 Saturation via construction .85

4.5 Deconstruction of saturated nets 92

4.6 Matching points . 99

4.7 Finale . 107

4.8 Characterising saturated nets .. 108

4.9 Sequentialisation . 110

II Classical proof forestry 119

5 Classical proof forests 121

5.1 Introduction . 121

5.2 Background . 123

5.3 Cut . 129

5.4 Classical proof forests . 134

5.5 Proof forests and the sequent calculus 140

6 Cut-elimination in classical proof forests 151

6.1 Introduction . 151

6.2 Reductions . 152

6.3 The universal counterexample . 167

6.4 The modified reduction relation .173

7 Exploring reduction 183

7.1 Introduction . 183

7.2 Weak normalisation without pruning 183

7.3 Discussion and related work . 200

7.4 Non-confluence . 207

8 Conclusions 213

8.1 Summary . 213

8.2 Further work . 216

Bibliography 219

Index 229

viii

Chapter 1

Canonical proof

1.1 Introduction

Proof theory is the study of formal proofs as mathematical objects. Modern proof the-

ory has its roots in the introduction of two proof formalismsby Gerhard Gentzen in

the 1930s ([40]),natural deductionand thesequent calculus. However, the represen-

tation of proof in these formalisms, in particular in the sequent calculus, is often not

canonical: the formalism distinguishes between proofs that are ‘morally’ the same.

The introduction of such artificial distinctions between proofs by a proof system was

termedbureaucracyby Jean-Yves Girard. In the seminal paper [41] that introduced

linear logic, Girard initiated a programme to eliminate bureaucracy from the new logic

by finding geometric representations of proof, calledproof nets.

The question of what constitutes bureaucracy in a proof formalism, of what are

natural and what are artificial distinctions between proofs, is also the question of what

is a good notion ofproof identityfor a logic: the question of when are proofs ‘morally’

the same. For many logics a notion of proof identity is clear from an established

semantics. For others, most famously for classical logic, it is open to debate. Still,

also in the absence of an established notion of proof identity, forms of bureaucracy can

often be identified. The archetypical example of bureaucracy, also for classical logic,

is that of two permutable inferences in the sequent calculus. The shape of a sequent

proof, in which inferences form a tree, means that it is necessary to choose an order

for two inferences, while the actual order in which the inferences are carried out may

be inessential.

One example of a canonical proof system is natural deductionfor negative intu-

itionistic logic—the fragment consisting of implication and conjunction. The normal

1

2 Chapter 1. Canonical proof

forms of proofs in this formalism are free of bureaucracy, and also canonical from a se-

mantic perspective: for a suitable notion of normal form, they correspond one–to–one

with morphisms in free Cartesian closed categories (see e.g. [69]). Another example

are Girard’s proof nets for multiplicative linear logic without units [41]. These factor

out precisely the bureaucracy of permutable inferences in the sequent calculus presen-

tation of linear logic.

Three main reasons why canonical proof representations areinteresting, are as fol-

lows. Firstly, a canonical proof formalism can be very informative of a logic. By

eliminating bureaucracy, the intrinsic features of the logic itself become more promi-

nent. Indeed, properties of the formalism cannot be attributed to bureaucracy, which

is absent, and instead are likely to be inherent to the logic.For example, the non-

confluence of proof reductions in the classical sequent calculus has in the past been

attributed to the behaviour of the structural rules of contraction and weakening. How-

ever, in formalisms that bring these structural rules undercontrol, such as the proof

forests presented in Part II of this dissertation, reduction remains non-confluent. Thus

it seems as if non-confluence may be an even more strongly intrinsic property of clas-

sical proof normalisation than previously thought. Secondly, canonical proof repre-

sentations, such as proof nets for linear logic, hold the promise of unlocking the com-

putational content of logics. The reasoning to support thisidea will be expanded on

later in this chapter, but briefly, it can be summarised as follows. In the computational

interpretation of a logic, formulae correspond to types, proofs correspond to programs,

and cut elimination corresponds to computation. If cut reduction is confluent, then the

computation it embodies is deterministic, which in many cases means the proof system

may be employed, more or less directly, as a language of computation. One of Girard’s

original motivations for proof nets was that they have confluent normalisation, suggest-

ing the possibility of employing linear logic for computation. Thirdly, in many cases,

a main reason for studying a logic is its semantics. For example, for both intuitionistic

and linear logic the categorical semantics consists of categories with a natural, com-

mon structure, and models of (fragments of) these logics areubiquitous throughout

mathematics. In the presence of an accepted semantics, a notion of proof for a logic

is canonical if it captures precisely the identifications made by the semantics. The

canonical representation of mathematical structure is a useful tool in its investigation,

and may be expected to enable efficient algorithms for its decision problems (such as

term equality in categories). Examples of semantically canonical proof are intuitionis-

tic natural deduction, Girard’s proof nets for multiplicative linear logic, and the proof

1.2. Background 3

nets for multiplicative–additive linear logic of Hughes and Van Glabbeek [59]. Also,

the proof nets presented in Part I of this dissertation are canonical for categories with

finite products and coproducts.

This thesis investigates two canonical, graphical representations of proof, for two

different logics. The first, presented in Part I, is a novel notion of proof net, foradditive

linear logic. This notion of proof net offers a canonical treatment of thetwo additive

units, which have thus far not appeared in proof nets. The second, in Part II, is a

canonical proof formalism for first-order classical logic calledclassical proof forests,

for which cut-elimination is investigated.

The remainder of the present chapter will discuss the background and motivation

of this work, starting with a quick exposition of the relevant general background in

Section 1.2. This section mainly concerns the success storyof intuitionistic natural de-

duction, which served as a template for a modern approach to linear logic and classical

logic to which this thesis subscribes. Section 1.3 will discuss linear logic and proof

nets, the background of the proof nets for additive linear logic presented in Part I, and

summarise the results presented there. Section 1.4 will do the same for Part II, dis-

cussing the relevant background to classical proof forestsand giving an overview of

the results obtained for them.

This dissertation assumes some familiarity with classicallogic and linear logic,

and their presentation in the sequent calculus. Introductions to these can be found in

[44] and [92]. In addition, a basic knowledge of category theory will be helpful, in

particular, for Part I, acquaintance with category theory as far as the notion of limit

and colimit. For an introduction, see [71].

1.2 Background

Proof theory, the study of formal proof, is considered one ofthe four pillars of math-

ematical logic, along with model theory, recursion theory,and set theory. The for-

malisation of mathematical reasoning began with Gottlob Frege, Bertrand Russell, and

David Hilbert. The idea of regarding proofs as mathematicalobjects in their own right

is usually attributed to the latter, as the basis of his famous program of proving the

consistency of all of mathematics.

The foundations of modern proof theory were laid in the mid-1930s, when Gerhard

Gentzen presented natural deduction and the sequent calculus [40]. Characteristic of

these formalisms are the proof transformations they allow:cut-elimination, in the case

4 Chapter 1. Canonical proof

of sequent calculus, described by Gentzen; and normalisation for natural deduction,

described by Dag Prawitz in the 1960s [83].1 The key concepts of Gentzen’s approach

are the following.

Subformula property An inference rule has thesubformula propertyif its premises

are all subformulae of its conclusions. In the sequent calculus, and any well-

behaved variant of it, the only rule that does not have the subformula property is

the cut-rule. Then any cut-free proof contains only subformulae of the conclu-

sion. As immediate consequences, the consistency of a cut-free calculus—that

it cannot prove a contradiction—is easily established by aninspection of the

rules. Also, proof search is strongly constrained in a calculus with the subfor-

mula property, in some cases to the point of being decidable,for instance for

many propositional logics.

Cut-elimination The cut rule, pictured in a general form below, embodies composi-

tion, or transitivity of implication, and is a generalisation of modus ponens (from

A andA→ B, concludeB).

Γ ⊢ ∆,A A,Γ′ ⊢ ∆′

Γ,Γ′ ⊢ ∆,∆′ Cut

In a sequent calculus,cut-eliminationis the process of removing instances of

the cut-rule; thecut-elimination propertyis the property that cut-elimination can

be carried out. As the calculus without cut is easily shown tobe consistent (as

was argued above), cut-elimination shows consistency of the calculus with cut.

That the classical sequent calculus has the cut-elimination property was a main

theorem (Hauptsatz) of Gentzen in [40].

The situation is analogous for normalisation in intuitionistic natural deduction, where

normal proofs, which are the equivalent of cut-free proofs in the sequent calculus, have

the subformula property.

The Curry–Howard correspondence

A landmark development at the end of the 1960s was the discovery, independently by

William Howard and Nicolaas de Bruijn, of a close correspondence between on the one

hand, proofs and formulae, and on the other, functional expressions in theλ-calculus

1Recently, drafts on normalisation for natural deduction byGentzen have surfaced [94].

1.2. Background 5

and their types [52], [30]. Now known as the Curry–Howard isomorphism—in recog-

nition of similar connections for combinatoric logic and Hilbert-style deduction dis-

covered by Haskell Curry [27]—or in its most general form as the mantra ‘proofs are

programs’, this correspondence describes a link between logic and computation that

is at the basis of modern type theory and functional programming. At its heart, the

Curry–Howard isomorphism is the observation thatβ-reduction in the simply typed

lambda calculus is essentially the same operation as normalisation in natural deduc-

tion for implication-only intuitionistic logic. Proofs and lambda terms are in a one–

to–one correspondence, and normalisation steps in naturaldeduction corresponding to

β-reduction steps in the lambda calculus.

Normalisation, and likewise, cut-elimination, is a relation between the proofs of a

deductive system; from a given proof, multiple reduction steps may be possible. The

following are central concepts describing reduction behaviour.

Weak/strong normalisation A reduction relation on proofs, such as normalisation in

natural deduction or cut-elimination in the sequent calculus, isweakly normal-

ising if some reduction paths reach a normal form, andstrongly normalisingif

there are no infinite reduction paths, and all reduction paths eventually reach a

normal form.

Confluence Confluenceis the property that different reduction paths of a proof may

always be extended to reach a common form. The confluence property is ex-

pressed in the diagram below, which states that if there are reduction paths from

a to b and froma to c, then there must be reduction paths fromb and fromc to

a commond. Note that in the diagram all arrows represent reduction paths, not

individual reduction steps.

• a

•b • c

•
d

If a reduction relation is confluent and weakly normalising then every proof has

a unique normal form—there may still be infinite reduction paths, unless also strong

normalisation holds. In the 1960s Dag Prawitz put forward the idea ofproof identity

by normality(see e.g. [84]): the idea that unique normal forms are a natural notion of

proof identity, in the sense that two proofs are the same if and only if they have the same

6 Chapter 1. Canonical proof

normal form. In the view of proof reduction as computation, this is a generalisation of

the idea that the meaning of a functional expression is the value it evaluates to.

In the 1970s the Curry–Howard correspondence was extended to category theory

by Joachim Lambek, who showed that Cartesian closed categories are a semantics for

intuitionistic natural deduction and the simply typed lambda calculus (see e.g. [69]).

The categorical semantics identifies proofs if and only if they have the same normal

form, and thus may be seen as a natural concretisation of the idea of proof identity

by normality. There are technical subtleties: mainly, the categorical semantics equates

proofs up toβ-η normal form. The presence of disjunction adds significantlyto the

problem of rewriting to canonical representations of the natural semantics, bi-Cartesian

closed categories. In addition toβ- andη-equalities there arecommuting conversions,

and further semantic identities; obtaining canonical rewrites for these equations re-

quires considerable ingenuity [70].

The sequent calculus

The sequent calculus introduces bureaucracy in the form ofpermutations, as follows.

Inferences in the sequent calculus operate on one or more formula occurrences in a

sequent, a multiset of formulae, possibly separated into antecedents and consequents

(sometimes a sequent is taken to be a list or even a set; throughout the thesis, it will

be a multiset). When two consecutive inferences are appliedto different formulae in a

sequent, their order may often be exchanged; that is, they may bepermuted. Permuta-

tions are pervasive in sequent calculi, and occur even in a sequent calculus presentation

for conjunction–implication intuitionistic logic; a simple example is given below.

A,B⊢C
A,A∧B⊢C

A∧B,A∧B⊢C

A,B⊢C
A∧B,B⊢C

A∧B,A∧B⊢C

An important observation is that, for this fragment of intuitionistic logic, permutations

are factored out by the translation from sequent calculus into natural deduction. This

was a main inspiration for Girard’s idea ofproof nets[41], further explored in Sec-

tion 1.3. The idea of eliminating bureaucracy, and in particular the permutations of

the sequent calculus, by moving to alternative, graphical representations of proof, is a

central theme of this dissertation.

Generally, cut-elimination in the sequent calculus is non-confluent. Because this

means that proofs have multiple normal forms, the idea of proof identity by normality

does not apply directly. If the normal forms of proofs differonly by permutations, as is

1.3. Linear logic and proof nets 7

the case for example for multiplicative linear logic, then non-confluence is not a prob-

lem: a notion of proof identity can be based on equivalence classes of normal proofs

under permutations. However, the picture is not always thatclear: the normal forms of

a proof may differ in other ways than by permutations, and different cut-elimination

methods may produce different classes of normal forms. In such a case, it can be an

interesting challenge to identify which equations betweenproofs are bureaucracy, and

which constitute genuine differences.

The next two sections discuss the proof theory of two logics that are naturally

expressed in the sequent calculus: linear logic, in Section1.3, and classical logic, in

Section 1.4.

1.3 Linear logic and proof nets

Linear logic was introduced by Jean-Yves Girard in the seminal [41]. It originated in

an analysis of coherence spaces (see e.g. [44]), developed by Girard as a semantics

of function evaluation in the lambda calculus. Linear logicis a refinement of both

classical and intuitionistic logic, in the sense that both logics can be interpreted in

linear logic by interpreting single classical or intuitionistic connectives as one or more

linear connectives.

Syntactically, linear logic is naturally expressed in the sequent calculus, as dis-

played in Figure 1.1. The logic is divided into three fragments, calledadditive, multi-

plicativeandexponential. The multiplicative connectives(⊗,

&

) are each other’s dual

under negation,(−)⊥, as are the twoneutrals(1,⊥), which are theunits for the two

connectives. Similarly, the additive connectives(& ,⊕) and their units(⊤,0) are duals,

as are the two exponentialmodalities(!,?). (That, for example,1 is aunit of the tensor

(⊗) means that any formulaA is canonically isomorphic to1⊗ A and toA⊗ 1.)

Linear logic has been a transformative influence in theoretical computer science,

by being a rich source of ideas in general, and by bringing thefollowing two important

concepts within the domain of logic in particular.

Resource-consciousnessIn a proof of a linear implicationA ⊸ B (or A⊥ &

B) in

linear logic, the assumptionA must be used exactly once; this in contrast to

the classical or intuitionistic implication (A→ B) where the assumption may be

used arbitrarily many times. In this and similar ways, linear logic is a logic of

resources, where classical and intuitionistic logics describetruth.

8 Chapter 1. Canonical proof

Conjunction Disjunction

Multiplicatives

Tensor (⊗), One (1)

⊢ Γ,A ⊢ ∆,B
⊢ Γ,∆,A⊗ B ⊢ 1

Par (

&

), Bot (⊥)

⊢ Γ, A,B
⊢ Γ,A

&

B
⊢ Γ
⊢ Γ,⊥

Additives

With (&), Top (⊤)

⊢ Γ,A ⊢ Γ,B
⊢ Γ,A & B ⊢ Γ,⊤

Plus (⊕), Zero (0)

⊢ Γ, A
⊢ Γ,A⊕ B

⊢ Γ, B
⊢ Γ,A⊕ B

Exponentials

Of course (!), Why not (?)

⊢?Γ, A
⊢?Γ, !A

⊢ Γ, A
⊢ Γ,?A

⊢ Γ
⊢ Γ,?A

⊢ Γ,?A,?A
⊢ Γ, ?A

Axiom, Cut
⊢ A,A⊥

⊢ Γ,A ⊢ A⊥,∆
⊢ Γ,∆

Figure 1.1: Linear logic as a one-sided sequent calculus

1.3. Linear logic and proof nets 9

Concurrent computation Like classical logic, linear logic has aninvolutive(i.e. self-

inverse) negation, which is handled in the sequent calculuspresentation by al-

lowing multiple conclusions in a sequent—intuitionistic sequent calculus, in the

formulation by Gentzen [40], allows only one. Computationally, the presence

of several conclusions may be interpreted as multiple computations that are pro-

cessed simultaneously, and that may interact. This way, at least in theory, linear

logic provides an account ofconcurrentor parallel computation. Explorations

of the connection between linear logic and concurrency are found, among others,

in [1] and [12], and also the recent [22]; an overview is givenin [21].

One branch of research on linear logic, and of that inspired by it, has focused

on exploring these computational aspects. In particular the resource-consciousness of

linear logic was quickly adopted by the functional programming community, in the

form of linear types[95]. Recently, the intuitionistic variant of linear logic, which

allows only single-conclusion sequents, thereby emphasising resource-consciousness

over concurrency, has been used to enrich the lambda calculus with a refined theory of

computational effects [35].

Of the research into linear logic itself, and its semantics,there are three main

threads that are relevant to the present discussion. One is that of the categorical se-

mantics of linear logic, which will be briefly touched on below. A second is that into

game-theoretic semantics, which may be seen as investigating the computational side

of linear logic via an alternate, more semantically oriented route than the sequent cal-

culus. The other direction is the search for proof nets: canonical, geometric proof

formalisms, intended as an alternative syntax to the sequent calculus.

Categorical semantics of linear logic

Soon after linear logic was introduced, it was noted by Robert Seely in [86] that a

natural categorical semantics for linear logic is as follows: the multiplicative frag-

ment is modelled by∗-autonomous categories (see also [10]), in which the addi-

tives correspond to products and coproducts, and the exponentials form a (co)monad

structure with additional properties (the modern formulation [14] requires amonoidal

(co)monad). An alternative formulation of∗-autonomous categories was the result of

an investigation into a reasonable notion oflinearity in categories by Robin Cockett

and Robert Seely [24].

These categorical models identify proofs under cut-elimination, providing a notion

10 Chapter 1. Canonical proof

of proof identity in the tradition of proof identity by normality. They also identify

proofs under permutations, and other, similar equations—many of which are forced by

the identification of proofs under cut-elimination. In these models the following are

essential concepts.

Composition via cut-elimination Composition of morphisms is an essential, basic

operation in category theory, producing a morphismg ◦ f : A → C from mor-

phismsf : A→ B andg : B→C. To similarly compose two proofs in the sequent

calculus, a cut may be used.

A⊢ B B⊢C
A⊢C

Cut

If a categorical model identifies proofs under cut-elimination, it is natural to use

only normal (i.e. cut-free) proofs as representations of morphisms. Then the cut

used to compose two proofs must be eliminated; this is the idea of composition

via cut-elimination.

Associative compositionThe basic laws of category theory are that composition is

associative and has identity morphisms as (left and right) units. For a category

where morphisms are represented by the normal forms of proofs, and composi-

tion is implemented as cut-elimination, associativity of composition is implied

by confluence of cut-elimination. This is easily seen: the two ways of apply-

ing two compositions correspond to the two ways in which two cuts may be

eliminated in order; by confluence, these must yield the sameresult. (However,

confluence is not a necessary condition for associativity ofcomposition to hold.)

Free categorical modelsIf a logic has categorical models with a certain structure, a

term modelmay be constructed by taking as objects the formulae in the logic,

and as morphisms the equivalence classes of proofs under thelaws associated

with the categorical structure. In such a categorical model, the given categorical

structure occursfreely. (A relevant example is how additive linear logic forms a

category with free finite products and coproducts, discussed in Chapter 2.)

Full completenessA categorical model of a logic isfully completeif every morphism

is the denotation of some proof. This is equivalent to the functor from the free

category of the logic, into the model, being full (surjective on morphisms). The

concept of full completeness—the term was coined in [3]—is anatural strength-

ening of the traditional proof-theoretic notion of completeness, which requires

that if a formula is true in the model, it must have a proof in the syntax.

1.3. Linear logic and proof nets 11

The semantics of a logic is usually a main reason for which thelogic is studied. The

categorical models of linear logic have structure that is basic, and common throughout

mathematics—and even physics. One branch of research into linear logic is the search

for natural models of linear logic, that are as close as possible to the free model. Full

completeness is one measure of how close a model is—crudely,a fully complete model

is a quotient of the free model.

One relevant series of investigations into characterising, and finding natural ex-

amples of, the categorical semantics of linear logic, are the works of André Joyal and

Hongde Hu in the late 1990s. Building on a modification of Girard’s coherence spaces,

the original semantics of linear logic, by Thomas Ehrhard in[36], and following up on

the work by Joyal on free bicompletions [63], categories with free limits and colimits,

they connect the categorical approach and coherence space semantics, in [55] and [54].

This led to a coherence space model of the additive fragment,without the units, that

is equivalent to the free categorical model, by Hongde Hu in [53]. A fully complete

model of the multiplicative fragment, also without units, is presented in [31]. Finally, a

fully complete coherence space model for the combined multiplicative–additive frag-

ment is given by Richard Blute, Masahiro Hamano and Philip Scott, in [18].

Another route towards categorical models for linear logic is via game theory. This

will be discussed next.

Game semantics of linear logic

A rich branch of investigation into the computational content of linear logic is that

into its game-theoretic semantics, initiated by Andreas Blass [15] and Yves Lafont and

Thomas Streicher [66]. In an informal view of the game interpretation, a formula de-

scribes a game between two players, Player and Opponent, while a proof is a winning

strategy for Player. The additive connectives are interpreted as a binary choice for

the Player (for the coproduct) or the Opponent (for the product). The multiplicatives

encode two games played in parallel, where either Player (inthe coproduct) or Oppo-

nent (in the product) may switch between the two games (schedule), while the other

is forced to continue play in the currently active game. The four neutrals are winning

positions, the additive units of a global kind, and the multiplicative units of a local

kind. The exponential modalities (?) and (!) allow Player and Opponent, respectively,

to backtrack: to return to an earlier position to make a new choice, in addition to the

earlier one.

In the early and mid-1990s, research into formalising theseideas led to solutions

12 Chapter 1. Canonical proof

to the long-standing problem of finding a good semantics for PCF, theProgramming

language of Computable Functions. These results were obtained independently by two

traditions of linear logic games, each building on their respective formulation of games

for the multiplicave fragment [3],[61]. One tradition is that of Samson Abramsky,

Radha Jagadeesan, and Pasquale Malacaria [4] (see also [8]), the other that of Martin

Hyland and Luke Ong [62]—while ideas similar to those of the latter tradition were

independently put forward in the work of Hanno Nickau [81].

The above games are allsequential: strategies prescribe a fixed order of moves.

This is fine for the multiplicative and exponential fragments, but as is discussed in

[2], for the additive fragment sequential games suffer frommuch the same problem

as the sequent calculus: composition is not associative. One possible way around this

problem is to incorporate concurrency in games, as pioneered by Samson Abramsky

and Paul-André Melliès in [5], where a fully complete games model for multiplicative–

additive linear logic is presented. This line of research was continued by Paul-André

Melliès in [77] and [75], eventually leading to a fully complete games model for full

propositional linear logic in [76]. These games arealternating, meaning that Player’s

and Opponent’s turns alternate. This allows aninterleavingapproach to concurrency,

which represents a concurrent computation by the collection of its possible execution

orders. A remaining challenge in game semantics for linear logic is to move away from

alternating games, towards a game-semantic treatment in the spirit oftrue concurrency,

where concurrency is inherent to the formalism [78], [37].

Proof nets

Proof nets, graphical representations of linear logic proofs, were introduced by Girard

alongside linear logic, in [41]. These original proof nets,now known as MLL-nets,

were canonical for the multiplicative fragment without units, factoring out permuta-

tions. But the potential of the idea was clear: proof nets would be a geometric de-

scription of morphisms in the free categorical model of linear logic, combining the

best properties of syntax—e.g. the ability to do computation—and semantics—being

directly amenable to mathematical analysis of its structure. (That the natural idea of

finding proof nets to eliminate bureaucracy, coincided witha finding a syntactic de-

scription of the free categorical model, was pointed out by Richard Blute in [16].)

An example MLL-net is displayed in Figure 1.2, along with twosequent proofs that

it is a translation of—and that are identical up to permutations. Of the structure of a

sequent proof, a MLL-net retains just the axioms, asaxiom links, connections between

1.3. Linear logic and proof nets 13

⊢ B⊥,B

⊢ A,A⊥ ⊢C⊥,C

⊢ A,C⊥,C⊗ A⊥

⊢ A⊗ B⊥,B,C⊥,C⊗ A⊥

⊢ A⊗ B⊥,B

&

C⊥,C⊗ A⊥

⊢ A,A⊥ ⊢ B⊥,B

⊢ A⊗ B⊥,B,A⊥ ⊢C⊥,C

⊢ A⊗ B⊥,B,C⊥,C⊗ A⊥

⊢ A⊗ B⊥,B

&

C⊥,C⊗ A⊥

A B⊥ B C⊥ C A⊥

⊗

&

⊗

Figure 1.2: An example MLL-net

the leaves of the formula trees of the conclusion sequent. Not every configuration

of formula trees connected by axiom links, called aproof structure, corresponds to a

sequent proof. The following are therefore central components to the theory of MLL-

nets—and any other notion of proof net.

Correctness criteria A correctness criterionis a property that distinguishes the proof

nets from the proof structures. By their nature, different correctness criteria for a

notion of proof net must be equivalent. Nevertheless, different formulations are

useful in different ways, and for a notion of proof net to havemultiple correctness

criteria, as is the case with MLL-nets, can be instructive. Acorrectness criterion

is generally expected to be intrinsic to the formalism, i.e.defined on the structure

of the proof net itself. Thus the property of being the translation of a sequent

proof is not usually considered a reasonable correctness criterion.

Sequentialisation Sequentialisationis the term for the reverse translation from proof

nets to sequent proofs; it may be used to indicate the translation algorithm it-

self, or the property that one exists. While the translationfrom proofs to proof

nets is usually a straightforward induction on the structure of a proof, the prop-

erty of sequentialisation is closely related to correctness criteria, and requires a

deep analysis of the structure of the proof nets. Commonly, sequentialisation

is formalised as an algorithm on proof structures, that produces a sequent proof

if the structure is a proof net, and fails otherwise—in that way constituting a

correctness criterion.

14 Chapter 1. Canonical proof

Correctness criteria and sequentialisation for MLL-nets have been a subject of

study in their own right. The most well-known correctness criterion for MLL-nets

is that of Vincent Danos and Laurent Regnier [29]. It states that a proof structure is a

proof net if and only if for everyswitching, which is a choice of deleting exactly one

of the two (dashed) links of every par-vertex (

&

), the remaining graph is a tree (acyclic

and connected). Although the time complexity of this algorithm is exponential, cor-

rectness of MLL-nets can be decided in linear time [46]. The paper [13] introduced

the notion ofkingdom, a notion of subnet corresponding directly to subproofs in the

sequent calculus—to be precise: corresponding to smallestsubproofs under permuta-

tions. A recent study, [32], presented an approach to sequentialisation usingjumps, a

relation on the structure of a proof net that, wholly or partially, reflects the ordering of

inferences in a sequent proof translation of the net.

The amount of effort it has taken to reach the current level ofunderstanding of

MLL-nets underlines how proof nets are not an easy subject, and to extend MLL-nets to

larger fragments of linear logic has proven exceedingly difficult. Successive proposals

for a good syntax for the full multiplicative fragment, including the multiplicative units,

are [17] and [65] in the late 1990s, and more recently [90] and[57]. These approaches

all have good properties, but none is truly canonical, in thesense that none provides a

geometric description of the free categorical models of multiplicative linear logic, free

∗-autonomous categories.

In another direction, several notions of proof net have beensuggested for the com-

bined multiplicative–additive fragment, without the units. After partial results in [43] a

notion of proof net was presented by Dominic Hughes and Rob van Glabbeek, in [59],

that is canonical for the categorical semantics for the multiplicative–additive fragment:

semi∗-autonomouscategories with binary products and coproducts.

Proof nets for additive linear logic

In Part I of this dissertation a new notion of proof net is presented, for additive linear

logic, the fragment of sequentsA⊢B whereA andB are additive formulae, constructed

from atomic propositions, the additive connectives(& ,⊕), and their units(0,⊤). The

categorical semantics of additive linear logic is that of categories with finite products

and coproducts—hence the logic is also known as sum–productlogic. The proof nets

are canonical for this semantics.

First, in Chapter 2, existing nets for additive linear logicwithout units, a fragment

of the multiplicative–additive nets in [59], are adapted toincorporate the units in a way

1.4. Classical logic 15

that is simple, but not canonical, forming a notion ofsum–product nets. The categorical

equations over the units force an equational theory over sum–product nets, which is

then decided by rewriting to canonical forms calledsaturated nets, using a simple

rewrite relation calledsaturation, presented in Chapter 3. To complete the theory of

saturated nets, it is shown how they form a syntactic characterisation of the categorical

term models of additive linear logic, namely categories with free, finite products and

coproducts. The results include a direct notion of composition for saturated nets and,

importantly, a correctness criterion and a sequentialisation algorithm.

A main technical contribution of this work is the proof, in Chapter 4, that the

saturation relation is correct, i.e. that saturated nets are indeed canonical. Of the several

issues confronted in this proof, an important example is that in Figure 4.5 on page 94.

1.4 Classical logic

For classical logic there are fundamental obstacles to finding both computational mean-

ing and decent notions of proof identity. The discussion will first cover the situation

for propositional classical logic, and consider first-order logic later.

A first problem for finding a good notion of proof identity for propositional classi-

cal logic is that cut-elimination in the sequent calculus, the traditional home of classical

proof, is highly non-confluent. In particular the so-calledLafont example (see [44, Ap-

pendix B]), in Figure 1.3, shows that (under mild assumptions) a cut on two weakened

formulae forces any two proofs of the same sequent to be identified. A further obstacle

is what is sometimes called Joyal’s theorem—or even Joyal’sparadox, more for its

undesirability than for any mathematical paradoxicality—the observation that a Carte-

sian closed category with an involutive negation collapsesinto a preorder (see e.g. [69,

Section 1.8] or [42, Appendix B]). What this means is that if intuitionistic proof, whose

semantics is that of cartesian closed categories, is equipped with a classical, involutive

negation in the form of an isomorphismA ∼= ¬¬A, then any two proofs of the same

formula are identified.

Irrespective of these problems, there are several consistent proposals for what con-

stitutes proof identity in classical logic. However, the overall picture is one of multi-

ple competing notions of proof identity. Below, an overviewwill be given of several

prominent such proposals. Each of these approaches to categorical semantics is based

on relaxing some of the assumptions leading to Joyal’s theorem; that is, dropping one

part of the structure of Cartesian closed categories with involutive negation.

16 Chapter 1. Canonical proof

Π1...
⊢ A

⊢ A,B
W

Π2...
⊢ A

⊢ B⊥,A
W

⊢ A,A
Cut

⊢ A
C

Π1...
⊢ A
⊢ A,A

W

⊢ A
C

Π2...
⊢ A
⊢ A,A

W

⊢ A
C

Figure 1.3: The Lafont example

Relax involutive negation The formulation of classical proof in natural deduction al-

lows good computational interpretations of classical logic. This is exemplified

by Michel Parigot’sλµ-calculus [82], which has a categorical semantics in Peter

Selinger’s control categories [87]. In classical natural deduction negation is not

involutive: the classical principle¬¬A ⇒ A, which may or may not appear di-

rectly as an inference rule, is not an isomorphism. Formulations of this principle

as a proof construct have a computational interpretation ascontrol operators for

continuations [45], which allows a computational semantics in the form of an ab-

stract machine [91]. A related approach to the use of classical natural deduction

is the interpretation of classical logic in intuitionisticlogic, by adouble negation

translation(corresponding, computationally, to a translation into continuation-

passing style). Since the early formalisations of intuitionistic logic, different

such translations have been found by Kolmogorov, Gödel, Gentzen, Kuroda,

and Krivine, among others (for a comparison and further references, see [38]).

This is also the route taken by Girard’s LC [42].

Relax bi-Cartesian structure Decent categorical models of classical logic can be ob-

tained starting from∗-autonomous categories, the categorical semantics of mul-

tiplicative linear logic, rather than Cartesian closed categories. Several such

approaches are outlined below, that differ in the precise choice of categorical

identities extending the∗-autonomous structure. What most have in common,

is that negation is involutive, but conjunction and disjunction are modelled by

(dual) monoidal products, rather than by Cartesian products and coproducts. A

1.4. Classical logic 17

consequence of relaxing the Cartesian structure is that models are no longer

Cartesian closed. One approach along these lines are the Boolean categories by

François Lamarche and Lutz Straßburger in [67], continued by Straßburger in

[88] and [89]. Also, non-trivial categorical models of classical proof are ob-

tained by Carsten Führmann and David Pym in [39] by taking sequent calculus

proofs as morphisms, on which cut-elimination imposes an ordering on proofs,

rather than forcing their identification. This model was extended (from proposi-

tional logic) to first-order logic in Richard McKinley’s Ph.D. thesis [72]. Further

approaches are Martin Hyland’s categorical proof invariants based on compact

closed categories, in [60], and the categorical and polycategorical models in [11].

Relax Cartesian closureA third approach to categorical models of classical proof

maintains the bi-Cartesian structure of conjunction and disjunction, as well as

the involutive negation, but relaxes Cartesian closure. This is the approach taken

in [34], where a notion of proof identity is proposed based onbi-Cartesian cat-

egories with additional structure. These categories are also models for additive

linear logic, and the syntax underlying these categories isare proof nets for ad-

ditive linear logic without units [33]. (These nets are the unit-free fragment of

the proof nets presented in Part I of the dissertation.)

Syntactic approaches

In addition to the semantic, categorical approach, there isa rich and inventive field

of syntactic approaches to classical logic. Firstly, cut-elimination for (variants of)

the classical sequent calculus, and in particular reduction relations that are strongly

normalising, are of significant computational interest andcontinue to be studied (see

e.g. [9], [7], [93], and [51]). Secondly, there is the proof formalism calleddeep in-

ference, which allows proof transformations on subformulae in a style reminiscent of

term rewriting, and which has interesting normalisation properties (see e.g. [19] and

[47]). Thirdly, several graphical representations of proof have been proposed for clas-

sical logic. Proof nets in the style of Girard’s MLL-nets arediscussed in [85] and

[73], which treat contraction as a connective, duplicatingparts of a formula tree; and

in [68], which explores proof nets that consist solely of formula trees and axiom links.

A different graphical approach is the celebrated [58] by Dominic Hughes, presenting

a notion of proof that consists purely of functions between graphs.

18 Chapter 1. Canonical proof

Classical proof forests

In the above it was discussed how propositional classical proof has no non-trivial, gen-

erally agreed upon semantics; and that finding a good syntax for it is not an easy task.

For first-order classical logic, these issues may be expected to be worse. In addition

to the propositional fragment, it includes the first-order proof content associated with

quantifiers:eigenvariablesto instantiate universally quantified variables, and the as-

signment ofwitnessing termsfor existentially quantified variables.

However, it is possible to give an account of first-order classical proof that sim-

ply ignores propositional proof. This is a consequence of Herbrand’s Theorem [50],

which separates first-order and propositional proof content, plus the fact that propo-

sitional classical logic is decidable. An idea for a semantics of first-order classical

proof is then as follows: taking first-order proof content asprimary, the meaning of

a proof is found in the assignment of witnessing informationto quantified variables,

while propositional content is ignored (not unreasonably given decidability). The pro-

posal offers the possibility of a non-trivial semantics of first-order classical proof (even

though the restriction to the propositional fragment wouldbe trivial).

Part II of this dissertation attempts to carry out this programme.2 It investigates a

representation of first-order classical proof calledclassical proof forests, introduced in

Chapter 5. A proof forest is a proof for a sequent of first-order formulae (for simplicity)

in prenex-normal form. It consists of a forest structure, with a tree for each formula,

that records witness assignments to universally and existentially quantified variables.

The trees branch out only at vertices representing existential quantifiers; propositional

formulae are represented by the leaves, which are evaluatedby a tautology check. A

partial order called thedependencyrecords when a choice of witnesses depends on a

witness assignment elsewhere in the proof forest. By allowing this dependency to be a

partial order, classical proof forests factor out the permutations of the sequent calculus,

whose inferences are arranged in a tree-ordering. In that way, classical proof forests

are canonical for first-order classical proof.

A similar formalism to classical proof forests has been considered before by Dale

Miller [79], calledexpansion tree proofs, as an economic representation of higher-order

classical proof. Also, classical proof forests admit a natural game-theoretic interpre-

2The idea of carrying out such a programme has apparently occurred independently to several people.
The technical ideas in the form pursued in this thesis were first investigated in by Alex Simpson in
the early 2000’s. Martin Hyland has told us that he has also looked at very similar ideas himself.
Also, Richard McKinley independently began a closely related programme of investigation, which is
discussed in more detail below.

1.4. Classical logic 19

tation, in the style of the game semantics for classical arithmetic of Thierry Coquand

[26]. In this interpretation, a proof forest is a strategy for ∃loise in atwo-player back-

tracking gameagainst her opponent∀belard. The witness assignments to quantifiers

in a proof forest represent the moves by both players, who take turns selecting values

from a given domain. Branching on existential quantifiers represents backtracking by

∃loise. Different from Coquand’s games, which are sequential, a proof forest does not

necessarily prescribe a fixed order of moves; rather, the strategy supports any order of

play that respects the dependency ordering.

The present treatment of classical proof forests is an investigation into composition

via cut-elimination. The economic structure of proof forests, its natural game-theoretic

semantics, and the fact that they are canonical for the sequent calculus, raised the hope

that cut-reduction might be well-behaved. Unfortunately,or perhaps interestingly, this

has not turned out to be the case, at least not initially. While the design of the cut-

reduction steps, in Chapter 6, follows naturally from the structure of the proof forests,

reductions are very badly behaved. Starting from a perfectly acceptable configuration

dubbed the ‘universal counterexample’, displayed in Figure 6.3 on page 167, reduc-

tions produce unnaturally configured cuts that are impossible to reduce, and exhibit

cyclic reduction traces. However, partially inspired by the game semantics, solutions

are found to both problems. For a modified reduction relationthat implements these

solutions, weak normalisation is proven, and strong normalisation is conjectured.

The treatment of classical proof forests is continued, in Chapter 7, by an explo-

ration of the differences between reduction in proof forests and in the sequent calculus.

By avoiding reduction steps that leave the image of the translation from the sequent

calculus, the original reduction relation on proof forestsis shown to be weakly nor-

malising, too. Several further, interesting modificationsto the reduction relations are

discussed informally, including a comparison with a closely related formalism called

Herbrand nets, by Richard McKinley [74]—see below. Finally, while reduction in

proof forests is weakly normalising, and plausibly even strongly so, it is not confluent.

An evaluation of non-confluence in the different reduction relations and strategies—

where, again, the universal counterexample is central—concludes the exposition on

proof forests.

Herbrand nets

The research on classical proof forests was conducted concurrently with, and initially

independently of, a similar investigation by Richard McKinley, originating in his inves-

20 Chapter 1. Canonical proof

tigation of order-enriched categorical models of first-order classical proof [72]. After

becoming aware of each other’s work, a fruitful exchange of ideas and results fol-

lowed, leading to many possible directions for continuing research. The investigation

into classical proof forests was influenced mainly by the game semantics, viewing the

divergence with the sequent calculus as an interesting opportunity. The direction taken

by McKinley was to place additional structure on proof forests in order to obtain a

closer correspondence with the sequent calculus, resulting in theHerbrand netspre-

sented in [74]. The main structural difference between Herbrand nets and classical

proof forests is that unlike the latter, Herbrand nets have aform of axiom linkscorre-

sponding to the axiom rule of the sequent calculus, and are inthat way more closely

related to proof nets for MLL with quantifiers (see e.g. [13]). However, in a detailed

comparison of the two formalisms, in Section 7.3, it will emerge that the differences

between classical proof forests and Herbrand nets are quitesuperficial. At the same

time, there is a strong common theme, in the form of the basic forest structure with a

dependency ordering that is shared by classical proof forests and Herbrand nets. In-

deed, it is perhaps more accurate to view the two approaches as variants of essentially

the same approach to first-order classical proof, than as completely distinct formalisms.

Throughout Part II of this dissertation contributions by McKinley are carefully

identified and attributed.

1.5 Synopsis

As discussed, this thesis contributes to two separate, but connected investigations into

canonical proof. The structure of the dissertation is as follows.

Part I treats proof nets for additive linear logic. In this part, Chapter 2 introduces

additive linear logic, its semantics of sum–product categories, and its sequent calculus

presentation, and presents the (non-canonical) notion of sum–product nets and their

equational theory. Chapter 3 presents the saturation procedure and the (canonical)

saturated nets, discusses identity and composition in the category of saturated nets,

and describes the correctness condition for saturated nets. Chapter 4 covers the proof

that the decision procedure for term equality in free sum–product categories based on

saturation is sound.

Part II treats classical proof forests. They are presented in Chapter 5, which in-

cludes a game-theoretic interpretation and a comparison tothe sequent calculus. Chap-

ter 6 introduces a cut-reduction procedure, illustrates how it is badly behaved, and

1.5. Synopsis 21

suggests modifications, resulting in a weak normalisation theorem (and a strong nor-

malisation conjecture) for the modified reduction relation. Chapter 7 gives a weak

normalisation result for the original reduction relation,discusses other variations on it,

and illustrates how different variants of proof forest reduction are non-confluent.

Chapter 8 summarises the results in the thesis and suggests angles for future work.

Technically, this chapter does not belong to Part II; however, this is obscured by the

fact that the LATEX command\end{part} has no visible effect.

Part I

Proof nets for additive linear logic

23

Chapter 2

Sum–product nets

2.1 Introduction

Chapters 2, 3, and 4 will present a notion of proof nets for additive linear logic, the

fragment of linear logic consisting of linear implication between strictly additive for-

mulae. As the principal account of semantics for this fragment is given by categories

with finite products and coproducts it is also known as sum–product logic. The proof

nets presented here are canonical for this semantics: thereis a one-to-one correspon-

dence between proof nets and morphisms in a free sum–productcategory.

The motivation for investigating proof nets for this logic is threefold. Firstly, ad-

ditive linear logic is of independent interest because of its categorical semantics. A

free sum–product category is the free completion with products and coproducts of a

base categoryC . As such, free sum–product categories are a restriction of Joyal’s free

bicomplete categories [63], which are completions with alllimits and colimits, to the

(finite) discrete case. Also the game-theoretic semantics of additive linear logic, ex-

plored in [64] and [2] among others, makes it an interesting subject of study; but this

will not be investigated further here.

A second, more specific motivation is that additive linear logic is a fragment of

the Enriched Effect Calculus by Jeff Egger, Rasmus Møgelberg and Alex Simpson

[35], a type theory for computation with effects, based on intuitionistic linear logic. It

was suggested by Alex Simpson that the free sum–product completion of the empty

category is a model for this calculus, and may possibly be a complete model—this

question, however, has not yet been resolved.

Thirdly, while additive linear logic is a relatively simplefragment of linear logic,

the treatment of the units, or neutral elements, in proof nets for linear logic is notori-

25

26 Chapter 2. Sum–product nets

ously difficult. In addition, the the fragment includes muchof the complexity of the

full multiplicative–additive fragment, since the multiplicative connectives are present

in a restricted form at the meta-level: as linear implication and composition (or cut). A

notion of proof nets for this fragment is thus an important contribution to investigations

into the proof-net problem for larger fragments of linear logic. The relatively simple

nature of additive linear logic, and the simplicity of its proof nets in the absence of the

units, make it an ideal setting for exploring the propertiesof the additive units, which

have thus far not appeared in proof nets. To quote Girard, in [43, Appendix A.3]:

There is still no satisfactory approach to additive neutrals [. . .].1 The only
way of handling⊤ is by means of a box or, if one prefers, by means of
a second order translation: on this Kamtchatka of linear logic, the old
problems of sequent calculus are not fixed. The absence of a satisfactory
treatment of⊤ calls for another notion of proof-net. . .

Another quote is from Dominic Hughes in [56, Section 1], where he presents additive

proof nets without the units:

Work in progress aims to extend the approach presented here to units (i.e.,
initial and final objects), and to an arbitrary base category(rather than a set
of atoms, i.e., discrete category). The former, if at all feasible, appears to
be quite involved. This is evidenced by the fact that, when empty products
and sums are present, there is no obvious confluent and terminating rewrite
system for the cut-free proofs (or proof terms) of Cockett and Seely’s de-
ductive system.2 If such a rewrite system can be found, it might provide
useful clues towards extending the approach presented in this paper to the
initial and final objects, yielding a canonical graphical syntax for finite
products and sums.

The last sentence of the above quote describes what is presented in these chap-

ters: a canonical graphical syntax for finite categorical products and coproducts. After

discussing background material, below, first sum–product categories and additive lin-

ear logic will be discussed, in Section 2.2. In Sections 2.3 and 2.4 a notion of proof

nets, based on existing nets without units [59], will be described. These nets are not

canonical for sum–product categories; in Section 2.5 an equational theory over nets is

defined, that equates nets that represent the same categorical morphism.

The next chapter, Chapter 3 will present a simple rewriting algorithm calledsatu-

ration, that, from sum–product nets, obtains canonical normal forms calledsaturated

1The original text reads, “. . . which are fortunately extremely uninteresting in practice.” One can
only guess at the reasons for questioning the significance ofthe additive units; after all, they are an
integral part of linear logic, and in the opinion of the author, and presumably in that of others who have
worked on them, pose a demanding challenge with interestingtechnical consequences.

2This refers to [25].

2.2. Sum–product categories and additive linear logic 27

nets. Chapter 4 will be devoted to the proofs underlying the canonicity result. Most of

the results in this part of the dissertation appeared in [49]. A new result, not presented

in that paper, is the correctness condition for saturated nets, in Section 3.4. Also the

soundness proof, in Chapter 4, has not yet appeared in print (though it has accompanied

[49] as an appendix in the peer review process).

2.2 Sum–product categories and additive linear logic

First, recall the definitions of categorical products and coproducts. The(binary) prod-

uct A×B of two objectsA and B comes withprojectionsπ0 : A×B → A andπ1 :

A×B → B, and for everyf : X → A andg : X → B a uniqueproduct mapor pairing

〈 f ,g〉 : X →A×B such thatπ0 ◦ 〈 f ,g〉 = f andπ1 ◦ 〈 f ,g〉 = g. Dually, the(binary) co-

product A+B of objectsA andB has twoinjectionsι0 : A→ A+B andι1 : B→ A+B,

and for every two mapsf : A→ X andg : B→ X a uniquecoproduct mapor co-pairing

[f ,g] : A+B→X such that[f ,g] ◦ ι0 = f and[f ,g] ◦ ι1 = g. The equations in the above

definitions are expressed by the following commuting diagrams.

X
f

〈 f ,g〉

g

A A×B
π0 π1

B

A

f

ι0
A+B

[f ,g]
B

g

ι1

X

Equivalently, the uniqueness requirement for pairing and copairing may be replaced

by the following equations, for mapsf : X → A×B andg : A+B→ X.

f = 〈π0 ◦ f , π1 ◦ f 〉 g = [g ◦ ι0, g ◦ ι1]

The terminal objector nullary product1 has a uniqueterminal map !X : X → 1 out of

every objectX, while theinitial object or nullary product0 has a uniqueinitial map

?X : 0→ X into every objectX.

A sum–product categoryor bi-cartesian categoryis a category that has all finite

products and coproducts, presented as binary and nullary products and coproducts.

A free sum–product category is a category that is thefree sum–product completion

ΣΠ(C), the free completion with binary and nullary products and coproducts, of a base

categoryC . Formally, for products and coproducts to occur freely means that there is

a functori : C → ΣΠ(C) such that every functorF from C to a sum–product category

D factors uniquely (up to natural isomorphism) asF ′ ◦ i, whereF ′ : ΣΠ(C) → D

28 Chapter 2. Sum–product nets

preserves products and coproducts.

C
i

F

ΣΠ(C)

F ′

D

Objectsi(A) and morphismsi(a) in ΣΠ(C), in the codomain of the functori, are called

atomic. For the remainder, let the base categoryC be fixed.

Free sum–product completions are a restriction to finite, discrete limits and col-

imits of thebicompletions, completions with all limits and colimits, studied by André

Joyal in [63]. This work was inspired by Whitman’s Theorem, from the 1940s, which

characterises the free lattice completion of partially ordered sets by a property closely

related to the subformula property. Generalising Whitman’s Theorem, Joyal gave a

characterisation of free bicomplete categories by a property calledsoftness, plus sev-

eralatomicityproperties for atomic objects; from this perspective, freelattices are the

special case of free bicomplete categories that are partialorders.

For the present case of free sum–product categories, softness is expressed in the

following pushout diagram in the category of sets, where thearrows are the natural

compositions with the appropriate projections and injections—e.g. the top arrow maps

f : Xi →Yj onto f ◦ πi .

∏

i, j hom(Xi,Yj)

∏

j hom(∏iXi,Yj)

∏

i hom(Xi,

∏

jYj) hom(∏iXi,

∏

jYj)

For binary products and coproducts it states that a morphismf : X0×X1 → Y0 +Y1

factors through one of the projections or injections, i.e. arises as one of the following

compositions, for someg or h,

X0×X1
πi−→ Xi

g
−→Y0 +Y1 X0×X1

h
−→Yj

ι j
−→Y0 +Y1

and if it factors through both a projection and an injection it does so via a common

2.2. Sum–product categories and additive linear logic 29

morphismk : Xi →Yj (for somei and j), as follows.

X0×X1
πi

h

Xi
k

g

Yj
ι j

Y0 +Y1

For the initial and terminal object, the diagram states thata morphismf : X0×X1 → 0

factors through a projectionπi , that a morphismg : 1→Y0 +Y1 factors through an in-

jectionι j , and that there is no map from1 to 0. The atomicity properties for atomic ob-

jectsi(A) in ΣΠ(C), part of Joyal’s characterisation in [63], state the following: maps

X0×X1 → i(A) andi(A) →Y0 +Y1 factor through aπi andι j respectively, and a map

i(A)→ i(B) must be an atomic mapi(a), with a∈ C (A,B). Since the objects in the cat-

egoryΣΠ(C) are those generated over the atomic objects by taking finite products and

coproducts, what the above amounts to is that any mapf : X → Y can be constructed

by a combination of pairing, copairing, and composition, from injections, projections,

initial maps, terminal maps, andC -maps, while passing only through objects that are

components ofX andY.

Sum–product logic

One motivation for Joyal’s work was the connection between categorical products and

coproducts and the additives of linear logic [86]. Additivelinear logic, or sum–product

logic, provides a term calculus for sums and products, and a syntactic description of

free sum–product categories. Following the categorical notation, and using the objects

of C as the atomic formulae, the formulae of additive linear logic are generated by the

grammar below.

X := A∈ C | 0 | 1 | X +X | X×X

To recover Girard’s notation for linear logic, read⊕ for +, read & for×, and read⊤

for 1. The sequent calculus for sum–product logic, with maps fromthe categoryC as

axioms, is displayed in Figure 2.1. The proof terms, which will be calledΣΠ(C)-terms,

are suggestive of the interpretation of proofs as categorical morphisms inΣΠ(C); note

that the overloading of the composition symbol(◦) is harmless, sinceπ andι will not

occur in isolation.

Softness ofΣΠ(C) is related to the subformula property for sum–product logic,

and to cut-elimination. This was the subject of investigations by Robin Cockett and

Robert Seely in [25]. The equations in Figure 2.2, read from left to right, form a cut-

elimination procedure for additive linear logic—note thatthe first case, which equates

30 Chapter 2. Sum–product nets

a∈ C (A,B)

A
a

−→ B

0 ?
−→ X

X
!

−→ 1

X
s

−→Y0 X
t

−→Y1

X
〈s,t〉
−→Y0×Y1

Xi
t

−→Y

X0×X1
t◦πi−→Y

X
t

−→Yi

X
ιi ◦ t
−→Y0 +Y1

X0
s

−→Y X1
t

−→Y

X0+X1
[s,t]
−→Y

X
idX−→ X

Id X
t

−→Y Y
s

−→ Z

X
s◦ t
−→ Z

Cut

Figure 2.1: Sum–product logic

composition inC and inΣΠ(C), would readb ◦ a = b ◦ a without the context of a

proof (see also Table 2 in [25]). Using the equations in Figure 2.3 also the identity rule

may be eliminated. Additional equations are given in Figure2.4 (see also [25, Table

2] and [23, Figure 2]). Many of these equations, in all three figures, are the traditional

permutations of the sequent calculus; for example, the top left equation of Figure 2.4,

illustrated below as a permutation on sequent proofs.

X1
t

−→ Y0

X0×X1
t◦π1−→ Y0

X0×X1
ι0◦(t◦π1)
−→ Y0 +Y1

=

X1
t

−→ Yi

X1
ιi◦t
−→ Y0 +Y1

X0×X1
(ι0◦t)◦π1
−→ Y0 +Y1

The equations of the three figures together form an equational theory over proofs.

Definition 2.2.1. Two ΣΠ(C)-termss and t are equal, ΣΠ(C) |= s = t, if they are

equated by the congruence over the equations in Figures 2.2,2.3, and 2.4.

That equality over terms is a congruence means that it commutes with the term

constructors

− ◦ πi ι j ◦ − 〈−,−〉 [−,−] − ◦ −

or in other words, that the following equations hold, ifΣΠ(C) |= t = t′.

t ◦ πi = t′ ◦ πi 〈t,s〉 = 〈t′,s〉 [t,s] = [t′,s] t ◦ s= t′ ◦ s

ι j ◦ t = ι j ◦ t′ 〈s, t〉 = 〈s, t′〉 [s, t] = [s, t′] s◦ t = s◦ t′

Two main results in Cockett and Seely’s paper, slightly paraphrased, are as follows.

2.2. Sum–product categories and additive linear logic 31

a∈ C (A,B)

A
a

−→ B

b∈ C (B,C)

B
b

−→C

A
b◦a
−→C

Cut
=

b ◦ a∈ C (A,C)

A
b◦a
−→C

id ◦ t = t t ◦ id = t

! ◦ t = ! t ◦ ? = ?

(t ◦ πi) ◦ 〈s0,s1〉 = t ◦ si [t0, t1] ◦ (ι j ◦ s) = t j ◦ s

〈t0, t1〉 ◦ s = 〈t0 ◦ s, t1 ◦ s〉 t ◦ (s◦ πi) = (t ◦ s) ◦ πi

(ι j ◦ t) ◦ s = ι j ◦ (t ◦ s) t ◦ [s0,s1] = [t ◦ s0, t ◦ s1]

Figure 2.2: Cut-elimination in sum–product logic

A
id

−→ A
Id =

id ∈ C (A,A)

A
id

−→ A

id0 = ?0 idX+Y = [ι0 ◦ idX, ι1 ◦ idY]

id1 = !1 idX×Y = 〈idX ◦ π0, idY ◦ π1〉

Figure 2.3: Identity-elimination in sum–product logic

ιi ◦ (t ◦ π j) = (ιi ◦ t) ◦ π j

ιi ◦ [t,s] = [ιi ◦ t, ιi ◦ s]

〈t ◦ πi ,s◦ πi〉 = 〈t,s〉 ◦ πi

〈[t0, t1], [s0,s1]〉 = [〈t0,s0〉,〈t1,s1〉]

! = ! ◦ πi

! = [!, !]

ιi ◦ ? = ?

〈?,?〉 = ?

!0 = ?1

Figure 2.4: Equations in sum–product logic

32 Chapter 2. Sum–product nets

Proposition 2.2.2([25, Proposition 4.6]). The free sum–product completionΣΠ(C)

is characterised by sum–product logic, by taking as objectsthe formulae and as mor-

phisms the equivalence classes of proofs under equality.

Proposition 2.2.3([25, Proposition 2.9]). For cut-free, identity-free proof terms s and

t, if ΣΠ(C) |= s= t then s and t are equated by the congruence over the equationsin

Figure 2.4.

The statement of this second proposition implies that morphisms in ΣΠ(C) are

represented by equivalence classes of cut-free proofs under the equations of Figure 2.4

alone. The following three facts then immediately imply that the word problemfor

ΣΠ(C), the problem of whether two proof terms denote the same morphism, is decid-

able if the word problem forC is decidable:

• every proof term is equal to a cut-free one, by cut elimination;

• up to the choice ofC -axioms, there are only finitely many proofs for a given

conclusion sequent;

• to decide whether two cut-free terms are equated by the congruence of Figure 2.4

is straightforward.

Following up on the work in [25], in [23] Robin Cockett and Luigi Santocanale devel-

oped an intricate decision procedure for this decision problem (the word problem for

ΣΠ(C)), which runs in polynomial time.

2.3 Sum–product nets

Proof nets for additive linear logic, without units, were described in an unpublished

report by Dominic Hughes in [56], while a similar approach appeared, in the same

year, in [33]. They are also a fragment of the proof nets for multiplicative–additive

linear logic without units by Dominic Hughes and Rob van Glabbeek (see [59, Sec-

tion 4.10]). (An alternative graphical formalism, based ona different axiomatisation

of sum–product categories, can be found in [6].) In this section proof nets in the style

of Hughes and Van Glabbeek will be adapted to include the units, but not canonically.

This notion of proof net will be calledsum–product nets, and coincides with that of

Hughes and Van Glabbeek on the fragment of additive linear logic without units.

2.3. Sum–product nets 33

A sum–product net representing a morphismX →Y consist of the two syntax trees

plus a collection oflinks, connecting leaves in the syntax tree ofX to leaves in that ofY.

The object trees will be drawn facing each other with their leaves, their roots pointing

outward. An example is drawn in Figure 2.5, together with theterm it represents.

A

× A

B ×

+ B

A +

× C

C

idA

idA

idB

idC

[〈idA ◦ π0, ι0 ◦ idB ◦ π1〉 , 〈idA ◦ π0, ι1 ◦ idC ◦ π1〉]

:

(A×B)+(A×C) −→ A× (B+C)

Figure 2.5: An example net

Nets are read from left to right, and correspond to cut-free proof terms in a simple

way. Links correspond to axioms, and are labelled with the morphisms in the base

categoryC which they represent. They are drawn slightly detached fromvertices to

distinguish them from the solid lines in the object trees, which represent projections

and injections. Unlike the solid lines representingC -morphisms, injections, and pro-

jections, dashed lines are not immediately interpreted as morphisms—as injections and

projections they would run in the wrong direction, from right to left. Instead, a pair of

dashed lines on a coproduct vertex in the source tree may be seen as corresponding to

copairing[−,−], and a pair of dashed lines on a product vertex in the target tree, to

pairing〈−,−〉.

To identify the actual nets among arbitrary collections of links, there is the fol-

lowing correctness criterion, called theswitching condition. A switchingis a choice

selecting exactly one of the dashed edges of each coproduct vertex in the source tree

and each product vertex in the target tree. A switchingswitches offthe vertices in the

branches it does not select, andswitches onall other vertices in the tree. The switching

condition states that, for any switching, in the remaining graph there must be exactly

one path connecting both root nodes; or equivalently, for every switching there is ex-

actly one link whose vertices are both switched on by the switching.

34 Chapter 2. Sum–product nets

The nets so described are canonical for the unit-free fragment: they uniquely de-

scribe morphisms in categories with free, finite, non-emptyproducts and coproducts

(see also [56]). These nets may be extended to include the units in a straightforward

manner: by adding (unlabelled) links that represent initial and terminal maps, as in the

following examples.

A
idA

A

× ×

0 1

0 1

+ ×

1 1

〈idA ◦ π0, !〉 [?,〈!, !〉]

The main technical difference is that these initial links and terminal links may connect

to vertices that are not leaves; in particular, the switching condition is unaffected. Nets

of this kind will be calledsum–product nets. They are not canonical for additive linear

logic with units—how to obtain canonical nets, using sum–products nets as a basis,

will be the subject of the remainder of this part of the dissertation. A quick note: the

feature that links may connect to non-leaf nodes is natural from the perspective of

the sequent calculus, but it is not a strict necessity. It is quite possible to restrict all

links to connect only to leaf nodes, but though this would simplify composition (see

Section 3.3), it would needlessly complicate everything else.

Definitions

Thevertices(or positions) in the syntax tree of an objectX are given as binary words,

elements of{0,1}∗, with the empty word denoted byε, as follows. The set of positions

of an objectX is defined as follows.

pos(A∈ C) = pos(0) = pos(1) = {ε}

pos(X×Y) = pos(X +Y) = {ε} ∪ {0v | v∈ pos(X)} ∪ {1v | v∈ pos(Y)}

Variablesv,w, . . . ,zare used for vertices, whilei and j range over{0,1}. The positions

in pos(X) are ordered by the standard prefix ordering (≤). The subformula of an object

X at a vertexv is denotedXv, defined as follows.

Xε = X (X0×X1)iv = (X0+X1)iv = (Xi)v

When X is understood, the phrase ‘v is Y’ will mean Xv = Y. In this definition, a

positionv has childrenv0 andv1 if it is a product or a coproduct, and none otherwise.

2.3. Sum–product nets 35

Definition 2.3.1(Prenets). A ΣΠ(C)-prenet(X,Y,R) consists of asourceobjectX, a

targetobjectY, and alinking, a relation

R ⊆ pos(X) ×
(

hom(C) ∪ {∗}
)

× pos(Y)

(where∗ /∈ hom(C)), such that for any〈v, l,w〉 ∈ R , if l = ∗ thenXv = 0 orYw = 1; and

otherwiseXv andYw are objects inC , andl ∈ C (Xv,Yw).

Variables f, g, h and k are used for prenets. Thelinks in a prenet are the elements

〈v, l,w〉 of the linkingR , and may be rendered〈v,w〉 when the labell is understood or

irrelevant. A prenet is calledemptywhenR = ∅. A link 〈v,∗,w〉, whose label (∗) will

be omitted from diagrams, is aunit link; if v is 0 it is an initial link, and if w is 1 it is

a terminallink. A link labelled with aC -morphism isatomic.

A switching ς of an objectX is a partial function on pos(X), that chooses one

branch of each vertex that is a product:ς(v)∈ {0,1} if Xv is a product, while otherwise

ς(v) is undefined. The dual notion of aco-switching is a partial function choosing

branches of the coproduct vertices in a syntax tree. A vertexw is switched onby a [co-

]switchingς, writtenς w, if for any ancestor (i.e. prefix) ofw that is a [co]product,ς
selects the branch containingw:

ς w
∆

⇐⇒
(

vi ≤ w ∧ v∈ dom(ς)
)

⇒ ς(v) = i .

Here, dom(ς) indicates the domain ofς as a function, i.e. the vertices on whichς is

defined. A switching for a prenet(X,Y,R) is a pair(ς,τ) of a co-switchingς of X and

a switchingτ of Y. A link 〈v,w〉 is switched onby (ς,τ) if ς v andτ w.

Definition 2.3.2(Nets). A ΣΠ(C)-net is a prenet f that satisfies the following correct-

ness criterion (theswitching condition).

• Every switching(ς,τ) for f switches on precisely one link.

Let NET denote the set of allΣΠ(C)-nets.

In the unit-free caseΣΠ(C)-nets coincide with the proof nets in [56] and the additive

fragment of the proof nets in [59].

The example in Figure 2.6 illustrates a net, with its positions indicated, together

with its formal definition. The dashed edges in the diagrams are those of nodes subject

to switchings and co-switchings (in the switching condition). The net in Figure 2.6 has

36 Chapter 2. Sum–product nets

A0 idA
A 0

+ε 1 10 + ε

01
×

1

1 11

(A+0, A+(1×1), {〈0, idA,0〉, 〈1,∗,1〉})

Figure 2.6: Another example net

four switchings, shown below, each switching on exactly onelink; vertices and links

that are switched off are drawn in grey.

A
idA

A

+ 1 +

0 ×

1

A
idA

A

+ 1 +

0 ×

1

A
idA

A

+ 1 +

0 ×

1

A
idA

A

+ 1 +

0 ×

1

It is easily observed that, in any syntax tree, any vertex is switched on by at least one

switching, and at least co-switching; and that consequently also each link in a prenet is

switched on by at least one switching. When two links are switched on simultaneously

by some switching, they are said to beincompatible; by the switching condition, a net

may not contain incompatible links. Figure 2.7 shows examples of incompatible links.

This notion is formalised below.

Definition 2.3.3 (Incompatibility). In a prenet(X,Y,R) verticesx,x′ in pos(X), ver-

ticesy,y′ in pos(Y), or links〈v,w〉,〈v′,w′〉 in R are (pairwise)incompatible,

x # x′ y # y′ or 〈v,w〉 # 〈v′,w′〉

if there is a switching(ς,τ) for (X,Y,R) such that

ς x,x′ τ y,y′ or (ς,τ) 〈v,w〉, 〈v′,w′〉

respectively.

2.4. Connecting nets and terms 37

0 0

× +

1 1

0

+ 1

0

Figure 2.7: prenets with incompatible links

Thus, the verticesx and x′ in a source objectX are incompatible if there is a

co-switchingς that switches them on simultaneously. As is easily seen, this occurs

precisely when one (strictly) dominates the other (x < x′ or x′ < x) or their greatest

common ancestor is a product,

∃vi j. vi ≤ x, v j ≤ x′, i 6= j, andXv is a product.

Verticesy andy′ in the target objectY are incompatible if a switching switches on

both simultaneously, or equivalently if neither dominatesthe other and their greatest

common ancestor is a product. Two links〈v,w〉 and 〈v′,w′〉 in R are incompatible

precisely whenv # v′ andw # w′.

The switching condition has an at–least component, which will be called thecon-

nectedness condition, and an at–most component, thecompatibility conditionThe fol-

lowing are technically useful classes of pre-nets.

Definition 2.3.4(Connected prenets). A pre-net isconnectedif every switching for it

switches on at least one link.

Definition 2.3.5(Partial nets). A pre-net is apartial net if it satisfies thecompatibility

condition, the condition that any switching for it switches on at most one link. Let

PNET denote the set of partial nets.

The compatibility condition is so named because it is equivalent to the statement

that a prenet may not contain incompatible links.

2.4 Connecting nets and terms

The connection between sum–product nets and the (cut-free)proof terms of sum–

product logic will be made via an inductive construction method for nets. It will

consist ofbasicnets, corresponding to axioms, andnet constructors, corresponding

to inference rules. These will give rise to a translation procedure from terms to nets.

38 Chapter 2. Sum–product nets

Showing that all nets are so constructed will give an interpretation of nets as terms, or

sequentialisation.

Basic netsare those consisting of a single link connecting the root vertices of both

objects. Define the following abbreviation for basic nets.

(X,Y, l)
∆
= (X,Y,{〈ε, l,ε〉})

Below, basic nets are illustrated, and additional notation(?, !) is introduced for nets

consisting of a single initial or terminal link. Here,a is a morphism inC (A,B), and

X andY areΣΠ(C)-objects; note that the unlabelled nodes in the diagrams stand for

subtrees, not just leaf nodes.

A
a

B 0 1

(A,B,a) ?Y
∆
= (0,Y,∗) !X

∆
= (X,1,∗)

Theconstructorsare the following, forΣΠ(C)-objectsX andY, andi, j ∈ {0,1}.

(πi(X×Y);−) [−,−] 〈−,−〉 (−;ι j(X +Y))

The annotation with objectsX ×Y andX +Y, in the first and last constructor above,

will mostly be omitted. The constructors are illustrated inFigure 2.8; the dotted lines

labelled f and g denote the pre-nets to which the constructors are applied, while the

unlabelled vertices abbreviate syntax trees of arbitrary objects. The notation for terms

and for nets is distinguished by the use of different alphabets (s, t and f,g,h, . . . respec-

tively), the use of italics for terms and an upright font for nets, and different notation

for composition with projections and injections. (The distinct notation is introduced to

help avoid confusion.) Using the following operations,

u ·R
∆
= {〈uv, l,w〉 | 〈v, l,w〉 ∈ R } R ·u

∆
= {〈v, l,uw〉 | 〈v, l,w〉 ∈ R } ,

the constructors are defined, on pre-nets, below; note that like the term constructors,

they are subject to well-typedness conditions.

πi(X0×X1);(Xi,Y,R)
∆
= (X0×X1,Y, i ·R)

[(X,Z,R),(Y,Z,S)]
∆
= (X +Y,Z,(0 ·R)∪ (1 · S))

〈(X,Y,R),(X,Z,S)〉
∆
= (X,Y×Z,(R ·0)∪ (S ·1))

(X,Yi,R);ιi(Y0+Y1)
∆
= (X,Y0+Y1, R ·0)

2.4. Connecting nets and terms 39

f

×

f

×

g

π0;f 〈f,g〉

f

+

g

f

+

[f,g] f; ι0

Figure 2.8: Net constructors

The translation from (cut-free) proof terms to nets, implicit in the naming of con-

structors, is made explicit asJ−K below.

Definition 2.4.1. The translation functionJ−K from ΣΠ(C)-terms toΣΠ(C)-nets is

defined as follows.

J?YK = ?Y J!XK = !X Jt ◦ πiK = πi ;JtK J〈t,s〉K = 〈JtK,JsK〉

Ja : A→ BK = (A,B,a) J[t,s]K = [JtK,JsK] Jι j ◦ tK = JtK;ι j

Applying a constructor is calledconstruction. The reverse notion,deconstruction,

is the extraction of a pre-net f or g from oneπi ;f, 〈f,g〉, [f,g], or f;ι j . Both construction

and deconstruction preserve the switching condition, and moreover, the connectedness

and compatibility conditions, individually, as well.

Lemma 2.4.2.Construction and deconstruction preserve the connectedness and com-

patibility conditions.

Proof. There are four cases, one for each of the constructors. For the first case let

f = (X0,Y,R), so that(π0(X);f) is (X,Y,0 ·R), depicted below.

f

×

For any co-switchingς of X there is a co-switchingς0 of X0 defined byς0(v) = ς(0v),

and this mapping is surjective: any switching ofX0 is a switchingς0 for someς. It

follows thatς 0v if and only if ς0 v, while all links inπ0;f are of the form〈0v,w〉.

Clearly, any switching(ς,τ) for π0;f switches on precisely as many links as does(ς0,τ)

40 Chapter 2. Sum–product nets

for f. Thenπ0;f is connected, respectively a partial net, if and only if f is. The case for

π1;f is symmetric.

Next, let f= (X0,Y,R0) and g= (X1,Y,R1), so that[f,g] is (X,Y,0 ·R0 ∪ 1 ·R1),

illustrated below.

f

+

g

Given a co-switchingς let ς0 andς1 be co-switchings onX0 andX1 respectively, defined

by ςi(v) = ς(iv). Conversely, every pair of co-switchingsς0 for X0 andς1 for X1 defines

two co-switchingsς andς′ for X, by lettingς(iv) = ς′(iv) = ςi(v), while ς(ε) = 0 and

ς′(ε) = 1. For any co-switchingς for X it follows thatς iv if and only if ς(ε) = i and

ςi v. Then a switching(ς,τ) for [f,g] switches on precisely as many links as does

(ς0,τ) for f if ς(ε) = 0, and as many as does(ς1,τ) for g if ς(ε) = 1. It follows that

[f,g] is connected resp. compatible if and only if both f and g are.

The third and fourth case, for〈−,−〉 and(−;ι j), are dual to the above.

From the above lemma, and the fact that basic nets are nets, itis immediate that the

translationJtK of a term is a net. It remains to show that all nets arise as the translation

of some term. Call a prenetleft-constructibleif it is of the form πi ;f or [f,g], and

right-constructibleif it is of the form 〈f,g〉 or f;ιi. Call a pre-netconstructibleif it is

left-constructible or right-constructible, andbi-constructibleif it is both. Recall that

a partial net is a pre-net satisfying the compatibility condition.

Lemma 2.4.3.A partial net is empty, basic, or constructible.

Proof. Let f = (X,Y,R) be a partial net. It will be assumed that f is neither left- nor

right-constructible, nor empty, to show that f is basic or toarrive at a contradiction.

The assumption of f non-empty and not left-constructible gives two possibilities:

1) R contains some link〈ε,w〉,

2) X is a product, andR contains some links〈0v,w〉 and〈1v′,w′〉.

These options are exhaustive: ifX is an atom or unit, the links inR all haveε as

their source; ifX is a coproduct, then f is left-constructible if and only if nolinks

in R have sourceε; if X is a product, f is left-constructible if and only if, for some

i ∈ {0,1}, all links in R are of the form〈iv,w〉. Dually, assumingR non-empty and

not right-constructible gives two options,

2.4. Connecting nets and terms 41

a) R contains some link〈v,ε〉,

b) Y is a coproduct, andR contains some links〈x,0y〉 and〈x′,1y′〉.

This leaves four combinations to be verified.

1a) If the link in 1) and that ina) are distinct,〈ε,w〉 6= 〈v,ε〉, the compatibility con-

dition is violated, sinceε # v andw # ε (recall that # denotes incompatibility, the

relation that vertices are switched on simultaneously by some (co-)switching).

Otherwise,R is the singleton{〈ε,ε〉}: the presence of any other link〈v,w〉

would violate the compatibility condition. Then f must be basic.

1b) Given 〈ε,w〉, 〈x,0y〉 and〈x′,1y′〉, sinceε # x andε # x′ the compatibility con-

dition demands that neitherw # 0y nor w # 1y′. But sinceY is a coproduct, if

w = 1w′ then 1w′ # 0y, if w = 0w′ then 0w′ # 1y′, and ifw = ε then bothε # 0y

andε # 1y′, a contradiction.

2a) This case is dual to 1b) above.

2b) The links given by 2) are〈0v,w〉 and〈1v′,w′〉. Because 0v# 1v′, by the compati-

bility condition it cannot be thatw # w′. This means thatw andw′ must reside in

the same branch of the coproductY, that is,i ≤ w andi ≤ w′ for somei ∈ {0,1}.

Without loss of generality, assume that 0≤ w and 0≤ w′. Dually, the links ofb)

are〈x,0y〉 and〈x′,1y′〉, and (without loss of generality) assume that 0≤ x and

0≤ x′. Thenx′ # 1v′ and 1y′ # w′, violating the compatibility condition because

of the links〈x′,1y′〉 and〈1v′,w′〉.

The above lemmata are used to show, firstly, that partial netsare precisely the

pre-nets constructed over basic nets and empty pre-nets, and secondly, that nets are

precisely the pre-nets constructed over basic nets.

Proposition 2.4.4. PNET is the smallest set containing all empty pre-nets and basic

nets, closed under construction.NET is the smallest set containing all basic nets,

closed under construction.

Proof. Both statements will be proved simultaneously. In one direction, it is immedi-

ate that empty pre-nets are partial nets, and basic nets are nets; and by Lemma 2.4.2

construction preserves connectedness and compatibility.

42 Chapter 2. Sum–product nets

For the other direction, let f be a partial net. It will be shown that f is constructed

over empty pre-nets and basic nets, or only basic nets if f is anet, by induction on

the source and target object of f. By Lemma 2.4.3 the partial net f is empty, basic or

constructible. In the first two cases, the statements are immediate (f is non-empty if it

is a net). In the third case, f is of one of the four forms below.

πi ;g 〈g,h〉 [g,h] g;ι j

By Lemma 2.4.2, since f is compatible so are the components g and h, and if f is

connected, so are g and h. Moreover, either the source or the target objects of g and h

are strictly smaller than that of f, while the other remains identical to that of f. Then if

f is a partial net, so are g and h; by the induction hypothesis these are constructed over

empty pre-nets and basic nets, and hence so is f. Similarly, if f is a net, g and h are nets

that, by the induction hypotheses, are constructed over basic nets, and hence f is also a

net.

Sequentialisation is then an immediate corollary.

Corollary 2.4.5 (Sequentialisation). Every sum–product netf is the translation of some

term t,f = JtK.

Proof. Immediate from Proposition 2.4.4.

The present proof of sequentialisation is similar to that in[56] (see Proposition 3

and Subsection 4.2.3 in that paper). There, the absence of units slightly simplifies the

argument, because links connect only to leaves; however, the combinatorial reasoning

is very similar in both cases. The proof in [59] is not directly comparable, due to the

complicated issues arising from the presence of the multiplicative connectives.

2.5 An equational theory over nets

Sum–product nets factor out some, but not all of the equations over sum–product logic

displayed in Figure 2.4. It will be shown how the remaining equations form an equa-

tional theory over nets, whose equivalence classes represent the morphisms of the free

sum–product categoryΣΠ(C).

Firstly, bi-constructible pre-nets—those that are both left-constructible and right-

constructible—come in four kinds, illustrated in Figure 2.9. They are governed by the

following equations.

2.5. An equational theory over nets 43

f

× +

f

g
+ ×

k

h

f

+ +g

f

g× ×

Figure 2.9: Bi-constructible pre-nets

Proposition 2.5.1.Sum–product nets satisfy

(πi ;f);ι j = πi ;(f; ι j) 〈[f,h], [g,k]〉 = [〈f,g〉,〈h,k〉]

[f,g];ι j = [(f;ι j),(g;ι j)] 〈(πi ;f),(πi ;g)〉 = πi ;〈f,g〉 .

Proof. Immediate from the definition of the constructors.

The corresponding equations over terms are the four not involving the units, i.e.

ιi ◦ (t ◦ π j) = (ιi ◦ t) ◦ π j 〈[t0, t1], [s0,s1]〉 = [〈t0,s0〉,〈t1,s1〉]

ιi ◦ [t,s] = [ιi ◦ t, ιi ◦ s] 〈t ◦ πi ,s◦ πi〉 = 〈t,s〉 ◦ πi .

Because initial and terminal links are labelled uniformly nets satisfyJ!0K = J?1K =

(0,1,∗), absorbing the additional equation!0 = ?1. That nets do not accidentally equate

too many proof terms is established by the following proposition.

Proposition 2.5.2.For cut-freeΣΠ(C)-terms s and t, ifJsK = JtK thenΣΠ(C) |= s= t.

Proof. By induction on the construction of a net f it will be shown that all termss

such thatJsK = f, of which there is at least one by Corollary 2.4.5, are equated in

ΣΠ(C). The base case concerns basic nets, and the induction step constructible nets;

it is immediate from the definitions that a net cannot be both basic and constructible.

For basic nets, if f= (A,B,a) thens can only bea∈ C (A,B), by the definition of

the translation functionJ−K. Next, if f = (0,1,∗) thens is either?1 or !0, while if f is

some other net(0,Y,∗) or (X,1,∗) thens can only be?Y and!X respectively.

For constructible nets, f can be of the form

πi ;g [g0,g1] 〈h0,h1〉 or h;ι j ,

44 Chapter 2. Sum–product nets

of which the two leftmost are mutually exclusive, as are the two rightmost. Without

loss of generality let f= πi ;g. From the induction hypothesis it is immediate that all

termst ◦ πi translating toπi ;g are equated. If f is only left-constructible, there are

no other terms translating to f. Otherwise, f is bi-constructible; then let f be of the

form h;ι j (the case for f= 〈h0,h1〉 is similar). It follows from the definition of the

constructors that g= k;ι j and h= πi ;k for some net k, and as in Proposition 2.5.1,

f = πi ;(k;ι j) = (πi ;k);ι j .

Let t ′ be a term such thatJt ′K = k. Then for any termss◦ πi andι j ◦ t translating to f,

JsK = Jι j ◦ t ′K and JtK = Jt ′ ◦ πiK .

The induction hypothesis and the sum–product equations then give

ΣΠ(C) |= s◦ πi = (ι j ◦ t ′) ◦ πi = ι j ◦ (t ′ ◦ πi) = ι j ◦ t .

The four remaining equations over sum–product logic, below, will impose an equa-

tional theory over nets,equivalence(⇔), illustrated in Figure 2.10.

! = ! ◦ π0 ! = [!, !] ? = ι0 ◦ ? ? = 〈?,?〉

Equivalence(⇔) over nets must reflect that the term equations above form a congru-

ence. For example, the following nets must be equivalent, asthey are the translations

of equated terms.

0 0

+ +

× 0 0 ×

0 0

⇔

0 0

+ +

× 0 0 ×

0 0

〈[ι0 ◦ ?, ι1 ◦ ?] ◦ π0 , ? ◦ π1〉 = 〈[ι0 ◦ ?, ?] ◦ π0 , ? ◦ π1〉

The natural way of defining equivalence of nets is via graph-rewriting, by inter-

preting the equivalences in Figure 2.10 as replacing onesubnetwith another, leaving

the context intact. In the remainder of this section it will be shown that(⇔), defined

as a rewrite relation on nets, naturally corresponds to equality of ΣΠ(C)-terms.

Firstly, to define(⇔), a notion of subnet is needed. Asubprenetof (X,Y,R) will

be a prenet between subformulae ofX andY, with a subcollection of the links between

2.5. An equational theory over nets 45

× 1 ⇔ × 1 0 + ⇔ 0 +

! = ! ◦ π0 ? = ι0 ◦ ?

+ 1 ⇔ + 1 0 × ⇔ 0 ×

! = [!, !] ? = 〈?,?〉

Figure 2.10: The unit laws force an equational theory over nets

them: a prenet(Xv,Yw,S) such thatv·S ·w⊆ R . Call two prenetsparallel if they have

identical source objects and identical target objects, anddefine, on parallel prenets,

(X,Y,S)⊆ (X,Y,R)
∆

⇐⇒ S ⊆ R .

Define, for a prenet f= (X,Y,R),

fv,w
∆
= (Xv,Yw, Rv,w)

Rv,w
∆
= {〈v′, l,w′〉 | 〈vv′, l,ww′〉 ∈ R } .

Definition 2.5.3(Subnets). A subprenetof a prenet f is a prenet g⊆ fv,w. If g ⊆ f then

g is wide, if g = fv,w then g isfull, and g is asubnetif it is a net. The set of subnets of

a prenet f is denoted bySUB(f).

The notation f{g}v,w denotes a pre-net f with the sub-prenet fv,w replaced by a

parallel prenet g. Formally, for prenets f= (X,Y,R) and g= (Xv,Yw,S), define

f{g}v,w
∆
= (X,Y, R {S }v,w)

R {S }v,w
∆
= {〈v′, l,w′〉 ∈ R | v � v′ ∨ w � w′} ∪ (v· S ·w)

The general form of rewriting in context is given by the following relation.

f{g}v,w =[g|h]⇒v,w f{h}v,w

The relation=[g|h]⇒v,w replaces the prenet between verticesv andw, which is re-

quired to be g, with the parallel pre-net h, leaving the context intact. An equivalent

46 Chapter 2. Sum–product nets

formulation would be f=[fv,w |h]⇒v,w f{h}v,w. Dropping the subscriptv,w indicates

the union over allv andw, and a single application of a rewrite relation=[g|h]⇒ (i.e.

for somev andw) will be called arewrite step.

Definition 2.5.4(Equivalence). The equational theory⇔ (equivalence) onΣΠ-nets is

the equivalence relation generated by the following four relations.

=[! |πi ;!]⇒ =[! | [!, !]]⇒ =[?| 〈?,?〉]⇒ =[?|?;ι j]⇒

The four rewrite rules in the above definition are the equivalences illustrated in

Figure 2.10, interpreted as rewrite steps from left to right, on subnets; naturally, in the

equational theory⇔, they are applied in both directions. From the illustrationit is

easily observed that they preserve the switching condition. Note that there are no side-

conditions to the application of these equations—unlike the rewriting in multiplicative

proof nets with units, where rewrites only apply on the condition that they preserve

the correctness criterion for multiplicative proof nets (see [17] and [57]). It remains

to show that⇔ reflects precisely the equational theory over sum–product terms. The

first step will be to show that subnets of sum–product nets areanalogous to subterms

in sum–product logic. To make this more precise: for any subnet g of a net f, there is

a termt with subtermssuch that f= JtK and g= JsK. This is established below.

Lemma 2.5.5.For a netf the setSUB(f) of subnets off is the union of{f}, LSUB(f)

andRSUB(f), where:

LSUB(f) =















SUB(g)∪SUB(h) if f = [g,h]

SUB(g) if f = πi ;g

∅ otherwise

RSUB(f) =















SUB(g) if f = g;ιi

SUB(g)∪SUB(h) if f = 〈g,h〉

∅ otherwise

Proof. One direction is immediate:LSUB(f)⊂ SUB(f) andRSUB(f)⊂ SUB(f). For the

other it must be shown thatSUB(f) ⊆ {f}∪ LSUB(f)∪RSUB(f).

Firstly, if gfv,w is a net, g= fv,w: if f v,w violates the compatibility condition (i.e.

has a switching that switches on more than one link), so does f, since there is always a

switching for f that switches on v and w. Then consider the subnet fv,w of the net f. By

Lemma 2.4.3 f is basic, or left- or right-constructible. If fis basic then fv,w is empty

unlessv = w = ε, which means that the only subnet of f is f itself.

2.5. An equational theory over nets 47

For left-constructible f, the only case that is not immediate isv= ε, by the following

reasoning. Firstly, if f= πi ;g andi ≤ v then fv,w is a subnet of g, and hence inLSUB(f);

if on the other handv resides in the branch oppositei, i.e. (1− i) ≤ v, then fv,w is

empty, and not a subnet. Secondly, if f= [g,h] then fv,w is a subnet of g or h unless

v = ε. Thus for left-constructible f, unlessv = ε the statement is immediate. Dually,

for right-constructible f only the casew = ε is not immediate. For bi-constructible f

this leaves only the casev = w = ε, which is again immediate.

Of the two remaining cases, consider the one where f is left-constructible, but not

right-constructible, andv= ε butw 6= ε; the other case is dual. SinceRSUB(f) is empty,

and fε,w is not in LSUB(f), it must be shown that fε,w is not a net. Let f= (X,Y,R).

Because f is not right-constructible, either some〈x,ε〉 ∈ R , or Y is a coproduct and

some〈x,0y〉,〈x′,1y′〉 ∈ R . If 〈x,ε〉 ∈ R , let ς be a co-switching onX such thatς x.

Sinceε is switched on by any switching onY, there can be no other links〈x′,y′〉 in R

such thatς x′. Then in fε,w there are no links switched on by(ς,τ), for any switching

τ onY, violating the connectedness condition.

In the remaining caseY is a coproduct and〈x,0y〉,〈x′,1y′〉 ∈ R . Becausew 6=

ε either 0≤ w or 1≤ w; without loss of generality let 1≤ w, as the other case is

symmetric. Fix a co-switchingς of X and a switchingτ of Y such that〈x,0y〉 is the

only link switched on, while simultaneouslyτ w (sinceY is a coproduct, such a

switching exists). Then in f no link〈v′,w′〉 such thatw≤ w′ is switched on byς andτ.

Let τ′ be the switching ofYw that agrees withτ, in the sense thatτ′(u) = τ(wu). In fε,w

no link is switched on byς andt ′, violating the connectedness requirement, so it is not

a net.

The proposition below establishes that equivalence over sum–product nets is sound

and complete for term equality inΣΠ(C).

Proposition 2.5.6.For cut-free proof terms s and t of sum–product logic,

ΣΠ(C) |= s= t ⇐⇒ JsK ⇔ JtK .

Proof. From left to right, the argument is by induction on the derivation of term equal-

ity. If ΣΠ(C) |= s= t is an instance of one of the equations

ιi ◦ (t ◦ π j) = (ιi ◦ t) ◦ π j 〈[t0, t1], [s0,s1]〉 = [〈t0,s0〉,〈t1,s1〉]

ιi ◦ [t,s] = [ιi ◦ t, ιi ◦ s] 〈t ◦ πi ,s◦ πi〉 = 〈t,s〉 ◦ πi

?1 = !0

48 Chapter 2. Sum–product nets

thenJsK = JtK (see Proposition 2.5.1). Secondly, ifΣΠ(C) |= s= t is an instance of

one of the equations

! = ! ◦ π0 ! = [!, !] ? = ι0 ◦ ? ? = 〈?,?〉

then s⇔ t follows from an application of one of the rewrite steps below(in either

direction).

=[! |πi ;!]⇒ε,ε =[! | [!, !]]⇒ε,ε =[?| 〈?,?〉]⇒ε,ε =[?|?;ι j]⇒ε,ε

Thirdly, if ΣΠ(C) |= s= t by a series of equations, thenJsK⇔ JtK follows by transitivity

of ⇔. Finally, let ΣΠ(C) |= s= t be an instance of one of the following equations,

while ΣΠ(C) |= s′ = t′ andΣΠ(C) |= s′′ = t′′.

s′ ◦ πi = t′ ◦ πi 〈s′,s′′〉 = 〈t′, t′′〉

ι j ◦ s′ = ι j ◦ t′ [s′,s′′] = [t′, t′′]

The case wheres= s′ ◦ πi andt = t′ ◦ πi is treated explicitly; the others are similar. The

induction hypothesis givesJs′K ⇔ Jt′K. This equivalence consists of a series of rewrite

steps=[g|h]⇒v,w. But if g = fv,w then also g= (πi ;f)iv,w. Then by taking the rewrite

step=[g|h]⇒iv,w for each step above,Js′ ◦ πiK ⇔ Jt′ ◦ πiK.

From right to left, firstly, ifJsK = JtK then by Proposition 2.5.2ΣΠ(C) |= s = t.

Otherwise, let the equivalenceJsK ⇔ JtK consist of a single rewrite step

JsK =[! |π0;!]⇒v,w JtK .

The other cases are similar, and the general case, for multiple steps, follows by tran-

sitivity. The present case is shown by induction on (the lengths of) v andw. Since

g = JsKv,w, by Lemma 2.5.5 one of the following five cases holds:

1. v = w = ε, andJsK =! andJtK = (π0;!)

2. JsK = πi ;f, the vertexv is iu, and != fu,w

3. JsK = [f0, f1], the vertexv is iu, and != (f i)u,w

4. JsK = f; ι j , the vertexw is ju, and != fv,u

5. JsK = 〈f0, f1〉, the vertexw is ju, and != (f i)v,u

2.5. An equational theory over nets 49

The first case is the base case of the induction. In this case,s must be! or possibly

?1, and likewiset is ! ◦ π0 or ?1 ◦ π0; it follows immediately thatΣΠ(C) |= s= t. In

the remaining cases neitherJsK nor JtK is basic, and by Lemma 2.4.3 both must be

constructible. LetJsK be of the form〈f0, f1〉; the other three cases are similar. It is

easily inferred that the rewrite step=[! |π0;!]⇒v,w does not affect right-constructibility

(for this particular case, it is sufficient that it does not add a rooted link〈x,ε〉). Then

JtK is of the form〈g0,g1〉. Without loss of generality, letw= 1u; the rewrite step under

consideration is then

〈f0, f1〉 =[! |π0;!]⇒v,1u 〈g0,g1〉 .

It follows that f0 = g0 and

f1 =[! |π0;!]⇒v,u g1 .

Let s0, s1 andt1 be terms translating to f0, f1 and g1 respectively. By the induction hy-

pothesisΣΠ(C) |= s1 = t1. The remaining equations below follow by Proposition 2.5.2,

from JsK = J〈s0,s1〉K andJtK = J〈s0, t1〉K.

ΣΠ(C) |= s = 〈s0,s1〉 = 〈s0, t1〉 = t

Chapter 3

Saturated nets

3.1 Introduction

In the previous chapter sum–product nets were introduced, and it was shown that equiv-

alence classes of sum–product nets under the equational theory (⇔) are in one–to–one

correspondence with morphisms in free sum–product categories. The current chapter

will present a simple rewrite relation calledsaturation, in Section 3.2, that rewrites

sum–product nets to a canonical form calledsaturated nets. The description of satu-

rated nets, which are a canonical representation of free sum–product categories, is a

central contribution of this part of the dissertation.

The category of saturated nets is described in more detail inSection 3.3, which

includes a treatment of identity and composition in the category of saturated nets. A

second main contribution, a correctness criterion for saturated nets, is discussed in

Section 3.4. The final section of the chapter, Section 3.5, looks at the time complexity

of saturation as a decision procedure.

3.2 Deciding equivalence of nets

The equivalence relation(⇔) over nets will be decided by rewriting equivalent nets

to a common canonical form. A natural first question is whether a suitable, confluent

rewrite relation can be obtained by orientating the equivalence rewrites, i.e. by restrict-

ing them to one direction. Two straightforward candidates are to rewrite towards the

leaves or towards the the roots of the trees. A first, concreteexample illustrating that,

in fact, equivalence rewrites need to be employed in both directions, is given by the

example equivalence chain in Figure 3.1.

51

52 Chapter 3. Saturated nets

1 1

× ×

+ 0 0 +

1 1

⇔

1 1

× ×

+ 0 0 +

1 1

m

1 1

× ×

+ 0 0 +

1 1

⇔

1 1

× ×

+ 0 0 +

1 1

m

1 1

× ×

+ 0 0 +

1 1

⇔

1 1

× ×

+ 0 0 +

1 1

m

1 1

× ×

+ 0 0 +

1 1

⇔

1 1

× ×

+ 0 0 +

1 1

Figure 3.1: The equivalence rewrites in action

× 1

⇒
⇒

× 1 ?

⇒
⇒× 1

Figure 3.2: Rewriting towards the leaves is non-confluent

3.2. Deciding equivalence of nets 53

A more precise analysis will show that neither direction of rewriting is conflu-

ent. For rewriting towards the leaves, an example of non-confluence is illustrated in

Figure 3.2. For the other direction, rewriting towards the roots, the situation is more

delicate. To solve the non-confluence of the example in Figure 3.3, definitions can be

adapted to allow the following ‘net’.

0 1

×
†

+ † this is not a legal link

To permit this simple construction merely requires an additional type of link, which it

is possible to define coherently, while no modification to thecorrectness criterion for

nets, the switching condition, is needed. However, the non-confluence of the example

in Figure 3.4 has no solution along these lines.

0 1

× +

⇒ ⇒
0 1

× +

0 1

× +

⇒ ⇒

?

Figure 3.3: Rewriting towards the roots is non-confluent (1)

0 1

+ ×

A
idA

A
⇒ ⇒

0 1

+ ×

A
idA

A

0 1

+ ×

A
idA

A

⇒ ⇒

?

Figure 3.4: Rewriting towards the roots is non-confluent (2)

Since confluent rewriting seems impossible without breaking the switching condi-

tion, the obvious next step is to break it. Then when two nets rewrite into each other,

the easiest way to obtain confluence is to combine the links ofboth, as in the example

of Figure 3.5. This gives a simple rewrite relation, that will be calledsaturation.

54 Chapter 3. Saturated nets

+ 1 ⇔ + 1

+ 1

Figure 3.5: Saturation

To formally define the saturation relation a different form of rewriting is required,

whereby links are added to a net, rather than replaced. Let the unionof two parallel

pre-nets be the union of their collections of links,

(X,Y,R)∪ (X,Y,S)
∆
= (X,Y,R ∪ S) .

Define a second template for specifying rewrites as follows.

f (g|h) v,w f{fv,w∪h}v,w if g ⊆ fv,w

Informally, if the pre-net f contains the subnet g⊆ fv,w, add the links of the pre-

net h, parallel to g. The difference with the first rewrite template=[g|h]⇒v,w, used in

Section 2.5 to define equivalence over nets(⇔) (Definition 2.5.4), is that in (g|h) v,w

the subprenet fv,w may contain other links than those in g, and the links of h are added

to those of h, instead of replacing them. Dropping the subscript, the rewrite relation

(g|h) includes all rewrite steps(g|h) v,w for somev andw.

Definition 3.2.1. Thesaturationrelation on pre-nets is the union of the following

eight relations.

(πi ;! | !) ([!, !] | !) (〈?,?〉 |?) (?;ι j |?)

(! |πi ;!) (! | [!, !]) (?| 〈?,?〉) (?|?;ι j)

The relation − is the irreflexive restriction of .

The eightsaturation stepsin Definition 3.2.1 are illustrated in Figure 3.6. Note

that for each saturation step(g|h) there is a corresponding equivalence=[g|h]⇒:

although Definition 2.5.4 lists only four equivalence steps, (⇔) is symmetric. The

main differences between saturation() and equivalence(⇔) are: one, saturation is a

directed, single-step rewrite relation, where(⇔) is an equivalence relation; two,()

3.2. Deciding equivalence of nets 55

× 1 (π0;! | !) × 1

× 1 (! |π0;!) × 1

+ 1 ([!, !] | !) + 1

+ 1 (! | [!, !]) + 1

0 × (〈?,?〉 |?) 0 ×

0 × (?| 〈?,?〉) 0 ×

0 + (?;ι0 |?) 0 +

0 + (?|?;ι0) 0 +

Figure 3.6: Saturation steps

56 Chapter 3. Saturated nets

is defined on prenets, where(⇔) is defined only on nets; three,() only adds links

to a prenet, where(⇔) as a rewrite relation replaces links with others. In general,

the relation (g|h) v,w is reflexive for nets that already have h (and g) as a subnet

between verticesv and w. In order to provide saturation with a standard notion of

termination, the irreflexive variant − is defined. Both and − will be referred

to as saturation, with the distinction only made when necessary. Figure 3.7 shows an

example net being saturated; the first image, top left, showsthe original net, the last,

bottom left, its saturation. In between, for each saturation step the links that trigger it

and the links that it introduces are displayed in black, for emphasis, while other links

are shaded grey; an equals sign indicates when two nets differ only in shading.

0 1

+ +

0 1

=

0 1

+ +

0 1

0 1

+ +

0 1

0 1

+ +

0 1

0 1

+ +

0 1

=

0 1

+ +

0 1

=

0 1

+ +

0 1

0 1

+ +

0 1

0 1

+ +

0 1

=

0 1

+ +

0 1

=

0 1

+ +

0 1

0 1

+ +

0 1

Figure 3.7: Saturating a net

Proposition 3.2.2.The saturation relation (−) is confluent and strongly normalising.

Proof. For strong normalisation it is sufficient to observe that each step in − adds

one or two unit links to a pre-net, while the number of unit links in a pre-net(X,Y,R)

is bounded by the size of pos(X)×pos(Y).

3.2. Deciding equivalence of nets 57

For confluence, let f= (X,Y,R), let g′ = (Xv,Yw,S), and let h′ = (Xx,Yy,T). Ob-

serve that the result of applying a saturation step(g|g′) v,w to f is just

f{fv,w∪g′}v,w = (X,Y, R ∪ v· S ·w) .

The following diagram shows local confluence for.

(X,Y,R)

(g|g′)v,w (h|h′)x,y

(X,Y,R ∪ v· S ·w)

(h|h′)x,y

(X,Y,R ∪ x· T ·y)

(g|g′)v,w

(X,Y,R ∪ v· S ·w ∪ x· T ·y)

Then also − is locally confluent, and in the context of strong normalisation this im-

plies − is confluent.

The normal form of a pre-net f with respect to− is denotedσf, and, if f is a net,

is called asaturated net. The idea is that saturation provides a decision procedure by

comparing saturated nets, i.e. f⇔ g if and only if σf = σg. The left–to–right direc-

tion, f ⇔ g ⇒ σf = σg, states that comparing saturated nets is complete for deciding

equivalence, i.e. it makes all the identifications that(⇔) makes. From right to left,

σf = σg ⇒ f ⇔ g states the soundness direction, that comparing saturatednets makes

only the identifications that(⇔) makes.

Theorem 3.2.3(Completeness). For netsf andg, if f ⇔ g thenσf = σg.

Proof. If f ⇔ f′ is witnessed by a single step f=[g|h]⇒v,w f′ in the equivalence relation,

then there is a common pre-net f′′ such that f f′′ and f′ f′′, as illustrated below.

f{g}v,w [g|h]v,w

(g|h)v,w

f{h}v,w

(h|g)v,w

f{g∪h}v,w

Any equivalence f⇔ g can be decomposed as a series of single-step equivalences

f = f1 ⇔ f2 ⇔ . . .⇔ fn = g. Confluence then completes the following triangle diagram

(note that the tip of the triangle need not be the normal form yet, as further saturation

58 Chapter 3. Saturated nets

steps may be possible).

f1 f2 fn

• • •

..
..

..
..

..
..

.

•

..
..

..
.

•

The soundness theorem is stated below; its elaborate proof will be the subject of

the next chapter.

Theorem 3.2.4(Soundness). For ΣΠ(C)-netsf andg, if σf = σg thenf ⇔ g.

3.3 The category of saturated nets

An immediate consequence of the soundness and completenesstheorems of the previ-

ous section, Theorem 3.2.4 and Theorem 3.2.3, is that saturated nets uniquely describe

the morphisms in the categoryΣΠ(C).

Theorem 3.3.1.For cut-free, identity-freeΣΠ(C)-terms s and t,

ΣΠ(C) |= s= t ⇐⇒ σJsK = σJtK .

Proof. Immediate by Proposition 2.5.6, Theorem 3.2.3, and Theorem3.2.4.

This section will give a more complete picture of the category of saturated nets.

Firstly, an alternative characterisation of saturated nets will be provided. This will

be used to provide a direct account of identities and composition for saturated nets,

describing the category of saturated nets independently ofthe translation to and from

sum–product logic.

Firstly, the following proposition asserts that the saturation of a net contains pre-

cisely the combined links of all equivalent nets.

Proposition 3.3.2.The saturation of a netf is
S

{g | f ⇔ g}.

3.3. The category of saturated nets 59

The saturation process gives an intuition why this might hold, and it is immediate

from the completeness theorem that a saturated net containsat least the links of all

equivalent nets. Nevertheless, proving the proposition isnot straightforward, and will

be postponed until Section 4.8 in the next chapter, when the accumulated lemmata will

have brought a proof within easy reach.

Composition and identity in the category of saturated nets are, naturally, fully de-

termined by the translation from sum–product logic. Translating and then saturating

identity proofs in sum–product logic gives the saturated identitiesσ(idX) for each ob-

jectX, where the net idX is defined as follows.

A
idA

A 0 0 1 1

idA
∆
= (A,A, idA) id0

∆
= (0,0,∗) id1

∆
= (1,1,∗)

idX

+ +

idY

idX

× ×
idY

idX+Y
∆
= [(idX ;ι0),(idY;ι1)] idX×Y

∆
= 〈(π0;idX),(π1;idY)〉

From the above it is easily deduced that in an identity net idX = (X,X,R), before sat-

uration, the linkingR is the identity relation on the leaves inX, labelled appropriately.

Composition of nets

Before turning to composition of saturated nets, first composition for nets will be dis-

cussed. An indirect account of composition is via cut elimination in the term calculus:

to compose two nets f and g,

• find termssandt such thatJsK = f andJtK = g;

• compose the two terms with a cut to formt ◦ s;

• apply cut elimination tot ◦ s, yielding a termr;

• and then translater to a netJrK.

All operations above preserve the denotation of terms and nets as categorical mor-

phisms. Thus, while composition need not be associative, because cut elimination in

the term calculus is non-confluent, it is associative up to equivalence.

60 Chapter 3. Saturated nets

For unit-free nets it was established by Hughes and Van Glabbeek that composition

is the relational composition of linkings (see [56] or [59]). In the presence of the units,

this does not work immediately: the following composition would be empty.

0 + • + 1

As is illustrated by this simple example, the problem is caused by links connecting to

arbitrary nodes, whereas in the unit-free case, all links connect to the leaves. Because

all nets have equivalent nets whose links connect only to leaves, reached simply by

applying rewrites towards the leaves exhaustively, this problem will not be hard to

solve. First, some terminology will be introduced.

Definition 3.3.3. A pair of prenets(X,Y,R) and(Y′,Z,S) is composableif Y = Y′.

Therelational composition(•) of composable prenets is defined as

(X,Y,R) • (Y,Z,S)
∆
= (X, Z, {〈u, l • k,w〉 | 〈u, l ,v〉 ∈ R , 〈v,k,w〉 ∈ S }) ,

where the composition of labels is given by

(∗ • l)
∆
= ∗ (l • ∗)

∆
= ∗ (a • b)

∆
= (b ◦ a) .

A pair of composable nets f and g ismatchingif f • g is a net.

Note that like the notion of composability, the property of being matching is not

symmetric. Also, note that relational composition is defined on all prenets, while

matching describes the class of (pairs of) nets for which relational composition is

well-defined. In the lemma below relational composition is shown to satisfy a series of

equations, corresponding to elimination and permutation steps of the cut-elimination

procedure for sum–product logic, given in Figure 2.2 in Section 2.2.

Lemma 3.3.4.Relational composition of prenets satisfies the following equations: for

basic nets,

(A,B,a) • (B,C,b) = (A,C,b◦ a) b ◦ a = b ◦ a

(0,Y,∗) • (Y,Z, l) = (0,Z,∗) t ◦ ? = ?

(X,Y, l) • (Y,1,∗) = (X,1,∗) ! ◦ s = ! ,

for right-constructible prenets composed with left-constructible prenets,

(f′;ι j) • [g0,g1] = f′ • g j [t0, t1] ◦ (ι j ◦ s′) = t j ◦ s′

〈f0, f1〉 • (πi ;g′) = f i • g′ (t ′ ◦ πi) ◦ 〈s0,s1〉 = t ′ ◦ si ,

3.3. The category of saturated nets 61

and forf • g with a left-constructible prenetf or right-constructible prenetg,

[f0, f1] • g = [f0 • g, f1 • g] t ◦ [s0,s1] = [t ◦ s0, t ◦ s1]

(πi ;f′) • g = πi ;(f′ • g) t ◦ (s′ ◦ πi) = (t ◦ s′) ◦ πi

f • (g′;ι j) = (f • g′);ι j (ι j ◦ t ′) ◦ s = ι j ◦ (t ′ ◦ s)

f • 〈g0,g1〉 = 〈f • g0, f • g1〉 〈t0, t1〉 ◦ s = 〈t0 ◦ s, t1 ◦ s〉 .

Proof. Immediate by unfolding the definitions. For example, for thefourth equation,

links 〈u,v〉 in f and〈v,w〉 in g0 give rise to a link〈u,w〉 in f •g0 if and only if 〈u,v0〉

in f; ι0 and〈v0,w〉 in [g0,g1] give rise to the same link〈u,w〉 in the composition of the

latter two prenets.

f

+ •

g0

+

g1

=
f•g0

f0

+

f1

•
g

=

f0•g

+

f1•g

Figure 3.8: Composition via elimination and permutation steps

Two of the equations in Lemma 3.3.4 are illustrated in Figure3.8. For matching

nets, these equations give a complete description of composition, as is asserted by the

lemma below. In addition, the lemma shows that for nets to be matching, it is sufficient

that for the central, common object, links in both nets only connect to leaves. From

this it is immediate that any composable nets f and g have equivalent nets f′ and g′ that

are matching, by moving links towards the leaves. That the process of moving links

towards the leaves is non-deterministic is not a problem, since the result of composing

two nets need only be unique up to equivalence.

Lemma 3.3.5.For composable netsf = (X,Y,R) andg = (Y,Z,S),

1. the equations of Lemma 3.3.4 characterise the relationalcompositionf • g if and

only if f andg are matching;

2. if all links connected to the central object Y , in particular all initial links in f and

all terminal links ing, connect only to leaves of Y , thenf andg are matching.

62 Chapter 3. Saturated nets

Proof. For 1, from left to right is immediate: if the equations of Lemma 3.3.4 char-

acterise f• g, they do so by constructing it from basic nets. For the otherdirection, it

is easily verified that since f and g are constructible (Proposition 2.4.4), the equations

of Lemma 3.3.4 are exhaustive for all ways of constructing f and g if equations for the

following two cases are added:

(0,Y,∗) • g f • (Y,1,∗)

where g is only left-constructible and f is only right-constructible. But these pairs are

not matching: since g is left-constructible, it contains nolinks 〈ε,w〉, while (0,Y,∗)

contains only the link〈ε,ε〉; then(0,Y,∗) • g is empty, and not a net. The case for

f • (Y,1,∗) is similar. Furthermore, the last four equations in Lemma 3.3.4 preserve

matching, in the following sense. For example for the equation

[f0, f1] • g = [f0 • g, f1 • g],

since[f0, f1] and g are matching, both sides of the equation are nets; then also f0 • g and

f1 • g are nets, which means that f0 and g are matching, as are f1 and g. For matching

nets f and g it then follows by induction on their construction that the equations of

Lemma 3.3.4 are exhaustive, which shows the remaining direction of 1 above.

For 2, it is easily observed that the two cases above,

(0,Y,∗) • g f • (Y,1,∗)

where g is only left-constructible and f is only right-constructible, cannot transpire, as

follows. By assumption, since initial links in(0,Y,∗) only connect to leaves,Y is a

leaf; but then g must be basic or right-constructible, a contradiction. The other case is

symmetric. Then the equations of Lemma 3.3.4 characterise the composition of nets f

and g with links only connecting to leaves in the central object Y, and 2 follows from

1.

Next, it will be shown that, for matching nets, relational composition is the right

notion of composition, in the sense that it commutes, up to equivalence, with compo-

sition via the term calculus, as outlined above.

Proposition 3.3.6.For matching netsJsK andJtK translated from terms, the relational

compositionJsK • JtK is the translationJrK of a normal term r equal to t◦ s, the com-

position of s and t by a cut.

3.3. The category of saturated nets 63

Proof. Let JsK = f andJtK = g. The statement is then shown by induction on the con-

struction of f and g, following the equations of Lemma 3.3.4,which by Lemma 3.3.5

are exhaustive. Of the equations for basic nets, the second is treated, repeated below;

the other two are similar.

(0,Y,∗) • (Y,Z, l) = (0,Z,∗) t ◦ ? = ?

In this case,s is a term equal to? (sinceJsK = (0,Y,∗)), while t is a term such thatJtK

is a basic net. Letr = ?; the statement is then immediate from the following equations,

plus the term equation above right.

J?K = f = (0,Y,∗) JtK = g = (Y,Z, l) f • g = (0,Z,∗) = J?K

Next, of the six equations for constructible nets, the first will be treated, repeated

below; the others are similar.

(f′;ι j) • [g0,g1] = f′ • g j [t0, t1] ◦ (ι j ◦ s′) = t j ◦ s′

In this case, since f= f′;ι j , there is a terms′ such that f= Jι0 ◦ s′K. By Proposition 2.5.6

(soundness and completeness of(⇔) for term equality under translation), from this and

JsK = f it follows that ΣΠ(C) |= s= ι0 ◦ s′. Similarly, there are termst0 and t1 such

that g= J[t0, t1]K andΣΠ(C) |= t = [t0, t1]. Because f and g are matching, f• g= f′ • g j

is a net, which means it is immediate that f′ and gj are matching. Then the induction

hypothesis can be applied, giving the following equations,for some normal termr.

JsK • JtK = Js′K • Jt jK = JrK ΣΠ(C) |= r = t j ◦ s′

By the equationΣΠ(C) |= [t0, t1] ◦ (ι j ◦ s′) = t j ◦ s′ (one of the equations for cut elimi-

nation in Figure 2.2), it follows thatΣΠ(C) |= r = t ◦ s, concluding the statement.

The following proposition is then immediate, from the aboveand the earlier result

that translation between terms and nets commutes with term equality and net equiva-

lence (Proposition 2.5.6).

Proposition 3.3.7.For netsf ⇔ f′ andg⇔ g′, if f andg are matching, andf′ andg′

are matching, thenf • g⇔ f′ • g′.

Proof. Immediate from Proposition 3.3.6 and Proposition 2.5.6.

64 Chapter 3. Saturated nets

Composition of saturated nets

With composition for nets defined and shown to be correct, composition for saturated

nets will be considered next. The simple example below illustrates that relational com-

position is not sufficient as a notion of composition for saturated nets: the first two

nets, which are saturated, compose to form the third; however, this net is not saturated;

its saturation is pictured fourth.

0

× A

0

•

1

A +

1

=

0 1

× +

0 1

∗
0 1

× +

0 1

In the following, it will be shown that composition for saturated nets is relational com-

position followed by saturation.

Definition 3.3.8. Thecompositionσg ◦ σf of composable saturated netsσf andσg is

defined as relational composition followed by saturation, as follows.

σg ◦ σf = σ(σf • σg)

The main idea is as follows. Since saturation must commute with composition

for nets and for saturated nets, what the composition ofσf and σg should be is the

following:

• the saturationσ(h • k) for any pair of matching nets h⇔ f and k⇔ g (note that

by Proposition 3.3.7 above, for any choice of h and k the composition h• k is

equivalent).

By Proposition 3.3.2 a saturated net is the union of an equivalence class of nets. This

means that the relational composition of two saturated netsf and g is the union of the

following:

• the compositions h• k of all pairs ofmatchingnets h⇔ f and k⇔ g;

• the compositions h• k of all pairs ofnon-matchingnets h⇔ f and k⇔ g;

• and nothing else, since every link inσf occurs in some h⇔ f, and every link in

σg occurs in some k⇔ g.

It is clear that the compositionσg ◦ σf contains sufficient links, since the relational

compositionσf • σg contains at least one h• k for some matching pair h and k. To

show that it does not contain too many links, it must be shown that the presence of

prenets h• k for non-matching h and k is harmless. This is established below.

3.3. The category of saturated nets 65

Lemma 3.3.9.For composable netsf andg there are equivalent netsh⇔ f andk ⇔ g

that are matching, such that

f •g ⊆ h•k .

Proof. Let Y be the target of f and source of g. The matching nets h and k willbe

generated by moving links towards the leaves in the central objectY. A measure of

how close f and g are towards that goal is to consider, for all links 〈u,v〉 in f and〈v,w〉

in g, the depth of the subtrees atv. The multiset of these depths, for all links in f and g

combined, provides a convenient measure for induction (it should be noted that simpler

measures are also possible).

The base case is where in f and g all links connect to leaves inY (the measure is

a multiset of zeroes). Otherwise, rewrite steps pushing a link down towards the leaves

may be applied to f or g, or both simultaneously. Letv be a vertex in the target of f that

is not an atom or unit; w.l.o.g. letv be a coproduct. To form nets f′ and g′, for any link

〈u,v〉 in f and〈v,w〉 in g apply the following rewrite steps, replacing the formerlink by

〈u,v0〉 and the latter by〈v0,w〉 and〈v1,w〉.

0u + v⇒ 0u + v +v
1

w⇒ +v
1

w

If v is chosen such that there is at least one such link〈u,v〉 or 〈v,w〉, then f′ and g′ are

smaller, in the proposed measure, than f and g. The inductionhypothesis gives nets h

and k satisfying the following.

g⇔ f′ ⇔ f k ⇔ g′ ⇔ g f′ •g′ ⊆ h•k .

To show that also f• g ⊆ f′ •g′, let 〈u,w〉 be a link in f• g is due to links〈u,x〉 and

〈x,w〉. If x 6= v then, clearly,〈u,x〉 and〈x,w〉 are in f′ and g′ respectively, and〈u,w〉 is

in f′ •g′. Otherwise, ifx = v, then the link〈u,x0〉 is in f′, and〈x0,w〉 is in g′. Then,

too,〈u,w〉 is in f′ •g′.

The following proposition then shows that this notion of composition is indeed the

right one.

Proposition 3.3.10.Composition of saturated nets satisfies

σJtK ◦ σJsK = σJrK

for some normal term r equal to t◦ s

66 Chapter 3. Saturated nets

Proof. Let f⇔ JsK and g⇔ JtK be matching nets. By Proposition 3.3.6 the equivalence

below left holds, from which the equation below right follows by the completeness of

saturation (Theorem 3.2.3).

f •g ⇔ JrK σ(f •g) = σJrK

In addition, by the same theorem,σf = σJsK andσg= σJtK. What remains to be shown

is the following.

σ(σf •σg) = σ(f •g)

One direction,(⊇), follows becauseσf contains f andσg contains g, while both rela-

tional composition and saturation are monotone with respect to subset inclusion. For

the other direction, it suffices to show the following.

σf •σg ⊆ σ(f •g)

It will be shown that this inclusion follows from the fact that saturated nets are unions

over equivalence classes (Proposition 3.3.2). Let〈u,w〉 be a link inσf •σg, originating

in links 〈u,v〉 in σf and 〈v,w〉 in σg. Then by Proposition 3.3.2 there are nets f′ ⇔ f

and g′ ⇔ g, respectively containing〈u,v〉 and〈v,w〉. For these nets, Lemma 3.3.9 gives

equivalent, composable nets h and k such that f′•g′ ⊆ h•k. SinceJsK⇔ h andJtK⇔ k,

Proposition 3.3.6 gives a normal termr equal tot ◦ s such that h• k ⇔ JrK, and by

completeness (Theorem 3.2.3)σ(h• k) = σJrK. Combining the above, the following

equation then shows that〈u,w〉 is in σ(f •g).

〈u,w〉 ∈ f′ •g′ ⊆ h•k ⊆ σ(h•k) = σJrK = σ(f •g)

Corollary 3.3.11 (CharacterisingΣΠ(C)). The categoryΣΠ(C) is characterised by

the following.

• Objects are given by the grammar

X := A∈ C | 0 | 1 | X +X | X×X .

• Morphisms are given by saturated nets.

• The identity morphism for an object X is the saturated netσ(idX)

• The composition of two composable saturated netsσf andσg is σg ◦ σf.

3.4. Correctness for saturated nets 67

3.4 Correctness for saturated nets

A central part of any notion of proof net is acorrectness criterion: a condition that

identifies the proof nets among the proof structures (see also Section 1.3). Typically,

such a condition is expected to be combinatorial, mainly to ensure that it is more infor-

mative, and possibly easier to verify, than a criterion provided by a translation proce-

dure from proofs (i.e. the criterion that a structure is a netif and only if it is the transla-

tion of some proof). In the absence of the units, where sum–product nets are canonical,

the correctness criterion is the switching condition, which determines whether a prenet

is a net. For additive linear logic with units, the canonicalproof objects are saturated

nets. Here, a correctness criterion for saturated nets willbe discussed, that separates

the saturated nets from the arbitrary prenets.

Two conditions a saturated net must satisfy are immediatelyconspicuous: one, it

must be connected, since it is obtained from a net by saturation; and two, it must be

saturated. These two conditions are not sufficient: they aresatisfied by all prenets

that contain all possible links and are connected, which arenot always saturated nets.

For example, of the four (connected and saturated) prenets below, only the second and

fourth are saturated nets.

0

× 0

0

0

× 1

0

0 0

× +

0 0

0 1

× +

0 0

The problem is to distinguish a saturated net from a prenet formed by the union of

several saturated nets. What separates these is that in a saturated net, all links can be

obtained by saturation from a single net. Theneighbouringrelation, defined below,

is used to verify whether one link may arise from another by saturation; informally, it

relates links that occur together in the diagrams for the saturation steps.

Definition 3.4.1. Theneighbouringrelation⌢ over the linksR in a prenet(X,Y,R)

is defined as the smallest symmetric relation satisfying

〈vi,w〉 ⌢ 〈v,w〉 〈v,w j〉 ⌢ 〈v,w〉 .

Since in a net a switching switches on exactly one link, a firstattempt at a refined

criterion for saturated nets would be to formalise the idea that if two links are switched

on by the same switching, one must be introduced by saturation. This can be stated as

follows: if two links are incompatible (Definition 2.3.3),〈v,w〉 # 〈x,y〉, then they must

68 Chapter 3. Saturated nets

be related in the reflexive–transitive closure of the neighbouring relation,〈v,w〉 ⌢∗

〈x,y〉. However, this criterion does not suffice to characterise saturated nets: the pre-

net below left is not a saturated net, although it is connected, saturated, and all its links

are related in⌢∗.

1 1

+ +

0 1

1 1

+ +

0 1

1 1

+ +

0 1

The first of the two switchings of the prenet above left, pictured to the right of it,

suggests a refinement to the criterion. Although all links are (transitive) neighbours in

the whole prenet, this no longer holds if the neighbouring relation is taken just over the

links that are switched on. Thus, let⌢ς denote the neighbouring relation⌢ restricted

to links switched on byς, and let⌢∗
ς be its reflexive–transitive closure.

Definition 3.4.2. A prenet isclose-knitif for any switchingς

ς 〈v,w〉 ∧ ς 〈x,y〉 ⇒ 〈v,w〉 ⌢∗
ς 〈x,y〉 .

The correctness criterion will then be as follows.

Theorem 3.4.3(Correctness of saturated nets). A prenet is a saturated net if it is con-

nected, saturated, and close-knit.

One direction of the proof is easily established.

Proposition 3.4.4.A saturated netσf is close-knit.

Proof. Trivially, f is close-knit, since a switchingς for f switches on exactly one link.

This is preserved in saturation, because any link added in a saturation step is a neigh-

bour of an existing link. For example, in a saturation step g(! | [!, !]) v,w g′, repro-

duced below, ifς 〈v0,w〉 and ς 〈x,y〉, alsoς 〈v,w〉, and if g is close-knit then

〈v0,w〉 ⌢ς 〈v,w〉 ⌢∗
ς 〈x,y〉.

+v
1

w (! | [!, !]) v,w
+v

1
w

The other direction will be stated here, but not proved; the proof relies on the

lemmata of the soundness proof for saturation, and will be completed in Section 4.9.

3.5. Complexity 69

Proposition 3.4.5. If a pre-neth is connected, saturated, and close-knit, it is a satu-

rated netσf.

For a connected, saturated, close-knit prenet h the proof ofthe proposition will give

an actual net f such thatσf = h. This means it provides a ‘de-saturation’ algorithm

that, together with the interpretation of a net as a term, constitutes a sequentialisation

procedure—a method of translating a saturated net into a term that is inverse (up to

term equality) toσJ−K, translation followed by saturation. This is discussed in more

detail in Section 4.9.

3.5 Complexity

In [23] Robin Cockett and Luigi Santocanale present an intricate decision procedure for

the word problem of sum–product logic—the equational theory of Figure 2.4. The time

complexity of this algorithm, in deciding equality of two cut-free termss, t : X →Y, is

given in big-O notation as

O
(

(hgt(X)+hgt(Y))×|X|× |Y|
)

where|X| denotes the size of the syntax tree of an objectX, i.e. the number of vertices,

andhgt(X) denotes its height.

Here it will be argued that, with an appropriate implementation, the decision pro-

cedure provided by saturation slightly improves on this, having the following bound.

O
(

|X|× |Y|
)

Starting with cut-free termss and t of type X → Y, the decision procedure would

compute whetherσJsK = σJtK holds. This involves three steps: translating both terms

to nets, saturating the nets, and comparing for equality.

An algorithm implementing these steps will be outlined. Firstly, for a net(X,Y,R),

the linkingR is represented by a two-dimensional array of size|X|×|Y|, whose entries

are the labels of the links (i.e. strings representingC -maps or∗) or a null-value to

describe the absence of links. The vertices inX andY are the indices on the horizontal

and vertical axes respectively, while the tree-structure of the objects is implemented

by functions indicating parent vertices, children, and thetype of a vertex (product,

coproduct, initial, terminal, or an atomA). An impression of this representation is

given in Figure 3.9. The illustration shows two nets, with their saturation added in

70 Chapter 3. Saturated nets

grey, along with two corresponding terms, and an array-representation of the saturated

nets, on the right; the arrows between the object arrays represent theparent-function.

The translationJ−K, from a cut-free termt into a net in this representation, can

be implemented as follows. An easy induction ont shows that|t|, the size oft in the

number of term constructors, is equal to or smaller than|X|×|Y| (this is not the case for

proof termst with cuts). The objectsX andY of t, if not explicitly present, are extracted

by a simple walk overt. The vertices of a syntax tree forX can be indexed, and their

parent-function and children-function extracted, in linear time in|X|, each by a simple

walk overX. To translatet into a net can be done by a function walking over the term

t, while simultaneously keeping track of the indices in|X| and|Y| (via the children and

parent functions). The output of this function would be to update the corresponding

entry in the linking array whenever aC -map or unit map is encountered, and to add the

positions(x,y) of unit links 〈x,y〉 to a stacks. Each step in this algorithm consists

of nothing more than a few array lookups and updates, plus a single stack push, and

would thus be constant time. The time complexity of the algorithm as a whole is then

linear in the size of the term|t|, and hence smaller than|X|× |Y|.

Saturation steps can be implemented as follows. Popping an item (x,y) from

the stacks gives the position in the matrix of a recently added link. Theparent and

children functions give the indices of links that may need tobe added in the saturation

step; since both have maximally two children, one parent, and one sibling (which must

be inspected for rewrite steps of the kind(〈?,?〉 |?) and ([!, !] | !)), at most eight

positions are accessed. The positions of newly added links are then pushed onto the

stack. Consisting of a constant number of array lookups and updates, and stack pops

and pushes, a saturation step is thus performed in constant time. For the complete

saturation procedure, each link in the saturation appears on the stack only once, when

it is added to the matrix. The complexity of saturation is then bounded, by a constant

factor, by the number of entries in the linking array,|X|× |Y|.

Finally, comparing the two saturated netsσJsK andσJtK for equality is done by a

simple equality test of the two linking arrays. The completeprocess of translation,

saturation, and equality testing, for cut-free terms, is thus performed in time bounded

by O (|X|× |Y|). (The complexity in the presence of cuts has not been evaluated.)

3.5. Complexity 71

A A

+ ×

0 1

× +

0 1

ι1 ◦ ?1 ◦ π1

:

(A+0)×0→ (A×1)+1)

∗ ∗ A A

∗ ∗ × ×

∗ ∗ ∗ ∗ ∗ 1 1

∗ ∗ + +

∗ ∗ ∗ ∗ ∗ 1 1

A + 0 × 0

A + 0 × 0

A A

+ ×

0 1

× +

0 1

idA

ι0 ◦ 〈[idA,?A], [!A, !0]〉 ◦ π0

:

(A+0)×0→ (A×1)+1)

idA ∗ A A

∗ × ×

∗ ∗ ∗ ∗ ∗ 1 1

∗ + +

∗ 1 1

A + 0 × 0

A + 0 × 0

Figure 3.9: Two saturated nets in different representations

Chapter 4

The soundness proof

4.1 Introduction

This chapter will concern, mainly, the proof of Theorem 3.2.4, that saturation () is

sound as a decision procedure for sum–product categories. The proof itself, presented

in Section 4.7, will proceed by induction on the source and target object of a pair

of parallel nets, and will rely on a body of lemmata, carefully constructed over the

course of the chapter. At the end, the two further outstanding proofs will be completed:

firstly, in Sections 4.8, the proof of Proposition 3.3.2, that saturated nets are unions of

equivalence classes of nets; and secondly, in Section 4.9, the proof of Proposition 3.4.5,

which describes the correctness criterion for saturated nets. In addition to the proofs,

this chapter presents one new addition to the main body of results on saturated nets: a

sequentialisation algorithm, also in Section 4.9.

The soundness proof will be outlined below. To be proven is that two nets f and g

with the same saturationσf = σg = (X,Y,R) are equivalent, that is f⇔ g. The proof

is by induction onX andY, with the above statement as the induction hypothesis. As

a first overview, there will be three cases:

• one ofX andY is an atom or unit,

• X is a coproduct orY is a product, and

• X is a product andY a coproduct.

The first two cases are relatively straightforward, and willbe treated in Section 4.2.

The main body of the proof is concerned with the third case, which is that of nets of

73

74 Chapter 4. The soundness proof

the form f= f′;ι j and g= πi ;g′ as illustrated below.

f′× + g′× +

For this third case, there are three primary obstacles to overcome, which will be out-

lined below.

Inductive saturation

To apply the induction hypothesis it must be possible to relate, e.g., a saturated net

σ(f; ι0), to the saturation of its component net,σf. This is addressed by providing an

alternative characterisation of a saturated netσf, by induction on the construction of the

net f. In Section 4.2, Lemma 4.2.3 presents the case for basicnets, and Lemma 4.2.5

that for nets of the form〈f,g〉 and[f,g]. The case for netsπi ;f and f;ι j , Lemma 4.4.1,

will be the most involved. Section 4.3 will provide supporting material for this lemma,

which will itself be presented and discussed in Section 4.4.

Nets over different projections and injections

The second obstacle is that nets constructed over differentprojections and injections,

e.g. f′;ι0 andπ0;g′, as illustrated above, but also f′;ι0 and h′;ι1, may have the same

saturation. Naturally, in such a case the induction hypothesis cannot be applied toσf′

andσg′. This problem will be addressed in Section 4.5. It is shown that if f′;ι0 and

π0;g′ have the same saturation, then this saturation must containat least one initial link

〈v,ε〉 (and one terminal link〈ε,w〉). Then Lemma 4.5.1 will show that sinceσ(f′;ι0)

contains the link〈v,ε〉, there must be a net f′′ equivalent to f′;ι0, also containing〈v,ε〉.
From the presence of this link it can then be deduced that f′′ is left-constructible, and

over which projection it is constructed. Since the saturation ofπ0;g′ is the same as that

of f′;ι0, the same argument shows thatπ0;g′ is equivalent to a net g′′, containing the

same link〈v,ε〉, and constructed over the same projection as f′′. Then the induction

hypothesis can be applied to the deconstructions of f′′ and g′′.

Major reconstruction

The third obstacle is that nets constructed over the same projection or injection, e.g.

f; ι0 and g;ι0, may have the same saturation, while their components, f andg, do not.

An illustration of this is provided in Figure 4.5 on page 94. In Section 4.6 it will be

4.2. The first two cases 75

shown how to transform the net f;ι0 into an equivalent net h;ι0 such that h does have

the same saturation as g, so that the induction hypothesis can be applied to g and h.

The formal details are recorded in Lemma 4.6.3.

Finale

The soundness proof is concluded in Section 4.7. Then in Section 4.8 and 4.9 the two

remaining proofs from Chapter 3 are completed.

4.2 The first two cases

The first case of the soundness proof concerns parallel nets whose source or target is

an atom or unit. For nets with sourceX and targetY, this gives six possibilities, that

are pairwise dual. Four are immediate: ifX is an atom or1, or dually if Y is an atom

or 0, illustrated below, it is easily observed that no rewrite orsaturation steps apply.

A 1 A 0

For such nets f and g, it follows that ifσf = σg then f= g.

For the remaining two cases, nets with source object0 will be called initial , and

with target1, terminal. The links in an initial net(0,Y,R) can move up and down the

syntax tree ofY essentially without hindrance. From this, the lemma below follows—

and the one after as well. In the next lemma, recall that two nets areparallel if they

have the same source objects and the same target objects.

Lemma 4.2.1.All parallel initial nets are equivalent, as are all parallel terminal nets.

Proof. It will be shown, by induction on the construction of an initial net f= (0,Y,R),

that f is equivalent to ?Y, from which the statement follows by transitivity.

If f is basic, f=?Y. With 0 as source object f cannot be left-constructible. If f is

right-constructible, for f= 〈f0, f1〉 the induction hypothesis gives fi ⇔?Yi for i ∈ {0,1}.

Then〈f0, f1〉 ⇔ 〈?,?〉, and by a single rewrite step, below,〈?,?〉 ⇔ ?.

0ε × ε =[〈?,?〉 |?]⇒ε,ε 0ε × ε

Next, if f = f′;ι j the induction hypothesis gives f′ ⇔?Yj . Then by a single rewrite step,

below, f′;ι j ⇔ ?;ι j ⇔ ?.

0ε + ε =[?;ι0 |?]⇒ε,ε 0ε + ε

76 Chapter 4. The soundness proof

The case for terminal nets is dual.

The above lemma confirms, syntactically, that0 and1 are initial and terminal ob-

jects, respectively, in the category of nets modulo equivalence, and that consequently

any decision procedure for initial or terminal nets is sound: it is impossible to identify

too many of them. That0 and1 are also initial and terminal in the category of saturated

nets is a matter of completeness. It follows from Theorem 3.2.3 that all parallel initial

or terminal nets have the same saturation. It will be useful to describe these saturated

nets explicitly.

Definition 4.2.2. A prenet isfull if it contains all possible unit links (but no atomic

links), i.e. if it is of the form

(X,Y, {〈v,∗,w〉 | Xv = 0 or Yw = 1}) .

Clearly, for a given source and target object there is precisely one such prenet.

Lemma 4.2.3.The saturation of initial and terminal nets is full.

Proof. First, it will be shown that the saturation of a net ?Y = (0,Y,∗) is full. Let

σ?Y = (0,Y,R). It follows from the saturation steps that if a link〈ε,∗,w〉 ∈ R connects

to a vertexw with childrenw0,w1 ∈ pos(Y), then also〈ε,∗,w0〉,〈ε,∗,w1〉 ∈ R , as

follows. If Yw is a product,
w0

0ε × w

w1

(?| 〈?,?〉) ε,w

w0

0ε × w

w1

and ifYw is a coproduct,
w0

0ε + w

w1

(?|?;ι0) ε,w

w0

0ε + w

w1

(?|?;ι1) ε,w

w0

0ε + w

w1

Then since ?Y contains the link〈ε,∗,ε〉, its saturation is full:

R = {〈ε,∗,w〉 | w∈ pos(Y)} .

By Lemma 4.2.1 any initial net f with targetY is equivalent to ?Y. Then by com-

pleteness (Theorem 3.2.3) f and ?Y have the same saturation, and soσf is full. The

case for terminal nets is dual.

4.2. The first two cases 77

The second case of the soundness proof concerns nets whose source is a coproduct

or whose target is a product; call thesecoproduct netsandproduct nets, respectively,

illustrated below.

+ ×

Product nets are not just the nets of the form〈f,g〉, since they need not be right-

constructible. However, it is easily shown that they are equivalent to such nets, and

that dually coproduct nets are equivalent to nets of the form[f,g].

Lemma 4.2.4. A product netg is equivalent to a net〈g0,g1〉. A coproduct netf is

equivalent to a net[f0, f1].

Proof. Let g= (X,Y,R) be a product net, i.e.Y is a product. By the definition of the

constructors, g is of the form〈g0,g1〉 unless it contains initial links〈v,∗,ε〉 for somev,

connecting to the root ofY. By applying the following rewrite step for any suchv,

0v × ε =[?| 〈?,?〉]⇒v,ε 0v × ε,

a net of the form〈g0,g1〉 is obtained from g. The case for coproduct nets is dual.

As equivalent nets have the same saturation, the above lemmameans that a satu-

rated product netσg can always be described as the saturation of a net〈g0,g1〉. Relat-

ing the latter saturation to those of its components,σg0 andσg1, will allow induction

on saturated nets. To this end, consider a saturation path for 〈g0,g1〉 that first applies

all possible saturation steps to g0 and g1 individually, as follows.

〈g0,g1〉 . . . 〈σg0,σg1〉 . . . σ〈g0,g1〉

The only saturation steps that can be applied to〈σg0,σg1〉, in the irreflexive variant
−, are those of the form below.

0v × ε (〈?,?〉 |?) v,ε 0v × ε

That the second part of the saturation path above contains only such steps follows from

the observation that the newly added link〈v,ε〉 does not trigger any new saturation

steps: the only step that can be applied to it, is the reverse step to the one that introduced

it. These observations are summarised by the lemma below.

78 Chapter 4. The soundness proof

Lemma 4.2.5. If [σf0,σf1] = (X,Y,R) thenσ[f0, f1] = (X,Y,R ∪ S) where

S = {〈ε,∗,w〉 |Yw = 1, 〈0,∗,w〉 ∈ R , 〈1,∗,w〉 ∈ R } .

Dually, if 〈σg0,σg1〉 = (X,Y,R) thenσ〈g0,g1〉 = (X,Y,R ∪ S) where

S = {〈v,∗,ε〉 | Xv = 0, 〈v,∗,0〉 ∈ R , 〈v,∗,1〉 ∈ R } .

Proof. It can be observed (following the above reasoning) that the saturation path from

〈σg0,σg1〉 to σ〈g0,g1〉 consists of the steps(〈?,?〉 |?) v,ε for thosev such that both

σg0 andσg1 have a link〈v,ε〉. The case for[f0, f1] is dual.

Crucially, in the above lemma the links inS are all of the form〈v,ε〉, and thus easily

separated from those originally belonging toσg0, which are all of the form〈v,0w〉, or

those belonging toσg1, which are of the form〈v,1w〉.

σg0

×

σg1

∗ 0
S

σg0

σg1

×

It follows that by simply restrictingσ〈g0,g1〉 to the subprenet betweenε and 0, or

betweenε and1, the saturations of g0 and g1 can be recovered.

Lemma 4.2.6.Saturation of product and coproduct nets satisfies:

(σ[f0, f1])i,ε = σf i (σ〈g0,g1〉)ε,i = σgi .

Proof. By Lemma 4.2.5,

(σ〈g0,g1〉)ε,i = 〈σg0,σg1〉ε,i ,

and by the definition of the constructors,

〈σg0,σg1〉ε,i = σgi .

The case for coproduct nets is dual.

These two lemmata suffice to complete the case for product andcoproduct nets

in the soundness proof. For parallel product nets f and g withthe same saturation,

Lemma 4.2.4 gives equivalent nets〈f0, f1〉 and〈g0,g1〉 respectively. By Lemma 4.2.6

σf i = (σ〈f0, f1〉)ε,i = (σ〈g0,g1〉)ε,i = σgi

for i ∈ {0,1}. The induction hypothesis of the soundness proof gives fi ⇔ gi , and the

equivalences below follow.

f ⇔ 〈f0, f1〉 ⇔ 〈g0,g1〉 ⇔ g

4.3. Pointed and copointed nets 79

4.3 Pointed and copointed nets

In a category, apoint is a map out of a terminal object. Points are also known as

constants, in particular in the category of sets. An objectP that has a pointp : 1→ P

will be calledpointed. Note that this is non-standard: more commonly, a pointed

object is taken to be a pair(P, p). However, for the present purpose it will mostly

be relevant whether an object has a point, but not which one exactly; moreover, for a

pointed object a point is easily reconstructed. In free sum–product categories, points

and pointed objects are given by the following grammars, respectively.

p := ! | 〈p, p〉 | ι j ◦ p P := 1 | P×P | P+X | X +P

Both are illustrated by the construction of nets with sourceobject1, below.

1 1

p0

1 ×

p1

p0

1 + 1 +

p1

In the dual notions, acopoint is a map into0, and an object that has a copoint is

copointed. These are given by the following grammars.

q := ? | [q,q] | q ◦ πi Q := 0 | Q+Q | Q×X | X×Q

Note that a pointed object may have more than one point, and similarly for copointed

objects, but that an object is never both pointed and copointed. Another useful obser-

vation is that pointed objects are precisely those for whichevery switching switches

on at least one terminal node. Dually, copointed objects arethose whose co-switchings

switch on at least one initial node. Also, inΣΠ(∅), the free sum–product completion

of the empty category, where atoms are absent, these grammars are similar to the eval-

uation of truth or falsity in boolean expressions; in this category every object is either

pointed or copointed.

A point p into a pointed objectP composes with terminal maps to form apointed

map p ◦ !X from any objectX into P (thus, in the present non-standard definition,

pointed objects are precisely the weakly terminal ones). For nets, the (relational) com-

position of a terminal map with a point gives a net with only terminal links connecting

to the left root, as in the example below. (Note that since their common object is a

single leaf, such nets are always matching—see also Section3.3.)

0 0

0 + 0 +

× 1 • 1 1 × = × 1 ×

1 1 1 1

80 Chapter 4. The soundness proof

Call initial links of the form〈v,∗,ε〉 and terminal links of the form〈ε,∗,w〉 rooted.

Definition 4.3.1. A prenet ispointed if it contains only rooted terminal links, and

copointedif it contains only rooted initial links.

By this definition, pointed nets with a given source objectX, and copointed nets

with targetY, are described by the following grammars over constructors.

p := (X,1,∗) | p;ι j | 〈p,p〉 q := (0,Y,∗) | [q,q] | πi ;q

The definition restricts pointed and copointed nets to a convenient syntactic form, but

other, equivalent nets may also correspond to pointed morphisms. In other words,

every pointed map is described by some pointed net, but not every net that describes

this map is pointed.

Since pointed nets consist of terminal links with a common source, these can be

moved around in tandem, for example as follows.

1 1

× 1 ×

1 ×

1

=[! |π0;!]⇒∗

1 1

× 1 ×

1 ×

1

This way, for example, a pointed net p with a coproduct sourceis equivalent to a net

[p0,p1]. More generally, this can be applied to a partial pointed netp as well, if it

is a sub-prenet of a net g, i.e. p⊆ g. For example, if the source of g is a coproduct,

it is equivalent to a net g′ with a sub-prenet[p0,p1] (this was used in the proof of

Lemma 4.2.4). Here, if p is the prenet(X,P,R) and X = X0 + X1, then [p0,p1] is

the pre-net(X,P, 0 ·R ∪ 1 ·R). The pre-nets p0 and p1 are(X0,P,R) and(X1,P,R)

+
p

=[! | [!, !]]⇒∗
p0

+

p1

×
p

=[! |π0;!]⇒∗
p0

×

×
p

=[! |π1;!]⇒∗ × p1

Figure 4.1: Synchronised equivalence steps

4.3. Pointed and copointed nets 81

respectively; as an artefact of the way vertices are addressed, the nets p, p0, and p1 share

the same linkingR . Applying an equivalence step to all links in a partial pointed or

copointed net will be called asynchronised equivalence step, illustrated in Figure 4.1;

informally, this will also be referred to asmovingpointed and copointed nets up and

down a syntax tree.

q

+ (?;ι0 |?)
∗

q

q′
+

Figure 4.2: A synchronised saturation step

A similar notion will be that ofsynchronised saturation steps: the application of

a saturation step to all links in a pointed or copointed sub-prenet, as illustrated in

Figure 4.2. In the illustration, several saturation steps of the form (?;ι0 |?) v,ε are

grouped together. It is then easily seen that if a saturated net σf has a sub-pre-net

(q;ι0)⊆ σf with q copointed, it must also have the copointed sub-pre-net q′ ⊆ σf—and

vice versa. For easy reference, there is the following lemma.

Lemma 4.3.2.The saturation of a copointed prenetq = (Q,Y,R) contains a sub-pre-

net(Q,Y,R ·w)⊆σq for any vertex w in Y. Dually, for a pointed pre-netp= (X,P,R),

for any v in X there is a sub-prenet(X,P,v·R) ⊆ σp.

Proof. The copointed pre-net q is a collection of initial links〈v,ε〉. For each such link,

by Lemma 4.2.3 the saturation of the initial subnet betweenv andε in σq is full, and

contains an initial link〈v,w〉 for any w in Y. It follows thatR ·w is a subset of the

linking of σq. The case for p follows by duality.

A categorical morphism can be both pointed and copointed; such maps will be

calledbipointedhere. Bipointed maps feature heavily in the decision procedure of

Cockett and Santocanale [23]—where they are calleddisconnects—because of the fol-

lowing property: there is precisely one bipointed map from acopointed objectQ to a

pointed objectP, and none between other objects. The uniqueness property iseasily

observed from the fact that in the diagram below the copointq and the pointp are

arbitrary.

Q q

!

0 ?
!

?

1
p

P

82 Chapter 4. The soundness proof

The corresponding notion for nets will again be restricted to a syntactically useful

form.

Definition 4.3.3. A net (Q,P,R) is bipointedif it is pointed or copointed, and more-

over its source objectQ is copointed and its target objectP is pointed.

The uniqueness property of categorical bipointed morphisms carries over to nets

and saturated nets in the following way: any parallel bipointed nets are equivalent,

and have the same saturation, which is full. Figure 4.3 showsin detail an equivalence

between a copointed net and a parallel pointed one. In the first two steps the copointed

net, consisting of the links〈00,ε〉 and 〈1,ε〉, is moved down from the right root to

the two terminal objects of the target tree, vertices 00 and 1. In the resulting net, the

subnet highlighted in picture four, between the left root and the bottom right node,

is a terminal net. This subnet rewrites into a basic net, consisting of a single rooted

terminal link, following Lemma 4.2.1 (picture five). The other subnet, highlighted in

the sixth diagram, is also a terminal net, and likewise rewrites to a single link in the

next diagram. The result, in the final picture, is a pointed net. The following lemma

generalises the above reasoning to the case where one of the nets is partial.

Lemma 4.3.4.For parallel prenetsp andq, if p is a pointed partial net andq a co-

pointed net, there is a netf such thatp⊆ f andq⇔ f. Dually, if p is a pointed net and

q a copointed partial net then there is a netg such thatp⇔ g andq⊆ g.

Proof. The case for f will be shown; that for g is dual. The argumentation is as above.

Moving the copointed subnet q down proceeds inductively, guided by the construction

of the partial net p, as described by Proposition 2.4.4. Since p is pointed, it is either

empty, basic, or right-constructible.

• If p is empty then let f be q; trivially, p⊆ f and q⇔ f.

• If p is basic it is the net(X,1,∗). Let f= (X,1,∗) as well; that p⊆ f is immediate,

and since q is a terminal net, it is equivalent to f by Lemma 4.2.1.

• If p is a partial net〈p0,p1〉, rewrite the copointed net q to the equivalent net

〈q0,q1〉 by moving it down from the right root. Fori ∈ {0,1} the induction

hypothesis, applied to pi and qi , gives a net fi with pi ⊆ f i and qi ⇔ f i . Let f be

[f0, f1]. The equations below follow.

p = 〈p0,p1〉 ⊆ 〈f0, f1〉 = f q ⇔ 〈q0,q1〉 ⇔ 〈f0, f1〉 = f

4.3. Pointed and copointed nets 83

0 1

× +

+ 1 0 ×

0 1

⇔

0 1

× +

+ 1 0 ×

0 1

m

0 1

× +

+ 1 0 ×

0 1

=

0 1

× +

+ 1 0 ×

0 1

m

0 1

× +

+ 1 0 ×

0 1

=

0 1

× +

+ 1 0 ×

0 1

m

0 1

× +

+ 1 0 ×

0 1

=

0 1

× +

+ 1 0 ×

0 1

Figure 4.3: Transforming a copointed net into a pointed net

84 Chapter 4. The soundness proof

• If p = p′;ι j then form q′;ι j ⇔ q by moving the links in q down from the root,

to the vertexj. The induction hypothesis for p′ and q′ gives f′, with p′ ⊆ f′ and

q′ ⇔ f′. Let f be f′;ι j , and the equations below follow.

p = p′;ι j ⊆ f′;ι j = f q ⇔ q′;ι j ⇔ f′;ι j = f

The equivalence of parallel bipointed nets is a direct consequence.

Lemma 4.3.5.Any two parallel bipointed nets are equivalent.

Proof. Let f and g be parallel bipointed nets. If one is pointed and the other copointed,

Lemma 4.3.4 proves their equivalence immediately. If both are pointed, there is a

parallel copointed net h because the common source object off and g is copointed.

The previous argument then gives f⇔ h⇔ g. The case where both nets are copointed

is dual.

Next, it will be shown that the saturation of a bipointed net is full. An example,

of saturating a copointed net with a pointed target, is illustrated in Figure 4.4. (In the

0 1

× +

+ 0 1 ×

0 1

∗

0 1

× +

+ 0 1 ×

0 1

0 1

× +

+ 0 1 ×

0 1

∗

0 1

× +

+ 0 1 ×

0 1

0 1

× +

+ 0 1 ×

0 1

∗

0 1

× +

+ 0 1 ×

0 1

0 1

× +

+ 0 1 ×

0 1

∗

0 1

× +

+ 0 1 ×

0 1

Figure 4.4: Saturating a bipointed net

4.4. Saturation via construction 85

illustration, the first figure on each line displays the same pre-net as the last figure of

the previous line, but with different links highlighted.) Firstly, the copointed net is

moved down to all vertices in the target object. This forms a terminal net between

the left root and any vertex with a terminal object, as highlighted in the third diagram

for the bottom right vertex; filling it in gives the fourth picture. The fifth and sixth

diagram fill in the two terminal nets formed by the left root and the other two target

vertices with terminal objects. At this point, the pre-net contains all possible terminal

links, and all initial links except the two highlighted in the last diagram. These can be

added by repeating the above procedure for the pointed net highlighted in the seventh

diagram. The argument is formalised in the following two lemmata.

Lemma 4.3.6. The saturation of a pointed (respectively copointed) net contains all

initial (respectively terminal) links.

Proof. Let f = (Q,Y,R) be a copointed net; the case for pointed nets is dual. It must

be shown that ifYw = 1 andv∈ pos(Q) then the terminal link〈v,w〉 is in R . For the

vertexw, Lemma 4.3.2 gives a sub-pre-net(Q,P,R ·w) ⊆ σf. Sincew is 1 this gives a

terminal subnet(Q,1,R) ⊆ (σf)ε,w, whose saturation is full (by Lemma 4.2.3).

Lemma 4.3.7.The saturation of a bipointed net is full.

Proof. Let f = (Q,P,R) be bipointed and copointed; the case for pointed nets is dual.

By Lemma 4.3.6 above,σf contains all possible terminal links. Then sinceP is pointed,

it contains a pointed subnet: pointed objects are preciselythose that admit a point, and

since the prenet at this stage contains all possible terminal links, it must contain also

the point thatP admits. Again by Lemma 4.3.6,σf contains also all initial links, and

must be full.

4.4 Saturation via construction

The properties of pointed and copointed nets established inthe previous section will

be used to characterise the saturation of nets of the formπi ;f and f;ι j in terms ofσf, in

the upcoming Lemma 4.4.1. This lemma will form the basis of the proof of the present

case in the soundness proof, concerning parallel nets from aproduct into a coproduct.

Together with Lemma 4.2.3 and Lemma 4.2.5, which describe the saturation of initial

and terminal nets and, respectively, product and coproductnets, Lemma 4.4.1 will give

an alternative characterisation of saturation, by induction on the construction of a net.

86 Chapter 4. The soundness proof

Because the statement of the lemma is relatively complex, itwill first be motivated

informally. In the illustration below, the net on the left depicts a copointed subnet q,

between a nodev and the right root, in the saturation of a net f. The source object of f

is drawn as a dotted triangle, with the nodev made explicit.

v q v q

+

w

q ⊆ (σf)v,ε q ⊆ (σf; ι0)v,0 ⊆ (σ(f; ι0))v,0

Above on the right, the pre-netσf; ι0, which is a sub-pre-net of the saturation of f;ι0,

has the same subnet q between verticesv and 0. (The vertexw is an arbitrary one in

the lower branch of the target of f;ι0.) Because q is copointed, the saturation of f;ι0

adds the copointed subnet q′ below left, a displaced duplicate of q. This can be viewed

as happening through a synchronised saturation step, much like the one illustrated in

Figure 4.2.

v q

q′ +

w

v q

q′
q′′

+

w

q′ ⊆ (σ(f;ι0))v,ε q′′ ⊆ (σ(f; ι0))v,w

Next, in the saturation of f;ι0 the copointed subnet q′ is duplicated to any vertex in the

target tree, as described by Lemma 4.3.2; for a givenw, the subnet q′′ betweenv and

w is highlighted in the picture above right. Ifw is pointed the subnet q′′ is bipointed,

and its saturation is full, illustrated below left. Note that if the target of f;ι0 is itself

pointed, the sub-pre-net betweenv andε will be full in the saturation (below right).

Also, if a vertex 0u in the upper branch of the target of f;ι0 is pointed, thenσf must

already be full betweenv andu.

v q

q′
full

+

w

v q

full +

(σ(f; ι0))v,w is full (σ(f; ι0))v,ε is full

4.4. Saturation via construction 87

To summarise the above, the saturation of a net f;ι0 contains three, possibly over-

lapping, collections of links, described in terms of the saturation of f:

• the saturation of f itself, in the context of an injection:(σf; ι0)—containing,

among others, the links in q above;

• any possible link〈v,∗,w〉, if v has a rooted initial link〈v,∗,ε〉 in the saturation

of f—the links in q′ and q′′ above;

• any possible link〈v′,∗,w′〉 that is between some nodesv andw (i.e. v≤ v′ and

w≤ w′) such thatw is pointed, andσf contains a copointed subnet q betweenv

andε—the links in the full subprenets above.

In formalising this, the following definitions will be convenient. In a pre-net f=

(X,Y,R), say that a vertexv in X has arooted copointed subnetif there is a copointed

net q⊆ fv,ε. If v is minimal among the vertices inX that have rooted copointed subnets

in f, thenv is said to have amaximal copointed subnet; let MAXCP(f) denote the set

of such vertices in f. Note that if v becomes smaller, fv,ε becomes larger; hence the

minimal v gives themaximalcopointed subnet. Dually, letMAXP(f) be the set of

vertices inY that havemaximal pointed subnets, i.e. are minimal among the vertices

that haverooted pointed subnets.

Lemma 4.4.1.For a netg;ι j the following holds.

a. Letσg = (X,Yj ,R) and letσ(g;ι j) = (X,Y,S). ThenS = (R · j) ∪ Γ ∪ ∆,

where

Γ = {〈v,∗,w〉 |Xv = 0, 〈v,∗,ε〉 ∈ R }

∆ = {〈v,∗,w〉 |Xv = 0 or Yw = 1,

∃v′ ≤ v. v′ ∈ MAXCP(σg),

∃w′ ≤ w. Yw′ is pointed}

Dually, for a netπi ;g the following holds.

b. Letσg = (Xi,Y,R) and letσ(πi ;g) = (X,Y,S). ThenS = (i ·R) ∪ Γ ∪ ∆,

where

88 Chapter 4. The soundness proof

Γ = {〈v,∗,w〉 |Yw = 1, 〈ε,∗,w〉 ∈ R }

∆ = {〈v,∗,w〉 |Xv = 0 or Yw = 1,

∃v′ ≤ v. Xv′ is copointed,

∃w′ ≤ w. w′ ∈ MAXP(σg) }

Proof. Case a. will be treated; b. is dual. Without loss of generality let j = 0. One

direction, that(R ·0) ∪ Γ ∪ ∆⊆ S , is as follows. That(R ·0)⊆ S , or equivalently that

σg;ι0 ⊆ σ(g;ι0), follows from the fact that every saturation step(h|k) v,w applied to

g has a corresponding step in(h|k) v,0w in g;ι0. ThatΓ⊆ S follows by Lemma 4.2.3,

which states that the saturation of an initial net is full: if〈v,ε〉 is an initial link in σg,

then this link forms an initial subnet(!; ι0) ⊆ (σ(g;ι0))v,ε; filling this subnet meansS

contains all initial links〈v,w〉 for anyw in Y. For ∆ ⊆ S , if q ⊆ (σg)v,ε is a maximal

copointed subnet then by a synchronised saturation step there is a copointed subnet

q′ ⊆ (σ(g;ι0))v,ε. Then by Lemma 4.3.2, for any copointedw in Y there is a copointed

subnet q′′⊆ (σ(g;ι0))v,ε; this is a bipointed net, which by Lemma 4.3.7 has a saturation

that is full; thenS contains all possible unit links of the form〈vv′,ww′〉.

For the other direction, it will be shown that(R · 0) ∪ Γ ∪ ∆ is closed under

saturation (). Since it contains the links in g;ι0, this is sufficient to show that it

containsS . There are eight cases to consider, one for each saturation step.

• (?|?;ιi) v,w

0 + 0 +

It must be shown that if〈v,∗,w〉 is in (R · 0)∪Γ∪∆ then so is〈v,∗,wi〉. The

assumption gives three cases. For the first, if〈v,w〉 ∈ R · 0 thenw = 0w′ for

somew′ and, since

σf (?|?;ιi) v,w′ σf ,

〈v,w′i〉 ∈ R , so that〈v,wi〉 ∈ R · 0. In the second case,〈v,w〉 ∈ Γ. SinceΓ
fills the subnet betweenv and the root ofY, also〈v,wi〉 ∈ Γ. The third case is

〈v,w〉 ∈ ∆. For the first constraint set by∆, because of the applied rewrite rule

v must be0. The second constraint, that somev′ ≤ v has a maximal copointed

subnet, holds for〈v,wi〉 as it does for〈v,w〉. For the third, ifw′ ≤ w then also

w′ ≤ wi. It follows that〈v,wi〉 ∈ ∆.

4.4. Saturation via construction 89

• (?| 〈?,?〉) v,w

0 × 0 ×

To be shown is that if〈v,w〉 is in (R ·0)∪Γ∪∆, both〈v,w0〉 and〈v,w1〉 are as

well. The proof is similar to the above: if〈v,w〉 is in R ·0, resp.Γ, resp.∆, so

are〈v,w0〉 and〈v,w1〉.

• (! |πi ;!) v,w

× 1 × 1

To be shown is that if〈v,w〉 is in (R ·0)∪Γ∪∆, so is〈vi,w〉. The proof is mostly

similar to the first case above: if〈v,w〉 is in R ·0 resp.∆, so is〈vi,w〉, and〈v,w〉

is not inΓ sincev is a product, not0.

• (! | [!, !]) v,w

+ 1 + 1

To be shown is that if〈v,w〉 is in (R ·0)∪Γ∪∆ then so are〈v0,w〉 and〈v1,w〉.

The proof is as above: if〈v,w〉 is in R ·0 resp.∆, so are〈v0,w〉 and〈v1,w〉, and

〈v,w〉 is not inΓ.

• (?;ιi |?) v,w

0 + 0 +

To be shown is that if〈v,wi〉 is in (R ·0)∪Γ∪∆ then so is〈v,w〉. If 〈v,wi〉 ∈ R ·0

either 0≤ w, or w = ε and i = 0. In the former case also〈v,w〉 ∈ R ·0. In the

latter case〈v,wi〉 is 〈v,0〉 ∈ R ·0; then〈v,ε〉 is a link inR and, by the definition

of the rewrite rule, is initial. It follows that〈v,w〉 = 〈v,ε〉 is in Γ. Next, if

〈v,wi〉 ∈ Γ then also〈v,w〉 ∈ Γ. Finally, if 〈v,wi〉 ∈ ∆, then somev′ ≤ v has a

maximal copointed subnet, whilev is 0 by the definition of the rewrite rule. For

the remaining condition, that〈v,wi〉 is in ∆ means somew′ ≤wi is pointed. There

are two cases:w′ ≤ w or w′ = wi, for which it must be shown that somew′′ ≤ w

is pointed. In the former this is immediate. In the latter, sinceYwi is pointed and

Yw is Yw0 +Yw1 (by the applied rewrite rule),w must be pointed. It follows that

〈v,w〉 ∈ ∆.

90 Chapter 4. The soundness proof

• (〈?,?〉 |?) v,w

0 × 0 ×

To be shown is that if both〈v,w0〉 and〈v,w1〉 are in(R ·0)∪Γ∪∆ then so is

〈v,w〉. If both 〈v,wi〉 are inR ·0 then also〈v,w〉 is in R ·0. If either〈v,wi〉 is

in Γ then immediately〈v,w〉 ∈ Γ. If both 〈v,wi〉 are in∆ then so is〈v,w〉: by

the rewrite rulev is 0; somev′ ≤ v has a maximal copointed subnet; either some

w′ ≤ w is pointed or bothw0 andw1 are, in which casew is pointed becauseYw

is Yw0×Yw1. This leaves the case where one link, say〈v,w1〉, is in R ·0 and the

other,〈v,w0〉, in ∆. It will be shown that also in this case both links are in∆, or

both are inR ·0.

Firstly, w cannot be the root ofY, since the former is a product and the latter a

coproduct. Then 0≤ w, because〈v,w1〉 is in R ·0. For convenience, letw= 0u,

so thatu andw are corresponding vertices in f and f;ι0 respectively. Because

〈v,w0〉 ∈ ∆ somew′ ≤ w0 is pointed. If alsow′ ≤ w, then〈v,w1〉 must be in∆,

a case already covered. Sow′ must bew0. That〈v,w0〉 is in ∆ also means that

somev′ ≤ v has a maximal copointed subnet inσf. Let this subnet be

(Xv′,Y0,Q) ⊆ (σf)v′,ε .

Then by Lemma 4.3.2 there is also the sub-pre-net

(Xv′,Y0,Q ·u0) ⊆ (σf)v′,ε

which forms a copointed subnet betweenv′ andu0 in σf (note thatu0 is the posi-

tion in f corresponding tow0 in f;ι0). As u0 is pointed, this subnet is bipointed,

and by Lemma 4.3.7 must be full in the saturation of f. This means that〈v,u0〉 is

in R , or in other words that〈v,w0〉, as well as〈v,w1〉, is in R ·0, a case already

covered.

• (πi ;! | !) v,w

× 1 × 1

To be shown is that if〈vi,w〉 is in (R ·0)∪Γ∪∆, so is〈v,w〉. Firstly, if 〈vi,w〉 is

in R ·0 then so is〈v,w〉. Secondly, if〈vi,w〉 ∈ Γ thenσf contains an initial link

〈vi,ε〉. Because of the applied rewrite rulev is the productXv0×Xv1. Then the

4.4. Saturation via construction 91

link 〈vi,ε〉 forms a copointed subnet betweenv andε in σf, illustrated below (for

i = 0).

0

×v ε

Then there is av′ ≤ v with a maximal copointed subnet inσf; moreover, the

rewrite rule forcesw to be1, and hence pointed, which means that〈v,w〉 is in ∆.

Thirdly, if 〈vi,w〉 ∈ ∆ then somev′ ≤ vi has a maximal copointed subnet inσf.

Eitherv′ = vi or v′ ≤ v. The former case is ruled out because a copointed subnet

for vi can never be maximal: if q is a copointed subnet inσf betweenvi andε,

thenπi ;q is a copointed subnet betweenv andε. In the latter case it is immediate

that also〈v,w〉 ∈ ∆.

• ([!, !] | !) v,w

+ 1 + 1

To be shown is that if both〈v0,w〉 and〈v0,w〉 are in(R ·0)∪Γ∪∆, then so is

〈v,w〉. Firstly, if both〈vi,w〉 are inR ·0 then so is〈v,w〉. Secondly, suppose one

〈vi,w〉 is in Γ. Then there is an initial link〈vi,ε〉 in the saturation of f, which

forms a copointed subnet betweenvi andε; then somev′ ≤ vi has a maximal

copointed subnet. Since by the rewrite rulew is 1, and thus pointed,〈vi,w〉 is in

∆; this case is then reduced to the following ones. Thirdly, suppose both〈vi,w〉

are in∆. If somev′ ≤ v has a maximal copointed subnet, also〈v,w〉 is in ∆. The

other case is ruled out: if bothv0 andv1 have maximal copointed subnets q0

resp. q1, then[q0,q1] would form a larger copointed subnet (illustrated below).

q0

+v ε

q1

The final case is where one link, say〈v0,w〉, is in R ·0, and the other,〈v1,w〉,

in ∆. It will be shown that also〈v1,w〉 must be inR ·0, reducing this case to

a previous one. From〈v0,w〉 ∈ R · 0 it follows thatw = 0u for someu, and

〈v1,w〉 ∈ ∆ means that somev′ ≤ v1 has a maximal copointed subnet inσf. Let

this subnet be

(Xv′,Y0,Q) ⊆ (σf)v′,ε .

92 Chapter 4. The soundness proof

Then by Lemma 4.3.2 there is also the sub-pre-net

(Xv′,Y0,Q ·u) ⊆ (σf)v′,ε ,

which forms a copointed subnet in f betweenv′ andu. This subnet is then bi-

pointed, since the applied rewrite rule meansu is 1, and hence pointed. By

Lemma 4.3.7 thenσf is full betweenv′ andu, and in particular〈v1,u〉 ∈ R , and

〈v1,w〉 ∈ R ·0.

4.5 Deconstruction of saturated nets

The two remaining obstacles for the present case in the soundness proof, of parallel

nets between a product and a coproduct, are:

I nets constructed over different projections or injections may have the same sat-

uration, and

II the induction hypothesis may not apply even when nets are constructed in the

same way.

The main lemma of this section, Lemma 4.5.1, will solve the first, and make a start on

the second.

An illustration of the first problem, below, shows three nets, constructed over dif-

ferent projections and injections, with the same, full saturation, indicated by the grey

links.
0 1

× +

0 1

0 1

× +

0 1

0 1

× +

0 1

π0;? π1;!; ι1 !; ι0

In general, for nets that are constructed differently, e.g.f; ι0 andπ1;g, or f;ι0 and g;ι1,

there is no hope of applying the induction hypothesis of the soundness proof to f and

g, which need not even be parallel.

A direction in which to look for a solution is suggested by thedynamics of saturat-

ing a net f;ι0, as explored in the previous section. After first saturatingf, the next step

in saturatingσf; ι0 must be to move an initial link〈v,0〉 up to the root, adding〈v,ε〉—all

4.5. Deconstruction of saturated nets 93

other steps stay within f, and have already been performed.

0 v + ε (?;ι0 |?) v,ε 0 v + ε

Then consider a corresponding equivalence step g=[?;ι0 |?]⇒v,ε h between two nets

equivalent to f;ι0, with g containing the initial link〈v,0〉 and h containing〈v,ε〉. Be-

cause〈v,ε〉 connects to the right root, the net h cannot be right-constructible. In the

case of nets between products and coproducts, it must then beleft-constructible, of

the formπi ;h′. Moreover, as illustrated below, the projection over whichthis net is

constructed is determined by which branch of the source product v resides in: if 0≤ v

then it isπ0;h′, and if 1≤ v thenπ1;h′.

0 v

×

h′

×

To summarise, the presence of a rooted initial or terminal link in a net from a product

into a coproduct determines over which projection or injection it is constructed. What

the soundness proof needs to show is that any rooted link inσf must occur in some net

f′ ⇔ f. It will then be immediate that two nets with the same saturation, containing the

same rooted link, must be constructed similarly.

In fact, Lemma 4.5.1 below proves the following generalisation: any pointed or

copointed partial subnet ofσf occurs as a partial subnet of some net f′ ⇔ f. Recalling

that a partial net is a pre-net satisfying compatibility, but not necessarily connectedness,

another way of phrasing the statement of Lemma 4.5.1 is that any collection of rooted

initial links in σf that, by the switching conditions, may occur together in the same net

at all, will actually occur in some f′ ⇔ f; and similarly for any such collection of rooted

terminal links.

This generalisation is prompted by two considerations. Oneis the need for a suit-

able induction hypothesis in the proof itself. The other is found in an analysis of prob-

lem II indicated above, of similarly constructed nets to which the induction hypothesis

of the soundness proof nonetheless does not apply. In the illustration in Figure 4.5, in

isolation the upper two nets are not equivalent, but after placing them in the context of

an injection into0×1, forming the lower two nets, they become equivalent. (In the

illustration, saturations are indicated by the grey links;no saturation steps apply to the

upper two nets.)

94 Chapter 4. The soundness proof

0 0

×

0

0 0

×

0

0 0

× +

0 1

0 0

× +

0 1

Figure 4.5: Nets may become equivalent by composing with an injection

More generally, supposeσf andσg are saturated nets that are similar, except that

σf has a copointed subnet q between some vertexv and the right rootε, while σg has a

different copointed subnet k. Then after placing f and g in the context of an injection

into a pointed object, the resulting nets f;ι0 and g;ι0 will have the same saturation, as

schematically illustrated below: the subnets q and k are obscured in the saturation, as

the latter is full betweenv andε.

v q

full +

v k

full +

The solution, discussed in detail in Section 4.6, will be to show the equivalence of both

copointed subnets in the context of the injection, q;ι0 and k;ι0. However, q and k are

subnets of the saturated netsσf andσg, but not of f and g themselves. Addressing this

is the second reason why Lemma 4.5.1 is stated the way it is: inthis particular case, it

concludes that q is a subnet of some f′ ⇔ f, and k of some g′ ⇔ g.

Lemma 4.5.1. If f is a net andq⊆ σf is a partial pointed or copointed net, then there

is a netg s.t.q⊆ g andf ⇔ g.

Proof. The proof is by induction on the construction of f. The case where q is co-

pointed is treated explicitly, while the case for pointed q follows by duality. The two

cases should be considered as simultaneous, as both forms ofthe induction hypothesis

are needed for the present case.

Recall that a partial copointed net q is either the basic net ?, is empty, or is con-

structed as[q0,q1] or asπi ;qi . If q is empty then g can be chosen as g= f; for this reason

q is generally assumed non-empty below. The construction off has seven cases.

• If f = (A,B,a) then q must be empty.

4.5. Deconstruction of saturated nets 95

• If f = (0,Y,∗) then q must be(0,Y,∗) (it is not empty). Let g= f.

• If f = (X,1,∗) it is pointed, while q is a (parallel) partial copointed net.For f and

q Lemma 4.3.4 gives the required net g with f⇔ g and q⊆ g.

• If f = [f0, f1], then q is of the form[q0,q1], as it must be left-constructible.

f0

+

f1

q0

+

q1

For i ∈ {0,1}, by Lemma 4.2.6 the two saturated netsσf i are the subnets(σf)i,ε.

Then since q⊆ σf also qi ⊆ σf i . The induction hypothesis then provides g0 and

g1, from which g is constructed as g= [g0,g1].

• If f = 〈f0, f1〉 and q is the partial net(X,Y,Q), then let〈q0,q1〉 be the partial net

(X,Y,Q ·0 ∪ Q ·1), obtained from q by moving it down from the root of the

target object.

f0

×

f1

×
q

q0

×

q1

Each qi is a sub-prenet ofσf i , since by Lemma 4.2.6σf i = (σf)ε,i. The induction

hypothesis provides g0 and g1 such that fi ⇔ gi and qi ⊆ gi . However,〈g0,g1〉

has〈q0,q1〉 as a sub-prenet, but not q itself. To obtain g from〈g0,g1〉 the links

in q0 and q1 must be moved up to the root again, which is done by applying the

following rewrite step to〈g0,g1〉, for every link〈v,ε〉 in q.

0v × ε =[〈?,?〉 |?]⇒v,ε 0v × ε

Then q⊆ g and f = 〈f0, f1〉 ⇔ 〈g0,g1〉 ⇔ g.

• If f = π0;f′ (the case forπ1;f′ is symmetric) andσf′ = (X0,Y,R), then the linking

of σf = (X,Y,S) is described by Lemma 4.4.1b as the collectionS = (0 ·R)∪

Γ∪∆.

f′

×

Three cases will be distinguished: one, some link in q is inΓ; two, some link in

q is in∆; and three, all links in q are inσf′.

96 Chapter 4. The soundness proof

For the first case, recall thatΓ is a collection of terminal links, with target1. If

it contains a link from q, which are all of the form〈v,ε〉, thenY must be1. Then

f is a terminal net, and by Lemma 4.2.1 equivalent to the basicnet(X,1,∗). For

this net, which is pointed, and the partial copointed net q, Lemma 4.3.4 gives the

required net g, for which q⊆ g and g⇔ (X,1,∗)⇔ f

For the second case, if some〈v,ε〉 is in ∆, by the definition of∆ the right

root ε must have a (maximal) pointed subnet p′ ⊆ σf′. Applying the induction

hypothesis—in its dual form to the one being discussed—to f′ and the pointed

net p′ gives a net g′ with f′ ⇔ g′ and p′ ⊆ g, and since p′ is a net, g′ must be

p′ itself. Then also f= π0;f′ andπ0;p′ are equivalent, while the latter has an

equivalent pointed net p, by moving it up to the left root.

f′

× ⇔

p′

× ⇔ ×
p

For the pointed net p and the partial copointed net q Lemma 4.3.4 gives the net

g, with q⊆ g, completing the equivalence below.

f = π0;f′ ⇔ π0;p′ ⇔ p ⇔ g

In the remaining case, q⊆ π0;f′, which means that q must be of the formπ0;q′.

The induction hypothesis for f′ and q′ gives a net g′ such that q′ ⊆ g′ and f′ ⇔ g′.

These two properties carry over toπ0;g′, which is the required net g, as per the

following.

q = π0;q′ ⊆ π0;g′ = g f = π0;f′ ⇔ π0;g′ = g

• If f = f′;ι0 (the case for f′;ι1 is symmetric) andσf′ = (X,Y0,R), then the linking

in σf = (X,Y,S) is described by Lemma 4.4.1a as the collectionS = (R ·0)∪

Γ∪∆. Let q⊆ σf be the partial copointed net(X,Y,Q). Firstly, since the links

in q are all of the form〈v,ε〉, none can be inR ·0. Two further cases will be

distinguished: one, all links in q are inΓ; and two, some link in q is in∆.

For the first, ifQ ⊆ Γ then, by the definition ofΓ, for any link〈v,ε〉 in Q there is

a link 〈v,0〉 in (σf′);ι0. These constitute a partial copointed subnet q′ ⊆ σf′, for

which the induction hypothesis gives a net g′ equivalent to f′ and containing q′.

Then g′;ι0 has q′;ι0 as a sub-pre-net, but not q itself; g is obtained from g′;ι0 by

4.5. Deconstruction of saturated nets 97

moving q′ up to the root, as follows.

g′

+ =[?;ι0 |?]⇒∗
+

g

The remaining case is where∆ contains at least one link〈v,ε〉 in q. By the

definition of∆, the target objectY of f must be pointed. ThenΓ ⊆ ∆, and since

Q does not share any links withR ·0, alsoQ ⊆ ∆.

To apply the induction hypothesis, a partial copointed net q′ ⊆ σf′ will be built

from a selection of the maximal copointed subnets inσq′. LetV be the following

collection of vertices inX with maximal copointed subnets inσf′.

V = {v∈ MAXCP(σf′) | ∃u≥ v. 〈u,∗,ε〉 ∈ Q }

Note that for every link〈u,ε〉 in q there is av ≤ u in V, because〈u,ε〉 is in ∆.

Next, For eachv∈V choose a maximal copointed subnet kv of σf′.

kv = (Xv,Y0,K v) ⊆ (σf′)v,ε

Construct q′ as the combination of all kv, as follows, so that q′v,ε = kv.

q′ = (X,Y0,Q
′) Q ′ =

[

v∈V

(v·K v)

By construction q′ is a copointed sub-pre-net ofσf′. For it to be a partial net,

any two links in q′ must be compatible. For links within a single net kv this is

immediate. For links in different kv and kv′ it is sufficient to show thatv andv′

are compatible. Firstly, neitherv ≤ v′ nor v′ ≤ v, by maximality of kv and k′v.

Secondly, by the definition ofV, there are links〈u,ε〉 and〈u′,ε〉 in q, with v≤ u

andv′ ≤ u′. Since the least common ancestor ofv andv′ is the same as that ofu

andu′, from v # v′ it would follow thatu # u′. But then the links〈u,ε〉 and〈u′,ε〉
in q would be incompatible, a contradiction since q is a partial net.

The induction hypothesis applied to q′ and f′ gives a net g′ equivalent to f′ and

containing q′. In particular, for eachv∈V,

g′v,ε = q′v,ε = kv .

The net g will be obtained from g′;ι0 by replacing, for everyv in V, the subnet

kv;ι0 by an equivalent subnet hv containing qv,ε. For a givenv∈V, firstly, kv;ι0

98 Chapter 4. The soundness proof

is equivalent to a copointed net k′
v by moving it up to the root. Recall thatY, the

target of k′v, is pointed (because the links in q are in∆). Then there is a pointed

net pv to which k′v is equivalent, by Lemma 4.3.5, since both are bipointed.

kv

v + ε ⇔ v +
k′v ε ⇔ v +

pv ε

Since qv,ε is a partial copointed net parallel to pv Lemma 4.3.4 applies, and gives

a net hv equivalent to pv that has qv,ε as a sub-pre-net.

v +
qv,ε ε ⊆ v +

hv ε ⇔ v +
pv ε

Then g is obtained from g′;ι0 by applying the following rewrite for eachv∈V.

kv

v + ε =[kv;ι0 |hv]⇒v,ε
v +

hv ε

Because the vertices inV do not dominate one another, the domains of the dif-

ferent rewrites are disjoint, so that none invalidates the precondition for another

(that the subnet to be replaced, between source vertexv and target vertex 0, must

be kv). It follows that g⇔ g′;ι0, since for eachv ∈ V the nets kv;ι0 and hv

are equivalent. Recall that g′;ι0 ⇔ f′;ι0 = f by the induction hypothesis, giving

g⇔ f. Finally, because any link in q is in some hv, and gv,ε = hv for all v∈V, it

follows that q⊆ g.

The argument at the start of this section, showing how Lemma 4.5.1 solves the

problem of equivalent nets that are constructed over different projections and injec-

tions, gives the following lemma. In the statement of the lemma, recall that non-

constructible nets are those that are neither left-constructible nor right-constructible.

Lemma 4.5.2.Let f andg be parallel nets between a product X and a coproduct Y ,

with the same saturationσf = σg = (X,Y,R). If this saturation is non-constructible

then there are netsπi ;f′ ⇔ f and πi ;g′ ⇔ g constructed with the same projectionπi ,

and netsf′′;ι j ⇔ f andg′′;ι j ⇔ g constructed with the same injectionι j .

Proof. Without loss of generality let f be of the form f0;ι0. Let the linking ofσf be

described byR ·0∪Γ∪∆ as in Lemma 4.4.1, whereR is the linking ofσf0. Since f

4.6. Matching points 99

is non-constructible at least one ofΓ and∆ must be non-empty; but if∆ is non-empty,

σf0 has a maximal copointed subnet, whose rooted initial links are in Γ. ThusΓ is

non-empty, and contains at least one rooted initial link〈iv,ε〉. This link forms a partial

copointed net, and by Lemma 4.5.1 there is a net equivalent tof containing this link.

This net cannot be right-constructible and so must be of the form πi ;f′. Since g has

the same saturation as f, which contains〈iv,ε〉, by the same argument there is a net

πi ;g′. By duality,πi ;f′ andπi ;g′, having the same, non-constructible saturation as f, are

equivalent to nets f′′;ι j and g′′;ι j respectively.

4.6 Matching points

The present case of the soundness proof, of parallel nets from a product into a co-

product, is nearly complete. It was shown that if their (common) saturation is a con-

structible prenet, the induction hypothesis can be appliedimmediately, and that if it

is not constructible, they are equivalent to nets constructed over the same injection or

projection, say f;ι0 and g;ι0. A final obstacle, already highlighted in Section 4.5, where

it inspired the formulation of Lemma 4.5.1, is the fact that their components f and g

need not have the same saturation, and indeed need not be equivalent. The general

mechanism by which this transpires is that bipointed nets have saturations that are full:

if σf andσg contain copointed subnets q and k, these are no longer recognisable in the

saturations of f;ι0 and g;ι0.

In a little more detail, the saturation of f;ι0 has the subnet q;ι0 betweenv andε. By

applying a synchronised saturation step (see Figure 4.2),σ(f; ι0) contains the copointed

subnet q′ betweenv andε, as well. Then if the target of f;ι0 is pointed, q′ is bipointed,

and its saturation must be full.

v q

full +

v k

full +

The above prompts two observations. Firstly, if the target of f; ι0 is not pointed,

the final steps in this scenario do not pertain, and no links are added to the saturation

of f. Secondly, if the target of f is pointed, the subnet q of f is already bipointed,

and its saturation full; then saturating q;ι0 cannot add any more links. These two

unproblematic cases are summarised by the following lemma.

100 Chapter 4. The soundness proof

Lemma 4.6.1.Let f; ι j be a net from X to Y. If Yj is pointed or Y is not pointed, then

σf = (σ(f;ι j))ε, j .

Dually, letπi ;g be a net from X to Y. If Xi is copointed or X is not copointed then

σg = (σ(πi ;g))i,ε .

Proof. Consider the case for f; that for g is dual. Without loss of generality let j = 0

and, following Lemma 4.4.1a, let the saturations of f and f;ι0 be described as follows.

σf = (X,Y0,R) σ(f; ι0) = (X,Y,S) S = (R ·0) ∪ Γ ∪ ∆

In one direction, it is then immediate that(σf; ι0) ⊆ σ(f; ι0). In the other direction,

let 〈v,0w〉 be a link in the saturation of(f; ι0), i.e. in S . It must be shown that〈v,w〉

is in R . The non-trivial cases are where〈v,0w〉 is in Γ or ∆. If 〈v,0w〉 is in Γ then by

the definition ofΓ there is a link〈v,∗,ε〉 in R . Then the initial subnet(Xv,Y0,∗) of σf,

betweenv andε, is full, by Lemma 4.2.3, and〈v,w〉 is in R .

If 〈v,0w〉 is in ∆ then somev′ ≤ v has a maximal copointed subnet inσf, and some

w′ ≤ w is pointed. IfY0 is pointed thenσf has a bipointed subnet betweenv′ andε,

which is then full, containing in particular and〈v,w〉. If Y is not pointed thenw′ 6= ε.

Sincew′ ≤ w it must be thatw′ = 0u for someu. By Lemma 4.3.2, the maximal

copointed subnet atv′ in σf has a corresponding copointed subnet betweenv′ andu,

which is then bipointed. Then the subnet ofσf betweenv′ andu is full, and contains

〈v,w〉.

The solution for the last remaining instance is as follows. Suppose that nets f;ι0 and

g;ι0 have the same saturation, whileσf andσg have different copointed subnets q and k

between some vertexv andε. By moving them up to the root, q;ι0 and k;ι0 each have

corresponding copointed nets q′ and k′. By the above lemma, the target of q;ι0 and

k;ι0 must be pointed, making them bipointed, and thus equivalent(by Lemma 4.3.5),

illustrated below.

q
v + ε ⇔ v +

q′ ε

m

k
v + ε ⇔ v +

k′ ε

4.6. Matching points 101

The equivalence of q;ι0 and k;ι0 does not immediately show f;ι0 and g;ι0 to be equiv-

alent. Rather, the argument proceeds as follows. Firstly, since q is a subnet ofσf, it is

a subnet of a net equivalent to f (by Lemma 4.5.1); for simplicity, assume q is a subnet

of f itself. Because q;ι0 is equivalent to k;ι0, after replacing q with k in f there is the

following equivalence.

f; ι0 ⇔ (f{k}v,ε);ι0

The final step is then to show that f{k}v,ε has the same saturation as g, so that the

induction hypothesis can be applied to show their equivalence.

In fleshing out this argument there are a few remaining obstacles. One is thatσf and

σg may differ on several copointed subnets, and not just on q and k. If the copointed

subnets ofσf, taken together, form a partial net, then Lemma 4.5.1 can still be applied.

However, that they do form a partial net is far from obvious, and will need proof.

Another issue is the following. A natural way of proving that, in the running ex-

ample, f{k}v,ε and g have the same saturation, would be to show it by induction on

their construction, using the fact that(f{k}v,ε);ι0 and g;ι0 have the same saturation.

Unfortunately, this proof idea does not go through, becausethe latter property is not

preserved in the induction steps. A weaker statement that does carry over in the in-

duction, is the following: if the saturations of f{k}v,ε andσg have the same maximal

copointed subnet k at the same vertexv, they are identical betweenv andε. To make

this work, firstly, it will be immediate from Lemma 4.6.2 below that the same vertices

have maximal copointed subnets inσf andσg, given that f;ι0 and g;ι0 have the same

saturation. After that, Lemma 4.6.3 will prove the statement above, generalised to al-

low for multiple copointed subnets. In the statement of the following lemma, recall

that MAXCP(f) denotes the collection of vertices in the source of f that have maximal

copointed subnets; and that duallyMAXP(f) collects the vertices with maximal pointed

subnets.

Lemma 4.6.2.For a netf the following statements hold.

MAXCP(σ(f;ι j)) = MAXCP(σf) MAXP(σ(πi ;f)) = MAXP(σf)

Proof. Consider the case for f;ι0 and f; that for f;ι1 is symmetric, and that forπi ;f is

dual. It must be shown that a vertexv, in the common source object of f;ι0 and f, has a

maximal copointed subnet inσ(f; ι0) if and only if it has one inσf. In both directions,

it will be shown that ifv has a maximal copointed subnet in one saturation, someu≤ v

has one in the other; the statement then follows by the minimality of v.

102 Chapter 4. The soundness proof

In one direction, ifv has a maximal copointed subnet

q = (Xv,Y0,Q)

in σf, then inσ(f; ι0) there is a corresponding copointed subnet q′, obtained by moving

q up to the root, from q;ι0 to the parallel q′. Then someu≤ v has a maximal copointed

subnet inσ(f; ι0).

In the other direction, letv have a maximal copointed subnet q inσf:

q ⊆ (σ(f; ι0))v,ε .

It will be shown by induction on q that someu≤ v has a copointed subnet q′ in σf.

• If q = (Xv,Y,∗) it consists of the link〈v,ε〉.

0v q
+ ε

Let σ(f; ι0) = (X,Y,S) and letσf = (X,Y0,R), so thatS = (R · 0)∪Γ∪∆ in

accordance with Lemma 4.4.1a. Since the link〈v,ε〉 is in S there are three cases.

Firstly, 〈v,ε〉 cannot be inR ·0. Secondly, if〈v,ε〉 is in Γ, then the link〈v,0〉 in

R ·0 forms a copointed subnet inσf betweenv andε; let this be the required q′.

Thirdly, if 〈v,ε〉 is in ∆ then somev′ ≤ v has a copointed subnet inσf; let q′ be

this subnet.

• If q = [q0,q1],

q0

+v + ε

q1

then by the induction hypothesis somev′ ≤ v0 has a copointed subnet q′
0 in σf′

and somev′′ ≤ v1 has a copointed subnet q′
1 in σf′. If v′ ≤ v let q′ = q′0, if v′′ ≤ v

let q′ = q′1, and otherwise let q′ = [q′0,q
′
1].

• If q = π0;q0 (the case q= π1;q1 is symmetric),

q0

×v + ε

then by the induction hypothesis somev′ ≤ v0 has a copointed subnet q′
0 in σf′.

If v′ ≤ v let q′ = q′0, otherwise let q′ = π0;q0.

4.6. Matching points 103

The main argument is then carried out by the following lemma.

Lemma 4.6.3.Let f andg be parallel nets such thatMAXCP(σf) = MAXCP(σg), and

whose target is not pointed. Then there is a neth with the following properties:

(1) f; ι j(Y) ⇔ h;ι j(Y) if Y is pointed;

(2) MAXCP(σh) = MAXCP(σf) = MAXCP(σg);

(3) (σh)v,ε = (σg)v,ε for any v∈ MAXCP(σh).

Proof. Item (2) is present solely for the purpose of clarity, as it follows from (1): by

completeness (Theorem 3.2.3)σ(f; ι j) = σ(h;ι j); then Lemma 4.6.2 for f and h gives

MAXCP(σf) = MAXCP(σ(f; ι j)) = MAXCP(σ(h;ι j)) = MAXCP(σh) .

Items (1) and (3) will be shown by induction onX.

If MAXCP(σf) = MAXCP(σg) = ∅, which is precisely whenσf andσg contain no

rooted initial links, then both (1) and (3) are immediate forh = f.

If MAXCP(σf) = MAXCP(σg) = {ε} (note that by minimality, ifε has a maximal

copointed subnet, no other vertex does), let h= g, so that (3) is immediate. For (1), let

q⊆ σf and k⊆ σg be copointed subnets. Lemma 4.5.1 gives q⇔ f and k⇔ g. In the

context of the injection, q;ι j(Y) and k;ι j(Y) are equivalent to copointed nets q′ and k′,

respectively. Then ifY is pointed both are bipointed, and equivalent by Lemma 4.3.5,

completing the equivalence chain below.

f; ι j ⇔ q;ι j ⇔ q′ ⇔ k′ ⇔ k;ι j ⇔ g;ι j

In the remaining case, some vertexv other thanε has a maximal copointed sub-

net in σf. By Lemma 4.5.2 f is equivalent to a net containing this copointed subnet,

which must then be left-constructible (if it was basic, it would be(0,Yj ,∗), but then

MAXCP(σf) would be{ε}, a case already considered). In g, the same vertexv must

have a copointed subnet, too; then g is likewise equivalent to a left-constructible net,

and moreover if the source of f and g is a product, both have equivalent nets constructed

over the same projection. Thus, there are two cases to consider:

f ⇔ [f0, f1] and g⇔ [g0,g1] f ⇔ πi ;f
′ and g⇔ πi ;g

′ .

104 Chapter 4. The soundness proof

• In the first case, where f⇔ [f0, f1] and g⇔ [g0,g1], the saturation of each fi and

gi is a sub-pre-net of that of f and g, according to Lemma 4.2.6, as follows.

σf i = (σf)i,ε σgi = (σg)i,ε

Sinceε /∈ MAXCP(σf), i.e. there is no copointed subnet q⊆ σf, any maximal

copointed subnet q inσf is between a vertexiv and the right rootε, and is also a

maximal copointed subnet betweenv andε in f i . This gives the following.

MAXCP(σf) = {iv | v∈ MAXCP(σf i)}

MAXCP(σg) = {iv | v∈ MAXCP(σgi)}

ThenMAXCP(σf i) = MAXCP(σgi). The induction hypothesis gives nets h0 and

h1 such that each hi satisfies (1), (2) and (3) w.r.t. fi and gi (note that the target

of f i and gi is not pointed, as required for the induction hypothesis, because it is

the same as that of f and g).

Let h= [h0,h1]. The following equations show that h satisfies (1), i.e. thatthe

equivalence f;ι j ⇔ h;ι j holds for injections into a pointed target.

f; ι j ⇔ [f0, f1];ι j = [(f0;ι j),(f1;ι j)]

m

h;ι j = [h0,h1];ι j = [(h0;ι j),(h1;ι j)]

They are justified by the equivalence(f i ;ι j) ⇔ (hi ;ι j), which is the property (1)

for h0 and h1, and the equations for bi-constructible nets in Proposition 2.5.1,

e.g. that[f0, f1];ι0 and[(f0;ι0),(f1;ι0)] denote the same net, illustrated below.

+ +

f0

f1

Next, h satisfies (2) as it follows from (1), which means that the same vertices

have maximal copointed subnets inσf, σg, andσh. Then, sinceε /∈ MAXCP(σh)

and because Lemma 4.2.4 gives(σh)i,ε = σhi,

MAXCP(σh) = {iv | v∈ MAXCP(σhi)} .

By the equations below h satisfies (3): for any vertexiv in MAXCP(σh),

(σh)iv,ε = (σhi)v,ε = (σgi)v,ε = (σg)iv,ε .

The middle equation is due to hi and gi satisfying (3), while the first and last

follow from Lemma 4.2.4.

4.6. Matching points 105

• In the second case, without loss of generality let f⇔ π0;f′ and g ⇔ π0;g′.

To apply the induction hypothesis to f′ and g′ it must be shown that their satu-

rations have maximal copointed subnets at the same vertices. Let σg andσg′ be

described as follows, as in Lemma 4.4.1b.

σg′ = (X0,Y
′,R) σg = (X,Y′,S) S = (0 ·R)∪Γ∪∆

Let q⊆ (σg)v,ε be a maximal copointed subnet. If any link〈u,ε〉 in q is inΓ, then

Y′ must be1, while if 〈u,ε〉 is in ∆, then there must be a pointed subnet p⊆ σg′.

In both casesY′, the target of f and g, must be pointed, which contradicts the

assumption that it isn’t. Consequently, all links in q must be in (0 ·R), forming

a maximal copointed subnet q′ in σg′. This gives the two statements below (the

first by repeating the argument for f).

MAXCP(σf) = {0v | v∈ MAXCP(σf′)}

MAXCP(σg) = {0v | v∈ MAXCP(σg′)}

ThenMAXCP(σf′) = MAXCP(σg′), and the induction hypothesis gives a net h′

satisfying (1), (2) and (3). Let h= π0;h′. That h satisfies (1) follows by the

equations below (the centre one is (1) for h′).

f; ι j ⇔ π0;f′;ι j ⇔ π0;h′;ι j = h;ι j .

As (1) implies (2),MAXCP(σh) = MAXCP(σf), and as for f and g earlier, the

following holds for h.

MAXCP(σh) = {0v | v∈ MAXCP(σh′)}

Then for (3) it must be shown that the sub-pre-nets ofσh andσg between a

vertex 0v ∈ MAXCP(σh) and the right rootε are equal. Let〈0vu,w〉 be a link

in σg, so that〈u,w〉 is a link in the sub-pre-net(σg)0v,ε. Let q be a maximal

copointed subnet between 0v andε in σg, and betweenv andε in σg′.

g′

×

0v
q

×

0vu

× w

It will be shown that〈0vu,w〉 is in σh. Recall thatR andS = (0 ·R)∪Γ∪∆
denote the links inσg′ andσg respectively. If〈0vu,w〉 is in (0 ·R) then〈vu,w〉

is in σg′, and because h′ satisfies (3) andv has a maximal copointed subnet in

106 Chapter 4. The soundness proof

σh′, the link〈vu,w〉 is in σh′, and〈0vu,w〉 is in σh. Otherwise, if〈0vu,w〉 is in Γ
or ∆, then somew′ ≤ w is pointed: in the first case becausew is 1, in the second

because somew′ ≤ w has a maximal pointed subnet. Since 0v ∈ MAXCP(σh)

there is a copointed subnet q′ between 0v andε in σh. By moving it down from

ε to w′, there is a copointed subnet q′′ between 0v andw′. Then q′′ is bipointed,

and by Lemma 4.3.7σh is full between 0v andw′, and must contain〈0vu,w〉.

The reverse argument, that a link〈0vu,w〉 in σh must be inσg, is symmetric to

the above case. Then h satisfies (3).

The final case of the soundness proof can now be concluded.

Lemma 4.6.4. For parallel netsf and g whose target is not pointed, iff; ι j(Y) and

g;ι j(Y) have the same saturation and Y is pointed, there is a neth such thatf; ι j(Y)

andh;ι j(Y) are equivalent andg andh have the same saturation.

Proof. Because f;ι j and g;ι j have the same saturation, and by Lemma 4.6.2, the fol-

lowing equations hold.

MAXCP(σf) = MAXCP(σ(f; ι j)) = MAXCP(σ(g;ι j)) = MAXCP(σg)

Then Lemma 4.6.3 applies to f and g, giving the net h such that

(1) f; ι j ⇔ h;ι j ,

(2) MAXCP(σh) = MAXCP(σf) = MAXCP(σg), and

(3) (σh)v,ε = (σg)v,ε for anyv∈ MAXCP(σh).

It remains to show thatσg = σh. Using Lemma 4.4.1, let the saturations of the nets

involved be given by the following equations—note that by (1) and completeness (The-

orem 3.2.3) f;ι j and h;ι j have the same saturation.

σ(f; ι j) = σ(g;ι j) = σ(h;ι j) = (X,Y,S)

σg = (X,Yj ,R) S = (R · j) ∪ Γ ∪ ∆

σh = (X,Yj ,R
′) S = (R ′ · j) ∪ Γ′ ∪ ∆′

It will be shown thatR ⊆ R ′; the reverse follows symmetrically. Let〈v,w〉 be a link

in R . Then〈v, jw〉 ∈ (R · j) ⊆ S . The case〈v, jw〉 ∈ (R ′ · j) is immediate. Otherwise,

4.7. Finale 107

somev′ ≤ v has a maximal copointed subnet inσh—if 〈v, jw〉 is in ∆′, by definition, and

if it is in Γ′, because〈v,ε〉 is a rooted initial link inσh. Then by (3),(σh)v′,ε = (σg)v′,ε,

and〈v,w〉 is in R ′.

4.7 Finale

To complete the soundness proof is a matter of connecting thedifferent lemmata.

Proof of Theorem 3.2.4 (Soundness).For ΣΠ(C)-netsf andg, if σf = σg thenf ⇔ g.

Proof. Let f and g be parallel nets with sourceX and targetY. The proof is by induction

onX andY.

• If X is an atom or1 thenσf = f andσg = g, so that f= g. The same holds when

Y is an atom or0. If X is 0 or Y = 1, then f⇔ g by Lemma 4.2.1.

• If X is a coproduct, then by Lemma 4.2.4 f is equivalent to a net[f0, f1], and g

to a net[g0,g1]. Lemma 4.2.6 gives the equations below, showing that fi and gi

have the same saturation (fori ∈ {0,1}).

σf i = (σf)i,ε = (σg)i,ε = σgi

The induction hypothesis gives fi ⇔ gi, from which the equation below follows.

f ⇔ [f0, f1] ⇔ [g0,g1] ⇔ g

The case whereY is a product is dual.

• In the remaining caseX is a product andY a coproduct. If the saturation of f

and g is constructible, say of the formπ0;h (without loss of generality), then

accordingly f and g are of the formπ0;f′ andπ0;g′ respectively. Lemma 4.4.1

gives the equations below since, in the terminology of the lemma,Γ and∆ are

empty for both f′ and g′.

π0;σf′ = σ(π0;f′) = σ(π0;g′) = π0;σg′

As σf′ = σg′ the induction hypothesis gives f′ ⇔ g′, so that

f = πi ;f ⇔ πi ;g = g .

108 Chapter 4. The soundness proof

If the saturation of f and g is not constructible, then by Lemma 4.5.2 they are

equivalent to nets constructed over the same projection or injection, say

f ⇔ f′;ι0 g ⇔ g′;ι0 .

If Y is not pointed orY0 is pointed, by Lemma 4.6.1

σf′ = (σf)ε,0 = (σg)ε,0 = σg′

from which the induction hypothesis gives f′ ⇔ g′. It follows that

f ⇔ f′;ι0 ⇔ g′;ι0 ⇔ g .

Finally, if Y is pointed andY0 is not pointed, then Lemma 4.6.4 gives a net h

such that h;ι0 ⇔ f′;ι0 andσh = σg′. By the induction hypothesis, h⇔ g′. This

completes the equivalence of f and g, as below.

f ⇔ f′;ι0 ⇔ h;ι0 ⇔ g′;ι0 ⇔ g

4.8 Characterising saturated nets

The main lemmata of the soundness proof provide a basis from which to complete two

outstanding proofs from Chapter 3. The first is the proof of Proposition 3.3.2, that a

saturated net is the union over an equivalence class of nets.This will be completed

in the present section. The second is the proof of Proposition 3.4.5, the correctness

condition for saturated nets. This will be completed in the next section, where, in

addition, a sequentialisation algorithm for saturated nets will be given.

Formally, Proposition 3.3.2 states that

σf =
[

{g | f ⇔ g} .

(Note that this does not itself imply soundness, which requires that different equiva-

lence classes must have different unions.) To prove the proposition, it must be shown

that any link in a saturated netσf occurs in a net equivalent to f. This will first be

shown for the saturation of a bipointed net.

Lemma 4.8.1.For a bipointed netf and a unit link〈v,∗,w〉 in σf there is a netg⇔ f

containing〈v,∗,w〉.

4.8. Characterising saturated nets 109

Proof. Let 〈v,∗,w〉 be an initial link (the case for terminal links is dual) and without

loss of generality let f be a pointed net p= (Q,P,P) (by Lemma 4.3.5 even if f itself

is not pointed it is equivalent to a pointed net). Moving p down from the left root,

as in Lemma 4.3.2, gives an equivalent net f′ with a pointed subnet p′ betweenv and

ε. Because〈v,∗,w〉 is an initial link, Qv = 0 and p′ is an initial net, equivalent to

?P = (0,P,∗) by Lemma 4.2.1. Consequently, f′ is equivalent to f′′ = f′{?}v,ε.

ε p ε 0 v p′ ε 0 v ε 0 v w

p ⇔ f′ ⇔ f′′ ⇔ g

Finally, the net g containing〈v,∗,w〉 is obtained by moving the initial link〈v,ε〉 in f′′

down towardsw.

The proof of the general proposition is completed below.

Proof of Proposition 3.3.2.The saturation of a netf is
[

{g | f ⇔ g} .

Proof. One direction, that
S

{g | f ⇔ g} ⊆ σf, is immediate from completeness (The-

orem 3.2.3). For the other it will be shown, by induction on the construction of f, that

any link 〈v,w〉 in σf belongs to some net g⇔ f.

• For basic nets, if f is atomic thenσf = f. Next, if f is an initial net(0,Y,∗), for

any link 〈ε,∗,w〉 in its (full) saturation a net g can be found by moving the link

〈ε,∗,ε〉 in f down towards the leaves. The case for a terminal net f= (X,1,∗) is

dual.

• If f = [f0, f1] then by Lemma 4.2.5 its saturation is(X,Y,R ∪ S), whereR are

the combined links ifσf0 andσf1, andS contains precisely the rooted terminal

links 〈ε,u〉 for which also bothσf0 andσf1 contain a rooted terminal link〈ε,u〉.
For the link 〈v,w〉, if v = 0v′ the induction hypothesis onσf0 gives a net g0

containing〈v′,w〉. Then g= [g0, f1] is equivalent to f and contains〈v,w〉. The

case forv = 1v′ is symmetric, leaving that forv = ε. In that case,〈ε,w〉 must

be inS , and〈0,w〉 and〈1,w〉 are inR . The induction hypothesis, applied to f0

and f1, gives a net[g0,g1] containing〈0,w〉 and〈1,w〉. Then g is obtained by a

single rewrite step applied to these links.

+ε 1
w ⇔ +ε 1

w

110 Chapter 4. The soundness proof

So〈v,w〉 is in g. The case f= 〈f0, f1〉 is dual.

• If f = f′;ι0 then letσf = (X,Y,S) andσf′ = (X,Y0,R), so thatS = (R ·0)∪Γ∪∆
as in Lemma 4.4.1. If〈v,w〉 is a link 〈v,0w′〉 in R ·0, then〈v,w′〉 is in σf′. The

induction hypothesis gives a net g′ ⇔ f′ containing〈v,w′〉. Then g= g′;ι0 is

equivalent to f and contains〈v,w〉.

If 〈v,w〉 is in Γ then〈v,ε〉 is a rooted initial link inσf. This link forms a partial

copointed subnet, for which Lemma 4.5.1 gives a net g′ ⇔ f containing〈v,ε〉. By

moving the initial link〈v,ε〉 down from the right root tow, the net g is obtained

from g′.

If 〈v,w〉 is in ∆, then somev′ ≤ v has a maximal copointed subnet q′ in σf′, and

somew′ ≤ w is pointed. Thenσf contains a copointed subnet q betweenv andε,

found by moving q′ up to the root.

q′

v′ + ε v′ +
q ε

The copointed subnet q constitutes a partial copointed subnet of σf, for which

Lemma 4.5.1 gives a net g′ ⇔ f such that g′v′,ε = q.

v′ q ε v′ q′′ w′

In g′, by moving q down towardsw′, an equivalent net g′′ is obtained containing

a copointed subnet q′′ = g′v′,w′. Becausew′ is pointed q′′ is bipointed, and as

σq′′ is full it contains the link〈v′′,w′′〉, wherev = v′v′′ andw = w′w′′. Then

by Lemma 4.8.1 there is an equivalent net k⇔ q′′ containing〈v′′,w′′〉. Finally,

g⇔ f is obtained from g′′ by replacing q′′ with k.

The case f= f′;ι1 is symmetric, and f= πi ;f′ is dual.

4.9 Sequentialisation

An important aspect of saturated nets still to be addressed is asequentialisationproce-

dure: a translation from saturated nets back to sum–productterms. As was mentioned

4.9. Sequentialisation 111

in Section 1.3, in general, sequentialisation and correctness of proof nets are closely

related. In the case of saturated nets, sequentialisation will naturally proceed via a

notion of desaturation, a translation from saturated nets to nets that is inverse, up to

equivalence, to saturation. Such a desaturation procedurewill be provided by the out-

standing proof of Proposition 3.4.5, the correctness condition for saturated nets, that

will be completed in this section. The proposition states that a prenet that is connected,

saturated, and close-knit is a saturated net. Since a (constructive) proof of this propo-

sition provides a net of whose saturation is again the original prenet, it will naturally

constitute a desaturation algorithm. Before making this explicit, a simpler approach to

desaturation will briefly be demonstrated to be inadequate.

0 0

× ×

0 0 +

1

⊆

0 0

× ×

0 0 +

1

Figure 4.6: One saturated net as a subnet of another

A natural question is whether simply taking a subnet of a saturated net constitutes,

in itself, a desaturation method. This turns out not to be thecase, as is illustrated by

Figure 4.6. The figure displays two nets, with their saturation included in grey; the left

one, which is already saturated, is a subnet of the saturation of the right one. Thus,

saturating a subnet of a saturated net is not the identity relation.

The desaturation algorithm used in the proof Proposition 3.4.5 is given below. The

algorithm is non-deterministic, which is natural, given the fact that it finds one net from

an equivalence class of nets. Although it may be possible, technically, to construct

a deterministic desaturation algorithm, this would require non-canonical choices, for

example between source object and target objects, or between the two projections of a

product. Also, in the present formulation, not all nets in anequivalence class are found,

non-deterministically, by desaturation. It is not unlikely that giving a desaturation

algorithm that does return all nets, i.e. one that is the inverse relation to saturation,

would be possible. (This was not pursued, for the reason thatit is likely to require

significant effort to find all the nets whose saturation is that of a (co)pointed net, while

the (co)pointed net itself is readily found.)

Definition 4.9.1(Desaturation). A desaturationof a prenet h= (X,Y,R) is a prenet f

obtained by the following algorithm.

112 Chapter 4. The soundness proof

• If X = 1, Y = 0, or one ofX andY is atomic, let f be h; ifX = 0 let f be(0,Y,∗);

if Y = 1 let f be(X,1,∗).

• If X = X0+X1 then recursively obtain prenets f0 from h0,ε and f1 from h1,ε, and

let f = [f0, f1]. If Y = Y0×Y1 then recursively obtain prenets f0 from hε,0 and f1

from hε,1, and let f= 〈f0, f1〉.

• If X is a product andY a coproduct then of the sub-prenets hi,ε and hε, j of h,

choose one that is connected. For hε, j , construct the sub-prenet g⊆ hε, j as fol-

lows. For eachu ∈ MAXCP(h) choose a copointed subnet qu ⊆ hu, j , then let

MAXCP(h) = {u1, . . . ,un} and construct the following series of pre-nets.

hε, j = g0, g1, . . . , gn = g where gi = gi−1{σqui}ui ,ε

From g recursively obtain a net f′; let f = f′;ι j . For a sub-prenet hi,ε the procedure

is dual.

The desaturation algorithm is essentially an inversion of the inductive description

of saturation, in Lemma 4.2.5 and, mainly, Lemma 4.4.1. In particular the third case,

whereX is a product andY a coproduct, reverses the process of obtaining the saturation

σ(f′;ι j) from σf′;ι j as described in Lemma 4.4.1. There,σ(f′;ι j) is given as(σf′;ι j)∪

Γ∪∆ (abusing notation), whereΓ contains the duplication of rooted initial links in

σf′, and∆ contains the bipointed nets formed by links inΓ. To reverse this operation,

for a prenet h with a connected sub-prenet hε, j , for each vertexu that has a maximal

copointed subnet, desaturation takes hε, j and replaces the sub-prenet betweenu and

ε with σ(qu), the saturation of a copointed subnet qu ⊆ hu, j . The idea behind this

treatment is that if the saturated netσf′ contains a maximal copointed subnet qu, then

the subnet(σf′)u,ε is preciselyσ(qu).

It remains to be shown the this algorithm yields the desired result, i.e. that for satu-

rated nets, desaturation has saturation as its inverse. This is shown by Proposition 4.9.2

below, which, together with sequentialisation for nets (Corollary 2.4.5), gives sequen-

tialisation for saturated nets. The proof of this statementwill be combined with that of

the correctness condition, in Lemma 4.9.3 below.

Proposition 4.9.2.For a saturated neth desaturation gives a netf such thatσf = h.

Proof. The statement follows from Lemma 4.9.3, below, since a saturated net is con-

nected, saturated, and close-knit by Proposition 3.4.4.

4.9. Sequentialisation 113

Restatement of Proposition 3.4.5.If a pre-neth is connected, saturated, and close-

knit, it is a saturated netσf.

Proof. By Lemma 4.9.3, below.

Lemma 4.9.3.If a pre-neth is connected, saturated, and close-knit, then desaturating

it gives a netf such thatσf = h.

Proof. The proof will naturally follow the desaturation algorithm.

• If X = 1, Y = 0, or one ofX andY is atomic, let f be h; ifX = 0 let f be(0,Y,∗);

if Y = 1 let f be(X,1,∗).

If X = 1, Y = 0, or either is atomic, the neighbouring relation⌢ must be empty since

all links in R connect only to leaves. As h is close-knit it must be then compatible,

i.e. its switchings switch on at most one link, and since it isalso connected it is a net.

Next, if X = 0 or Y = 1 then h is full since it is connected and saturated, and f may be

chosen as ?Y or !X respectively.

• If X = X0+X1 then by induction obtain prenets f0 from h0,ε and f1 from h1,ε, and

let f = [f0, f1]. If Y = Y0×Y1 then by induction obtain prenets f0 from hε,0 and f1

from hε,1, and let f= 〈f0, f1〉.

The case whereX is a coproduct will be shown, that whereY is a product is dual. It is

immediate that the sub-prenets h0,ε and h1,ε are saturated; that they are also connected

and close-knit will be established below.

h0,ε

+ +

h1,ε

Let ς = (ςL,ςR) be a switching for h0,ε, and letτ = (τL,τR) be a switching on h that

agrees withς on vertices in h0,ε and chooses 0 onε in X, i.e.,

τL(ε) = 0 , τL(0u) = ςL(u) , and τR = ςR .

To show h0,ε is connected, letτ 〈v,w〉 in h. If v= 0v′ thenς 〈v′,w〉 in h0,ε. Otherwise,

if v = ε then〈v,w〉 is a terminal link, and since h is saturated it contains also〈0,w〉,

so thatς 〈ε,w〉 in h0,ε. Note thatτ would switch offv in case 1≤ v. Next, it will be

shown that h0,ε is close-knit. By design,τL 0v if and only if ςL v, while τR = ςR;

114 Chapter 4. The soundness proof

this means thatτ 〈0v,w〉 if and only if ς 〈v,w〉. Then ifς 〈v1,w1〉,〈vn,wn〉 in h0,ε

the corresponding links〈0v1,w1〉 and〈0vn,wn〉 in h must be connected by a path of

neighbours,

〈0v1,w1〉 ⌢τ . . . ⌢τ 〈0vn,wn〉 .

This translates directly into a path of neighbours in h0,ε, unless somevi is ε (no vertex

1v in X is switched on byτ). But a link 〈ε,wi〉 has only one neighbour,〈0,wi〉; then

the path in h must contain the segment below left, which can bereplaced by that below

right.

. . .〈0,w〉 ⌢τ 〈ε,w〉 ⌢τ 〈0,w〉〈0,w〉 . . .

After so removing all edges〈ε,w〉 from the path of neighbours in h, it translates into

a path〈v1,w1〉 ⌢∗
ς 〈vn,wn〉 in h0,ε. This shows that h0,ε is close-knit. By a symmetric

argument, also h1,ε is connected, saturated, and close-knit.

Applying the induction hypothesis gives nets g0 and g1 such thatσ(gi) = hi,ε; let

g = [g0,g1]. Since h is saturated and g⊆ h it holds thatσg ⊆ h, and it follows by

Lemma 4.2.5 that h⊆ σg, so that h= σg.

• If X is a product andY a coproduct then of the sub-prenets hi,ε and hε, j of h,

choose one that is connected. For hε, j , construct the sub-prenet g⊆ hε, j as fol-

lows. For eachu ∈ MAXCP(h) choose a copointed subnet qu ⊆ hu, j , then let

MAXCP(h) = {u1, . . . ,un} and construct the following series of pre-nets.

hε, j = g0, g1, . . . , gn where gi = gi−1{σqui}ui ,ε

From g obtain a net fj by induction; let f= f j ;ι j . For a sub-prenet hi,ε the

procedure is dual.

First, it will be shown that hi,ε or hε, j is connected, for somei or j. If h contains a rooted

link, say〈0v,ε〉, then h0,ε is connected by the following argument. Letς = (ςL,ςR) be

a switching for h0,ε, and letτ be a switching for h that agrees withς, as follows.

τL(0u) = ςL(u) τR = ςR

By connectednessτ switches on at least one link〈x,y〉. If x = 0x′ thenς 〈x′,y〉, and

if x = ε then h must also contain〈0,y〉 because it is saturated, and soς 〈ε,y〉.

0 0v

× +

1x′ y

4.9. Sequentialisation 115

Otherwise,x = 1x′. Construct a second switchingρ for h that switches on both〈0v,ε〉
and〈1x′,y〉, in the following way.

ρL(0u) =

{

0 if 0u0≤ 0v

1 otherwise
ρL(1u) = τL(1u) ρR = τR

Because h is close-knit,〈0v,ε〉 ⌢∗
ρ 〈1x′,y〉. Since this path of neighbouring links con-

tains links both of the form〈1u,z〉 and of the form〈0u,z〉, it must contain a section

〈0v,ε〉 ⌢ρ . . . ⌢ρ 〈1,w〉 ⌢ρ 〈ε,w〉 ⌢ρ 〈0,w〉 ⌢ρ . . . ⌢ρ 〈1x′,y〉

for some vertexw. But sinceρR = τR = ςR the vertexw is switched on byςR, while the

vertex 0 cannot be switched off; thenς 〈0,w〉. Then h0,ε is connected.

The above showed that one of hi,ε and hε, j is connected, under the assumption that

h contains a rooted link. It will now be shown that h does in fact contain a rooted link

〈u,ε〉 or 〈ε,z〉. Assume for contradiction that none of the four sub-prenetsis connected.

Then there exist switchingsτ andρ such that, without loss of generality,τ 〈0v,0w〉

andρ 〈1x,1y〉. A switchingς = (ςL,ςR) is constructed fromτ andρ that switches on

both these links, as follows.

ςL(0u) = τL(0u) ςL(1u) = ρL(1u) ςR(0z) = τR(0z) ςR(1z) = ρR(1z)

Thenς 〈0v,0w〉 andς 〈1x,1y〉, and since h is close-knit,〈0v,0w〉 ⌢∗
ς 〈1x,1y〉. As

before, this path of neighbouring links must contain the following segments, for some

u in X and somez in Y.

〈u,0〉 ⌢ς 〈u,ε〉⌢ς 〈u,1〉 〈0,z〉 ⌢ς 〈ε,z〉⌢ς 〈1,z〉

Then h contains two rooted links,〈u,ε〉 and〈ε,z〉, and by the above one of h0,ε and

h1,ε, and one of hε,0 and hε,1, must be connected.

Having shown that at least one hi,ε or hε, j is connected, without loss of generality

suppose that the algorithm selects the connected prenet hε,0. Recall that g is then

obtained from hε,0 by replacing each sub-prenet between a vertexu∈ MAXCP(h) andε
with σ(qu), the saturation of a copointed subnet qu ⊆ hu,0. Such a choice qu for every

u∈ MAXCP(h) exists since h is saturated: it is obtained from the maximal copointed

subnet ofu by a synchronised saturation step moving initial links〈v,ε〉 down to〈v,0〉.

Since h contains qu and is saturated,σqu ⊆ hu,0, and as g is obtained from hε,0 by

replacing hu,0 with σqu (for eachu∈ MAXCP(h)), also g⊆ hε,0. In the following, let

qu be fixed for everyu∈ MAXCP(h)

116 Chapter 4. The soundness proof

To apply the desaturation algorithm recursively to g, it must be shown that g is

connected, saturated, and close-knit. For the first, since hε,0 is connected, so is g—

each qu is connected, so replacing a sub-prenet withσqu cannot break connectedness.

For the second, hε,0 is saturated because h is. Also, eachσqu is saturated. It will be

shown that replacing a subnet hu,0 with σqu does not break saturatedness. Assuming

the contrary, there is a saturation step(f |k) v,w on g, where f is a subnet of g, but

some link in k is not in g. Sinceσqu ⊆ hu,0, this link in k must be in the latter but

not the former; however, ifu ≤ v the entire rewrite step is inσqu, which is already

saturated. This rules out the four saturation steps wherev is 0. Thenw must be1, and

u must bev0 or v1; without loss of generality, letu be v0. The two saturation steps

wherev is a product are ruled out: the copointed subnet qu is maximal, whileπi ;qu

would be a larger copointed subnet, forv. Of the two remaining saturation steps, only

the following one adds a link that is in hu,0.

u

+v 1 w (! | [!, !]) v,w

u

+v 1 w

But this link, 〈u,w〉, is already inσqu, since the latter contains all terminal links, by

Lemma 4.3.6. Thus g is saturated.

Before it is shown that g is close-knit the following statement will be proved.

I If 〈x,1y〉 is a link in h then somez≤ x is in MAXCP(h).

Since hε,0 is connected every switchingς that switches on〈x,1y〉 must also switch on a

link 〈v,0w〉; and because h is close-knit,〈v,0w〉 ⌢∗
ς 〈x,1y〉. The path of neighbouring

links connecting these links must pass through a rooted initial link, and traversing the

path from〈v,0w〉 to 〈x,1y〉, there is a last such link〈u,ε〉. In other words, for everyς
such thatς 〈x,1y〉 there is a link〈u,ε〉 such that

〈u,ε〉 ⌢ς 〈u,1〉 ⌢ς 〈v1,1w1〉 ⌢ς . . . ⌢ς 〈vn,1wn〉 ⌢ς 〈x,1y〉

Without loss of generality let〈x,1y〉 be such thatx is minimal, i.e. no〈x′,1y′〉 exists

in h such thatx′ < x. Thenx ≤ vi for all i ≤ n, and in particularx ≤ u: the path

cannot reach a link such thatx � vi without also crossing a link〈v j ,w j〉 wherev j is the

common root, the greatest common prefix, ofx and vi . For everyς such thatς 〈x,1y〉,

this argument provides a rooted initial link〈u,ε〉 with x ≤ u andς 〈u,ε〉. Then in

the subnet hx,ε, every switching switches on at least one rooted initial link. Selecting

exactly one such link for each switching then provides a copointed subnet q⊆ hx,ε.

4.9. Sequentialisation 117

Sincex has a copointed subnet, it follows that somez≤ x has a maximal copointed

subnet, showingI .

To show that g is close-knit, letς be a switching for g and letς 〈v,w〉 andς 〈x,y〉.

Since g⊆ hε,0 and h is close-knit, for an arbitrary switchingτ that agrees withς where

possible, i.e.τ 〈v,0w〉 wheneverς 〈v,w〉, there is a path of neighbouring links in h

〈v,0w〉 = 〈v0,w0〉 ⌢τ 〈v1,w1〉 ⌢τ . . . ⌢τ 〈vn,wn〉 = 〈x,0y〉 .

It will be shown that g contains a path of neighbours〈v,w〉 ⌢∗
ς 〈x,y〉. This path will

be obtained from the above path in h by replacing the stretches whereu≤ vi for some

u ∈ MAXCP(h). For the other links, those〈vi ,wi〉 where nou ≤ vi is in MAXCP(h),

I above gives that 0≤ wi . In addition, ifwi cannot beε, since a link〈vi,ε〉 must be

an initial link, constituting a copointed net, and contradicting the assumption that no

u ≤ vi has a maximal copointed subnet. Thus, if nou ≤ vi is in MAXCP(h) thenwi

must be of the form 0w′
i , and since the link〈vi,0w′

i〉 is not replaced in the substitution

of some hu,0 by σqu, the link〈vi ,w′
i〉 is in g.

Next, consider a vertexui∈ MAXCP(h), and the subnet hui,ε. For a link〈v,w〉 where

ui ≤ v, no neighbour〈v,w′〉 is outside hui,ε. Moreover, a neighbour〈v′,w〉 is outside

hui,ε only if ui � v′. That is, if〈v,w〉 ⌢τ 〈v′,w〉, while ui ≤ v but ui � v′, then it must

be thatv′ = u andv = ui, and thatw is 1. In addition, by the above, sincev′ is not

dominated by a vertex that has a maximal copointed subnet, 0≤ w. Together, these

observations imply that the only neighbouring steps between a link inside hui,ε and a

link outside it, are of the form

〈ui,0w〉 ⌢τ 〈u,0w〉

where 0w is terminal. Then a segment of the path of neighbours in h thatenters and

exits the subnet hui,ε is of the following form:

. . .〈u,0wi〉 ⌢τ 〈ui,0wi〉 ⌢τ . . . ⌢τ 〈ui,0w j〉 ⌢τ 〈u,0w j〉 . . .

It will be shown that in g, this segment can be replaced by another path of neighbours,

. . .〈u,wi〉 ⌢ς 〈ui,wi〉 ⌢∗
ς 〈ui,w j〉 ⌢ς 〈u,w j〉 . . .

Such a path exists because of two facts. Firstly, since the links 〈ui,wi〉 and 〈ui,w j〉

are terminal links, the corresponding links〈ε,wi〉 and〈ε,w j〉 exist inσqui, because by

Lemma 4.3.6σqui contains all terminal links. Secondly, sinceσqui is a saturated net,

by Proposition 3.4.4 it must be close-knit; then there must be a path of neighbours

118 Chapter 4. The soundness proof

between〈ε,wi〉 and〈ε,w j〉 in σqui for any switching—including the one that agrees

with ς andτ. This shows the above segment in g exists. Then the path〈v,w〉 ⌢∗
ς 〈x,y〉

in g is constructed by taking the corresponding path in h while nou≤ vi has a maximal

copointed subnet, and replacing the path by another by the above construction for the

segments where someu≤ vi does have a maximal copointed subnet. Thus, g is close-

knit.

At this point g has been shown to be connected, saturated, andclose-knit, and by

induction the desaturation algorithm gives a net f such thatσf = g. It remains to show

thatσ(f; ι0) = h. In one direction,σ(f; ι0) ⊆ h is immediate since f;ι0 ⊆ g;ι0 ⊆ h, and

h is saturated. For the other direction, first the following statement will be proved.

II. If 〈x,y〉 is a link in h such that someu≤ x is in MAXCP(h), but〈x,ε〉 is not in qu,

then somew≤ y is pointed.

For the link〈x,y〉, let y be minimal in the following sense: there is no link〈x,y′〉 in h

such thaty′ ≤ y. Let ς be an arbitrary switching such thatς 〈x,y〉. Sinceu≤ x alsou

is switched on, and since qu is a copointed net, by the switching condition at least one

link in qu, an initial link 〈v,ε〉 with u≤ v, is switched on byς. By assumption,〈x,ε〉 is

not in qu, so〈v,ε〉 is distinct from〈x,y〉. Then since h is close-knit it contains a path of

neighbours of the form

〈x,y〉 ⌢ς 〈v1,w1〉 ⌢ς . . . ⌢ς 〈vn,wn〉 ⌢ς 〈v,ε〉 .

Sincex is distinct fromv, this path must contain at least one segment of terminal links

〈vi ,w〉, . . . ,〈v j ,w〉, wherew is 1. Assume this is the first such segment. Then the path

before it must be of the form〈x,y〉, . . . ,〈x,w〉; that is, if wi is the first terminal target

vertex in the path above,vk = x for all k≤ i. By the assumption of minimality ofy, it

follows thatw≤ y. This argument provides, for every switchingς that switches ony, a

terminal nodew≤ y. This is equivalent toy being pointed.

To show thatσ(f; ι0) ⊇ h, Lemma 4.4.1 describesσ(f; ι0) asσf; ι0∪Γ∪∆, whereΓ
are all links〈v,w〉 wherev is 0 and〈v,ε〉 is in σf, and∆ contains all links〈v,w〉 where

somev′ ≤ v has a maximal copointed subnet and somew′ ≤ w is pointed. Let〈x,y〉

be a link in h. Ifu ≤ x for someu ∈ MAXCP(h) then byII either the link〈x,ε〉 is in

qu, in which case〈x,y〉 is in Γ, or somew≤ y is pointed, in which case〈x,y〉 is in ∆.

Otherwise, ifu � x for all u∈ MAXCP(h), then 1� y by I . Moreover,y 6= ε, because

otherwise〈x,y〉 would be an initial link constituting a copointed subnet. Then 0≤ y

and〈x,y〉 is in g;ι0 = σf; ι0. This concludes the proof that h= σ(f; ι0).

Part II

Classical proof forestry

119

Chapter 5

Classical proof forests

5.1 Introduction

In this part of the dissertation a canonical graphical calculus for first-order classical

logic, here calledclassical proof forests, is investigated. The cut-free calculus was first

described by Dale Miller [79] asexpansion tree proofs, a compact representation of

first-order and higher-order classical proof. The present approach, based on Herbrand’s

Theorem and a semantics of backtracking games in the style ofThierry Coquand [26]

and the exponential modalities(?, !) of linear logic, adds composition via cut and cut-

elimination. The current chapter will discuss background material and related work

and present the forests themselves. The next chapter, Chapter 6, will introduce the cut-

reduction steps and give a proof of cut-elimination. Chapter 7 will discuss variations

on the reduction relation, and provide a detailed discussion of related work.

Classical proof forests, as a representation of first-orderclassical proof, have a strict

focus on witness assignment to quantifiers and dependenciesbetween such assign-

ments, and ignore the (decidable) propositional side of classical logic. This approach

is familiar from Herbrand’s Theorem, which shows that a suitable witness assignment

to quantifiers of a first-order formula is sufficient to make itdecidable. By allowing

the dependencies between different witness assignments toform a partial order, the

proof forests factor out the permutations of the sequent calculus, and are in that sense

canonical. The game-theoretic semantics allows an intuitive interpretation of the forest

proofs as strategies for a two-player game, and provides valuable insights in addressing

several of the more technical issues encountered in this work.

An interesting challenge for such a representation of proofis to find a notion of

composition via cut-elimination. Unlike in the sequent calculus, whose pervasive bu-

121

122 Chapter 5. Classical proof forests

reaucracy means cut-elimination is dominated by permutations and similar inessential

operations, it may be expected that cut-elimination in a canonical formalism such as

proof forests consists solely of conversions that are significant. In addition, the unde-

sirable reduction behaviour of the sequent calculus is commonly attributed to cuts on

two weakened formulae (the Lafont example in Figure 1.3) andcuts on two contracted

formulae (see [28, Section 3]). Since proof forests rule outsuch cuts, because contrac-

tion and weakening are restricted to existentially quantified formulae, it may be hoped

that cut-elimination is well-behaved.

This part of the dissertation describes the results of a programme investigating

composition via cut-elimination for classical proof forests. A first contribution is the

definition of a cut-reduction relation, naturally inspiredby both the structure of the

forests, their game semantics, and the interpretation of sequent proofs. Still, these

reduction steps turn out to be badly behaved: certain cuts cannot be reduced, and

what is worse, such badly behaved cuts can be reached by reduction from perfectly

ordinary ones. The example proof forest exhibiting such badreduction behaviour is

non-trivial, and its discovery is a main contribution of this work. Two further principal

contributions are the two solutions to this problem that will be presented. The first

solution identifies the structure causing bad reduction behaviour as redundant, and

provides a way of removing it. A modified reduction relation that includes this an

operation removing the unwanted structure is shown to be weakly normalising, and

conjectured to be strongly normalising. The second solution is based on an analysis of

when reduction steps cause the loss of weak normalisation, and consists of a reduction

strategy that avoids those steps, obtaining weak normalisation for the original reduction

relation.

The present chapter will discuss the proof forests, and introduce a notion of cut.

Section 5.2 will introduce the proof forests informally from a discussion of the back-

ground material; Section 5.3 will discuss composition withcut, and in Section 5.4 the

forests be will defined formally. In Section 5.5, translation procedures between sequent

proofs and proof forests will be discussed, and it is illustrated how proof forests fac-

tor out the bureaucracy of the sequent calculus. Different variants of cut-elimination

will be treated in Chapters 6 and 7; the latter chapter will, in addition, compare proof

forests to related work in more detail. The results in Chapters 5 and 6 appeared in [48];

the material in Chapter 7 is new.

5.2. Background 123

5.2 Background

In this section classical proof forests will be introduced and motivated, from three

points of view: one, Herbrand’s Theorem; two, backtrackinggames; and three, the

sequent calculus. Proof forests will first be treated informally, in a cut-free setting.

Herbrand’s Theorem

Herbrand’s Theorem [50] states that a first-order formulaA is valid, if and only if it

can be transformed into a propositional tautology by the combination of the following

operations (applied to the formula transformed to negation-normal form).

1. Expansion: an occurrence of a subformula∃x.B is replaced by a disjunction

of any number of copies of itself,∃x.B∨ . . .∨∃x.B. This may be repeated an

arbitrary number of times.

2. Prenexification: casting the expanded formula into prenex-normal form, by mov-

ing quantifiers from inside the formula to the front (and renaming variables when

necessary).

3. Witness assignment: the existentially quantified variables in the prenex formula,

are each replaced with a first-order term. A termt substituted for a variabley in

a formulaQ1x1 . . .Qnxn.∃y.B, where eachQi is a quantifier,∀ or ∃, may use no

other bound variables than those ofx1 . . .xn that are universally quantified. Of the

resulting universally quantified formula, the matrix is taken (the propositional

part).

In [20] Samuel Buss describes a calculus ofHerbrand proofs, which consist of the

above three steps, followed by a tautology check.

The expansion of the formula essentially allows an arbitrary number of choices

of instantiating each existentially quantified formula. This suggest a tree-notation in

which universal quantifiers have unique successors, and existential quantifiers arbitrar-

ily many. The prenexification is a topological sort of the quantifiers in the expanded

formula (it imposes a linear order that respects their original tree-ordering). This de-

termines what universally quantified variables may be used in the witnessing terms for

the existentially quantified variables. However, the same substitutions may be enabled

by several different ways of turning a formula into prenex-normal form. The sugges-

tion is then, that rather than imposing a linear order on quantifiers, a partial order may

124 Chapter 5. Classical proof forests

be more pertinent. These two suggestions combined, of a tree-notation with a super-

imposed partial order, are at the basis of Miller’s expansion tree proofs [79]. Here the

same ideas inspire classical proof forests, which are closely modelled on expansion

tree proofs.

Backtracking games

Backtracking games were used by Coquand [26] in the early 1990s as a means of giving

evidence for statements of classical arithmetic. Backtracking games can be defined in

several ways: for instance, some games allow backtracking for both players; others,

like the ones used here, for just one of the two. Since not muchhinges on the precise

choice of definition, the games will only be informally sketched.

A game is played by two players, ‘∀belard’ (falsifier) and ‘∃loise’ (verifier), on

a chosen structure. The players take turns assigning witnesses, elements from the

domain of the structure, to the quantifiers in a sequent of prenex formulae. Positions

in the game are (partially) instantiated subformulae.∃loise can revert to any previous

position where it was her turn and assign a new witness; her current position is recorded

and can be a target for later backtracking. She wins the game if it reaches a quantifier-

free position that is true in the structure.

A proof is a strategy for∃loise that is winning on any structure. Traditionally,

strategies are functions that, given the history of a game, provide the next move. Proof

forests deviate from this, abstracting away from irrelevant choices in the order of

moves: moves in the strategy are only partially ordered, andgiven the history of a

game the strategy suggests a range of possible moves. Restrictions made by proof

forests are that the strategies the represent are finite, anduniform, in the sense that it is

not influenced by which structure the game is played on.

Cut-free proof forests

A classical proof forest represents a strategy for∃loise, for a game specified by a se-

quent of first-order formulae in prenex-normal form. A forest contains a tree for each

formula in the sequent and is defined as a graph, with edges representing moves and

nodes corresponding to positions. The order in which moves are played is only par-

tially specified, by means of a partial order on nodes and edges called thedependency.

As an example, consider the proof of the drinker’s formula1 in Figure 5.1.

1This typical example of a classically valid formula with no constructive proof is so named after the

5.2. Background 125

∃x∀y. P(x)∨¬P(y)

a
∃

b
∀y.P(a)∨¬P(y) ∀

b
∀

c
∀y.P(b)∨¬P(y)

P(a)∨¬P(b) P P P(b)∨¬P(c)

Figure 5.1: A forest proof of the drinker’s formula

The root node at the top is the starting position: in the illustrations, edges point

downwards. The strategy opens on the left branch, where∃loise assigns an arbitrary

value from the domain (represented by the variablea) to the existential quantifier. Next,

∀belard instantiates the universal quantifier with a certainvalue, recorded asb. If the

position bottom left is true for these values,∃loise wins. Otherwise, she backtracks

to the root of the tree, this time taking the right branch and assigning the valueb to

the existential quantifier. Then, whichever valuec ∀belard chooses fory, at the bottom

right positionP(b)∨¬P(c) must be true, since previously in the gameP(a)∨¬P(b)

was false.

The arrow in the diagram indicates where∃loise’s choice of witness relies on ear-

lier witness assignments by∀belard. Together with the ordering of the nodes and edges

in a tree—which reflects that before the subformulae of a position can be reached the

position must be reached itself—this forms thedependency ordering. Backtracking is

represented by branching at existential positions, where the strategy does not necessar-

ily define which branch to take first.

P

P

∀x.A

∀
a
◦

A[a/x]

∃x.A

t1

∃
tn. . . (n≥0)

◦ ◦
A[t1/x] A[tn/x]

Figure 5.2: Forest components

A cut-free classical proof forest is a forest of trees built from the components in

Figure 5.2, plus a dependency ordering over the combined nodes and edges. In the

diagram,P andA are propositional and prenex formulae, respectively, and the smaller

interpretation: ‘there is a man in a bar, and if anyone drinks, he drinks.’ This is also the example used
by Miller [79].

126 Chapter 5. Classical proof forests

circles represent arbitrary nodes (that need not be leaves). From left to right are dis-

played a propositional position, a move by∀belard, and several moves from the same

position by∃loise.

A dependency ordering on a proof forest will be a relation on nodes and edges

subject to three conditions: 1) an edge is larger than its source node and smaller than

its target, 2) an edge carrying∀belard’s choicea is smaller than an edge indicating

∃loise’s choicet if a occurs free int, and 3) it is a partial order. Since the dependency

indicates a constraint on the order of play, two distinct moves depending on each other

would constitute a form ofdeadlock, where each is waiting for the other; the latter

condition, that the dependency must be a partial order, can thus be seen as preventing

deadlock. The smallest dependency on a forest is called theminimal one. Later, a

forest will be allowed to carry a non-minimal dependency, but for now the minimal

one will be used.

A correctness condition for cut-free proof forests followsnaturally from the game-

theoretic interpretation. A proof forest is a proof of its sequent if it represents a winning

strategy for∃loise, regardless of the actual structure on which any particular game is

played. This is precisely the case when the disjunction overall propositional nodes in

the forest forms a tautology. A cut-free forest with this property will be calledcorrect.

∃x.¬Px ∀x∃y.(Px∧¬Py) ∀x∃y.(¬Px∧Py) ∃x.Px

∀

a

∀

b∃
v

a

∃
w

b∃
x

b

∃
y

aP P

P P

¬Pa Pa∧¬Pb ¬Pb∧Pa Pb

Figure 5.3: An example proof forest

A second example forest, pictured in Figure 5.3, illustrates a dependency that is not

a linear order. A play starts with either of∀belard’s two moves, top center, assigninga

or b—which one is not determined by the strategy.∀belard’s movea enables∃loise’s

move at the vertex v, and∀belard’s moveb enables her move at w. The moves at x and

y depend onboth of ∀belard’s moves. As with∀belard’s moves before, the strategy

does not give an order of play for the four moves by∃loise.

5.2. Background 127

The dependency, central to classical proof forests, already appears in Miller’s ex-

pansion tree proofs [79], of which cut-free proof forests are the (prenex) first-order

fragment. Soundness and completeness are established in that paper, and also follow

from translations with the sequent calculus, described informally in the next subsec-

tion, and in more detail in Section 5.5.

A first-order sequent calculus

⊢ A1, . . . ,An
Taut∗

⊢ Γ,A[a/x]
⊢ Γ,∀x.A

∀R∗∗
⊢ Γ,A[t/x]
⊢ Γ,∃x.A

∃R

⊢ Γ,∃x.A,∃x.A
⊢ Γ,∃x.A

C∃
⊢ Γ
⊢ Γ,∃x.A

W∃

⊢ Γ,A,A
⊢ Γ,A

CR
⊢ Γ
⊢ Γ,A

WR
⊢ Γ,A ⊢ A⊥,Γ′

⊢ Γ,Γ′ Cut

∗ Wn
i=1 Ai is a propositional tautology ∗∗ a /∈ fv(Γ)

Figure 5.4: A sequent calculus for first-order prenex formulae

Figure 5.4 displays a one-sided sequent calculus for prenexformulae. The five

rules above the central line, together referred to as thestrict calculus, are a tautology

axiom, universal and existential introduction rules, and contraction and weakening on

existentially quantified formulae. This calculus is calledstrict because in addition to

being cut-free, it restricts contractions and weakenings to existentially quantified for-

mulae. Due to the absence of cuts and conjunctions, proofs inthe strict calculus do

not exhibit any branching. The three inference rules below the central line are admis-

sible. For the general contraction rule, this follows from the proof transformations in

Figure 5.5, mentioned by Buss in [20]; the argument for general weakening is similar.

Admissibility of the cut rule follows from Gentzen’s sharpened Hauptsatz (also known

as the midsequent theorem) [40]. As a consequence, the strict calculus of Figure 5.4 is

sound and complete.

Cut-free proof forests and sequent proofs in this system canbe translated back

and forth straightforwardly. Here, the translation procedure will be briefly sketched; a

128 Chapter 5. Classical proof forests

⊢ Γ,P,P
Taut

⊢ Γ,P
CR ⇒ ⊢ Γ,P

Taut

Π
...

⊢ Γ,A[a/x],A[b/x]
⊢ Γ,A[a/x], ∀x.A

∀R

⊢ Γ, ∀x.A, ∀x.A
∀R

⊢ Γ, ∀x.A
CR

⇒

Π[a/b]
...

⊢ Γ,A[a/x],A[a/x]
⊢ Γ,A[a/x]

CR

⊢ Γ, ∀x.A
∀R

Figure 5.5: Admissible contractions on propositional and universal formulae

complete treatment, which includes cut, can be found in Section 5.5. Edges in a forest

correspond to∀R-inferences and∃R-inferences, branching on existential nodes to con-

traction, and an existential position without branches corresponds to a weakening. The

dependency witnesses a non-permutable ordering of inferences. In the strict calculus

this may arise, by transitivity, for two reasons: one, because one inference’s conclusion

is another’s premise, or two, due to theeigenvariable condition, the side-condition on

∀R-inferences that the eigenvariable may not occur free in the context. Both are illus-

trated in Figure 5.6; an occurrence of these will be called animpermutability.

⊢ Γ,A
⊢ Γ,B

R1

⊢ Γ,C
R2

⊢ Γ,A[a/x],B[t(a)/y]

⊢ Γ,A[a/x], ∃y.B
∃R

⊢ Γ, ∀x.A, ∃y.B
∀R

Figure 5.6: Impermutabilities

Informally, then, the dependants of a move in a forest correspond to the inferences

in the smallest possible subproof of a sequent inference, inall the possible permuta-

tions of the sequent proof. To translate a forest to a sequentproof involves making

contractions explicit and topologically sorting the dependency; the other direction in-

volves the reverse.

Proof forests factor out the remaining two forms of bureaucracy of the strict calcu-

lus of Figure 5.4 (after restricting contraction and weakening to existential formulae).

Firstly, proof forests use branching in place of binary contractions; although it should

be noted that a similar effect can be obtained in sequent calculus as well, by having

contractions of arbitrary arity and forcing these to occur immediately above the rule

5.3. Cut 129

that has the contracted formula as a premise. Secondly, proof forests factor out the pos-

sible permutations in sequent proofs in the strict calculus, in the same way that they

abstract over the choice of prenexification in Herbrand proofs, and the precise order

of moves in a backtracking game: by allowing the dependency to be a partial order,

where otherwise a linear order is used. For these reasons, proof forests may be consid-

ered bureaucracy-free, and in that way canonical for classical proof. A more detailed

discussion will follow in Section 5.5.

5.3 Cut

A notion of cut, used to compose forests, will be introduced informally. Two game-

theoretic interpretations of cuts will be discussed; one will be the main inspiration for

the formal implementation of cuts, the other will provide guidance in designing the

cut-reduction steps in Chapter 6. Finally, it will be shown how to decompose a forest

along a cut, yielding a correctness criterion for forests with cut.

A

Γ A A⊥ Γ′

Figure 5.7: Composing forests for Γ,A and A⊥,Γ′ with a cut

Forests for sequentsΓ,A andA⊥,Γ′ (whereA⊥ denotes the DeMorgan dual ofA)

can be composed using acut, a link between the two dual trees from both forests.

Figure 5.7 gives a schematic impression, where triangles and trapezoids abbreviate

trees and forests respectively, and the cut is labelled withthecut-formula. The result

is a forest for the sequentΓ,Γ′, whose formulae are represented by the remaining root

nodes.

A first interpretation of the cut is as a composition of strategies. The common

game-theoretic interpretation of composition, among manyothers found in [26], is to

let the two strategies play against each other on the formulae A andA⊥ linked by the

cut. Moves by∃loise in one game are interpreted as moves by∀belard in the other

game, and vice versa.

This interpretation works well with strategies as functions indicating the next move,

but not so well in the present setting of backtracking and partially ordered moves. In

130 Chapter 5. Classical proof forests

particular, if backtracking occurs in both the strategy inA and that inA⊥, it is not

obvious that when they play against each other, the game terminates. Coquand’s argu-

ment in [26] uses the linear ordering of moves available in that setting; but a notion of

cut that depends on a given linear order on a forest is not canonical. In addition, the

interpretation of a cut as an interaction between strategies is closer to a description of

cut-eliminationthan a description of cut itself. For these reasons the aboveinterpre-

tation will guide the design of the cut-reduction steps in Chapter 6, while the formal

definition of a cut will be guided by a different, complementary interpretation in terms

of moves in a game.

In this second interpretation a cut consists of two successive moves: firstly,∃loise

chooses a cut-formulaA, introducing the positionA∧A⊥; next,∀belard chooses one

branch of this conjunction. To represent the first move by an edge in a forest, it will

be modelled as a move instantiating the generic contradiction ⊥ with a specific one

A∧A⊥. The idea that⊥ is a position available to∃loise at all times is natural from

the view that it is the empty sequent, and the unit of disjunction (as embodied by the

commas of a sequent). The combined construction is displayed in Figure 5.8; the

simple bar on the left will be used as an abbreviation.

A

◦ ◦
A A⊥

:=

⊥
A
∧

◦ ◦
A A⊥

Figure 5.8: Cuts

The translation of a cut in the sequent calculus is by composing, with a cut, the for-

est translations of the two subproofs of the cut in the sequent proof. For example, after

translating the subproofsΠ andΠ′ below to forests forΓ,A andA⊥,Γ′, the translation

of the whole, including the cut, will be as in Figure 5.7.

Π...
⊢ Γ,A

Π′
...

⊢ A⊥,Γ′

⊢ Γ,Γ′ Cut

In a sequent proof, a cut-formula may contain occurrences ofthe eigenvariables of

5.3. Cut 131

∀R -inferences, as illustrated below left.

Π...
⊢ Γ,P(a)

Π′
...

⊢ ¬P(a),Γ′,B[a/x]

⊢ Γ,Γ′,B[a/x]
Cut

⊢ Γ,Γ′,∀x.B
∀R

∀
a
◦ P(a)

◦ ◦

:=

∀
a

⊥
P(a)

◦ ∧

◦ ◦

The fact that this constitutes an impermutability means that in proof forests, cuts must

be part of the dependency, as illustrated above right: if a cut-formula contains an occur-

rence of an eigenvariable introduced in a move by∀belard, then that cut must depend

on∀belard’s move.

This interpretation of cuts has several conceptual advantages. By describing a cut

as two consecutive moves in the game, it gives an interpretation that is internal to the

game. Moreover, it accounts for the fact that the dependencyranges over cuts in a

natural way, by describing the introduction of a cut-formula as a move by∃loise, that

may depend on previous choices by∀belard.

Correctness and decomposition

Two more, closely related, issues will be taken up here. Firstly, proof forests with cut

will need a correctness criterion. Secondly, for sequentialisation (a translation back to

the sequent calculus), it must be possible to de-compose a proof forest along a cut; i.e.

from a proof forest with a cut on trees forA andA⊥, it must be possible create two

forests, one with the tree forA, and one with the tree forA⊥. As suggested by the

illustration below, after proof forests forΓ,A and forA⊥,Γ have been composed with

a cut, it is not generally possible, in the composed forest, to determine which trees and

branches in the combinedΓ andΓ′ used to belong to which original forest.

A

Γ,Γ′ A A⊥

An idea towards solutions to both issues is provided by the interpretation of the cut

as two consecutive moves in a game. The second of these moves,the conjunction, is

a choice by∀belard for either branch. In any given play, the positions (nodes) in the

branchnot chosen by∀belard will never be played—and neither will those depending

on them. Since a proof forest, representing a winning strategy for∃loise, should offer a

counter-strategy toanypossible move by∀belard, this suggests the following treatment

132 Chapter 5. Classical proof forests

of cuts: for the two trees linked by a cut, removing either oneplus all of its dependants

should leave a proof forest that is a winning strategy.

To decompose a proof forest along a cut on trees forA andA⊥, one forest is ob-

tained by removing the tree forA⊥, and all its dependants, the other by removing that

for A, plus all dependants. The proof forest illustrated above, for Γ,Γ′ and with a cut

on A andA⊥, is thus decomposed into the following two forests (assuming no depen-

dencies between the trees forA, A⊥ andΓ,Γ′).

Γ,Γ′ A Γ,Γ′ A⊥

The resulting proof forests above are forΓ,Γ′,A andΓ,Γ′,A⊥. Using decomposition

to translate a cut in a proof forest to one in sequent calculusthus gives the cut in itsad-

ditive formulation, below—as opposed to themultiplicativeformulation in Figure 5.4.

⊢ Γ,A ⊢ Γ,A⊥

⊢ Γ Add.Cut

The additive and multiplicative formulations are equivalent classical logic, due to the

presence of contraction and weakening. This will be used in Section 5.5 to provide a

translation from proof forests with cuts to sequent proofs in the calculus of Figure 5.4.

Another, more concrete example of decomposition is pictured in Figure 5.9.

The correctness criterion that will be introduced for proofforests is closely related

to decomposition. Let aswitchingbe a choice for one branch of every cut—intuitively,

a strategy for∀belard on conjunctions. Then for every switching, after removing

for every cut the branchnot indicated by the switching, plus all its dependants, the

disjunction over the remaining propositional positions must form a tautology. This

will be formalised in Section 5.4.

The most important aspect of the correctness criterion is that it should be preserved

by the following operations:

• composition: the composition of two correct proof forests must be correct;

• decomposition: the two proof forests resulting from the decomposition of acor-

rect proof forest must be correct;

• cut-elimination: cut-reduction steps, to be defined in Chapter 6, when applied to

a correct proof forest must again yield a correct proof forest.

5.3. Cut 133

∃x∀y.(Px∨Qy)

∀x.¬Px ∃

a
∀

c

∃x.Px∨Qx

∀

a
∀

b
∃

c c
∃

t

P P P P P

¬Pa Pa∨Qb ¬Pc∧¬Qc Pc∨Qc Pt∨Qt

∃x∀y.(Px∨Qy)

∀x.¬Px ∃

a
∀

c

∃x.Px∨Qx

∀

a
∀

b
∃

c c
∃

t

P P P P P

¬Pa Pa∨Qb ¬Pc∧¬Qc Pc∨Qc Pt∨Qt

∀x∃y.(¬Px∧¬Qy)

∀x.¬Px ∃

a
∀

c

∃x.Px∨Qx

∀

a
∀

b
∃

c c
∃

t

P P P P P

¬Pa Pa∨Qb ¬Pc∧¬Qc Pc∨Qc Pt∨Qt

Figure 5.9: Decomposing a proof forest

134 Chapter 5. Classical proof forests

The first two of these requirements are treated in Section 5.5, the first by Proposi-

tion 5.5.1, the second by Lemma 5.5.3. The third will be addressed in the next chapter,

after defining the reduction steps.

A brief discussion of the game-theoretic interpretation ofthe cut will conclude the

present section. There are clear conceptual advantages to viewing a cut as a combi-

nation of two moves in a game, which follow from having an interpretation of the cut

that is internal to the game semantics:

• the interpretation of the cut is independent of cut-elimination;

• it naturally accounts for the participation of cuts in the dependency; and

• it provides a natural correctness condition for proof forests with cuts.

On the technical side, a choice has to be made to use one or the other implementation;

though nothing hinges on the exact choice, except convenience. However, in that re-

spect it is not clear-cut whether it is better to implement a cut as a link between two

trees, as in the abbreviated notation, or as a combination ofa⊥-vertex and a∧-vertex.

The former has the disadvantage that a cut is an undirected edge, where the other edges

in a forest are directed; the latter has the problem of introducing two additional kinds

of vertex. The choice was made in favour of the latter implementation.

5.4 Classical proof forests

In this section proof forests and their translation from sequent calculus will be for-

malised. The definition of proof forests will closely mirrorthe diagrams; in particular,

the arrows drawn to relate dependent moves will be implemented as an explicit depen-

dency relation(→) on edges, from which the dependency ordering(≤) will then be

generated. This will provide a better basis for reduction steps than directly defining the

dependency as a partial order.

First, the language of first-order classical logic, over an arbitrary but fixed signature

Σ, will be formalised. LetVAR be a (countably infinite) set of variables and let the

signatureΣ consist of a collection of function symbolsf , each of a given arityn,

and a (distinct) collection of proposition symbolsP of a given arityn. The first-order

language then consists of the following fragments.

• A collection oftermsTERMS defined by the grammar

t := x∈ VAR | f (t1, . . . , tn)

5.4. Classical proof forests 135

• A collection ofatomic formulaeATOMS defined by the grammar

X := P(t1, . . . , tn)

• A collection offormulaeFORM defined by the grammar

F := X | ¬X | ⊥ | F∨F | F∧F | ∀x.F | ∃x.F

For convenience also the fragments of propositional and prenex formulae, included in

FORM, will be identified.

• The fragment ofpropositional formulaeis defined by

P := X | ¬X | ⊥ | P∨P | P∧P

• The fragment ofprenex formulaeis defined by

A := P | ∀x.A | ∃x.A

In this definition, negation is restricted to atomic propositions. Generalised negation is

implemented using DeMorgan duality, by the meta-operator(−)⊥.

X⊥ ∆
= ¬X (F ∨G)⊥

∆
= F⊥∧G⊥ (∃x.F)⊥

∆
= ∀x.F⊥

(¬X)⊥
∆
= X (F ∧G)⊥

∆
= F⊥∨G⊥ (∀x.F)⊥

∆
= ∃x.F⊥

In addition, there are reserved characters L and R, used to indicate the left and right

branch of a conjunction.

Definition 5.4.1(Pre-proof forests). A pre-proof forestF is a tuple

(V,⊥, lab,E,→)

consisting of a finite set of vertices V with a distinguished element⊥, a labelling

function lab : V → FORM assigning first-order formulae to vertices, a set of labelled

edges

E ⊆ V ×
(

TERMS∪ FORM∪{L,R}
)

× V ,

and adependency relation(→) ⊆ E×E; with the edges forming a forest of trees:

〈v1, l1,w〉,〈v2, l2,w〉 ∈ E ⇒ v1 = v2, l1 = l2 (parents are unique)

〈v1, l1,v2〉, . . . ,〈vn, ln,vn+1〉 ∈ E (n≥ 1) ⇒ v1 6= vn+1 (acyclicity).

136 Chapter 5. Classical proof forests

The variable letters u,v, . . . ,z range over vertices, while e is used for edges. An

edge〈v, l,w〉 may be rendered〈v,w〉 when its labell is understood or irrelevant. Stan-

dard notions used are as follows:root nodes are those not the target of any edge; the

edgesof a vertex are those of which it is the source;leavesare vertices without edges;

and thechildrenof a node are the targets of its edges.

To ensure that nodes and edges a proof forest are well-configured, five types of ver-

tex are defined below, forming four disjoint subsets of V−{⊥} in a given forest: V(∀),

V(∃), V(P), and V(∧). Nodes in these subsets are said to be in alegal configuration;

in a proof forest all vertices will be required to be such. Forconsistency V(⊥) will

denote the set{⊥}.

• A propositionalvertex v∈V(P) is one that is a leaf, and is labelled with a propo-

sitional formula,lab(v) ∈ PROP.

P P

• A universalvertex v∈ V(∀) is one that is labelled with a universally quantified

prenex formula,lab(v) = ∀x.A ∈ PRENEX, and has exactly one edge〈v,a,w〉,

labelled with a variablea∈ VAR and with a target labelledlab(w) = A[a/x].

∀
a

∀x.A

◦ A[a/x]

• An existentialvertex v∈ V(∃) is one that is labelled with an existentially quan-

tified prenex formulalab(v) = ∃x.A ∈ PRENEX, and that has any number of

edges〈v, t,w〉 such that the labelt is a termt ∈ TERMS and the targetw labelled

lab(w) = A[t/x].

t1
∃

tn
∃x.A

. . .
◦A[t1/x] ◦ A[tn/x]

• A cut vertex v∈ V(∧) is one that is the target of an edge〈⊥,−〉v, is labelled

lab(v) = A∧A⊥ whereA∈ PRENEX is a prenex formula, and has precisely two

edges, one〈v,L,u〉 with lab(u) = A and one〈v,R,w〉 with lab(w) = A⊥.

∧
L R

A∧A⊥

◦A ◦ A⊥

5.4. Classical proof forests 137

• The special vertex⊥ is in a legal configuration if it is labelledlab(⊥) = ⊥, and

each of its arbitrarily many edges〈⊥,A,v〉 is labelled with a prenex formula

A∈ PRENEX and has a target cut vertex v∈ V(∧) labelledlab(v) = A∧A⊥.

A1

⊥
An

⊥
. . .

∧A1∧A⊥
1 ∧ An∧A⊥

n

Four types of edge are derived from the type of their source node: an edge e= 〈v,w〉

is auniversaledge e∈ E(∀) if v is a universal vertex v∈ V(∀); it is anexistentialedge

e∈ E(∃) if v ∈ V(∃); it is aconjunctionedge e∈ E(∧) if v ∈ V(∧); and it is acut edge

e∈ E(⊥) if v = ⊥ ∈ V(⊥) (note that there are no propositional edges). The namecut

will refer to both cut edges (E(⊥)) and cut vertices (V(∧)).

To define proof forests, only the notion of a dependency must still be formalised.

Definition 5.4.2 (Dependency). The dependency ordering≤ on a pre-proof forest is

the smallest preorder on nodes and edges (V∪E) such that

(→) ⊆ (≤) and v≤ 〈v,w〉 ≤ w .

The choice to have the dependency range over both edges and vertices was made for

technical convenience.

Definition 5.4.3(Proof forests). A pre-proof forest

F = (V,⊥, lab,E,→)

is aclassical proof forestfor a sequentΓ of prenex, first-order formulae if

1. all nodes in V are in legal configurations,

2. Γ is equal to the multiset of the labels of root nodes in V−{⊥};

3. for a universal edge〈v,a,w〉 ∈ E(∀) the following conditions hold:

• a is not free in any formula inΓ,

• a 6= b for any other universal edge〈x,b,y〉 ∈ E(∀),

• 〈v,a,w〉 → 〈x, l,y〉 if 〈x,y〉 ∈ E(∃)∪E(⊥) anda∈ fv(l);

4. if e1 → e2 then e1 ∈ E(∀) and e2 ∈ E(∃)∪E(⊥); and

5. the dependency(≤) is a partial order (it is antisymmetric).

138 Chapter 5. Classical proof forests

Condition 3 in the above definition governs theeigenvariablesrepresenting the

choices made by∀belard. Since∀belard’s moves are independent of each other, in

the sense that he may assign different values for each, eigenvariables are required to

be unique. An existential edge or cut edge whose witnessing term or cut-formula

contains an occurrence of an eigenvariablea represents a move by∃loise responding

to the move where∀belard choosesa; then∃loise’s move must depend on∀belard’s.

A dependency over a forest can be computed using the occurrence of eigenvariables

alone—this will be called theminimaldependency. The use of the explicit relation

(→) is a natural generalisation to allow larger dependencies, along the idea that a de-

pendency represents∃loise responding to∀belard’s moves. To enforce this natural

property, Condition 4 of Definition 5.4.3 requires that non-minimal dependencies re-

spect the pattern that(→) relates universal edges to existential edges and cut edges.

The minimal dependency on a proof forest, denoted≤M , is imposed by replacing(→)

with (→M), defined as follows:

〈v,a,w〉 → 〈x, l,y〉
∆

⇐⇒ 〈v,w〉 ∈ E(∀) ∧ 〈x,y〉 ∈ E(∃)∪E(⊥) ∧ a∈ fv(l) ,

It is easily observed from the definitions that the dependency ≤M is indeed minimal,

in the sense that given a forest F with an arbitrary relation(→), for all v,w ∈ V

v ≤M w ⇒ v ≤ w .

Let theminimisationof a proof forest F be the proof forest FM = (V,⊥, lab,E,→M).

Correctness

Next, the correctness condition for proof forests will be defined. First, a switching is a

function a choice for one of the two branches of each cut node.

Definition 5.4.4 (Switching). A switchingς in a forest F is a functionς : V(∧) →

{L,R}, indicating a set Eς ⊆ E(∧) that contains one branch of each conjunction:

Eς = {〈v, l,w〉 ∈ E(∧) | ς(v) 6= l} .

A vertex v isswitched offby a switchingς if e ≤ v for some e∈ Eς, andswitched on

otherwise.

The edges Eς are the branches∀belard doesnot choose; their dependent positions

become unreachable in the game, and are ignored in thevalueof the forest, the dis-

junction over the remaining propositional nodes.

5.4. Classical proof forests 139

Definition 5.4.5. The value val(F,ς) of a proof forest F under a switchingς is the

disjunction over the propositional nodes in F that are not switched off byς:

val(F,ς) =
_

{lab(v) | v ∈ V(P) ∧ ∀e∈ Eς. e� v} .

Correctness is then defined as follows.

Definition 5.4.6 (Correctness). A proof forest F iscorrect if for any switchingς the

valueval(F,ς) is a tautology.

A first convenient property is that correctness is preservedunder minimisation.

Proposition 5.4.7. If F is a correct proof forest, so isFM .

Proof. Any switchingς for FM is one for F, and ifς switches on a vertex v in F, it

switches on v in FM . Then if val(F,ς) is a tautology, so isval(FM ,ς); it follows that

FM is correct if F is.

Operations on proof forests

Finally, two natural operations on forests will be defined:substitutionwill be intro-

duced as a means of manipulating vertices and edges, and a notion of subforests, as

a suitable kind of subgraph of a forest, will be given. These will prove useful in the

definitions of translation with sequent proofs, in Section 5.5, and in the definition of

the reduction steps.

The standardsubstitutionoperation, as used on formulae and terms, will be applied

as a natural way of renaming nodes and variables throughout aforest. On a forest F, let

the substitution[β/α], whereα andβ are either both variables, both vertices, or both

edges, be defined as follows.

• α[β/α] = β: if the substitution encounters the variable, vertex, or edge α it

replaces it withβ; otherwise,

• S[β/α] = {X[β/α] | X ∈ S} (S is a set): if the substitution encounters a set,

such as V,lab, E, or(→), it is applied to all its elements; otherwise,

• (X1, . . . ,Xn)[β/α] = (X1[β/α], . . . ,Xn[β/α]): if the substitution encounters a

tuple, such as a pre-proof forest(V,⊥, lab,E,→), a pair(e,e′) in (→), or an

edge〈v, l ,w〉 while α and β are variables or vertices, it is applied pointwise;

otherwise,

140 Chapter 5. Classical proof forests

• γ[β/α] = γ: if the substitution encounters anything else, such as a vertex, vari-

able, or edge other thanα, or a formula whenα is a vertex or edge, it stops.

For example, this allows a substitution of one eigenvariable for another, say[b/a], to

be applied easily throughout a (pre-)proof forest. A secondexample, it provides an

easy notation for merging two vertices v and w in a forest F, bysimply applying the

substitution F[v/w]—or symmetrically by F[w/v], or by merging both with a fresh

vertex x, as in F[x/v][x/w].

To obtain a reasonable notion ofsubforestthe general graph-theoretical notion of

induced subgraph, which is the largest subgraph over a subset of vertices, is extended

to forests. Letf |X denote the restriction of the functionf : Y → Z to the subdomain

X ⊆Y, and letR|X be the relationR⊆Y×Y confined toX×X (whereX ⊆Y). Define:

F|X = (X∪⊥, ⊥, lab|X, E|X, →|(E|X)) ,

whereX ⊆ V. In this characterisation F|X is the largest subgraph of F over the domain

X ∪{⊥} ⊆ V; clearly, the axioms of pre-proof forests are preserved under this oper-

ation. If F|X is a proof forest, it is called asubforestof F. In particular, a subforest

contains the children of any universal and conjunction vertex it contains, which are

the vertices with a fixed number of edges—conceptually, sucha setX may be seen

as closed under∀belard’s moves. In addition, it must respect that eigenvariables do

not occur free at root nodes, part of condition 3 of Definition5.4.3. For example, if

X is closed under dependency then F|X is a subforest, and ifX is {v | x � v} with x

a cut node or existential node, then, too, F|X is a subforest. The subforest F|X where

X = {v | α ≤ v} for some vertex or edgeα is thedependent subforestof α.

5.5 Proof forests and the sequent calculus

In this section the translation between proof forests and sequent proofs, in both direc-

tions, will be discussed. The first direction to be formalised is the translation from

sequent proofs, in the calculus of Figure 5.4 plus cut, to proof forests. A sequent

proof Π, whose eigenvariables are assumed to be distinct,translatesto a proof forest

F, writtenJΠK = F, as follows.

• An instance of the tautology axiom,

⊢ P1, . . . ,Pn
Taut

5.5. Proof forests and the sequent calculus 141

translates to a proof forest F consisting solely of propositional vertices, with

V = {v1, . . . ,vn,⊥}, with lab(vi) = Pi , with E= ∅, and with(→) = ∅.

For the remainder, let the sequent proofΠ with conclusion sequentA1, . . . ,An translate

to a proof forest FA with root vertices{v1, . . . ,vn,⊥}, labelledlab(vi) = Ai. In all

cases below, for the resulting proof forest FB the dependency→B is chosen to be the

minimal one(→M). It should be noted that another natural choice would be to take

the maximal possible dependency consistent with the ordering of the inferences in the

sequent proof.

• The proofΠ followed by an application of the∀-right rule toA1 = B[a/x] trans-

lates to a proof forest FB, as follows.

Π...
⊢ B[a/x],A2, . . . ,An

⊢ ∀x.B, A2, . . . ,An
∀R

VB = VA ∪ {u} (u /∈ VA)

labB = labA ∪ {u 7→ ∀x.B}

EB = EA ∪ {〈u,a,v1〉}

The proof forest FB is illustrated below.

∀x.B ∀
a

u

B[a/x] A2 An
. . .

• The proofΠ followed by an application of the∃-right rule toA1 = B[t/x] trans-

lates to a proof forest FB as follows. (It is assumed that a suitable termt is

provided by the sequent proof also whenx is not free inB.)

Π...
⊢ B[t/x],A2, . . . ,An

⊢ ∃x.B, A2, . . . ,An
∃R

VB = VA ∪ {x} (x /∈ VA)

labB = labA ∪ {x 7→ ∃x.B}

EB = EA ∪ {〈x, t,y1〉}

The proof forest FB is illustrated below.

∃x.B ∃
t

x

B[t/x] A2 An
. . .

• The proofΠ followed by an application of the∃-weakening rule translates to a

proof forest FB, as follows.

142 Chapter 5. Classical proof forests

Π...
⊢ A1, . . . ,An

⊢ ∃x.B,A1, . . . ,An
W∃

VB = VA ∪ {x} (x /∈ VA)

labB = labA ∪ {x 7→ ∃x.B}

EB = EA

The proof forest FB is illustrated below.

∃x.B ∃
x

A1 An
. . .

• The proofΠ followed by an application of the∃-contraction rule toA1 andA2

translates to a proof forest FB, as follows.

Π...
⊢ ∃x.B,∃x.B,A3, . . . ,An

⊢ ∃x.B, A3, . . . ,An
C∃

VB = VA −{v1,v2} ∪ {x} (x /∈ VA)

labB = labA[x/v1,x/v2]

EB = EA[x/v1,x/v2]

The first picture below illustrates FA , the second FB.

∃
v1 ∃

v2

A3 An
.

∃
x

A3 An
.

For the translation of the cut-rule, let the sequent proofΠ translate to FA andΠ′ to FB,

whereΠ has conclusionsA1, . . . ,Ai,B andΠ′ conclusionsB⊥,Ak+1, . . . ,An. Assume

that the proof forests FA and FB have no vertices in common, except, conveniently, the

⊥-node: VA ∩VB = {⊥}. Apart from⊥, let the root nodes of FA be v1, . . . ,vk,x with

labA(vi) = Ai andlabA(x)= B, and let those of FB be y,vk+1, . . . ,vn with labB(y)= B⊥

andlabB(vi) = Ai.

• The combination of the proofsΠ andΠ′ by a cut onB andB⊥,

Π...
⊢ A1, . . . ,Ak,B

Π′
...

⊢ B⊥,Ak+1, . . . ,An

⊢ A1, . . . ,An
Cut

translates to a proof forest FC as follows.

VC = VA ∪ VB ∪ {c} (c /∈ VA ∪VB)

labC = labA ∪ labB ∪ {c 7→ (B∧B⊥)}

EC = EA ∪ EB ∪ {〈⊥,B,c〉,〈c,L,u〉,〈c,R,w〉}

5.5. Proof forests and the sequent calculus 143

The proof forest FC is illustrated below.

⊥
B
∧

c

A1 Ak B B⊥ Ak+1 An
.

Proposition 5.5.1. The translationJΠK of a sequent proofΠ with conclusionΓ is a

correct proof forest forΓ.

Proof. It is immediate from the translation thatJΠK is a pre-proof forest satisfying

conditions 1 (all vertices are in legal configurations) and 2(the labels of root nodes

form Γ). Conditions 3 and 5 follow from the eigenvariable condition on∀R-inferences,

which enforces that below a∀R-inference with eigenvariablea no formulaA contains

a freely. Thena /∈ fv(Γ), and any edge added in a translation step is always minimal in

the dependency: in the case of an existential edge〈u, t,v〉 becausea /∈ fv(t), in the case

of a cut edge〈⊥,B,c〉 becausea /∈ fv(B), for any eigenvariablea in Π. Condition 4

((→) ⊆ E(∀)× (E(∃)∪E(⊥))) follows because the minimal dependency is used.

ThenJΠK is a proof forest; it remains to show that it is also correct. It is immediate

that the translation of a tautology axiom is correct, and that translating an inference

other than a cut preserves correctness. For the translationof a cut, let the proofsΠ and

Π′, the forests FA, FB and FC, and the vertex c be as above. A switchingς′′ for FC is the

union of a switchingς for FA , a switchingς′ for FB, and either{c 7→ L} or {c 7→ R}.

If ς′′(c) = L, i.e. the tree forB from FA is switched on, all the propositional vertices

from FA under the switchingς are switched on in FC (plus, possibly, some proposi-

tional vertices from FB). Thenval(FA,ς) impliesval(FC,ς′′), and since the former is a

tautology, so is the latter. Symmetrically, ifς′′(c) = R thenval(FB,ς′) ⇒ val(FC,ς′′),
and the latter must be a tautology. Then translating a cut preserves correctness.

The translation of the cut immediately gives a notion of composition for proof

forests. One thing to note about cuts is that, in a sequent proof, the cut-formula of

an inner cut (one not at the root) may contain occurrences of eigenvariables of∀R-

inferences below it. When translated to a forest, these cutswill then be dependent on

moves by∀belard. However, otherwise there is nothing to distinguishthem from the

translation of a top-level cut. This is only natural: cut-formulae have no ancestors in a

sequent proof, and since cuts may often be permuted, which cut is actually at the root

is not always significant.

144 Chapter 5. Classical proof forests

Translating proof forests to sequent proofs

The translation in the other direction, from proof forests to sequent proofs, will first be

described for proof forests without cuts. Translation steps are mostly the direct inverse

to those in the translation from proofs to forests (see also Proposition 5.5.2 below). A

correct, cut-free proof forest Ftranslatesto a sequent proofΠ in the strict calculus of

Figure 5.4, written FZ⇒ Π, if Π can be obtained from F by the following inductive,

non-deterministic procedure.

• If F contains a universal root node v, with unique edge〈v,a,w〉 and label∀x.A,

then F|V−{v} is a correct proof forest, obtained from F by removing the vertex

v, the edge〈v,−〉w, and any dependencies〈v,−〉w→ e. Let the sequent trans-

lation of this proof forest be the proofΠ with conclusion sequentΓ,A. Then F

translates to the following proof.

Π...
⊢ Γ,A[a/x]
⊢ Γ, ∀x.A

∀R

The side-condition of the∀R rule, that the eigenvariablea may not occur free in

Γ, is satisfied by condition 3 of Definition 5.4.3, by whicha may not occur free

in the label of any root node of F.

• If F contains an existential root node v with no edges, labelled ∃x.A, let the

sequent translation of the correct proof forest F|V−{v} be the proofΠ with con-

clusion sequentΓ. Then F translates to the following proof.

Π...
⊢ Γ
⊢ Γ,∃x.A

W∃

• If F contains an existential root node v with exactly one edge 〈v, t,w〉, and this

edge is minimal in the dependency (e� 〈v,w〉 for all edges e), letlab(v) = ∃x.A

and let the sequent translation of the correct proof forest F|V−{v} be the proofΠ
with conclusion sequentΓ. Then F translates to the following proof.

Π...
⊢ Γ,A[t/x]
⊢ Γ, ∃x.A

∃R

5.5. Proof forests and the sequent calculus 145

• If F contains an existential root node v withn≥ 2 edges〈v, t1,w1〉, . . . ,〈v, tn,wn〉

and label∃x.A. Let F′ be the proof forest obtained from F by distributing the

edges of v over v and a fresh vertex v′, where both end up with at least one edge,

as follows. For somei (0 < i < n), replace the edges〈v, t1,w1〉, . . . ,〈v, ti,wi〉 by

edges〈v′, t1,w1〉, . . . ,〈v′, ti,wi〉, where v′ is a fresh vertex. If F′ translates to the

proofΠ with conclusion sequentΓ,∃x.A,∃x.A, then F translates to the following

proof.
Π...

⊢ Γ,∃x.A,∃x.A
⊢ Γ,∃x.A

C∃

• If the proof forest F consists purely of a collection of propositional vertices

v1, . . . ,vn labelledP1, . . . ,Pm, then F translates to the following proof.

⊢ P1, . . . ,Pn
Taut

Acyclicity of the dependency guarantees that to any proof forest at least one of the

above steps applies. In particular, if a proof forest has only existential root nodes with

a single edge, one of these must be minimal in the dependency.

The two translation procedures are almost inverse, but not quite. To ensure that the

translation from proof forests to proofs(Z⇒) terminates, it is prevented from generating

successive contractions and weakenings on the same existential formula, as illustrated

below.
⊢ Γ,∃x.A
⊢ Γ,∃x.A,∃x.A

W∃

⊢ Γ′,∃x.A,∃x.A
⊢ Γ′,∃x.A

C∃

Such constructions of successive contractions and weakenings may occur in the se-

quent calculus, but are generally considered bureaucracy.

Proposition 5.5.2.For a proofΠ in the strict calculus of Figure 5.4, without successive

contractions and weakenings,JΠK Z⇒ Π.

Proof. By inspection of the two translation procedures.

As highlighted in Section 5.3, the translations of the cut are not inverse to one

another. Firstly, how proof forests are decomposed is formalised in the lemma below.

146 Chapter 5. Classical proof forests

Lemma 5.5.3.Given a correct proof forestF with a cut edge〈⊥,c〉 such thate� 〈⊥,c〉

for all edgese, and with conjunction edges〈c,L,x〉 and 〈c,R,y〉, the subforestsF|X

andF|Y are correct proof forests, where X and Y are as follows.

X = {v ∈ V | y � v, c 6= v} Y = {v ∈ V | x � v, c 6= v}

Proof. It is easily seen that F|X and F|Y are proof forests. For correctness, for any

switchingς for F|X there is a switchingς∪{c 7→ L} for F that switches on the exact

same propositional vertices. Then F|X is correct if F is, and by symmetry so is F|Y.

Then to complete the description of the translation procedure, a correct proof forest

F with cuts translates to a sequent proofΠ in the calculus of Figure 5.4, written FZ⇒Π,

with the translation steps for cut-free proof forests above, plus the following one.

• If 〈⊥,A,c〉 is a cut edge in F that is minimal in the dependency (e� 〈⊥,c〉 for

all edges e), let〈c,L,x〉 and〈c,R,y〉 be the edges of the vertex c. Let the proof

forests F|X and F|Y, where

X = {v ∈ V | y � v, c 6= v} Y = {v ∈ V | x � v, c 6= v}

translate toΠ with conclusionΓ,A andΠ′ with conclusionΓ,A⊥ respectively.

Then F translates to the following proof.

Π...
⊢ Γ,A

Π′
...

⊢ A⊥,Γ
⊢ Γ,Γ Cut

⊢ Γ CR

First, it will be argued that the translation relation is never empty.

Proposition 5.5.4.If F is a correct proof forest then there is at least one sequent proof

Π such thatF Z⇒ Π.

Proof. Firstly, as was argued above, the acylicity of the dependency ensures that to

every forest at least one step applies. Secondly, the translation procedure must be well-

defined, in the sense that at each point the induction step is applied to a correct proof

forest. That induction steps are applied to proof forests follows by an easy inspection

of the translation steps, and that these are correct is immediate for all but the translation

of the cut, which follows by follows from Lemma 5.5.3. Finally, the procedure must

terminate. This follows from the observation that each translation step reduces the

following measure: the multiset of the number of edges of each vertex in the forest,

ordered by the standard multiset ordering.

5.5. Proof forests and the sequent calculus 147

Cuts, permutations, and dependencies

Some of the main differences between proof forests and sequent proofs arise from the

nature of the cut in both formalisms.

The translation step for cuts, from proof forests to sequentproofs, is essentially the

translation from the additive cut to the multiplicative cutin the sequent calculus. This

gives the formal side of the point made in Section 5.3, that cuts in proof forests are of

an additive nature, but that composition of proof forests uses them in a multiplicative

sense. The important technical difference between the additive cut in sequent proofs

and the cut in proof forests is that the sequent cut strictly separates the two proofs

it combines,Π andΠ′ in the translation step above, while the proof forests F|X and

F|Y may have a common, shared part. Also, the difference betweenthe correctness

condition of proof forests, in Definition 5.4.6, and the tautology axioms of sequent

calculus, disappears in the light of the translation procedure: the values of a proof

forest, under all its switchings, are precisely the tautology axioms of its sequent proof

translation.

In Figure 5.10 it is illustrated how proof forests factor outthe permutations in the

sequent calculus. The first of the examples pictured shows the permutation of two∀R-

inferences; both translate to the same forest, pictured below them. The second example

shows the permutation of an∃R-inference with a cut. In this way the translationJ−K,

from proofs in the strict calculus of Figure 5.4 plus cut to proof forests, factors out any

permutation that the sequent calculus admits.

The dependants of an edge in a proof forest then correspond, morally, to the notion

of a smallest subproof under permutations in the sequent calculus. However, in the

presence of cuts the correspondence is not precise: it occurs that inferences may not

permute, while their corresponding edges in the forest translation are nonetheless not

dependent. Such impermutabilities occur, for example, in the following way.

⊢ Γ,B,A ⊢ A⊥,B,Γ′

⊢ Γ,B,B,Γ′ Cut

⊢ Γ,B,Γ′ CR

In the above example, the cut and the contraction cannot be permuted, because the two

contracted formulae end up each in a different subproof. In proof forests, there is no

corresponding dependency. This has the consequence that ina proof forest translated

from a sequent proof, a the dependants of an edge may be strictly smaller than the

minimal subproof of the inference it is a translation of.

148 Chapter 5. Classical proof forests

⊢ A[a/x],B[b/x],Γ
⊢ A[a/x], ∀y.B, Γ

∀R

⊢ ∀x.A, ∀y.B, Γ∀R

⊢ A[a/x],B[b/x],Γ
⊢ ∀x.A, B[b/x],Γ

∀R

⊢ ∀x.A, ∀y.B, Γ∀R

∀x.A ∀
a

∀
b

∀y.B

A[a/x] B[b/y]
Γ

⊢ Γ,A

⊢ A⊥,B[t/x],Γ′

⊢ A⊥, ∃x.B, Γ′
∃R

⊢ Γ,∃x.B,Γ′ Cut

⊢ Γ,A ⊢ A⊥,B[t/x],Γ′

⊢ Γ,B[t/x],Γ′ Cut

⊢ Γ, ∃x.B, Γ′ ∃R

∃
t

∃x.B
A

Γ
A A⊥ B[t/x]

Γ′

Figure 5.10: Permutations are factored out in proof forests

5.5. Proof forests and the sequent calculus 149

To summarise, in the absence of the cut, proof forests abstract over the linear order

of inferences in a sequent proof, the translations back and forth are essentially inverse

to one another, and dependency corresponds exactly to non-permutability. The addition

of cuts increases the differences between proof forests andsequent proofs: translations

are not inverse, and not all causes of non-permutability arecaptured in the dependency.

Chapter 6

Cut-elimination in classical proof

forests

6.1 Introduction

In this chapter, cut-elimination for classical proof forests will be discussed. The cut-

reduction steps for classical proof forests, presented in Section 6.2, will be based on a

natural notion of composition of strategies, and correspond closely to reduction steps

in the sequent calculus. However, these reduction steps turn out to be far from well-

behaved. A first hint of this, in Section 6.2, is the existenceof cuts configured in such a

way that they cannot be reduced; such cuts will be calledunsafe. Then in Section 6.3,

a problematic proof forest will be presented, dubbed theuniversal counterexample.

Though it may arise in the translation of a sequent proof, or by composition, it has

infinite reduction paths, and reducing it introduces unsafecuts. (That it is also non-

confluent is shown in Section 7.4.)

To obtain weak normalisation, in Section 6.4 two modifications to the reduction

relation are proposed. The problem of unsafe cuts is addressed by a simple operation

calledpruning, which may be added to rewrite steps. A further modification groups

together the reduction steps on the same cut. The modified reduction relation thus

obtained is then shown to be weakly normalising, and conjectured to be strongly nor-

malising.

151

152 Chapter 6. Cut-elimination in classical proof forests

6.2 Reductions

The cut-reduction steps in proof forests will come in four kinds: for propositional cuts,

and for first-order cuts with zero, with one, and with more existential branches. The

reduction steps are natural from a game-theoretic perspective, and similar in spirit to

those in the sequent calculus, although of course there willbe technical differences.

However, it will turn out that reduction steps are not naturally well-behaved, and that

certain cuts cannot be reduced. The four reduction steps will first be introduced infor-

mally, omitting in part how the dependency is treated, but with enough detail to show

where the problems arise.

I. Propositional reduction steps Firstly, a propositional cut is reduced in apropo-

sitional reduction step, which simply removes the cut from the proof forest. In the

illustration below, the asterisk on the right indicates that nothing remains of the cut

itself; the unaffected parts of the proof forest are not displayed.

P

P P
∗

The corresponding reduction in the sequent calculus, on a cut with a propositional

cut-formula, is illustrated below.

⊢ Γ,P
Taut

⊢ P⊥,Γ′
Taut

⊢ Γ,Γ′ Cut ⇒ ⊢ Γ,Γ′Taut

After permuting the cut upwards until on both sides only a tautology axiom remains

above it, the cut is removed, and the two tautology axioms replaced by a single one.

II. Disposal steps Next, a cut on a first-order formula with no existential branches is

reduced in adisposal step, pictured below.

Qx.B

∃ ∀
≤ Π′

◦

∗

The reduction step removes the cut plus all its dependants; in the above illustration the

dependants of the universal edge of the cut are represented as Π′. This is similar to

what happens in the corresponding reduction step in the sequent calculus, for a cut on

6.2. Reductions 153

a weakened formula, depicted below.

Π...
⊢ Γ
⊢ Γ,A

WR

Π′
...

⊢ A⊥,Γ′

⊢ Γ,Γ′ Cut

⇒

Π...
⊢ Γ
⊢ Γ,Γ′WR

The reduction step removes the subproofΠ′, on the opposite side of the weakening.

The other formulae in the removed subproof, depicted byΓ′, are introduced by weak-

enings in the result. A disposal step may remove individual branches of an existential

node, while leaving other branches and the node itself untouched. That this can be seen

as similar to introducing weakenings becomes explicit whena disposal step removes

all the remaining branches of an existential node, leaving it as a leaf.

III. Logical reduction steps The reduction step for a cut with exactly one existential

branch, alogical reduction step, implements the external interpretation of the cut, as

two strategies playing against each other, described in Section 5.3. In this interpreta-

tion ∀belard’s choice on one side of the cut mirrors∃loise’s move on the other side.

The reduction step, depicted below, makes this identification at a syntactic level, by

substituting all occurrences of∀belard’s eigenvariable with∃loise’s witnessing term.

∆
Qx.B

∃
t

∀
a∆′ Θ

◦ ◦

∆,∆′

B[t/x]
Θ

◦ ◦

[t/a]

In the diagram, the dependency is adjusted according to the global substitution[t/a],

while preserving existing dependencies. For the dependencies from∆′: any eigenvari-

ableb that is free int will, in the result, be free in the new cut-formulaB[t/x] and in

any witnessing term or cut-formula wherea was free before. For those from∆: any

eigenvariable free inQx.B will be free inB[t/x], and the dependencies from∆ to Θ are

preserved. The corresponding reduction in sequent calculus is similar.

Π...
⊢ Γ,B[t/x]
⊢ Γ,∃x.B

∃R

Π′
...

⊢ Γ′,B⊥[a/x]

⊢ Γ′,∀x.B⊥
∀R

⊢ Γ,Γ′ Cut

⇒

Π...
⊢ Γ,B[t/x]

Π′[t/a]
...

⊢ Γ′,B⊥[t/x]

⊢ Γ,Γ′ Cut

The reduction step applies to a cut on first-order formulae introduced by logical rules

(∀R and∃R). After permuting the two inference rules to be immediately above the cut,

154 Chapter 6. Cut-elimination in classical proof forests

the two logical inferences are removed, the cut is replaced by one on the premises of

the logical rules, and the substitution[t/a] is applied to all (relevant) occurrences of

the eigenvariablea.

IV. Structural reduction steps In the game interpretation, for a cut with two or

more existential branches there are several moves by∃loise, and just one for∀belard.

To allow these to be identified, the natural approach is to make copies of∀belard’s

move, until there is one for each of∃loise’s moves. Along with∀belard’s move, the

minimum that must be duplicated is its dependants: these arethe moves that respond,

directly or indirectly, to∀belard’s move, and for each different choice by∀belard a

different response must be permitted. Astructural reduction step, on a first-order cut

with two or more existential branches, is then as follows.

∆

t
∃ ∀

a. . . ≤ Π
◦ ◦ ◦ ◦

∆

∃ ∀
a

∃
t

∀
a′. . . ≤ Π ≤ Π′

◦ ◦ ◦ ◦ ◦

The reduction step duplicates the cut and all its dependantson the universal side, repre-

sented byΠ, and moves one existential branch, the one assigning the witnesst above,

from the original cut to the duplicated one. The eigenvariables of the duplicated de-

pendantsΠ′ are renamed, in the way thata′ is. The duplicated cut is dependent on the

same edges and vertices that the original was, and likewise dependencies towards the

existential branches of the cut, including that assigningt, are preserved.

A corresponding proof transformation in the sequent calculus, for a cut on a con-

tracted formula, is depicted below.

Θ...
⊢ Γ,A,A
⊢ Γ,A

CR

Π...
⊢ A⊥,Γ′

⊢ Γ,Γ′ Cut

⇒

Θ...
⊢ Γ,A,A

Π...
⊢ A⊥,Γ′

⊢ Γ,Γ′,A
Cut

Π...
⊢ A⊥,Γ′

⊢ Γ,Γ′,Γ′ Cut

⊢ Γ,Γ′ CR

The subproofΠ, on the other side of the cut than the contraction, is duplicated, and to

remove the contraction each of its premisesA are connected to one of the subproofsΠ
with a cut. The contractions onΓ′ correspond, in proof forests, to the duplication of the

edges on an existential node, but not the node itself. It should be noted that the above

sequent proof transformation is not strongly normalising when both cut-formulae are

contracted—see, e.g., [28, Section 3].

6.2. Reductions 155

The reduction steps follow naturally from the interpretation of the cut as strategies

playing against each other: witnesses and eigenvariables on either side of a cut are

identified, and when backtracking occurs on one side, the other strategy is modified to

respond, uniformly, to each witness it is presented with. The reduction steps are also

closely related to their counterparts in sequent calculus,with the removal and duplica-

tion of dependants corresponding to removal and duplication of (smallest) subproofs.

However, there is one caveat, discussed at the end of Section5.5: in the presence of

cuts, the correlation between a set of dependants and a smallest subproof is imprecise,

and the former may be strictly smaller than the latter. As a consequence, the reduction

behaviour of both formalisms will be significantly different—this will be addressed in

Section 6.3.

Safety

With logical and structural reduction steps, problems occur when there are dependen-

cies between the universal and the existential edges of a cut. Below on the left, if the

unique existential edge of a cut depends on the universal edge, reducing the cut with a

logical reduction step creates a cycle in the dependency.

∃

∀ ∃ ∀

◦ ◦ ◦

∃

∀

◦

∃
t(a)

∀
a

◦ ◦
?

Above right, the eigenvariablea of the universal edge of a cut occurs free in the witness

t(a) of the existential edge. Semantically, reducing this cut would require∀belard’s

witnessa and∃loise’s witnesst(a) to be identified. Resolving the cut with a substitu-

tion [t(a)/a], which leaves free occurrences of the variablea in the substituted terms

t(a), is clearly undesirable.

A structural reduction step on a cut with a dependency between its universal edge

and an existential edge is also problematic. From the informal description of the re-

duction step it is not immediately obvious how the differentelements, duplicating the

cut and moving one existential edge to the duplicate, shouldbe applied. The illustra-

tion in Figure 6.1 explores the three options that conform tothe following, reasonable,

constraints: the dependent edge should be duplicated, withone copy dependent on

the original universal edge, and the other on the duplicatededge; and in the result the

original cut and its copy should each have at least one existential edge. In the two up-

per central diagrams, the cut that is being reduced, theprimarycut, is indicated by the

black token. The first two possible reduction steps picturedabove return, in one logical

156 Chapter 6. Cut-elimination in classical proof forests

∃ ∀

◦ ◦ ◦

•
∃ ∀ ∃ ∀

◦ ◦ ◦ ◦ ◦

•
∃ ∀ ∃ ∀

◦ ◦ ◦ ◦ ◦

∃ ∀ ∃ ∀

◦ ◦ ◦ ◦ ◦

∃ ∀

◦ ◦ ◦

Figure 6.1: Structural steps on unsafe cuts create reduction cycles

reduction step, to the original configuration, creating a cyclic reduction path. The third

possibility leaves the original cut intact, while its duplication creates a problematic

logical cut.

As the above illustrates, the configuration where an existential edge of a cut de-

pends on the universal edge of that same cut creates serious problems for cut reduction.

It is also an unnatural configuration: it does not arise from composition—and hence

not from the translation of sequent proofs—since there willbe no dependencies be-

tween the two proof forests that are composed. This observation provides a reasonable

constraint to impose on cut reduction.

Definition 6.2.1 (Safety). A cut c issafeif its dependants on both sides are disjoint.

That is, let c have the edges〈c,L,x〉 and〈c,R,y〉; then c is safe if

¬∃v ∈ V. x ≤ v ∧ y ≤ v .

A proof forest issafeif all its cuts are safe.

The reduction steps, as they are defined below, will apply only to safe cuts. The restric-

tion thus imposed on reduction is intentionally weak. A stronger criterion would be to

confine reduction steps to forests that are the translation of a sequent proof—ideas in

this direction are explored in Chapter 7. However, one aim ofthe present approach is

to investigate proof reductions in a general setting, independent of those in the sequent

calculus, and for this reason the present, weaker constraint is employed.

6.2. Reductions 157

Formal definitions

Before defining the reduction steps formally, it will be explained how the duplication

in structural reduction steps is implemented. Briefly, duplication proceeds as follows:

the vertices in the part in a proof forest that is to be duplicated are first renamed using

a substitution; then the renamed forest and the original forest are combined by taking

their union, which is defined pointwise over their components.

First, let theunionof two pre-proof forest be given as follows.

FA ∪FB
∆
=

(

VA ∪VB, ⊥A, labA ∪ labB, EA ∪EB, (→A)∪ (→B)
)

[⊥A/⊥B]

The special⊥-vertex in the union is obtained by merging the⊥-vertices of the com-

ponent forests by a substitution. Then Figure 6.2 illustrates how substitution and union

are used to implement duplication. To copy the dependants ofthe node v in the forest

FA (these are the vertices v, y, and z), first the forest FB is created by applying the

substitutions[v′/v], [y′/y], and[z′/z]. In addition, the eigenvariableb is renamed to

b′, because it belongs to an edge that is duplicated. Then FA and FB are combined by

taking their union.

FA =
∀

u

a
∃

x

t
∀

v

b

◦ w ◦ y ◦ z

FB = FA [v′/v][y′/y][z′/z][b′/b] =
∀

u

a
∃

x

t[b′/b]

∀
v′

b′

◦ w ◦ y′ ◦ z′

FA ∪ FB =
∀

u

a t

∃
x

t[b′/b]

∀
v

b

∀
v′

b′

◦w ◦y ◦y′ ◦ z ◦ z′

Figure 6.2: Duplication (of the node v and its dependants)

The formal definitions of the reduction steps, below, are accompanied by further

illustrations.

Definition 6.2.2 (I . Propositional reduction steps). Let F be a proof forest with a cut

〈⊥,P,c〉, whereP is a propositional formula, and edges〈c,L,v〉 and〈c,R,w〉. Then

F
c

F|X with apropositional reduction step, whereX = V −{c,v,w}.

158 Chapter 6. Cut-elimination in classical proof forests

⊥
P
∧

c

P
v

P
w

⊥

Definition 6.2.3(II . Disposal reduction steps). Let F be a proof forest with a cut〈⊥,c〉

and edges〈c,u〉 and〈c,x〉, where the vertex x is an existential leaf. Then F
c

F|X with

adisposal reduction step, whereX = {v ∈ V | c � v}.

⊥
Qx.B

∧
c

∃
x

∀
u

≤ Π
◦

⊥

In the illustration above, also the cut-formula isQx.B indicated, whereQ is a quantifier,

and the dependantsΠ of the universal edge of the cut. What is removed in the reduction

step is the vertices c, x, u, and those inΠ, plus their edges and dependencies.

Definition 6.2.4(III . Logical reduction steps). Let FA be a proof forest with a safe cut

〈⊥,Qx.B,c〉 whereQ ∈ {∀,∃}, edges〈c,U,u〉 and〈c,X,x〉 where{U,X} = {L,R},

and edges〈u,a,w〉 and〈x, t,y〉, where x is an existential vertex with exactly one edge,

andu�A y. Then FA
c

FB with a logical reduction step, where FB is defined as follows.

• VB = VA −{u,x}

• labB(c) = B∧B⊥[t/x]; otherwiselabB(v) = labA(v)[t/a]

• EB is obtained from EA by replacing the five edges

〈⊥,Qx.B,c〉 〈c,U,u〉 〈c,X,x〉 〈u,a,w〉 〈x, t,y〉

with the three edges

〈⊥,B[t/x],c〉 〈c,U,w〉 〈c,X,y〉

and replacing any other edge〈v1,Y,v2〉 with 〈v1,Y[t/a],v2〉

• The relation(→B) is the smallest relation on EB such that

e1 →B e2 if e1 →A e2, or

e1 →A 〈⊥,c〉 and〈u,w〉 →A e2, or

e1 →A 〈x,y〉 and〈u,w〉 →A e2, or

e1 →A 〈x,y〉 and e2 = 〈⊥,c〉

6.2. Reductions 159

⊥
Qx.B∆

∧
c

∃
x

t
∀

u

a∆′ Θ
◦ y ◦w

⊥
B[t/x]∆,∆′ Θ

∧
c

◦ y ◦ w

[t/a]

Definition 6.2.5 (IV . Structural reduction steps). Let FA be a proof forest with a safe

cut 〈⊥,c〉, edges〈c,u〉 and〈c,x〉, and existential edges〈x,y〉 and〈x,y1〉, . . . ,〈x,yn〉.

Then FA
c,y

FB with a structural reduction step, where FB is defined as follows. Let

X be following set of vertices, and letρ andσ be the following substitution maps on

nodes and (eigen)variables, respectively (where< is the strict version of≤).

X = {v ∈ V | x 6<A v}

ρ = {v 7→ v′ | v ∈ {c,x} ∨ u≤A v}

σ = {a 7→ a′ | 〈v,a,w〉 ∈ EA(∀) ∧ u≤A 〈v,w〉}

where all v′ anda′ are fresh for FA (and w.r.t. each other). Then FB is as follows:

FB =
(

FA ∪ FA|X[ρ][σ]
)

[〈x′,y〉/〈x,y〉] .

⊥
C∆
∧

c

t
∃

x
∀

u

∆′ . . . ≤ Π
◦ y ◦ y1 ◦yn ◦

⊥
C
∧

c

∃
x

∀
u

∆ . . . ≤ Π
◦ y1 ◦yn ◦

⊥
C
∧

c′

∃
x′

t
∀

u′

∆′ ≤ Π′

◦ y ◦

Technically, a structural step proceeds as follows. The dependants of the existential

side, of the vertex x, are removed, and the cut and its universal side are renamed,

creating FA|X[ρ][σ]. The effect of taking the union of this proof forest with the original

FA is to create a duplicate c′ of the cut c, but without any existential branches. Then the

substitution[〈x′,y〉/〈x,y〉] moves the edge〈x,y〉 from the original cut to the duplicate.

160 Chapter 6. Cut-elimination in classical proof forests

The design of the reduction step depends on the assumption that c is safe. Other-

wise, if some dependant of u depends also on x, it will be deleted in FA |X. Then the

subforest of u′ is strictly smaller than that of u, while it should be an exactduplicate.

For a structural reduction step FA
c,y

FB the superscript y indicates theprimary edge

of the reduction step, and may be omitted. The superscript c in any reduction step

FA
c

FB, indicating theprimary cut, may likewise be omitted.

Basic properties

The first main properties of reductions to be established arethat they preserve the

axioms of proof forests, in Definition 5.4.3, and that they preserve correctness, Defini-

tion 5.4.6. For propositional and disposal steps, which only remove nodes and edges,

this is mostly straightforward. On the other hand, logical and structural reduction steps

involve adding and restructuring edges and dependencies, which makes in particular

showing that they preserve the antisymmetry of the dependency ordering non-trivial.

To provide a technical basis, the following two lemmata describe how logical and

structural reduction steps modify the dependency(≤) on a forest.

Lemma 6.2.6. In a logical reduction stepFA
c

FB, wherec,u,w,x,y are as in Defini-

tion 6.2.4, for allv1,v2 ∈ VB,

v1 ≤A v2 ⇒ v1 ≤B v2

or v1 ∈ {⊥,c} ∧ ∃e. 〈u,w〉 →A e≤A v2

v1 ≤B v2 ⇒ v1 ≤A v2

or v1 ≤A 〈x,y〉 ∧ 〈u,w〉 ≤A v2

or v1 ≤A 〈x,y〉 ∧ v2 = c .

Proof. For convenience, an illustration of the reduction step is reproduced below.

⊥
Qx.B∆

∧
c

∃
x

t
∀

u

a∆′ Θ
◦ y ◦w

⊥
B[t/x]∆,∆′ Θ

∧
c

◦ y ◦ w

[t/a]

A dependency v1 ≤ vn arises from a sequence v1, . . . ,vn where for eachi ≤ n either

〈vi−1,vi〉 ∈ E or 〈vi−1,z〉 → 〈z′,vi〉

6.2. Reductions 161

for some vertices z, z′—note that no steps of the form〈vi−1,z〉→ e→ 〈z′ ,vi〉 or similar

are possible, since the same edge is never both a source and target in(→).

For the first statement, let v1 ≤A vn. Firstly, if no vi is y or u, then also no vi is

x, since vn 6= x because vn ∈ VB and otherwise vi+1 would have to be y. Then any

edge〈vi−1,vi〉 ∈ EA has a counterpart〈vi−1,vi〉 ∈ EB, and if〈vi−1,z〉 →A 〈z′ ,vi〉 then

also〈vi−1,z〉 →B 〈z′ ,vi〉. Next, if some vi is u, then vi−1 = c and either vi+1 = w or

〈u,w〉 →A 〈z′ ,vi+1〉. In the former case,〈c,w〉 = 〈vi−1,vi+1〉 ∈ EB. In the latter case,

if v1 ∈ {⊥,c} the second disjunct of the statement applies; otherwise thesequence

v1, . . . ,vn contains a section vi−2, . . . ,vi+1 where

〈vi−2,z〉 →A 〈⊥,c〉, 〈c,u〉, 〈u,w〉 →A 〈z′ ,vi+1〉 ,

in which case〈vi−1,z〉 →B 〈z′,vi+1〉. Finally, if some vi is y, then either vi−1 = x and

vi−2 = c, in which case〈c,y〉 = 〈vi−2,vi〉 ∈ EB, or 〈vi−1,z〉 →A 〈x,y〉, in which case

〈vi−1,z〉 →B 〈⊥,c〉 and〈c,y〉 ∈ EB.

For the second statement, let v1 ≤B vn. Firstly, for each edge〈vi−1,vi〉 in EB there

is also an edge〈vi−1,vi〉 in EA, except for〈c,y〉 and〈c,w〉, which have corresponding

paths〈c,x〉, 〈x,y〉 and〈c,u〉, 〈u,w〉. Next, for 〈vi−1,z〉 →B 〈z′ ,vi〉 Definition 6.2.4

gives four options.

1. 〈vi−1,z〉 →A 〈z′ ,vi〉

2. 〈vi−1,z〉 →A 〈⊥,c〉 and〈u,w〉 →A 〈z′,vi〉

Then vi−1 ≤A vi because also〈c,u〉 ∈ EA.

3. 〈vi−1,z〉 →A 〈x,y〉 and〈u,w〉 →A 〈z′,vi〉

Then vi−1 ≤A 〈x,y〉 and〈u,w〉 ≤A vi , and the second disjunct of the statement

applies.

4. 〈vi−1,z〉 →A 〈x,y〉 and〈z′,vi〉 = 〈⊥,c〉

Unless vn = c, in which case the third disjunct of the statement applies,vi+1

is either y or w. In the former case it is immediate that vi−1 ≤A y; in the lat-

ter the second disjunct of the statement applies, since bothvi−1 →A 〈x,y〉 and

〈u,w〉 ≤A w = vi+1.

(Note that the last two cases cannot apply for more than onei ≤ n without there being

a cycle in(≤A) or c being unsafe.)

For structural reduction steps, there is the following lemma.

162 Chapter 6. Cut-elimination in classical proof forests

Lemma 6.2.7. In a structural reduction stepFA
c

FB, where the nodesc,u,x,yi and

the renaming conventionv 7→ v′ are as in Definition 6.2.5, for allv,w ∈ VA,

v ≤B w ⇒ v ≤A w

v ≤B w′ ⇒ v ≤A w ∧ u �A v

v′ ≤B w ⇒ v ≤A w ∧ v ∈ {c,x} ∧ yi ≤A w

v′ ≤B w′ ⇒ v ≤A w

Proof. For convenience, an illustration of the reduction step is reproduced below.

⊥
C∆
∧

c

t
∃

x
∀

u

∆′ . . . ≤ Π
◦ y ◦ y1 ◦yn ◦

⊥
C
∧

c

∃
x

∀
u

∆ . . . ≤ Π
◦ y1 ◦yn ◦

⊥
C
∧

c′

∃
x′

t
∀

u′

∆′ ≤ Π′

◦ y ◦

It is immediate from the way duplication is implemented thatthe dependencies

v ≤B w v ≤B w′ v′ ≤B w v′ ≤B w′

are mirrored by a dependency v≤A w. For the remaining parts of the statement, if

u ≤A v ≤A w then v≤B w and v′ ≤B w′, but not v′ ≤B w or v ≤B w′. Firstly, this

means that if v≤B w′ then v cannot be a dependant of u in FA . Secondly, if v′ ≤B w

then, since neither v nor w can depend on u in FA but v is still a duplicated vertex, v

must be c or x; moreover, the dependants of c′ and x′ in FB include, besides c′ and x′,

only those of yi and those of u′; then w must be among the former.

With the description of how dependencies are modified by logical and structural

reduction steps complete, it can now be shown that reductions preserve the axioms of

proof forests.

Proposition 6.2.8. If FA
c

FB thenFB is a proof forest.

Proof. For all four kinds of reduction step, FB is straightforwardly seen to obey most

conditions of Definition 5.4.3. The following details are treated explicitly.

1. All nodes in V are in legal configurations.

6.2. Reductions 163

The requirements in of legal configurations concerning labels and witnesses are

easily verified. The other requirements fix the arity (the number of edges) of universal

nodes(V(∀)) and cut nodes(V(∧)). Removal and duplication in disposal and struc-

tural steps (Definitions 6.2.3 and 6.2.5) affects only the arity of existential positions

and⊥, since by condition 4 only edges in E(∃) or E(⊥) are targets in(→); other

edges are removed or duplicated only along with their sourcenodes.

3. For a universal edge〈v,a,w〉 ∈ E(∀) the following conditions hold:

• a is not free in any formula inΓ,

• a 6= b for any other universal edge〈x,b,y〉 ∈ E(∀),

• 〈v,a,w〉 → 〈x, l,y〉 if 〈x,y〉 ∈ E(∃)∪E(⊥) anda∈ fv(l).

In a logical step (Definition 6.2.4) the reorganisation of the dependency traces the

substitution[t/a], as follows. Let the edges〈x, t,y〉 and 〈u,a,w〉 be as in Defini-

tion 6.2.4. If the eigenvariable of an edge e1 ∈ EA(∀) is free int then e1 →A 〈x,y〉;

for an edge e2 wheret is to be substituted either e2 = 〈⊥,c〉 or 〈u,w〉→A e2, and after

reduction e1 →B e2. For a structural step the duplication of eigenvariables, along with

vertices, ensures that their uniqueness is preserved, and that the dependency relation

(→B) traces their occurrences if(→A) does.

5. The dependency(≤) is a partial order.

For a structural step it is immediate from Lemma 6.2.7 that(≤B) is antisymmetric

if (≤A) is. For a logical step, let v≤B v′ and v′ ≤B v for some v6= v′. Lemma 6.2.6

gives three cases—(i), (ii), and (iii)—for v≤B v′ and three—(a), (b), and (c)—for

v′ ≤B v.

(i) v ≤A v′ (ii) v ≤A 〈x,y〉 ∧ 〈u,w〉 ≤A v′ (iii) v ≤A 〈x,y〉 ∧ v′ = c

(a) v′ ≤A v (b) v′ ≤A 〈x,y〉 ∧ 〈u,w〉 ≤A v (c) v′ ≤A 〈x,y〉 ∧ v = c

In case (i) and (a) hold,≤A is antisymmetric; if (i) and (b) hold then〈u,w〉 ≤A v′ ≤A

v ≤A 〈x,y〉, which means that the cut c is unsafe in FA, a contradiction. If (i) and

(c) hold then v′ 6= c since v′ 6= v, and v′ /∈ {x,u} since v′ ∈ VB. Then since c≤A v′

also y≤A v′ or w≤A v′, giving the inequalities below, respectively; the former breaks

antisymmetry of(≤A), while the latter makes c unsafe in FA.

y ≤A v′ ≤A 〈x,y〉 ≤A y 〈u,w〉 ≤A w ≤A v′ ≤A 〈x,y〉

164 Chapter 6. Cut-elimination in classical proof forests

Next, the case (ii–a) is symmetric to that of (i–b), and if (ii) and (b) hold then〈u,w〉≤A

v≤A 〈x,y〉, and c is unsafe. Similarly, in the case (ii–c)〈u,w〉≤A v′≤A 〈x,y〉. Finally,

the cases (iii–a) and (iii–b) are symmetric to (i–c) and (ii–c) respectively, and (iii–c)

requires v= c = v′, a contradiction.

Proposition 6.2.9. If FA
c

FB andFA is correct, then so isFB.

Proof. Let 〈⊥,C,c〉 be the primary cut and letς be a switching for FB. The four types

of reduction step will be addressed in turn. For each of the three first-order reduction

steps a switchingς′ for FA will be given such that ifval(FA,ς′) is a tautology so is

val(FB,ς).

I. Propositional steps If FA
c

FB is a propositional step (Definition 6.2.2), there

are two switchings for FA, with the following values of the switched forests:

ς′ = ς∪{c 7→ L}; val(FA,ς′) = val(FB,ς)∨C

ς′′ = ς∪{c 7→ R}; val(FA,ς′′) = val(FB,ς)∨C⊥

If both values are tautologies, so isval(FB,ς).

II. Disposal steps If FA
c

FB is a disposal step (Definition 6.2.2), letς′ agree with

ς on all cuts in FB, and switch off the universal side of the primary cut c, as illustrated

below, where the dependants of〈c,u〉 are greyed out.

⊥
Qx.B

∧
c

∃
x

∀
u

≤ ∆

Formally, chooseς′ = ς∪ {c 7→ X}, so that〈c,u〉 ∈ E; then a propositional vertex

v ∈ VA(P) is switched on in Fς
′

A if and only if it is switched on in FςB. It follows

immediately thatval(FA,ς′) is a tautology if and only ifval(FB,ς) is.

III. Logical steps If FA
c

FB is a logical reduction step, let the five edges

〈⊥,Qx.B,c〉 〈c,U,u〉 〈c,X,x〉 〈u,a,w〉 〈x, t,y〉

be as in Definition 6.2.4. There are two cases to consider.

6.2. Reductions 165

1. Suppose the cut c is not switched off byς, i.e. no e≤B c is in Eς
B. Let ς′ = ς,

let v ∈ VA be a propositional vertex, and assume that e≤B v for some e∈ Eς
B.

For e≤B v Lemma 6.2.6 gives three options; however, two are ruled outbecause

e≤A 〈x,y〉 would imply e≤B c, contrary to assumption. The remaining option

gives e≤A v; since is immediate that also e∈ Eς′
A , it then follows thatval(FB,ς)

is a tautology ifval(FA,ς′) is.

2. Suppose c is switched off by some e0 ≤B c in Eς
B. Again let v∈ VA be a propo-

sitional vertex and assume that e≤B v for some e∈ Eς
B, but this time letς′ agree

with ς on all cuts except c, where it switches on the existential branch,

ς′ = {v 7→ ς(v) | v ∈ VA(∧)∧v 6= c} ∪ {c 7→ X} ,

so that〈c,u〉 ∈ Eς′
A . The idea of the proof is that also in Fς′

A all propositional

nodes depending on c are switched off, since either e0 ≤A 〈⊥,c〉 or e0 ≤A 〈x,y〉,

the latter of which is illustrated below.

⊥

Γ
∧

c

∃
x

∀
u

Γ′ Θ
◦ y ◦ w

⊥

Γ,Γ′ Θ
∧

c

◦ y ◦w

It will be shown that v depends on e while e∈ Eς′
A , or that v depends on e0 or

〈c,u〉, both of which are in Eς
′

A . It then follows that v is switched off in Fς
′

A , and

since VA(P) = VB(P), thatval(FB,ς) is a tautology ifval(FA,ς′) is. Firstly, for

e≤B v Lemma 6.2.6 gives three options, one of which is ruled out because v is

propositional, so that v6= c. This means that either

e≤A v or e≤A 〈x,y〉 and〈u,w〉 ≤A v .

In the latter case,〈c,u〉 ≤A v; also the former is immediate if e∈ Eς′
A , which is

the case unless e= 〈c,x〉, sinceς′ andς agree on all cuts other than c. Then

since v6= x (v is propositional) and〈c,x〉 is not a source in(→A), it follows that

y ≤A v. For e0 ≤B c, Lemma 6.2.6 gives three options, but since〈u,w〉 ≤A c

would violate the antisymmetry of(≤A) only two remain:

e0 ≤A c or e0 ≤A 〈x,y〉 .

In both cases, e0 ≤A y ≤A v, and v is switched off in Fς
′

A .

166 Chapter 6. Cut-elimination in classical proof forests

IV. Structural steps If FA
c,y

FB is a structural reduction step, let the existential

edges〈x,y〉 and〈x,y1〉, . . . ,〈x,yn〉 be as in Definition 6.2.5, as well as the setX and

the substitution mapsρ andσ. Three cases are distinguished, depending on the choice

the switchingς for FB makes on c and c′; the second and third case overlap.

1. If ς on both c and c′ selects the existential branchς(c) = ς(c′) = X, let ς′ on FA

agree withς:

ς′ = {v 7→ ς(v) | v ∈ VA(∧)} .

2. If ς on c selects the universal branch,ς(c) = U , again letς andς′ agree:

ς′ = {v 7→ ς(v) | v ∈ VA(∧)} .

3. If ς on c′ selects the universal branch,ς(c′) = U , let ς′ : VA(∧) be as follows:

ς′(v) =

{

ς(v′) if v ′ ∈ VB

ς(v) otherwise.

Let v ∈ VA(P) be a propositional node switched on byς′ in FA . First it will be

shown for cases 1 and 2 that v is switched on byς in FB. Since VA(P) ⊆ VB(P) this

requires only the following:

∃e1 ∈ Eς
B. e1 ≤B v ⇒ ∃e2 ∈ Eς′

A . e2 ≤A v .

The edge e1 is either an original one or a duplicated one. If it is original, then e1 ∈ Eς′
A

and e1 ≤A v. If it is a duplicate, then by Lemma 6.2.7 it can only be〈c′ ,x′〉, since v is

an original node. In case 1,〈c,x〉 ∈ Eς
A and〈c,x〉 ≤A v; in case 2,〈c′ ,x′〉 /∈ Eς

B.

For case 3 it will be shown, for every propositional vertex v switched on byς′ in

FA, thatς in FB switches on v′ if u ≤A v and v otherwise. If v does not depend on u

it is not duplicated, and the argument is the same as above. Otherwise, if u≤A v, let

e1 ≤B v′ for some e1 ∈ Eς
B. Then these are the possibilities.

• e1 ∈EA. Then e1 ≤A v, and, by Lemma 6.2.7, u� e1. Thus, there is no duplicate

of the source of e1, andς′ agrees withς in such cases, which gives e1 ∈ Eς′
A , a

contradiction.

• e1 = e′ for some e∈ EA. Then e∈ Eς′
A and e≤A v, a contradiction.

6.3. The universal counterexample 167

Since if u�A v the label of v contains no eigenvariables substituted byσ, the label is

unaffected by it:lab(v)[σ] = lab(v). Thus, for every propositional vertex v with label

labA(v) switched on byς′ in FA , there is a vertex switched on byς in FB with label

labA(v)[σ], which is v′ if u ≤A v and v otherwise. Thenval(FB,ς) is a tautology if

val(FA,ς′) is.

6.3 The universal counterexample

Figure 6.3 displays theuniversal counterexample, a proof forest consisting solely of

two cuts. It may be obtained by composing the example in Figure 5.3 with two in-

stances of the proof forest for the drinker’s formula in Figure 5.1 (in this composition,

the universal counterexample would be accompanied by a context of two additional

trees). Labels and witnesses are omitted; naturally, in isolation, there is no choice of

labels that makes the universal counterexample correct, since it is a proof forest for the

empty sequent.

∃ ∀ ∀ ∃

∀ ∀ ∃ ∃ ∀ ∀

◦ ◦ ◦ ◦ ◦ ◦

Figure 6.3: The universal counterexample

The universal counterexample is reduced in Figure 6.4 on page 168, until a single,

unsafe cut remains. Throughout the reduction, the dependencies that contribute to the

loss of safety are drawn in black, while other dependencies are drawn in grey. In places

several reduction steps have been taken at once; such multi-steps are indicated by (∗).

The example shows the following.

Proposition 6.3.1.The reduction relation() is not strongly normalising. This holds

even for the class of forests that arise from cut-free forests by composition with cut.

In addition to creating cuts that are unsafe, the universal counterexample may ex-

hibit infinite reduction paths. An example of such areduction cycleis shown in Fig-

ure 6.5.1 The diagram at the bottom right of the reduction of the universal counterex-

ample in Figure 6.4 gives rise to a reduction cycle similar tothe one in Figure 6.5.

1The observation that reduction cycles may exist without passing through unsafe cuts, as happens in
Figure 6.1, is due to Richard McKinley, via private communication.

168 Chapter 6. Cut-elimination in classical proof forests

•
∃ ∀ ∀ ∃

∀ ∀ ∃ ∃ ∀ ∀

◦ ◦ ◦ ◦ ◦ ◦

∃ ∀ ∀ ∃

∀ ∀ ∃ ∃ ∀

◦ ◦ ◦ ◦ ◦ ◦
•

∀ ∃

∃ ∀

◦ ◦

•
∃ ∀

∀ ∀ ∃ ∃ ∀

◦ ◦ ◦ ◦ ◦ ◦

∗

•
∃ ∀ ∀ ∃

∀ ∀ ∃ ∃ ∀

◦ ◦ ◦ ◦ ◦ ◦

•
∃ ∀

◦ ◦

∃ ∀

∀ ∃ ∃ ∀

◦ ◦ ◦ ◦ ◦ ◦
•

∃ ∀

∀ ∃

◦ ◦ ◦

•
∃ ∀

∀ ∃ ∃ ∀

◦ ◦ ◦ ◦ ◦ ◦

•
∀ ∃

◦ ◦ ◦

∗

∃ ∀

◦ ◦ ◦ ◦
∗

•
∀ ∃ ∃ ∀

◦ ◦ ◦ ◦ ◦ ◦

Figure 6.4: Reducing the universal counterexample to an unsafe forest

6.3. The universal counterexample 169

•
∃ ∀ ∃ ∀

◦ ◦ ◦ ◦ ◦

•
∃ ∀ ∃ ∀ ∃ ∀

◦ ◦ ◦ ◦ ◦ ◦ ◦

•
∃ ∀ ∃ ∀ ∃ ∀

◦ ◦ ◦ ◦ ◦ ◦ ◦

•
∃ ∀ ∃ ∀

◦ ◦ ◦ ◦ ◦

Figure 6.5: A reduction cycle

On weak normalisation

The universal counterexample does have normalising reduction paths, one of which is

displayed in Figure 6.6 on page 170. The reduction path first reduces the cut on the

right in its entirety, before reducing that on the left. Any such path, and only such paths,

where one of the cuts is reduced before the other, are normalising. Weak normalisation

of () is thus not ruled out—at least for proof forests that arise bycomposition.

Figure 6.7 on page 171 explores where in the reduction of the universal counterex-

ample weak normalisation is lost. The left column shows the first four steps of the

normalising reduction path of Figure 6.6, while the three other reduction steps(
c
)

each produce a proof forest that does not normalise. What these three proof forests

have in common is a configuration of the kind below, where several distinct cuts are

‘chained’ together into a circle by dependencies between their branches (this will be

referred to as acircle of cuts). Such a configuration is not weakly normalising, and

although a similar one already exists in the universal counterexample itself, the crucial

difference is that there, the circle passes through the samecuts twice.

∃ ∀ ∃ ∀ ∃ ∀
.

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

While the universal counterexample may arise (in context) from the translation

of a sequent proof, the unsafe proof forests that it reduces to, and the configuration

above, do not. The important observation to be made here is that in Figure 6.7, the five

proof forests in the left column are translations of sequentproofs, while the three proof

170 Chapter 6. Cut-elimination in classical proof forests

•
∃ ∀ ∀ ∃

∀ ∀ ∃ ∃ ∀ ∀

◦ ◦ ◦ ◦ ◦ ◦

∃ ∀ ∀ ∃

∀ ∀ ∃ ∃ ∀

◦ ◦ ◦ ◦ ◦ ◦
•

∀ ∃

∃ ∀

◦ ◦

∃ ∀
•

∀ ∀ ∃ ∃ ∀

◦ ◦ ◦ ◦ ◦ ◦

∗

•
∃ ∀ ∀ ∃

∀ ∀ ∃ ∃ ∀

◦ ◦ ◦ ◦ ◦ ◦

•
∃ ∀

◦ ◦

•
∃ ∀

∀ ∀ ∃

◦ ◦ ◦ ◦

• •
∀ ∃ ∃ ∀

∃ ∀ ∀ ∃

◦ ◦ ◦ ◦ ◦ ◦

∗

∗ ∗
• •

∃ ∀ ∀ ∃

◦ ◦ ◦ ◦ ◦ ◦

Figure 6.6: Normalising the universal counterexample

6.3. The universal counterexample 171

c d

∃ ∀ ∀ ∃

∀ ∀ ∃ ∃ ∀ ∀

◦ ◦ ◦ ◦ ◦ ◦

d

c a

∃ ∀ ∀ ∃

∀ ∀ ∃ ∃ ∀

◦ ◦ ◦ ◦ ◦ ◦
b

∀ ∃

∃ ∀

◦ ◦

c

∃ ∀ ∀ ∃

∀ ∃ ∃ ∀

◦ ◦ ◦ ◦ ◦ ◦

∃ ∀ ∀ ∃

∀ ∃ ∃ ∀

◦ ◦ ◦ ◦ ◦ ◦

6 ∗ ∗

b

c a

∃ ∀ ∀ ∃

∀ ∀ ∃ ∃ ∀

◦ ◦ ◦ ◦ ◦ ◦

b′

∃ ∀

◦ ◦

c

∃ ∀ ∀ ∃

∀ ∃ ∃ ∀

◦ ◦ ◦ ◦ ◦ ◦

∃ ∀

∀ ∃ ∃ ∀

◦ ◦ ◦ ◦ ◦ ◦

6 ∗ ∗

a
b′

c

∃ ∀ a′

∀ ∀ ∃ ∃ ∀

◦ ◦ ◦ ◦ ◦ ◦

c

∃ ∀

∀ ∃ ∃ ∀

◦ ◦ ◦ ◦ ◦ ◦

∃ ∀

∀ ∃

◦ ◦ ◦

6 ∗ ∗

a′

∃ ∀

∀ ∀ ∃

◦ ◦ ◦ ◦

Figure 6.7: Losing weak normalisation

172 Chapter 6. Cut-elimination in classical proof forests

forests in the right column are not: the three reduction steps (
c
) that cause the loss of

weak normalisation, are also precisely the ones that take the proof forest outside the

image of the sequent calculus translation. More specifically, the vertical steps in the

left columnsimulatereduction in the sequent calculus, up to permutations, while the

horizontal steps between the columns do not. The mechanism by which this happens

is as follows. In each of the three horizontal steps(
c
), the collection of dependants

that is duplicated is strictly smaller than the subproof that would be duplicated in the

corresponding reduction step in sequent calculus, for the reason explored at the end

of Section 5.5. To illustrate this, the universal counterexample after one reduction

step is depicted in Figure 6.8 in a ‘planar’ fashion, suggestive of the topology of a

corresponding sequent proof, part of which is depicted below the proof forest. In the

partial sequent proof, the contraction cannot permute above either cut, since its two

premises originate in different subproofs, one inΠ and one inΠ′′. In which subproofs

the occurrences of∃y.A(a) must occur is determined by the dependencies in the proof

forest.

∃ ∀
a

∀ ∀ ∃

◦ ◦ C D

◦ ∀ ∃ ∃ ∀ ◦

∃ ∀ ∀ ∃

◦ ◦ ◦ ◦

Π...
⊢ ∃y.A(a),C

Π′
...

⊢C⊥,D

Π′′
...

⊢ D⊥,∃y.A(a)

⊢C⊥,∃y.A(a)
Cut

⊢ ∃y.A(a),∃y.A(a)
Cut

⊢ ∃y.A(a)
C∃

⊢ ∀x∃y.A(x)
∀R

Figure 6.8: A subproof larger than the corresponding set of dependants

In the remainder of this chapter, a first solution to the problem of weak normali-

sation will be presented. In Section 6.4 the reduction relation is modified by adding a

pruningoperation, to make unsafe proof forests safe, and grouping reduction steps on

6.4. The modified reduction relation 173

the same cut, to avoid reduction cycles as in Figure 6.5. A second solution is presented

in Chapter 7. It is based on a formalisation of the above observation, that the problem-

atic reduction steps that cause the loss of weak normalisation are those that duplicate

dependants which don’t correspond exactly to any subproof in a corresponding sequent

proof. It will be shown that it is possible to avoid such reduction steps, to obtain weak

normalisation for().

Reducing the universal counterexample is also non-confluent, yielding both nor-

mal forms and unsafe forests. Non-confluence will be explored in more detail in Sec-

tion 7.4.

6.4 The modified reduction relation

The two main obstacles to obtaining weak normalisation are the occurrence of unsafe

proof forests in reductions, and cyclic reduction paths of the kind shown in Figure 6.5.

Both will be addressed in turn, below, resulting in a modifiedversion() of the reduc-

tion relation(), that will be shown to be weakly normalising, and conjectured to be

strongly normalising.

The notion of safety, defined in Section 6.2, was motivated bythe observation that

dependencies between the two branches of a cut may result in cuts that cannot be

reduced, while such dependencies may never arise from composition or translation.

This motivation explains why the concept of safety is needed. That it is also a natural

concept, closely related to correctness, becomes clear from the game-theoretic idea

of a cut consisting of two consecutive moves, explored in Section 5.3. In that view,

the second of the two moves is a binary choice by∀belard, who chooses exactly one

branch of the cut in any particular game, after which the dependants of the other branch

become unreachable. The observation that a vertex depending on both sides is then

unreachable in any game, yields a simple solution to the problem of unsafe cuts: the

offending vertices may be removed from the proof forest altogether, in an operation

calledpruning. Formalising this idea starts with the following definition.

Definition 6.4.1 (Conflict). The symmetricconflict relation(#) holds between nodes

that depend on different branches of the same cut:

v1 # v2
∆

⇐⇒ ∃〈c,u〉,〈c,w〉 ∈ E(∧). u 6= w ∧ u≤ v1 ∧ w ≤ v2 .

The conflict relation indicates, precisely, when two vertices are never both reach-

able in any particular game. This gives an alternative approach to defining correctness.

174 Chapter 6. Cut-elimination in classical proof forests

Proposition 6.4.2. In a proof forestF the maximal conflict-free subsets ofV are pre-

cisely the sets of vertices switched on by the switchings ofF. The values ofF are the

disjunctions over the labels of the propositional verticesin its maximal conflict-free

subsets ofV.

Proof. For each cut c with children u and w, a maximal conflict-free set must contain

exactly one of u and w (or a vertex that conflicts with both). Ifit contains u, it cannot

contain the dependants of w, which are all in conflict with u; this corresponds to a

switching that switches off w. The details are straightforward. Note, however, that it

would be incorrect to use the slightly different characterisation of correctness as a tau-

tology requirement over the maximal conflict-free sets of propositional variables. The

reason is that to account for a switching that selects an existential leaf, such vertices

must be considered in the maximality requirement.

In addition, safety can be characterised as follows.

Proposition 6.4.3.A proof forest is safe if and only if(#) is irreflexive.

An interesting observation is that safe proof forests areevent structures[96]. An

event structure(V,≤,#) consists of:

• a set ofeventsV;

• a partialdependencyorder(≤) on V, such that for any event v the down-closure

{x | x ≤ v} is finite;

• a symmetric, irreflexiveconflictrelation(#) on V, satisfying

u # v≤ w ⇒ u # w .

Event structures model concurrent computation as a collection of events V, with the

relation (≤) representing their causal dependency, and the conflict relation (#) ex-

pressing the incompatibility of certain events. It is easily verified that the vertices,

dependency, and conflict relation of a proof forest F form an event structure(V,≤,#).

Since the correctness condition is based on which positions∃loise can reach in any

particular game, safety can be enforced by removing self-conflicting vertices.

Definition 6.4.4 (Pruning). The pruning function removes all self-conflicting nodes

from a proof forest:prune(F) = F|X, whereX = {v ∈ V | ¬(v # v)}.

6.4. The modified reduction relation 175

A pruned proof forest is by definition safe. Below, it is established that pruning a

correct proof forest yields a correct subforest.

Proposition 6.4.5.Pruning preserves the axioms of proof forests, and correctness.

Proof. Most conditions of Definition 5.4.3 are preserved straightforwardly, though it

should be noted that the branching condition on universal and cut vertices is preserved

because their edges are never targets in(→); if such an edge〈u,v〉 ∈ E(∀)∪E(∧) is

removed, so is u, since v # v only if u # u. For correctness, the maximal, conflict-

free subsets of vertices in F and inprune(F) are identical, since exactly the vertices

that show up in no such subset in F are removed by pruning. It then follows from

proposition 6.4.2 that the values ofprune(F) are precisely those of F, and that pruning

preserves correctness.

The final, unsafe cut in the reduction of the universal counterexample in Figure 6.4

is pruned, and then reduced, as follows.

∃ ∀

◦ ◦ ◦ ◦
prune
⇒

•
∃ ∀

◦ ◦ ◦

∗ ∗

Compound reduction steps

The second problem is that of infinite reduction paths of the kind shown in Figure 6.5,

where cuts with mutually dependent branches can duplicate each other’s existential

branches. This problem is addressed by grouping reduction steps together in acom-

pound reduction step, written(), which performs all the possible structural reduction

steps on a given cut, one after another, and reduces the newlyformed logical cuts, by

one step each. A compound reduction step is depicted in Figure 6.9—the illustration

omits the details of renaming nodes and eigenvariables in the contextsΠ1 throughΠn,

which are the duplicates ofΠ.

The problem of infinite reduction paths on a configuration of the kind below, where

cuts are chained together in a circle by dependencies between their branches, is then

resolved as follows. Using compound reduction steps the number of cuts in the circle

will strictly reduce, until only one, unsafe, cut remains, which can then be pruned.

∃ ∀ ∃ ∀ ∃ ∀
.

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

176 Chapter 6. Cut-elimination in classical proof forests

∆

∆1 ... ∆n
Qx.B

t1

∃

tn

∀

a... ≤ Π
◦ y1 ◦ yn ◦w

∆,∆1

≤

∆,∆n

≤. . .
B[t1/x]

Π1[t1/a]
B[tn/x]

Πn[tn/a]

◦ y1 ◦w1 ◦ yn ◦ wn

Figure 6.9: A compound reduction step

Compound reduction steps have the following good properties. Since they consist

of a sequence of reduction steps in(), plus pruning, compound steps inherit the

preservation properties of(), e.g. the preservation of the axioms of proof forests

and of correctness. Moreover, the order in which the reduction steps in() that make

up a compound reduction step are performed, is irrelevant: for a safe cut c in a proof

forest FA , there will be exactly one compound reduction step FA
c

FB (in the sense

that if also FA
c

FC, then FC = FB). As a consequence, the result of a compound

reduction step can be defined directly, as is done in Definition 6.4.7. For these reasons

compound steps may be viewed as a proper reduction relation—rather than a (local)

strategy for()—consisting of one, uniform reduction rule for first-order cuts, and one

for propositional cuts.

To establish these properties, compound reduction steps will be defined in two

ways, which are then proven equal. The first will define the relation (−) as a series

of steps in(); the second will define a relation(!) that computes the outcome of a

compound step directly. Weak normalisation will be shown for the relation(), which

adds a concluding pruning step.

Definition 6.4.6(Compound reduction steps). A compound reduction stepFA
c

FB on

a safe cut c in a proof forest FA, is inductively defined as follows.

The relation(−) is the smallest such that FA
c − FD if:

• FA
c

FD by a propositional step (Definition 6.2.2), or a disposal step (Defini-

tion 6.2.3), or a logical step (Definition 6.2.4); or

6.4. The modified reduction relation 177

• FA
c

FB by a structural step (Definition 6.2.5), where c′ is the duplicate of c,

FB
c′

FC by a logical step, and

FC
c − FD .

If FA
c − FB then FA

c
prune(FB).

To illustrate the definition, for a cut c with existential edges〈x,y1〉, . . . ,〈x,yn〉 a

compound reduction step consists of the following series ofalternating structural and

logical reduction steps, plus a pruning step at the end in thecase of():

F1
c,y1

F2
c1 F3

c,y2
F4

c2
. . .

cn−2
F2n−3

c,yn−1
F2n−2

cn−1
F2n−1

c
F2n

where in each structural step(
c,yi

) the renaming substitutionσ of Definition 6.2.5 as-

signs fresh vertices vi (rather than v′). Note that there is one fewer structural step than

there are logical steps in this sequence, since aftern−1 structural steps the cut c will

have only one existential branch remaining.

The second, direct, definition of compound reduction steps is as follows.

Definition 6.4.7. For a safe first-order cut c in a proof forest FA , the reduction step

FA
c ! FT yields the pre-proof forest FT, as follows. Let c have edges〈c,U,u〉 and

〈c,X,x〉, with universal edge〈u,a,w〉 and existential edges〈x, t1,y1〉, . . . ,〈x, tn,yn〉.

Let FR be as follows.

FR =
(

FA ∪
[

1≤i≤n

(FA|X [ρi] [σi])
)

[τ]

where for alli (1≤ i ≤ n), with all vi andai fresh w.r.t. FA and each other,

X = {v ∈ VA | x 6<A v}

ρi = {v 7→ vi | v ∈ {c,x} ∨ u≤A v}

σi = {a 7→ ai | 〈v,a,w〉 ∈ EA(∀) ∧ u≤A 〈v,w〉}

τ = {〈x,yi〉 7→ 〈xi,yi〉 | 1≤ i < n} .

Let FS = FR|Y whereY = {v ∈ VR | c �R v}. Let FT be as follows. Firstly, VT is VS

minus the vertices xi and ui for all i ≤ n. Secondly,labT(ci) = B∧B⊥[ti/x] and, for

other vertices,labT(v) = labS(v)[ti/ai]. Next, ET is obtained from ES by replacing for

everyi ≤ n the edges

〈⊥,Qx.B,ci〉 〈ci ,U,ui〉 〈ci,X,xi〉 〈ui,ai,wi〉 〈xi, ti,yi〉

178 Chapter 6. Cut-elimination in classical proof forests

with the edges

〈⊥,B[ti/x],ci〉 〈ci ,U,wi〉 〈ci ,X,yi〉 ,

and any other edge〈v,Y,z〉 with 〈v,Y[t/a],z〉. Finally, (→T) is the smallest relation

on ET such that
e1 →T e2 if e1 →S e2, or

e1 →S 〈⊥,ci〉 and〈ui,wi〉 →S e2 for somei, or

e1 →S 〈xi,yi〉 and〈ui,wi〉 →S e2 for somei, or

e1 →S 〈xi,yi〉 and e2 = 〈⊥,ci〉 .

The above definition, which combines features of the definitions of disposal, logi-

cal, and structural steps (Definitions 6.2.3, 6.2.4, and 6.2.5), proceeds as follows. The

proof forest FR results from duplicating the cut c and its dependants on the universal

side as many times as there are existential branches of c, andmoving each existential

branch to its own copy. The cut c, with no existential branches left, is removed in the

proof forest FS, in the way it would be in a disposal step. The proof forest FS is what

would be the result of applying all possible structural steps, or one disposal step, to the

proof forest FA—plus one renaming substitutionρi and oneσi , where〈x,yi〉 is the last

existential edge remaining on the cut c. Then the proof forest FT is the proof forest FS

after all duplicated cuts ci have been reduced by a logical step.

That(−) and(!) are the same reduction relation is established below.

Proposition 6.4.8.For a proof forestFA with a safe first-order cutc, if FA
c − FD and

FA
c ! FT thenFD = FT (up to the naming of vertices and eigenvariables).

Proof. Let FR, FS and FT be as in Definition 6.4.7. A main observation is that the set

X in Definition 6.4.7 contains all the dependants of u: since c is safe, u≤ v implies

x � v. There is the following statement.

1. For v in FA, the vertex vi is in FS if and only if 1≤ i ≤ n and either u≤A v or

v ∈ {c,x}.

A second observation is that, sinceτ moves each existential edge〈x,yi〉 from x to the

vertex xi in FR, the cut c in FR has no existential branches. Removing the cut c, in FS,

removes also the dependants of u, but no dependants of x in FA. There is the following

statement.

2. For v in FA , the vertex v is also in FS if and only if v is different from x and c,

and not a dependant of u (i.e., u�A v).

6.4. The modified reduction relation 179

To show FD = FT, firstly, if c has no existential branches, FA
c − FD consists of a

single disposal step. It is easily verified that FR = FA and FS = FT = FB.

Secondly, if c is a logical cut with existential branch〈x,y1〉, then FA
c − FD consists

of a single logical step. Observe that by1. and2. above, FS is just FS = FA [ρ1][σ1].

Then FT = FD[ρ1][σ1].

For the third case, of a cut c with two or more existential branches, the reduction

step FA
c − FD consists of a structural step FA

c
FB, a logical step FA

c′
FC, and a

compound step FC
c − FD. It will be shown that VD = VT (up to the same simple

renaming as in the logical step above). Along the way, it is established that the cuts

c′ and c are safe in FB and FC respectively; this shows that there is at least one proof

forest FD such that FA
c − FD.

Let the existential edges of c be〈x,y1〉, . . . ,〈x,yn〉, and let〈x,y j〉 be the primary

branch of the structural step FA
c,y j

FB. To align the notation of the structural step with

that of FA
! FT, let FB be the following proof forest, whereX, ρ j , andσ j are as in

Definition 6.4.7.

FB = (FA ∪FA|X[ρ j][σ j]) [〈x,y j〉/〈x j ,y j〉]

It follows that the vertices of FB are those of FA plus the set{v j | v∈ {c,x} ∨ u≤A v}.

Moreover, u≤A v ⇐⇒ u ≤B v: from left to right, in the definition of FB only the

substitution[〈x,y j〉/〈x j ,y j〉] removes dependencies, and u�A x; from right to left is

immediate from Lemma 6.2.7 (which relates dependencies in FB to those in FA). From

this lemma it is also immediate that in FB both c and cj are safe.

Then after the logical step FB
c j

FC removes uj and xj , the vertices in FC are

VA ∪ {v j | v = c ∨ u <A v} .

In addition, u�C v j , and u≤C v if and only if u≤A v, for all v in Fa, as follows.

Firstly, if u ≤C v j then by Lemma 6.2.6 either u≤B v j or u≤B 〈x j ,y j〉. If u ≤B v j ,

by Lemma 6.2.7 u�A v, but then by the above vj should not exist as a vertex in FA , a

contradiction. If u≤B 〈x j ,y j〉 then by Lemma 6.2.7 u≤A y j , contradicting safety of c.

Then u�C v j for all v in FA .

Above, it was shown that u≤B v ⇐⇒ u ≤A v. To show that u≤C v ⇐⇒ u≤B v,

first let u≤C v. By Lemma 6.2.6, u≤B v; the other cases, where u≤B 〈x j ,y j〉, were

ruled out above. For the converse, let u≤B v. By Lemma 6.2.6, u≤A v unless u is one

of c and x, which clearly cannot transpire. Then u≤C v ⇐⇒ u≤A v.

Next, it is shown that in FC the cut c is safe. Suppose x≤C v and u≤C v; by the

above, u≤A v, which means v is in FA (it is not a duplicated node v′j). Then for x≤C v

180 Chapter 6. Cut-elimination in classical proof forests

Lemma 6.2.6 gives x≤B v, unless〈u j ,w j〉 ≤B v or v = c j , which are ruled out since

v 6= v′j . For x≤B v Lemma 6.2.7 gives x≤A v; then c is unsafe in FA, a contradiction.

In FC the cut c hasn− 1 existential edges,〈x,yi〉 for 1 ≤ i ≤ n such thati 6= j.

By induction on the number of existential edges of c, the compound reduction step

FC
c − FD is computed by FC

c ! FD (up to a renaming of vertices). Recall that the

vertices in FC are

VA ∪ {v j | v = c ∨ u <A v} .

Applying 1. and2. to FC
c ! FD, the vertices of FD are the duplicated ones,

{vi | v ∈ VC, 1≤ i ≤ n, i 6= j, u <C v∨v = c} ,

plus the original ones that are not removed,

{v ∈ VC | v /∈ {x,c}, u �C v} .

Applying the characterisation of VC, above, to these sets, while using the earlier estab-

lished fact that u≤C v ⇐⇒ u≤A v, gives the following two sets, respectively.

{vi | v ∈ VA, 1≤ i ≤ n, i 6= j, u <A v∨v = c}

{v ∈ VA | v /∈ {x,c}, u �A v} ∪ {v j | v ∈ VA, v = c ∨ u <A v}

Their union, the following set, are the vertices of FD:

VD = {v ∈ VA | v /∈ {x,c}, u �A v} ∪ {vi | v ∈ VA, 1≤ i ≤ n, u <A v∨v = c}

By 1. and2. it is then immediate that VD = VT. From this, to show that FD = FT is

straightforward.

Weak normalisation

A compound step replaces a cut with cut-formulaC = ∀x.B by a number of cuts each

with a cut-formulaB[t/x] for some termt. The strict reduction in formula complexity

allows an easy proof of weak normalisation. Let thecomplexity compl(c) of a cut

〈⊥,C,c〉 be the number of quantifiers inC, and let thecomplexityof a forest be the

multiset of the complexities of all its cuts.

Theorem 6.4.9(Weak normalisation). For any safe proof forestFA there is a finite

reduction pathFA
∗ FB such thatFB is cut-free.

6.4. The modified reduction relation 181

Proof. Given a forest FA that is not cut-free, select a cut c∈ VA(⊥) that has no cut

with equal or higher complexity amongst its dependants:

∀d∈ VA(⊥). c < d ⇒ compl(c) > compl(d) ;

by the acyclicity of the dependency such a cut exists. Then ifFA
c

FB the complexity

of FB is strictly smaller, in the usual multiset ordering, than that of FA: the primary

cut c is replaced by several cuts of smaller complexity, and no cut of same or higher

complexity is duplicated. The smallest value in the complexity measure,∅, applies to

forests that are cut-free.

The proof is similar to Gentzen’s original proof of weak normalisation for the se-

quent calculus, and in that sense, standard. The condition imposed on reductions in

the above proof is simple and general: any cut whose dependants include only cuts of

lower complexity may be reduced. Moreover, using the modified reduction algorithm

the original counterexample in Figure 6.3 now strongly normalises, and no other mech-

anism has been found that may generate infinite reduction paths. For these reasons the

following conjecture is put forward.

Conjecture 6.4.10.The relation() is strongly normalising.

To conclude this section, Figure 6.10 shows a normalising reduction path in()

for the universal counterexample. The path uses pruning andis consistent with the

condition in Theorem 6.4.9 that a cut may not be reduced if it has dependants of higher

complexity. This illustrates that for the theorem, both pruning and the use of compound

steps is necessary.

182 Chapter 6. Cut-elimination in classical proof forests

•
∃ ∀ ∀ ∃

∀ ∀ ∃ ∃ ∀ ∀

◦ ◦ ◦ ◦ ◦ ◦

•
∃ ∀

∀ ∀ ∃ ∃ ∀

◦ ◦ ◦ ◦ ◦ ◦

∃ ∀

◦ ◦

•
∀ ∃ ∃ ∀

◦ ◦ ◦ ◦ ◦ ◦
∗

∀ ∃ ∃ ∀

◦ ◦ ◦ ◦ ◦ ◦

• •
∀ ∃ ∃ ∀

◦ ◦ ◦ ◦ ◦ ◦

•
∃ ∀

◦ ◦ ◦
∗

Figure 6.10: Reducing the universal counterexample with compound steps

Chapter 7

Exploring reduction

7.1 Introduction

This chapter will further explore the behaviour of cut-reduction for classical proof

forests. The main body of the chapter is formed by Section 7.2, in which it is shown

that the original reduction relation(), without pruning, is already weakly normalis-

ing. The approach is based on an analysis of the reduction of the universal counterex-

ample, and the connections with the sequent calculus. By prohibiting certain reduction

steps, reductions can be forced to stay within the image of the translation of sequent

proofs (this translation was defined in Section 5.5).

The treatment of reductions in Section 7.2 suggests furtherapproaches to cut-

elimination in proof forests. Their discussion in Section 7.3 explores the differences

between reductions in proof forests and those in the sequentcalculus, ending with

an examination of McKinley’s closely related notion of Herbrand nets [74]. The final

subject discussed, in Section 7.4, is that of confluence. Forthe different reduction vari-

ants discussed in this and the previous chapter, confluence fails in a variety of ways;

however, interestingly, the universal counterexample is universally non-confluent.

7.2 Weak normalisation without pruning

A remaining question is whether the original reduction relation, (), might be weakly

normalising. This is left open by the universal counterexample, which does have ter-

minating reduction paths to a normal form (one is illustrated in Figure 6.6). In this

section a proof of weak normalisation of() will be constructed, without the need for

pruning. The core idea of the proof is to avoid reduction steps that duplicate a sub-

183

184 Chapter 7. Exploring reduction

forest that is strictly smaller than a corresponding subproof in sequent calculus would

be. In the discussion of the universal counterexample in Section 6.3 such steps were

pinpointed as the cause of the loss of weak normalisation in its reduction paths.

In Section 5.5 in the previous chapter it was shown how the smallest subproof of

an inference may contain more than just the dependants of thecorresponding edge

in a proof forest. It was demonstrated, by the example below left, that an inference

cannot permute above a cut when it has premises in both subproofs of the cut, while

no corresponding dependency need exist in the proof forest translation of the proof.

Below right a similar impermutability is depicted; here, the premise of a universal

quantifier introduction is used in one subproof of a cut, while its eigenvariable is used

in the other.

⊢ Γ,B,A ⊢ A⊥,B,Γ′

⊢ Γ,B,B,Γ′ Cut

⊢ Γ,B,Γ′ CR

⊢ A(a),C

⊢C⊥, B(a)

⊢C⊥,∃y.B(y)
∃R

⊢ A(a), ∃y.B(y)
Cut

⊢ ∀x.A(x),∃y.B(y)
∀R

The first thing that will be addressed is to formalise a notionof separationin proof

forests, that corresponds, morally, to ‘being in separate subproofs’ in a sequent proof.

For the above two examples, where the subproofs are generated by a single cut, the

conflict notion (Definition 6.4.1) would be adequate: the dependants on either side of a

cut correspond to (smallest) subproofs, and the conflict generated by the cut indicates

when vertices depend on different sides. However, in Section 6.3 the reduction of

the universal counterexample provided an example, in Figure 6.8, where the premises

of an inference are in subproofs separated not by one, but by two cuts. This can be

generalised to the configuration below, where two formulae,A andB, are separated by

a number of cuts, that may be interspersed among other inferences.

Π1...
⊢ A,Γ1,C1

Π2...
⊢C⊥

1 ,Γ2,C2

Π3...
⊢C⊥

2 ,Γ3,C3

· · ·
Πn...

⊢C⊥
n Γn,B

⊢ A,Γ′
1, . . . ,Γ

′
n,B

Cut,?R

The notion of separation to be established will thus need a certain measure of tran-

sitivity. But full transitivity is too much, since separation must also be symmetric;

together this would mean that a vertex v that is separated from any other, is imme-

diately separated from itself. This would render the notionuseless: a self-separated

vertex is precisely what should indicate that a proof forestis not the translation of any

sequent proof. A notion of separation that captures the right amount of transitivity is

7.2. Weak normalisation without pruning 185

defined below. It allows vertices to be separated by a series of cuts, as long as those

cuts are distinct. The separation of vertices v and w by a set of cutsC = {c1, . . . ,cn}

is written v ##C w, illustrated in Figure 7.1 (note the annotation of the abbreviated cut

with the name of the cut vertex, rather than the cut-formula).

c1 c2 cn

◦a1

≥

◦ b1

≤

◦a2

≥

◦ b2

≤

◦an

≥

◦ bn

≤
.......

◦v=v0 ◦v1 ◦v2 ◦ vn−1 ◦ vn =w

Figure 7.1: Separation

Definition 7.2.1(Separation). In a forest F the ternaryseparationrelation

− ##− − ⊆ V ×P (V(⊥))×V

is the smallest relation satisfying the following.

v ##{c} w if 〈c,v〉,〈c,w〉 ∈ E(∧) and v6= w

v ##C∪D w if v ##C u and u ##D w for some u∈ V, andC∩D = ∅

v ##C w if v ′ ≤ v, w′ ≤ w, and v′ ##C w′

If v ##C w it is said thatC separatesv and w. The notation(##) denotes the union

over all relations(##C) for all sets of cutsC ⊆ V(⊥) in F. The conflict relation(#) is

recovered as the union of(##C) over all singletonsC.

Definition 7.2.2(Strong safety). In a forest F, if v ## v for no vertex v∈ V, then F is

strongly safe.

Since v # w implies v ## w, if a proof forest is strongly safe, itis also safe. The

translation of a sequent proof is strongly safe.

Proposition 7.2.3.A forestJΠK translated from a sequent proofΠ is strongly safe.

Proof. The translation of an instance of the tautology axiom is strongly safe, and

it is straightforward that strong safety is preserved by thetranslation steps for∀R-

inferences,∃R-inferences, contractions, and weakenings, since these only add root

nodes, or modify them. If two forests FA and FB are combined by a cut c, then there

are no dependencies between them, and no vertices other thanc have dependants in

both. If v ##C w in the composed forest, then eitherC ⊆ VA(∧) and v ##CA w, or

C⊆ VB(∧) and v ##CB w, or v∈ VA, w∈ VB, and c∈C.

186 Chapter 7. Exploring reduction

The two causes of non-normalisation explored in Section 6.3were, firstly, unsafe

cuts, and secondly, circles of cuts, illustrated below. Where safety, based on the conflict

relation, rules out unsafe cuts, strong safety prohibits the existence of a circle of cuts

in a proof forest.

∃ ∀ ∃ ∀ ∃ ∀
.

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

Of the proof forests arising when reducing the counterexample, those that are not

weakly normalising are those that are not strongly safe. Thereduction step where

strong safety is lost is always the structural reduction step applied to the second orig-

inal cut of the example, as in the exploration of the loss of weak normalisation in

Figure 6.7.

Before moving on, it will be proved that propositional, disposal, and logical steps

preserve strong safety.

Lemma 7.2.4. If FA
d

FB with a propositional step (I, Definition 6.2.2) or disposal

step (II, Definition 6.2.3) thenv ##B w only if v ##A w.

Proof. The statement is immediate from the fact that FB is a subforest of FA , i.e. the

fact that FB = FA |X for someX ⊆ VA.

Lemma 7.2.5. If FA
d

FB with a logical reduction step (III, Definition 6.2.4) andFA

is strongly safe, thenv ##C
B w only if v ##D

A w for some D⊆C∪{d}.

Proof. Let v0 ##C
B vn be witnessed as in Figure 7.1: letC = {c1, . . . ,cn}, let each cut

ci have children ai and bi, and let v0, . . . ,vn be vertices such that ai ≤ vi−1 and bi ≤ vi ,

for 1≤ i ≤ n. Let the primary cut d of the reduction step be configured as follows.

Γ′
d

∃
x

∀
u

Γ ∆
◦y ◦ w

Γ,Γ′

d ∆
◦y ◦ w

By Lemma 6.2.6, for a dependency v≤B w there are three options:

(i). there is a matching dependency v≤A w, or

(ii). v ≤A 〈x,y〉 and〈u,z〉 ≤A w, or

(iii). v ≤A 〈x,y〉 and w= d.

7.2. Weak normalisation without pruning 187

For each individual cut ci in C, witnessing vi−1 ##{ci}
B vi , there are four possibilities.

(1). The cut is unaffected by the rewrite step: ci 6= d and (i) above applies to both the

dependency ai ≤B vi−1 and to bi ≤B vi . Then vi−1 ##{ci}
A vi .

(2). The cut is itself reduced: ci = d. Then vi−1 ##{d}
A vi , as illustrated below (only

one of two possible orientations for d is shown—the other hasx andu swapped).

d

◦ai

≥

◦ bi

≤

◦vi−1 ◦ vi

d

∃
x

∀
u

◦ai

≥

◦ bi

≤

◦vi−1 ◦ vi

(3). For the dependence bi ≤ vi item (ii) above applies.

ci

◦ai

≥

◦ bi

≤

◦vi−1 ◦ vi

ci d

◦ai

≥

◦ bi
≤ ∃

x
∀

u

≤◦y ◦w
◦vi−1 ◦ vi

As illustrated, vi−1 ##{ci}
A y andy ##{d}

A vi , and hence vi−1 ##{ci ,d}
A vi .

(4). For the dependence ai ≤B vi−1 item (ii) above applies. Then similarly to (3)

above, vi−1 ##{d,ci}
A vi .

For both ai ≤B vi−1 and bi ≤B vi item (i) subsumes item (iii). Considering the latter,

item (iii) gives bi ≤B d in FB, and bi ≤A 〈x,y〉 in FA . But since d≤B y, there are also

the dependencies bi ≤B y and bi ≤A y; then y may be used instead of d as the vi in the

sequence v1, . . . ,vn.

Then the four options above are exhaustive, and for a single cut ci they are mutually

exclusive. That (1) excludes the others is immediate. Option (2) means that ai = y or

bi = y, (3) implies bi ≤A 〈x,y〉, and (4) implies ai ≤A 〈x,y〉. Having both ai = y

and ai ≤A 〈x,y〉 would violate the antisymmetry of≤A, while bi = y and ai ≤A 〈x,y〉

would meany ##{ci}
A y. Then (2) excludes (3) and, symmetrically, (4); similarly,if both

ai ≤A 〈x,y〉 and bi ≤A 〈x,y〉 would hold, againy ##{ci}
A y, making (3) and (4) mutually

exclusive.

For v0 ##C
B vn the following is then immediate. If (1) applies to all cuts inC then

v0 ##C
A vn, and if it applies to all but one cuts inC, then v0 ##C∪{d}

A vn. However, the

general case is not immediate: if v0 ##C∪D
B vn because v0 ##C

B vi and vi ##D
B vn for

188 Chapter 7. Exploring reduction

some vi , then even if v0 ##C∪{d}
A vi and vi ##D∪{d}

A vn it does not necessarily follow

that v0 ##A vn, because the sets of cuts are not disjoint.

First, the case will be considered when there are precisely two cuts inC to which

(1) does not apply. Let ci denote the first and cj the second; they are configured as

follows.
ci c j

◦ai

≤

◦ bi

≤

◦aj

≤

◦ b j

≤

◦vi−1 ◦vi ##C′

B
◦ v j−1 ◦ v j

Here,C′⊆C is the subset{ci+1, . . . ,c j−1}—note that ifi = j−1 then vi = v j−1 instead

of vi ##B v j−1, which does not affect the argument below. Since (1) appliesto all other

cuts inC than ci and cj , in particular it applies to all cuts inC′, so that vi ##C′

A v j−1 (or

vi = v j−1) also before the reduction step, in FA.

There are nine cases to be considered: one of (2), (3), and (4)applies to ci , and

simultaneously one of (2), (3), and (4) applies to cj . For each case it will be shown

that either

vi−1 ##{ci}
A v j or vi−1 ##

{c j}
A v j or vi−1 ##

{ci ,c j}
A v j ,

and hence that v0 ##D
A vn for someD⊆C, or that the case cannot transpire, for example

because it would imply a separation v ##A v in FA, contradicting the assumption of

strong safety.

• If (2) applies to both ci and cj then ci = c j = d, while ci and cj were assumed to

be distinct, a contradiction.

• If (2) applies to ci and (3) to cj , there are two ways in which ci and d can be

identified: ai is on the existential side and bi on the universal side of d, or the

other way around. In the former case (for later reference, with the existential

side ‘on the left’), there is the following configuration in FA.

d

∃
x

∀
u

d c j

◦ai

≥

◦ bi

≤

∀
u

∃
x ◦aj

≥
◦ b j

≤
≥ ◦w ◦ y

◦vi−1 ◦vi ##C′

A
◦ v j−1 ◦ v j

Note that in the above illustration the distinct occurrences of the vertices x and

u, and the cut d, must be identified. As d is a logical cut x has only one edge, and

ai = y. The remaining equalities and inequalities below are readily observed.

aj ≤A 〈x,y〉 ≤A y = ai ≤A vi−1

7.2. Weak normalisation without pruning 189

A direct consequence of aj ≤ vi−1 is then vi−1 ##
{c j}
A v j .

The other possible way of identifying ci and d (with the existential side on the

right) gives the following configuration.

d

∀
u

∃
x

d c j

◦ai

≥

◦ bi

≤

∀
u

∃
x ◦aj

≥
◦ b j

≤
≥ ◦w ◦ y

◦vi−1 ◦vi ##C′

A ◦ v j−1 ◦ v j

From the following dependencies

u ≤ 〈u,w〉 ≤ v j−1 x ≤ bi ≤ vi

the first of the two separations below follows.

v j−1 ##{d}
A vi ##C′

A v j−1

Since d/∈C′, the vertex vj−1, among others, is separated from itself, contradict-

ing the assumption that FA is strongly safe.

• If (2) applies to ci and (4) to cj , again d and ci can be identified in two ways.

One gives the following configuration in FA.

d

∃
x

∀
u

c j d

◦ai

≥

◦ bi

≤

◦aj

≥

◦ b j
≤ ∃

x
∀

u

≤◦y ◦ w
◦vi−1 ◦vi ##C′

A ◦ v j−1 ◦ v j

The three separations below are readily observed.

ai ##{d}
A vi ##C′

A v j−1 ##
{c j}
A y

Because (2) does not apply to cj , which is then distinct from d, the three sets of

cuts involved are disjoint, and ai ##A y. Identifying both occurrences of x means

ai = y; it then follows that y ##A y, a contradiction.

The other orientation of d gives the configuration below.

d

∀
u

∃
x

c j d

◦ai

≥

◦ bi

≤

◦aj

≥

◦ b j
≤ ∃

x
∀

u

≤◦y ◦ w
◦vi−1 ◦vi ##C′

A
◦ v j−1 ◦ v j

190 Chapter 7. Exploring reduction

The following separations and (in)equalities can be observed; in particular, y=

bi by identifying both occurrences of x.

vi ##C′

A v j−1 ##
{c j}
A y y = bi ≤ vi

Combining the equations above gives vi ##A vi , a contradiction.

• The case where (3) applies to ci and (2) to cj is symmetrical to the above one,

where (2) applies to ci and (4) to cj .

• If (3) applies to both ci and cj , there is the following configuration in FA.

d ci d c j

∀
u

∃
x ◦ai

≥
◦ bi

≤

∀
u

∃
x ◦aj

≥
◦ b j

≤
≥ ≥◦w ◦ y ◦w ◦ y

◦vi−1 ◦vi ##C′

A ◦ v j−1 ◦ v j

In the illustration, from left to right the following three separations can be ob-

served.

y ##{ci}
A vi ##C′

A v j−1 ##{d}
A y

Since all three sets of cuts are disjoint, y ##A y, a contradiction.

• If (3) applies to ci and (4) to cj , there is the configuration below.

d ci c j d

∀
u

∃
x ◦ai

≥
◦ bi

≤

◦aj

≥

◦ b j
≤ ∃

x
∀

u

≤ ≤◦w ◦ y ◦y ◦w
◦vi−1 ◦vi ##C′

A ◦ v j−1 ◦ v j

From left to right, the following separations can be observed.

y ##{ci}
A vi ##C′

A v j−1 ##
{c j}
A y

Then y ##A y, a contradiction.

• The case where (4) applies to ci and (2) to cj is symmetrical to the second case

above, where (2) applies to ci and (3) to cj . That is, if d has the existential side

on the right, then vi−1 ##{ci}
A v j , otherwise the case leads to a contradiction.

• If (4) applies to ci and (3) to cj , then FA contains the configuration below.

ci d d c j

◦ai

≥

◦ bi
≤ ∃

x
∀

u
∀

u
∃

x ◦aj
≥

◦ b j

≤
≤ ≥◦y ◦ w ◦w ◦ y

◦vi−1 ◦vi
##A ◦ v j−1 ◦ v j

7.2. Weak normalisation without pruning 191

On the far left and far right, the following separations can be observed.

vi−1 ##{ci}
A y y ##

{c j}
A v j

Then vi−1 ##
{ci ,c j}
A v j .

• The case where (4) applies to both ci and cj is symmetrical to the fourth case,

where (3) applies to both cuts.

The case where three or more cuts inC do not satisfy (1) would follow by induc-

tively taking fragments vi ##C′

B v j of the separation v0 ##C
B vn such thatC′ ⊆C contains

precisely two cuts to which (2), (3), or (4) apply, after which the statement would fol-

low because vi ##D′

A v j for someD′ ⊆ C′. However, in fact it can be observed that

having three or more cuts inC not satisfying (1) always leads to a contradiction. The

three cases above that do not immediately prove a contradiction are those where (2)

and (3), or (4) and (2), or (4) and (3) apply to ci and cj respectively. The first two of

these are symmetric, which means that (2) applies with a different orientation in both:

in the first, with the existential side on the left, and in the second, with the existential

side on the right.

Straddling

Before, it was shown that forests translated from sequent proofs are strongly safe, and

that strong safety is preserved in propositional, disposal, and logical reduction steps.

Since strong safety is lost in the reduction of the counterexample, structural steps do

not preserve it. The remainder of this section will explore the way structural reduction

steps interact with separation, and use the findings to construct a class of reduction

strategies that preserve strong safety.

There are two ways in which a structural step may introduce a separation; strong

safety is lost when both occur simultaneously. The first is pictured below, as it occurs in

the reductions of the universal counterexample. A dependency between the existential

branches of a cut c introduces a separation v ##{c,c′} w′ for every v and w such that

u≤ v,w; that is, between every non-duplicated and every duplicated dependant of the

universal side of c.

c

∃ ∀
u

≤ ≤∀ ∀

◦ ◦ ◦v ◦w

c′ c

∀
u′

≤ ≤

∃ ∃ ∀
u

≤ ≤∀ ∀

◦v′ ◦ w′ ◦ ◦ ◦v ◦ w

192 Chapter 7. Exploring reduction

A generalisation of the above example replaces the dependency between the existential

branches of the cut by a separation, as follows.

c

∃ ∀
u

≤ ≤◦
≤

◦
≤ ◦v ◦ w

◦ ## ◦

c′ c

∀
u′

≤ ≤

∃ ∃ ∀
u

≤ ≤◦
≤

◦
≤◦v′ ◦ w′ ◦v ◦w

◦ ## ◦

The above way that separation is introduced is unavoidable:cuts with dependencies

between their existential branches do occur, and it must possible to reduced them. The

second method by which structural steps create separation,which may be avoided, is

as follows. If the cut below left is duplicated by a structural step, the cut below right is

created; note how v ## w and v′ ## w′, but not v ## w′, or vice versa.

c

◦
≥

◦
≤

◦v ◦w

c′

◦
≥

◦
≤

◦v′ ◦ w′

However, if only the vertices v and w are duplicated, but not the cut c itself, the result

is as follows.

c

◦
≥≥

◦
≤≤

◦v ◦ v′ ◦w ◦ w′

In this case not just v ## w and v′ ## w′, but also v ## w′ and v′ ## w. Again, this

can be generalised, by replacing the single cut c separatingv and w by an arbitrary

separation(##C). The situation thus described is exactly that where the dependants

duplicated in a structural step are strictly smaller than a corresponding subproof in the

sequent calculus, described in Section 6.3. Then when also the existential branches

of the cut contain a separation, the reduction step breaks strong safety, as illustrated

below.

c

∃ ∀

≤ ≤
◦

≤

◦

≤

◦x ##D ◦ y ◦v ##C ◦w

c′ c

∀

≤

≤

∃

≤

∃

≤

∀

≤

≤

◦x ##D ◦ y

◦w′

##C

##C ◦ v

##C

◦v′ ##C ◦ w

7.2. Weak normalisation without pruning 193

In the resulting proof forest, ifE = D∪{c,c′}, then v ##C w′ and w′ ##E v, which taken

together give v ##C∪E v and w′ ##C∪E w′ In the same way, v′ and w are self-separated

due to the separation v′ ##E w, but note thatE does not separate v from w, or v′ from

w′.

The mechanism thus described is precisely what causes the loss of strong safety

in the universal counterexample. It will be shown that problematic reduction steps of

the kind described above can be avoided, yielding a weak normalisation proof for().

First, in the situation where a vertex u has dependants v and wseparated byC, while

some c inC does not depend on u, it is said that ustraddlesc, written u⊳ c. Straddling

is defined below, and u⊳ c is illustrated in Figure 7.2.

Definition 7.2.6. A vertex ustraddlesa cut c∈ V(⊥), written u ⊳ c, as follows.

u ⊳ c
∆

⇐⇒ ∃v,w,C. u≤ v,w, u � c, v ##C w, and c∈C

The set of cutsC is awitnessfor u ⊳ c.

◦ u

≥ ≤

c

◦
≥

◦
≤

◦v ## ◦ ◦ ## ◦ w

Figure 7.2: Straddling

For flexibility, if C is a witness for u⊳ c, the definition of straddling does allow

other cuts inC than c to depend on u. By the following easy lemma a smaller witness

D ⊆C can always be found such that u straddles all cuts inD.

Lemma 7.2.7. If C is a witness forx ⊳ c then there is a witness D⊆C for x ⊳ c such

thatx � d for all d∈ D.

Proof. Let x≤ v0,vn, letC= {c1, . . .cn}, let vi−1 ##{ci} vi for 1≤ i ≤ n, and let c= c j .

If x ≤ ci then x≤ vi−1 and x≤ vi . Let i be the largest index smaller thanj such that

x ≤ ci , or i = 0 if no such ci exists; and letk be the smallest index greater thanj

such that x≤ ck, or k = n+ 1 if no such ck exists. Then x≤ vi and x≤ vk−1, while

194 Chapter 7. Exploring reduction

vi ##D vk−1, whereD = {ci+1, . . . ,ck−1}. In particular, c∈D, while x� d for all d∈D.

◦ x
≥ ≤

ci c j ck

◦
≥

◦
≤

◦
≥

◦
≤

◦
≥

◦
≤

◦v0 ## ◦ ◦v j ## ◦ ◦ ## ◦ vk−1 ◦ ## ◦ vn

Straddling captures, in proof forests, an impermutabilityin the sequent calculus

not accounted for in the dependency, between a cut and an inference with premises (or

eigenvariable occurrences) in both subproofs of the cut. Since the ordering formed by

the combination of the straddling relation and the dependency, (⊳ ∪ ≤)∗, represents a

non-permutable ordering of inferences in a sequent proof, it is natural to require it to

be antisymmetric. In fact, this is already the case in any proof forest that is strongly

safe, as will be established in Lemma 7.2.11. Then in a strongly safe proof forest there

is always a cut that has no dependants of greater complexity,and does not straddle

another. Showing that reducing this cut preserves strong safety, in Lemma 7.2.10, will

then allow a weak normalisation proof along the lines of thatof Theorem 6.4.9, again

using compound reduction steps to obtain a simple reducing measure.

Formalising this proof idea starts with an easy, but convenient lemma.

Lemma 7.2.8. In a structural reduction stepFA
c

FB (IV, Definition 6.2.5) no dupli-

cated vertexv′ depends onc in FB.

Proof. If u and x are respectively the universal and existential child of c, then v′ cannot

depend on u in FB, because by Lemma 6.2.7 no dependants of u are duplicates, and

must depend on x. At the same time, v′ must be x′ or c′, or a dependant of u′, because it

is a duplicate. However, c≤B c′ (and also c≤B x′) would mean x≤B c′ or u≤B c′, and

hence c≤A x ≤A c or c≤A u≤A c, contradicting antisymmetry of≤A . Then u′ ≤B v′

and hence u≤A v, and in FA, the vertexv depends on both x and u, contradicting that

c must be safe in FA for the reduction step to apply.

Next, it is shown that a reducing a cut that straddles no others preserves strong

safety.

Lemma 7.2.9. In a structural reduction stepFA
c

FB (IV, Definition 6.2.5) on a

strongly safe proof forestFA , wherec straddles no cutd, then (1) FB is strongly safe,

and (2) c straddles no cuts inFB.

7.2. Weak normalisation without pruning 195

Proof. A separation(##D) in FB whereD is a singleton takes one of the following

eight forms, where v are w are vertices, and d is a cut, in FA .

v ##{d}
B w v′ ##{d}

B w v ##{d}
B w′ v′ ##{d}

B w′

v ##{d′}
B w v′ ##{d′}

B w v ##{d′}
B w′ v′ ##{d′}

B w′

These options will first be narrowed down. By Lemma 6.2.7, if duplicated vertex

has a non-duplicated dependant, the duplicated vertex mustbe x′ or c′. Then in two

cases above, v′ ##{d′}
B w and v ##{d′}

B w′, the cut d′ must be c′, the duplicate of the

primary cut, because an original vertex, w or v respectively, depends on it.

Two other cases are ruled out altogether. One is v′ ##{d}
B w′, top right, which could

only be produced in the reduction step if c⊳
A d (a contradiction), by the following

reasoning. Let u be the universal child of the primary cut c, and x the existential

child; since v′ and w′ are duplicates, u≤A v,w. By Lemma 7.2.8, which states that c

has no dependants in FB that are duplicates, u�A d; otherwise, u≤B d would mean

c≤B v′,w′. Moreover, x≤A d would imply x≤ v and u≤ v, and hence v ##A v. Then

c � d in FA, so that c⊳ A d, a contradiction.

The second case ruled out is v ##{d′}
B w, bottom left. Since d′≤B v, by Lemma 6.2.7

the cut d must be the primary cut c itself, and v must reside in the primary branch of the

reduction step. Similarly, w must reside in the primary branch, but for the separation

to exist in FB, it must also depend on the universal node u′ of c′, and on u in FA . Then

w ##{c}
A w, a contradiction.

In addition, in the case v′ ##{d}
B w and the one symmetric to it, the cut d cannot be

the primary cut c itself, since by Lemma 7.2.8 no duplicated nodes depend on c in FB.

This leaves the following six possibilities.

v ##{d}
B w v′ ##{d}

B w (d 6= c) v ##{d}
B w′ (d 6= c)

v′ ##{c′}
B w v ##{c′}

B w′ v′ ##{d′}
B w′

That in all of these cases v ##{d}
A w (or v ##{c}

A w) is straightforward from Lemma 6.2.7.

However, this does not mean that in general v ##B w (or v′ ##B w′, etc.) implies v ##A
w: if in u ##C

B v ##C′

B w the setC contains a cut d whileC′ contains its duplicate d′, then

even if u ##A v and v ##A w, not necessarily u ##A w.

For (1), assume v ##CB v or v′ ##C
B v′ for some vertex v in FA. Firstly, if C does not

contain both a cut d and its duplicate d′, then v ##DA v whereD = {d | d∈C ∨ d′ ∈C}.

Otherwise,C does contain two cuts d,d′. From the six cases above it can be observed

196 Chapter 7. Exploring reduction

that on one side of d′ at least, all dependants are duplicates w′, while on one side of d

all dependants are originals w from FA. ThenC contains at least one cut

v′ ##{di}
B w or v′ ##{c′}

B w ,

where di 6= c, and one cut

v ##{dk}
B w′ or v ##{c′}

B w′ ,

where dk 6= c. This gives three possible configurations: the two illustrated below, and

one symmetric to the second. The two illustrated cases will be treated; in the first,

C = {di ,dk}∪X∪Y, in the second,C = {di,c′}∪X∪Y.

di dk

◦
≥

◦
≤

◦
≥

◦
≤

◦v′i−1
◦vi ##X

B ◦ vk−1 ◦v′k ##Y
B ◦ v′i−1

di c′

◦
≥

◦
≤

◦
≥

◦
≤

◦v′i−1
◦vi ##X

B ◦ vk−1
◦v′k ##Y

B ◦ v′i−1

W.l.o.g. it may be assumed thatX contains only cuts of the kind v ##{d}
B w, where v,

w, and d are originals. In FA , the vertices vi−1 and vk both depend on u, the universal

child of c. Also, di cannot depend on c by Lemma 7.2.8. In the first case,

vi−1 ##X∪{di ,dk}
A vk ,

sinceX contains no duplicated cuts. In the second case,

vi−1 ##X∪{di}
A vk−1 ,

while c≤A vk−1 (the case differs from the first for the possibility thatX contains c). In

both cases, c⊳ A di, a contradiction.

For (2), assume c⊳ B d for some cut d in FB. Let c≤B v,w and v ##CB w with d∈C;

by Lemma 7.2.7 it may be assumed that no cut inC depends on c. IfC contains no

duplicate cuts then v ##CA w. Otherwise, one of the following configurations pertains,

whereX contains no duplicated cuts.

d′i

◦
≥

◦
≤

◦v ##X
B ◦ x′ ◦ ##Y

B ◦w

c′

◦
≥

◦
≤

◦v ##X
B ◦ x ◦y′ ##Y

B ◦ w

7.2. Weak normalisation without pruning 197

In the first case, where di may be c itself, c≤A x and v ##XA x. SinceX cannot be

empty (v 6= x′), and no cut inX depends on c by assumption, c⊳

A d for some d∈ X,

a contradiction. The second case follows similarly, unlessX is empty, when v= x. In

that case the argument may be repeated symmetrically, with wtaking the place of v;

then the second case cannot apply because c′ has the wrong orientation, i.e., y′ cannot

take the place of x.

It was established earlier that other reduction steps preserve strong safety. There-

fore, the preservation of strong safety extends to compoundreduction steps, as follows.

Lemma 7.2.10.If FA
c − FD with FA strongly safe and no cutd s.t.c ⊳

A d, thenFD is

strongly safe.

Proof. Since the forest FA is strongly safe, it is also safe, and the compound step(
c −)

may be applied. If the compound step(
c −) consists of a single propositional step (I)

or disposal step (II), then FD is a subforest of FA , and the statement is immediate. If it

consists of a single logical step (III), the statement follows directly from Lemma 7.2.5.

It remains to show, for the following successive structuraland logical reduction steps,

FA
c

FB
c′

FC
c − FD

that the forest FC is strongly safe and that c⊳ C d for no d, after which the strong safety

of FD follows by induction.

Firstly, by Lemma 7.2.9 no c≤B d and no v ##B v in the forest FB. Next, if v ##C v

in FC then by Lemma 7.2.5 u ##B u for some vertex u. That leaves c⊳

C d. Let c≤C v,w

while v ##X
C w with d ∈ X. By Lemma 7.2.7 it may be assumed that no cut x inX

depends on c.

Then in FB, by Lemma 7.2.5 v ##YB w for someY ⊆ X ∪{c′}. Also, c� c′, by

Lemma 7.2.8 (no dependants of c are duplicates). Then no cut in Y depends on c, and

c ⊳

B y for some y∈Y, a contradiction.

It remains to be shown that for strongly safe proof forests the (transitively closed)

combination of the dependency and straddling forms a partial order.

Lemma 7.2.11.In a strongly safe forest(≤ ∪ ⊳)∗ is antisymmetric.

Proof. Consider a series of dependencies and straddlings.

c0 ≤ v1

⊳ c1 ≤ . . . ≤ vn

⊳ cn = c0 .

198 Chapter 7. Exploring reduction

For 1≤ i ≤ n, let each cut ci have children ai and bi , and let vi

⊳ ci be witnessed as

follows: vi ≤ ui ,wi , while ui ##Ci wi with Ci = Xi ∪{ci}∪Yi , as illustrated below.

◦ vi

≥ ≤

ci

◦ai

≥

◦ bi

≤

◦ui ##Xi ◦ xi ◦yi ##Yi ◦ wi

In the casen= 1 there are the dependencies v1

⊳ c1 and c1≤ v1. Then either a1≤ v1

or b1 ≤ v1; w.l.o.g. assume the latter. Via the following separationsand dependencies

this gives u1 ## u1, a contradiction.

u1 ##X1 x1 ##{c1} b1 ≤ v1 ≤ u1

For the general case, since ci−1 ≤ vi ≤ ui ,wi , either ci−1

⊳ ci or vi−1 ≤ ci−1 ≤ ci ;

in this latter case, the cycle may be shortened by skipping ci−1 and vi . Then assume

the given cycle, reproduced below, is the shortest in⊳ over the cuts c1 . . .cn = c0; in

particular, cj ∈Ci if and only if i = j, since otherwise cj−1

⊳ ci .

c0

⊳ c1

⊳ . . . ⊳ cn = c0

Next, in ci−1

⊳ ci the vertices ui and wi , which depend on ci−1, must each depend

on ai−1 or bi−1. If one depends on ai−1 and the other on bi−1, as illustrated below left,

then ui ##Ci∪{ci−1} ui (by Lemma 7.2.7 it may be assumed that ci−1 /∈Ci) contradicting

strong safety.

ci−1

◦ai−1

≥

◦ bi−1

≤
ci

◦
≥

◦
≤

◦ui
◦ ◦ ## ◦wi

ci−1

◦ai−1 ◦ bi−1

≥ ≤
ci

◦
≥

◦
≤

◦ui
◦ ◦ ## ◦ wi

Without loss of generality let both ui and wi depend on bi, for all 1≤ i ≤ n, as illustrated

above right. Then ui−1 ## ui, as illustrated below, and un ## u1.

ci−1

◦
≥

◦
≤

◦ui−1 ##Xi−1 ◦ xi−1 ◦ ui

7.2. Weak normalisation without pruning 199

This gives the following sequence.

u1 ##X1∪{c1} u2 ##X2∪{c2} . . . ##Xn∪{cn} u1

To conclude that u1 ## u1, the setsXi ∪{ci} must be disjoint. Recall that ci /∈ Xj unless

i = j. To show that also all setsXi are disjoint, letXi andCj be such thatXi ∩Cj 6= ∅

with i < j, andi is the greatest index for which this holds, i.e. there is noi < k < j with

Xk∩Cj 6= ∅. In Xi, illustrated below, from left to right let d be the last cut inXi that

also appears inCj ; i.e. letD ⊂ Xi be disjoint fromCj , let d have children a and b, and

let a ##D∪{d,ci} bi .

d ci c j−1

◦a

≥

≥

◦ b

≤

◦ai

≥

◦ bi

≤

◦aj−1

≥

◦ b j−1

≥ ≤

◦ui
◦ ◦ ##D ◦ xi ◦ui+1 ##X ◦

u j−1
##Xj−1 ◦

◦ v
d

◦a

≥

◦ b

≤

◦u j ##E ◦ v ◦ ## ◦w j

Let v be a vertex such that a≤ v and either uj ##E v or w j ##E v (the former is used

in the illustration above), where d/∈ E ⊂Cj . Then v ##Z v, where

Z = {d} ∪ D ∪ {ci} ∪ X ∪ Xj−1 ∪ {c j−1} ∪ E X =
[

i<k< j−1

Xk∪{ck}

—by construction, all components ofZ as listed in the equations are disjoint.

Finally, the previous lemmata combined allow weak normalisation to be proved.

Theorem 7.2.12(Weak normalisation without pruning). For any strongly safe forest

FA there is a finite reduction pathFA (−)∗ FC such thatFC is cut-free.

Proof. Let FA be strongly safe, and not cut-free. Select a cut c that does not straddle

others and has no dependent cuts of same or higher complexity; i.e.

∀d∈ VA(⊥). c 6⊳ d ∧
(

c < d ⇒ compl(c) > compl(d)
)

.

Such a cut c must exist, since the relation(≤ ∪ ⊳)∗ on FA is a partial order, by

Lemma 7.2.11. Then let FA
c − FB. By Lemma 7.2.10 the proof forest FB is strongly

safe, and its complexity is smaller than that of FA . By induction, FB(−)∗FC, and the

statement follows.

200 Chapter 7. Exploring reduction

Since compound reduction steps consist of finitely many ordinary reduction steps,

the following is immediate.

Corollary 7.2.13. The relation() is weakly normalising.

7.3 Discussion and related work

The closest relatives of classical proof forests are Miller’s expansion tree proofs [79],

and the Herbrand nets investigated by McKinley [74]. This section will illustrate how

these formalisms relate to proof forests, via a discussion of a number of modifications

to various aspects of proof forests. These modifications include alternative correctness

criteria, a further variation on reduction steps, and the addition of tautology links. A

further variation, found in the literature, is the fragmentof proof forests that disallows

contraction and weakening [80]. Since the presence of contraction is a primary reason

for the complexity of reductions in proof forests, this variant has a much better behaved

cut-elimination procedure. However, the discussion here will be restricted to related

formalisms in which contraction does occur, and the full complexities of classical logic

are present.

Expansion tree proofs

Two main distinctions between proof forests and Miller’s expansion tree proofs as

presented in [79] need no further explanation: expansion tree proofs allow higher-

order and non-prenex formulae, but have not been given a normalisation procedure. A

minor point is that expansion tree proofs require existential nodes to have at least one

branch. A third, important difference is in the correctnesscriteria employed.

The correctness condition for expansion tree proofs used in[79], when stated for

proof forests, assigns two formulae to a forest: theshallowformula and thedeepfor-

mula. The shallow formula of a proof forest is the sequent formed by the labels of

its root nodes. The deep formula is the propositional formula obtained by interpreting

the trees in a proof forest as propositional formula trees, where the branching at an

existential node is interpreted as disjunction, and cuts are treated as conjunctions. The

shallow and deep formula of a propositional leaf node coincide, and the deep formula

of a universal node is the same as that of its child. A proof forest would then be correct

if its deep formula is a propositional tautology.

7.3. Discussion and related work 201

This correctness criterion corresponds directly to that ofthe Herbrand proofs by

Buss [20], discussed in Section 5.2; for that reason, call itHerbrand correctness.

Compared to the actual correctness criterion used in proof forests, of Definition 5.4.6,

Herbrand correctness is equivalent to a switching condition that ignores the depen-

dency. That is, a proof forest is Herbrand correct if for every possibility of deleting

one child of each cut node, and recursively deleting its children (but not necessarily its

dependants), the disjunction over the remaining propositional nodes is a tautology.

Several of the operations on proof forests used in normalisation do not preserve

Herbrand correctness. First and foremost, Herbrand correctness is not preserved by the

pruning operation. Given that pruning is essential to the modified reduction relation,

and that reductions need to preserve correctness, the current correctness condition is a

crucial component of the weak normalisation result in Theorem 6.4.9.

Disposal reduction steps also do not preserve Herbrand correctness, as is illustrated

below: while the deep formula on the left is a tautology, the one on the right is not.

The deep formula of a weakened existential node—which does not occur in expansion

tree proofs—is taken to be⊥, the empty disjunction.

∃ ∀ ∃

P P P

(⊥ ∧ P) ∨ Q ∨ ¬Q

∃

P

⊥ ∨ ¬Q

Operations that do preserve Herbrand correctness are composition via cut, and propo-

sitional, logical, and structural reduction steps. For theweak normalisation of(),

Corollary 7.2.13, Herbrand correctness may then replace the correctness criterion of

Definition 5.4.6, provided weakening (existential nodes without edges) is disallowed.

One drawback of Herbrand correctness is that it does not allow the current transla-

tion of the cut, from proof forests to sequent proofs, as presented in Section 5.5. The

translation is easily amended: the two subproofs of a cut arethe proof forests obtained

by removing each of the two trees below the cut, ignoring the dependency. However,

as the example in Figure 7.3 demonstrates, this introduces free variables into the se-

quent proof. These are eigenvariable occurrences whose universal introduction rule

has been removed—and, technically, now resides in the othersubproof. In the exam-

ple a proof forest is translated according to the natural translation procedure supported

by Herbrand correctness. The eigenvariable occurrenceb on the rightmost edge in the

proof forest is in the left subproof of the sequent proof no longer an occurrence of the

eigenvariableb, which is introduced only in the right subproof. Note that although in

this example, to obtain the subproofs for the sequent translation the proof forest could

202 Chapter 7. Exploring reduction

∀

a

∃

a

∀

b

∃

b

P P P P

P(a) ¬P(a) P(b) ¬P(b)

⊢ P(a), ¬P(a), ¬P(b)

⊢ ∀x.P(x),∃x.¬P(x),∃x.¬P(x)
∀R,∃R

⊢ P(a), P(b), ¬P(b)

⊢ ∀x.P(x),∀x.P(x),∃x.¬P(x)
∀R,∃R

⊢ ∀x.P(x),∃x.¬P(x),∀x.P(x),∃x.¬P(x)
Cut

⊢ ∀x.P(x),∃x.¬P(x)
CR

Figure 7.3: Translation based on Herbrand correctness

simply be split through the middle, in general the deep formula would be of the form

A∨ (B∧C)∨D, which only allows to concludeA∨B∨D andA∨C∨D.

Other modifications

In Section 7.2 the straddling relation was defined (see Definition 7.2.6), to account

for the impermutability of cuts with inferences that have premises or eigenvariable

occurrences in both subproofs. Seeing that one interpretation of the dependency in

proof forests is as an account of impermutability in the sequent calculus, it is natural

to ask whether straddling could be incorporated into the dependency. Furthermore,

straddling and strong safety are related to a multiplicative interpretation of the cut,

whereas safety, correctness and pruning are related to an additive interpretation, as

was argued in Section 5.5. In this light, a natural question is whether the notion of

strong safety allows the construction of a translation fromproof forests to sequent

proofs that is inverse toJ−K. Pursuing these ideas, below, leads to a range of subtle

modifications to the calculus of classical proof forests—some of which are more, some

less semantically meaningful.

It was established in Section 7.2 that the only way that reductions cause the loss of

strong safety is by a structural step on a cut c that straddlesanother cut d. The idea

behind the first question, of incorporating straddling intothe dependency, is that strong

safety would not be lost if d were dependent on c instead. Thatstraddling is a relation

between nodes, while in proof forests the dependency is generated by the relation(→)

from universal edges to existential edges and cut edges, is not an objection, because

the loss of strong safety is caused by the duplication of the dependants of the universal

7.3. Discussion and related work 203

branch of c; it is then sufficient to make the cut d dependent onthe universal side of

the cut c.

Implementing this idea, reductions can be augmented with the following con-

queststep, applied after each reduction step: for every universal edge〈u,w〉 and every

cut edge〈⊥,c〉, if u ⊳ c, add the dependency〈u,w〉 → 〈⊥,c〉 to the proof forest. It is

immediate from Lemma 7.2.11 that, for a strongly safe proof forest, the dependency

remains antisymmetric after a conquest step, and it is not too difficult to see that strong

safety itself is preserved. However, correctness is not preserved, as can be seen in the

following example.

∀
u

≥ ≤

◦

c

◦

≥≥

◦

≤ ≤

◦v ◦ x ◦y ◦ w

conquest
⇒

∀
u

◦

c

◦

≥≥

◦

≤ ≤

◦v ◦ x ◦y ◦w

A switching that switches off the node u, switches off all four of v, w, x and y after

the conquest step, but only v and w before, while c switches off only one of x and y.

If the above configurations are part of a proof forest F on the left, and F′ on the right,

with x and y propositional vertices,ς a switching that switches off u, andΓ is the value

of F′ under the switchingς, then the value of F underς is Γ∨ lab(x) or Γ∨ lab(y),

depending on the choice ofς on c. For correctness to be preserved, it should be that

Γ∨ lab(x) andΓ∨ lab(y) together implyΓ. This is not in general the case, because

there is no obligation forlab(x) andlab(y) to be each other’s negation.

However, dependencies are ignored in Herbrand correctness, which is therefore

trivially preserved in conquest steps. The following is then put forward as a conjecture,

for the informal nature of the arguments supporting its preservation properties.

Conjecture 7.3.1. The reduction relation() supplemented with conquest steps, on

strongly safe, Herbrand correct proof forests without weakened existential nodes, is

weakly normalising.

As weak normalisation for() was proven by Corollary 7.2.13, conquest steps are

redundant in the above conjecture. It is mentioned for the reason that the calculus with

conquest is expected to have stronger normalisation properties—perhaps even strong

normalisation if conquest is applied eagerly—than the calculus without. Still, the cal-

culus described in this conjecture is an odd combination of semantically only tenu-

204 Chapter 7. Exploring reduction

ously related concepts: reduction steps plus conquest are based on the multiplicative

cut in sequent calculus, while Herbrand correctness is based on a direct interpretation

of Herbrand’s Theorem. From this point, a natural directionto investigate is towards

a correctness criterion that allows a purely multiplicative interpretation of the cut in

proof forests.

This is precisely the question of a correctness condition that allows an inverse trans-

lation to J−K. First and foremost, strictly speaking it is impossible to obtain such an

inverse without adding additional structure to proof forests, by the following example.

P P P P P

P ¬P P P ¬P

There are two different sequent proofs that translate to this proof forest—and these

are not equal up to permutations. Still, the example leaves open the possibility of a

translation that is the inverse ofJ−K up to propositional contractions and tautology

links—which is reasonable, given that propositional content is (supposed to be) ig-

nored in both calculi. To find such a notion, an obvious direction follows the idea that

the notion of separation (Definition 7.2.1) indicates, for aproof forest translated from

a sequent proof, which vertices originated in different subproofs of the sequent proof.

It is tempting to use separation to give a notion ofstrong correctness, by analogy to the

way conflict may be used to define correctness, as was done in Proposition 6.4.2. In

this notion, a proof forest would be strongly correct if for every maximal separation-

free subset of V the labels over the propositional vertices form a tautology.

However, this notion of strong safeness does not bring the desired inverse transla-

tion procedure much closer, and moreover suffers from the fatal problem that it is not

preserved under logical reduction steps. This follows fromthe example below.

•
∃ ∀ ∃ ∀ ∃

P P P P P

P Q R S T

∃ ∀ ∃

P P P P P

P Q R S T

On the left, under strong correctness there are the following three tautologies:P∨S,

Q∨T, andQ∨R∨S. Crucially, the values under correctness are these three plusP∨T;

however, since the two outermost propositional vertices are separated, this is not one

of the tautologies of strong correctness. Then on the right,the tautologies for both

strong correctness and correctness are the following four:P∨T, P∨R∨S, Q∨T, and

Q∨R∨S. Whereas correctness allows all four to be proved from the tautologies of the

7.3. Discussion and related work 205

proof forest on the left, strong correctness cannot prove that P∨T is a tautology. The

above also illustrates that ‘strong correctness’ is not an appropriate name, since for the

proof forest on the left, it does not imply correctness.

A final modification of proof forests will be discussed, one that is more invasive

than the previous, but perhaps not as much as it initially seems. The idea is to add the

tautology rule of the sequent calculus of Figure 5.4 to proofforests as atautology link,

by analogy with the axiom links of MLL-nets. This is the direction taken by Richard

McKinley, resulting in the Herbrand nets discussed below.

Herbrand nets

Like proof forests, the Herbrand nets developed by McKinley[74] are aimed at provid-

ing a canonical representation of first-order classical proof by removing bureaucracy,

and share the same basic forest structure. Different from proof forests, in Herbrand

nets the sequent calculus is taken as primary, and in particular the axiom rule—or

in the first-order case, the tautology rule—is considered tocontribute to the essential

proof content. By addingtautology linkscorresponding to the tautology rule of Fig-

ure 5.4, Herbrand nets provide a notion of proof net for a first-order sequent calculus

similar to the strict calculus in Figure 5.4 plus cut—specifically, it includes proposi-

tional contraction, but not existential weakening.

The technical distinctions between the two formalisms can mostly be ascribed to

two properties, required of Herbrand nets in order to be a reasonable notion of proof

net: one, translation from nets to sequent proofs should be invertible up to permuta-

tions; two, this translation should commute with reductions in either formalism. To

achieve invertible translation the main ingredient, and the main distinction with proof

forests, is invertible composition.

The tautology links of Herbrand nets are reminiscent of the axiom links found in

other forms of proof net, but connect several propositionalnodes that, by taking the

disjunction over their labels, form a tautology. In addition, a propositional node can

participate in multiple tautology links, which corresponds to contraction on proposi-

tional formulae in the sequent calculus. Tautology links are implemented as special

vertices without parents or children, indexed by natural numbers, to which proposi-

tional nodes connect via pointers. These pointers are then incorporated into the depen-

dency. Figure 7.4 illustrates a Herbrand net with two tautology links.

The correctness criterion of Herbrand nets is a Danos–Regnier-style switching con-

dition [29], familiar from MLL nets, on the dependency graphof a forest. A switch-

206 Chapter 7. Exploring reduction

∃ ∀ ∃

P P P P

1 2

Figure 7.4: Herbrand nets are proof forests with tautology links

ing chooses: one edge of each existential node; one tautology link for each proposi-

tional node; and for each universal node u either its unique edge or one connection

〈u,w〉 → 〈x,y〉 from u to y. For each switching, after removing other such connec-

tions not chosen by the switching, the remaining graph is required to be connected and

acyclic.

Reduction steps in Herbrand nets, which need to preserve this correctness condi-

tion, differ from those in proof forests in several respects. Omitting weakening, there

is no equivalent to disposal steps in Herbrand nets, but logical steps in both formalisms

are identical, modulo the presence of tautology links. Propositional steps in Herbrand

nets unify two axiom links, in the way that is obvious from thereduction step in the se-

quent calculus, described in Section 6.2. A propositional cut with a child that connects

to two or more links, rather than inducing a duplication fromthe implicit propositional

contraction, is left unreduced pending the unification of these links.

A structural step in Herbrand nets duplicates thekingdomof its universal child. The

notion of kingdom (see [13]) originated in the study of proofnets for multiplicative lin-

ear logic. There, and likewise in Herbrand nets, the kingdomof a node is the smallest

subnet of which it is a root—where a subnet is a subgraph that is a proof net—and

corresponds to the smallest possible subproof under permutations in a sequent proof.

Kingdoms in Herbrand nets are precisely dependent subforests after a conquest step,

i.e. after straddling is incorporated into the dependency—where the dependency differs

from that of proof forests by including the pointers of tautology links.

To summarise, Herbrand nets are proof forests with tautology links, with reduction

steps comparable to proof forest reduction with conquest. In [74] it is demonstrated

that Herbrand nets have invertible composition and invertible translation with sequent

proofs, and weakly normalising reduction steps that commute with those of the sequent

calculus.

7.4. Non-confluence 207

7.4 Non-confluence

In formalisms that respect the symmetry of classical logic,it is common for proof

reduction to exhibit non-confluence. It is therefore perhaps not a great surprise that

reduction in proof forests, too, is non-confluent. Nonetheless, it is interesting to look at

the way non-confluence occurs here, firstly, because of the canonical nature of forests.

A consequence of the strict focus on witness assignment to quantifiers in proof forests,

while propositional content is ignored, is that reducing propositional cuts is trivially

confluent—which means that any non-confluence in proof forests is due entirely to

first-order proof content. In addition, forests arepolarisedin the sense that contraction

and weakening are only applied to existential formulae. Thus two notorious sources of

non-confluence in the standard sequent calculus, a cut on twoweakenings and a cut on

two contractions, are avoided (see e.g. [92, Appendix B1], [42], or [68]).

∃
a•

s
∃

t
∀

a
∃

a
∀

b
∃

b
◦ ◦ ◦ ◦ ◦ ◦

∃
a

s
∃

t
∀

a
∃

a
◦ ◦ ◦ ◦

∗
s

∃
t

∃
s

∃
t

◦ ◦

∃
a•

s
∃

t
∀

a
∃

a
∀

b
∃

b
◦ ◦ ◦ ◦ ◦ ◦

∗
s

∃
t

s
∃

t
∀

b
∃

b
∃

b
◦ ◦ ◦ ◦ ◦

∗
s

∃
t

s
∃

t s
∃

t
◦ ◦ ◦ ◦

∃
a•

s
∃

t
∀

a
∃

a
∀

b
∃

b
◦ ◦ ◦ ◦ ◦ ◦

∗
s

∃
t• •

∃
s

∀
b

∃
t

∀
b′

∃
b

∃
b′

◦ ◦ ◦ ◦ ◦ ◦

∗
s

∃
t

∃
s

∃
t

◦ ◦

Figure 7.5: An example of non-confluence, made confluent by conquest

A second reason why non-confluence in proof forests is interesting is the way it

appears in the universal counterexample, which may be seen as an instance of the

familiar problem of two contractions interacting via cuts,rephrased for the current

context of proof forests. Although many other examples of non-confluence exist, most

are sensitive to modifications in the reduction relation. For example, in Figure 7.5 the

first two reduction paths yield different normal forms, while a conquest step would

modify the first forest to become that in the third reduction path, making the example

confluent. (The particular example in Figure 7.5 is due to Richard McKinley.)

A second example, in Figure 7.6, is confluent in normal reduction (), but as shown

208 Chapter 7. Exploring reduction

•
∀

a r
∃

s
∀

b
∃

a
◦ ◦ ◦

∃
t

∀
c

∃
c

◦ ◦ ◦

∗ ∀
b r

∃
s

∃
t

∀
c

∀
c′ c

∃
c′

◦ ◦ ◦ ◦ ◦

∗

t
∃

t
◦ ◦

∀
a r

∃
s•

∀
b

∃
a

◦ ◦ ◦

∃
t

∀
c

∃
c

◦ ◦ ◦

∗

∀
a r

∃
s

◦ ◦ ◦

∃
t
◦

∗

∃
t
◦

Figure 7.6: Non-confluence with minimal dependencies (where b /∈ fv(t))

becomes non-confluent when reduction is interleaved with minimisation (replacing the

dependency with the minimal one, see Section 5.4). In the second reduction path of the

example, the grey arrow results from the reduction steps, but is not part of the minimal

dependency, sinceb is not free int. The reduction also shows that minimality of the

dependency is not preserved in reductions.

∃x∀y.¬Px∨Py ∀x∃y.Qx∨¬Qy

c
∃

t0

∀

a
∀

b t1

∃

d

∀

x
∀

c
∃

f (b)

∃

g(a)

∀

d
∀

y

P P P P P P

P(a)∧¬P(f (b)) Q(b)∧¬Q(g(a))

∃

a

∃

b

P

(¬P(a)∨P(f b)) ∧ (¬Q(b)∨Q(ga))

Figure 7.7: The universal counterexample in a context

The universal counterexample is the simplest example foundthat is non-confluent

under any modification of the reduction relation described here—including reduction

in Herbrand nets, a fact that is demonstrated in [74, Section8]. In Figure 7.7 the

universal counterexample is put within a context, omittingsome (easily inferred) labels

7.4. Non-confluence 209

to prevent clutter. The example is a correct proof forest forthe formula

∃xy. (¬P(x)∨P(f y)) ∧ (¬Q(y)∨Q(gx)) .

In the regular reduction relation() the proof forest in Figure 7.7 has exactly two

normal forms. The one below is the result of the reduction path in Figure 6.6, and of

any other path that fully reduces the cut on the right before reducing that on the left.

t0

∃

f (t1) f g(t0)

t1

∃

g(t0) t1

∃

g f(t1) t1

∃

g f g(t0)

P P P P P P

¬P(t0)∨P(f g(t0)) ∧ ¬Q(gt0)∨Q(gt0)

¬P(f g(t0))∨P(f g f g(t0)) ∧ ¬Q(g f g(t0))∨Q(g f g(t0))

The labels that are indicated are the two that are necessary for the correctness of the

above proof forest. As in both labels theQ-atoms cancel out, the dual atomsP(f g(t0))

and¬P(f g(t0)) make the disjunction over the propositional labels a tautology.

The other normal form of the proof forest in Figure 7.7, shownbelow, is reached

by any reduction path that fully reduces the left cut before reducing the right cut.

t0

∃

f (t1) f g(t0) f g f(t1)

t1

∃

g(t0) g f(t1)
∃

t1

∃

g(t0)
∃

g f(t1)

P P P P P P

¬P(f t1)∨P(f t1) ∧ ¬Q(t1)∨Q(g f(t1))

¬P(f g f(t1))∨P(f g f(t1)) ∧ ¬Q(g f(t1))∨Q(g f g f(t1))

This time, theP-atoms cancel out, revealing dual atoms¬Q(g f(t1)) andQ(g f(t1)).

The difference between the two normal forms is thus not simply a matter of having

different redundant existential branches: the two normal forms are perfectly symmet-

ric, and provide symmetric solutions to the problem posed bythe formula.

Much the same holds under the modifications to the reduction relation that were

discussed. In the modified reduction relation() (Definition 6.4.6), the reduction

paths that reduce one of both cuts fully before reducing the other are still available.

In addition, the paths that interleave reduction steps in either cut, such as that in Fig-

ure 6.10, are normalising in() due to pruning. When reducing the proof forest in

210 Chapter 7. Exploring reduction

Figure 7.7 via the reduction path Figure 6.10 the symmetry ofthe proof forest is pre-

served right up until the moment that pruning is needed—thispoint in the reduction is

illustrated below.

∀
c f (d)

∃
f (t1) g(t0)

∃
g(c)

∀
d

◦ ◦ ◦ ◦ ◦ ◦

c
∃

t0

t1

∃
d t1

∃
d

◦ ◦ ◦ ◦

From this point there are two possible reduction steps in(), both involving pruning,

that after one more step lead to two normal forms, each similar to one of the normal

forms described above but with additional existential branches. Neither simultane-

ously contains both pairs of dual atoms of the other normal forms,¬Q(g f(t1)) and

Q(g f(t1)), andP(f g(t0)) and¬P(f g(t0)).

Finally, reducing the example in Figure 7.7 in() augmented with conquest would

have the two initial reduction steps shown in Figure 7.8. From there, the example

would reduce as in(), to reach one of the two normal forms described. In different

contexts, however, using a conquest step in a reduction may lead to a different normal

form than a normalising path in() without conquest.

The non-confluence exhibited by these examples seems fundamental, and it looks

improbable that simple modifications can make reduction confluent.

7.4. Non-confluence 211

c d

∃ ∀ ∀ ∃

∀ ∀ ∃ ∃ ∀ ∀

◦ ◦ ◦ ◦ ◦ ◦

c d

c d

∃ ∀ ∀ ∃

∀ ∃ ∃ ∀ ∀

◦ ◦ ◦ ◦ ◦ ◦

c′

∃ ∀

∀ ∃

◦ ◦

c d

∃ ∀ ∀ ∃

∀ ∀ ∃ ∃ ∀

◦ ◦ ◦ ◦ ◦ ◦

d′

∀ ∃

∃ ∀

◦ ◦

Figure 7.8: The universal counterexample with conquest

Chapter 8

Conclusions

8.1 Summary

In this dissertation two canonical representations of proof were discussed. The present

section will briefly summarise the motivations for, and the results of the work on these

formalisms, presented in the previous chapters. Section 8.2 will suggest angles for

future investigations.

Proof nets for additive linear logic

In Part I a new notion of proof net was presented, that is canonical for additive linear

logic with units. As was argued in the introductory chapter (Section 1.3), this logic

is a simple but rich fragment of linear logic, that exhibits many of the problems with

composition in syntactic representations of linear logic (cf. [2] and [64]). Its semantics

is that of bi-Cartesian or sum–product categories, categories with finite products and

coproducts, which are ubiquitous throughout mathematics.Additive linear logic forms

a term calculus for such categories, whose equational theory was described in [25];

an effective (polynomial-time) decision procedure was given recently in [23]. Still,

the problem of finding proof nets for this fragment, canonical representations for the

morphisms of free sum–product categories, remained unsolved. As set out in Chap-

ter 2, earlier proof nets by Hughes and Van Glabbeek [59], here presented (in slightly

modified form) as sum–product nets, were not canonical for the units.

The main contribution of Part I of the dissertation are the saturated nets that are

canonical representations of proof in additive linear logic. The theory of saturated

nets, as presented here, covers all the essential notions required of proof nets, includ-

ing a correctness condition, a sequentialisation algorithm, and a direct definition of

213

214 Chapter 8. Conclusions

composition (i.e. not via translations with the sequent presentation, or even unsatu-

rated sum–product nets). Saturated nets themselves are characterised, in Chapter 3, in

three ways:

• as the result of saturating sum–product nets—when combined with the transla-

tion from proof terms to sum–product nets, this comprises the direct translation

from proofs in additive linear logic to saturated nets;

• as the union over an equivalence class of sum–product nets;

• as the prenets that satisfy the correctness criterion of Proposition 3.4.5.

The characterisation of free sum–product categories was completed by the description

of composition as relational composition plus saturation,in Section 3.3. Finally, satu-

ration constitutes an efficient decision procedure, by translating (cut-free) proof terms

to saturated nets to compare these for syntactic equality. Both saturation itself, and the

decision procedure it enables, operate in linear time in theproduct of the sizes of the

source and target formulae.

The central technical contribution behind the results of Part I is the proof presented

in Chapter 4, that the decision procedure of comparing saturated nets is sound for free

sum–product categories.

Classical proof forests

Part II of the dissertation discussed a canonical proof formalism for first-order classical

logic, called ‘classical proof forests’, and presented an investigation into composition

via cut-elimination for this formalism. The motivations for this work and for the de-

sign of the proof forests may be summarised as follows. To finda good notion of proof

identity for propositional classical proof is problematic. At the same time, Herbrand’s

Theorem shows that propositional proof, being decidable, can be ignored in a formal-

ism for first-order proof. This allows an approach to canonical proof that finds the

essential content of first-order classical proof in the assignment of witnessing terms

to the quantifiers. Such a route has been taken before: by Miller in [79], to find an

efficient representation for higher-order classical proof, and by Coquand in [26], to

give a semantics for classical arithmetic based on games. For the present work, a main

motivation was the idea that a canonical representation of first-order proof based on

witnessing information might support a good notion of composition.

8.1. Summary 215

This representation of proof, classical proof forests, wasintroduced in Chapter 5.

Two main views of classical proof forests were discussed in this chapter. Firstly, they

describe a natural notion of strategy for a two-player backtracking game. As a strategy

for ∃loise, a proof forest prescribes the moves to be made by∃loise, and their depen-

dence on moves by∀belard; but no further order on moves is forced. A second view,

detailed in Section 5.5, compares classical proof forests to a first-order sequent cal-

culus. The fact that classical proof forests factor out the bureaucracy of permutations

in the sequent presentation, is a main reason why they may be considered canonical.

However, it is also shown that in the presence of cuts, the correspondence between

dependency in proof forests and impermutability in the sequent calculus is not exact.

Mainly due to the divergence between these concepts, reduction steps in proof

forests behave differently from reduction in the sequent calculus, even though, in

spirit, reduction steps in both formalisms are comparable.In Chapter 6 this leads

to the puzzling fact that, from a perfectly acceptable proofforest called the ‘universal

counterexample’, reduction steps produce cuts that areunsafe. These are cuts where

both sides have common dependants, an unnatural configuration which prevents them

from being reduced. Fortunately, the correctness condition for proof forests, based on

the game-theoretic interpretation, allows the shared dependants to simply be removed,

in an operation calledpruning. Next, by grouping reduction steps together, the one

known cause of infinite reduction paths is prevented from occurring. For the modified

reduction relation(), which implements these two solutions, a weak normalisation

theorem is proven, and strong normalisation is conjectured.

In Chapter 7 astrong safetyproperty was defined, closely related to the property

of being the translation of a sequent proof, implying the absence of unsafe cuts in a

forest. A careful analysis of the universal counterexample, and the difference between

the dependency of proof forests and impermutability in the sequent calculus, then led

to the identification of a class of reduction steps in foreststhat preserve strong safety.

By showing that at least one such a reduction step must apply if a proof forest has

a cut, weak normalisation was shown for the original reduction relation(). The

remainder of Chapter 7 was split between a discussion of alternative modifications to

the reduction relation, including an exploration of related work, and an overview of

non-confluence in proof forest reductions.

The two approaches to weak normalisation, one via pruning and one via strong

safety, can be viewed as corresponding to the two different interpretations of proof

forests, as strategies in backtracking games and as an abstraction over the sequent

216 Chapter 8. Conclusions

calculus. In some respects, the modified reduction relation() is the more natural

solution: it is simpler, it has a single, uniform first-orderreduction step instead of three

different ones, and pruning is naturally suggested by the game interpretation of the cut.

In contrast, while the approach via strong safety succeeds in finding an interpretation of

the cut in proof forests that corresponds more closely to the(multiplicative) cut of the

sequent calculus, it seems that, to capture the full behaviour of the sequent calculus,

axiom links as in McKinley’s Herbrand nets are indispensable. That being said, the

characterisation of a multiplicative interpretation of the cut in the absence of axiom

links, by strong safety and thestraddlingrelation, is undoubtedly of interest.

8.2 Further work

Further work on sum–product nets

This section presents a brief list of possible angles for future work based on proof nets

for additive linear logic. The presentation of saturated nets in this dissertation leaves

few open questions on saturated nets themselves—though onesuch problem is listed

first, below. Nonetheless, there are numerous interesting areas for future investigations

that take saturated nets as their starting point.

A simpler soundness proofThe soundness proof of saturation as a decision proce-

dure, in Chapter 4, is long and complex, especially given thesimplicity of the

saturation algorithm. Surely it must be possible to give a simpler proof that satu-

rated nets are canonical. The current presentation reflectsthe order in which the

results were obtained, and for that reason it is unlikely to be optimal. In partic-

ular, the correctness condition for saturated nets was found last. It is plausible

that its proof, in Section 4.9, could lead to a simpler proof of the canonicity of

saturated nets.

Bicomplete categoriesSince products and coproducts are discrete limits and colim-

its, a natural question is whether sum–product nets and saturated nets can be

adapted to characterise the free completion with all finite limits and colimits.

This would require to include equalisers and co-equalisers, on top of the exist-

ing machinery. A notion of proof nets along these lines wouldbe canonical for

Joyal’s bicomplete categories [63], restricted to finite limits and colimits.

8.2. Further work 217

Infinite products and coproducts One extension of the present work would be to in-

vestigate canonical representations of categories with infinite products and co-

products. A direct, finite graphical depiction of such infinite objects is of course

impossible, but it would be interesting, and possibly even useful, to see whether,

abstractly, canonical forms are possible. Combined with the above suggestion of

proof nets for finite limits and colimits, the question of canonical representations

could even be extended to all limits and colimits.

Games semantics of additive linear logicGames semantics is an important branch

of research on linear logic. While fully complete models forlinear logic are

known ([77]), as was mentioned in Section 1.3 it has proven hard to move

away from the alternating, interleaving approach, towardsa true concurrency

approach. It is to be expected that a game-theoretic interpretation of saturated

nets will be a useful contribution towards this goal.

Completeness as a model for EECThe enriched effect calculus of Egger, Møgel-

berg, and Simpson [35] is a promising model of computation, that incorporates a

rich theory of computational effects. Its term calculus operates in two domains,

one ofvaluesand one ofcomputations. Its models consist of a category of com-

putations, enriched in a category of values, with an adjunction between the two

categories. The sum–product completion of the empty setΣΠ(∅), which is en-

riched in the category of finite sets, forms a family of basic such EEC-models

(differing only in the choice of adjunction). An interesting question is whether

such models are complete for the enriched effect calculus.

Proof nets for linear logic The search for canonical proof representations is a funda-

mental, long-standing open problem in full classical linear logic. It is hoped that

saturated nets will prove a useful contribution towards solving this problem. In

addition, while the techniques in this dissertation are quite specific, it is hoped

that the general ideas and overall approach will prove to be useful in the search

for proof nets for all of linear logic.

Further work on classical proof forests

The treatment of classical proof forests in this dissertation leaves a few open questions,

the most important of which is the strong normalisation conjecture for the modified

reduction relation. This, and several other angles for future research, are listed below.

218 Chapter 8. Conclusions

Strong normalisation for the modified reduction relation The main open question

in this dissertation is the strong normalisation conjecture for the modified re-

duction relation(), Conjecture 6.4.10. Despite some effort, attempts to apply

existing techniques to this problem, most notably the approach in [93], were

unsuccessful.

Conquest reductions A focal point in the discussion of alternative modificationsto

the reduction relation is the possibility ofconqueststeps in reductions, steps that

include straddling into the dependency. This approach is yet to be formalised,

and although weak normalisation is almost immediate from the weak normali-

sation of(), it is quite plausible that a reduction relation employing conquest

steps could be strongly normalising.

Infinite normal forms One drastic approach to obtaining confluence would be the

following. Consider a process where cuts are duplicated before they are re-

duced, retaining both the original cut and the reduced one inthe proof forest.

It is plausible that in the limit, this process is confluent, producing an infinite

‘proof forest’ that contains, at least, the results of all genuine reduction paths

to normal forms. Then cuts can be removed, leaving an infinitenormal form.

Although the appeal of such a formalism would be mainly theoretical, there are

interesting questions to be considered, for example on confluence, and on com-

position of infinite normal forms. In addition, if such infinite normal forms can

be finitely represented, for example by a grammar or automaton, they may also

be of practical interest.

Computational content of witness assignmentThe computational meaning of cut-

elimination in proof forests can be seen as lying in the changes to the witnessing

information, effected during the normalisation process. Aclear example of this

is given by the normal forms of the reduction of the universalcounterexample

in Section 7.4. Naturally, such computation occurs in otherformalisms for first-

order classical logic, too. Nevertheless, because of theircanonicity, it would be

interesting to see how classical proof forests can be employed computationally.

A more specific question in this direction is whether classical proof forests can

simulate computation in first-order intuitionistic proof normalisation.

Bibliography

[1] Samson Abramsky. Computational interpretations of linear logic. Theoretical

Computer Science, 111:3–57, 1993.

[2] Samson Abramsky. Sequentiality vs. concurrency in games and logic. Mathe-

matical Structures in Computer Science, 13(4):531–565, 2003.

[3] Samson Abramsky and Radha Jagadeesan. Games and full completeness for

multiplicative linear logic.Journal of Symbolic Logic, 59(2):543–574, 1994.

[4] Samson Abramsky, Radha Jagadeesan, and Pasquale Malacaria. Full abstraction

for PCF. Information and Computation, 163:409–470, 1996.

[5] Samson Abramsky and Paul-André Melliès. Concurrent games and full com-

pleteness. InProc. 14th Annual IEEE Symposium on Logic in Computer Science

(LiCS’99), 1999.

[6] José Bacelar Almeida, Jorge Sousa Pinto, and Miguel Vilaça. A local graph-

rewriting system for deciding equality in sum-product theories. Electronic Notes

in Theoretical Computer Science, 176:139–163, 2007.

[7] Matthias Baaz and Alexander Leitsch. Cut-elimination and redundancy-

elimination by resolution. Journal of Symbolic Computation, 29(2):149–177,

2000.

[8] Patrick Baillot, Vincent Danos, Thomas Ehrhard, and Laurent Regnier. Believe it

or not, AJM’s games model is a model of classical linear logic. Proc. 12th Annual

IEEE Symposium on Logic in Computer Science (LiCS’97), pages 68–75, 1997.

[9] Franco Barbanera and Stefano Berardi. A strong normalization result for classical

logic. Annals of Pure and Applied Logic, 76(2):99–116, 1995.

219

220 Bibliography

[10] Michael Barr. *-Autonomous categories and linear logic. Mathematical Struc-

tures in Computer Science, 1:159–178, 1991.

[11] Gianluigi Bellin, Martin Hyland, Edmund Robinson, andChristian Urban. Cat-

egorical proof theory of classical propositional logic.Theoretical Computer Sci-

ence, 364(2):146–165, 2006.

[12] Gianluigi Bellin and Philip Scott. On the pi-calculus and linear logic.Theoretical

Computer Science, 135:11–65, 1994.

[13] Gianluigi Bellin and Jacques van de Wiele. Subnets of proof-nets in MLL−. In

Advances in Linear Logic, pages 249–270, 1995.

[14] Nick Benton, Gavin Bierman, Valeria de Paiva, and Martin Hyland. Linear

lambda-calculus and categorical models revisited. InProc. 6th EACSL Annual

Conference on Computer Science Logic (CSL’92), pages 61–84, 1993.

[15] Andreas Blass. A game semantics for linear logic.Annals of Pure and Applied

Logic, 56:183–220, 1992.

[16] Richard Blute. Proof nets and coherence theorems. InCategory Theory and

Computer Science, volume 530 ofLecture Notes in Computer Science, pages

121–137. Springer Berlin / Heidelberg, 1991.

[17] Richard Blute, Robin Cockett, Robert Seely, and Todd Trimble. Natural de-

duction and coherence for weakly distributive categories.Journal of Pure and

Applied Algebra, 113:229–296, 1996.

[18] Richard Blute, Masahiro Hamano, and Philip Scott. Softness of hypercoherences

and MALL full completeness.Annals of Pure and Applied Logic, 131(1–3):1–63,

2005.

[19] Kai Brünnler. Deep Inference and Symmetry in Classical Proofs. PhD thesis,

Technische Universität Dresden, 2004.

[20] Samuel R. Buss. On Herbrand’s Theorem.Lecture Notes in Computer Science,

960:195–209, 1995.

[21] Iliano Cervesato and Andre Scedrov. Relating state-based and process-based

concurrency through linear logic.Information and Computation, 207(10):1044–

1077, 2009.

Bibliography 221

[22] Robin Cockett and Craig Pastro. The logic of message passing. Science of Com-

puter Programming, 74:498–533, 2009.

[23] Robin Cockett and Luigi Santocanale. On the word problem for ΣΠ-categories,

and the properties of two-way communication. InProc. 18th EACSL Annual

Conference on Computer Science Logic (CSL’09), volume 5771, pages 194–208,

2009.

[24] Robin Cockett and Robert Seely. Weakly distributive categories.Journal of Pure

and Applied Algebra, pages 133–173, 1997.

[25] Robin Cockett and Robert Seely. Finite sum-product logic. Theory and Applica-

tions of Categories, 8(5):63–99, 2001.

[26] Thierry Coquand. A semantics of evidence for classicalarithmetic. Journal of

Symbolic Logic, 60(1):325–337, 1995.

[27] Haskell Brooks Curry and Robert Feys.Combinatory Logic, Vol. I. Studies in

Logic and the Foundations of Mathematics. North-Holland, Amsterdam, 1958.

[28] Vincent Danos, Jean-Baptiste Joinet, and Harold Schellinx. A new deconstructive

logic: Linear logic.Journal of Symbolic Logic, 62:755–807, 1997.

[29] Vincent Danos and Laurent Regnier. The structure of multiplicatives.Archive for

Mathematical Logic, 28:181–203, 1989.

[30] Nicolaas Govert de Bruijn. AUTOMATH, a language for mathematics. Tech-

nical Report T.H.-Report 68-WSK-05, Department of Mathematics, Technolog-

ical University Eindhoven, 1968. Reprinted inAutomation and Reasoning, vol.

2, Classical papers on computational logic 1967–1970, Springer Verlag, 1983,

pages 159–200.

[31] Harish Devarajan, Dominic Hughes, Gordon Plotkin, andVaughan Pratt. Full

completeness of the multiplicative linear logic of Chu spaces. Proc. 14th An-

nual IEEE Symposium on Logic in Computer Science (LiCS’99), pages 234–243,

1999.

[32] Paolo di Giamberardino and Claudia Faggian. Proof netssequentialisation in

multiplicative linear logic.Annals of Pure and Applied Logic, 155(3):173–182,

2008.

222 Bibliography

[33] Kosta Došen and Zoran Petrić. Bicartesian coherence.Studia Logica, 71(3):331–

353, 2002.

[34] Kosta Došen and Zoran Petrić. Proof-Theoretical Coherence, volume 1 ofStudies

in Logic. King’s College Publications, London, 2004.

[35] Jeff Egger, Rasmus Møgelberg, and Alex Simpson. Enriching an effect calculus

with linear types. InComputer Science Logic 2009, volume 5771 ofLecture

Notes in Computer Science, pages 240–254, 2009.

[36] Thomas Ehrhard. Hypercoherences: a strongly stable model of linear logic.

Mathematical Structures in Computer Science, 3:365–385, 1993.

[37] Claudia Faggian and Mauro Piccolo. Partial orders, event structures and linear

strategies. InProc. 9th International Conference on Typed Lambda Calculiand

Applications (TLCA’09), volume 5608 ofLecture Notes in Computer Science,

pages 95–111, 2009.

[38] Gilda Ferreira and Paolo Oliva. On various negative translations. InProc. 3rd

International Workshop on Classical Logic and Computation, volume 47 ofElec-

tronic Proceedings in Theoretical Computer Science, pages 22–33, 2010.

[39] Carsten Führmann and David Pym. Order-enriched categorical models of the

classical sequent calculus.Journal of Pure and Applied Algebra, 204:21–78,

2006.

[40] Gerhard Gentzen. Untersuchungen über das logische Schließen I, II. Mathema-

tische Zeitschrift, 39:176–210, 405–431, 1934–1935. English translation in:The

Collected Papers of Gerhard Gentzen, M.E. Szabo (ed.), North-Holland 1969.

[41] Jean-Yves Girard. Linear logic.Theoretical Computer Science, 50(1):1–102,

1987.

[42] Jean-Yves Girard. A new constructive logic: Classicallogic. Mathematical

Structures in Computer Science, 1:255–296, 1991.

[43] Jean-Yves Girard. Proof-nets: the parallel syntax forproof-theory. Logic and

Algebra, pages 97–124, 1996.

[44] Jean-Yves Girard, Yves Lafont, and Paul Taylor.Proofs and Types. Cambridge

University Press, 1989.

Bibliography 223

[45] Timothy Griffin. A formulae-as-type notion of control.In Proc. 17th ACM Sym-

posium on Principles of Programming Languages, pages 47–58, 1990.

[46] Stefano Guerrini. Correctness of multiplicative proof nets is linear. InProc.

14th Annual IEEE Symposium on Logic in Computer Science (LiCS’99), pages

454–463, 1999.

[47] Alessio Guglielmi and Tom Gundersen. Normalisation control in deep inference

via atomic flows.Logical Methods in Computer Science, 4(1:9):1–36, 2008.

[48] Willem Heijltjes. Classical proof forestry.Annals of Pure and Applied Logic,

161(11):1346–1366, 2010.

[49] Willem Heijltjes. Proof nets for additive linear logicwith units. InProc. 26th

Annual IEEE Symposium on Logic in Computer Science (LiCS’11), pages 207–

216, 2011.

[50] Jacques Herbrand. Investigations in proof theory: Theproperties of true propo-

sitions. In Jean van Heijenoort, editor,From Frege to Gödel: A source book in

mathematical logic, 1879–1931, pages 525–581. Harvard University Press, 1967.

[51] Stefan Hetzl and Alexander Leitsch. Proof transformations and structural invari-

ance.Lecture Notes in Computer Science, 4460:201–230, 2007.

[52] William A. Howard. The formulae-as-types notion of construction. In Jonathan P.

Seldin and J. Roger Hindley, editors,To H.B. Curry: Essays on Combina-

tory Logic, Lambda Calculus and Formalism, pages 479–490. Academic Press,

Boston, MA, 1980.

[53] Hongde Hu. Contractible coherence spaces and maximal maps.Electronic Notes

in Theoretical Computer Science, 20:1–11, 1999.

[54] Hongde Hu and Andre Joyal. Coherence completions of categories and their

enriched softness.Electronic Notes in Theoretical Computer Science, 6, 1997.

[55] Hongde Hu and Andre Joyal. Coherence completions of categories.Theoretical

Computer Science, 227:153–184, 1999.

[56] Dominic Hughes. A canonical graphical syntax for non-empty finite products

and sums. Technical report, Stanford University, 2002.

224 Bibliography

[57] Dominic Hughes. Simple free star-autonomous categories and full coherence.

Technical report, Stanford University, 2005.

[58] Dominic Hughes. Proofs without syntax.Annals of Mathematics, 164(3):1065–

1076, 2006.

[59] Dominic Hughes and Rob van Glabbeek. Proof nets for unit-free multiplicative-

additive linear logic.ACM Transactions on Computational Logic, 6(4), 2005.

[60] Martin Hyland. Abstract interpretation of proofs: Classical propositional calcu-

lus. Lecture Notes in Computer Science, 3210:1–16, 2004.

[61] Martin Hyland and Luke Ong. Fair games and full completeness for multiplica-

tive linear logic without the mix-rule. Unpublished manuscript, 1993.

[62] Martin Hyland and Luke Ong. On full abstraction for PCF:I, II, and III. Infor-

mation and Computation, 163(2):285–408, 2000.

[63] Andre Joyal. Free bicomplete categories.C.R. Math. Rep. Acad. Sci. Canada,

XVII(5):219–224, 1995.

[64] Andre Joyal. Free lattices, communication and money games. Proc. 10th Int.

Cong. of Logic, Methodology and Philosophy of Science, 1995.

[65] Thong Wei Koh and Luke Ong. Explicit substitution internal languages for au-

tonomous and *-autonomous categories.Electronic Notes in Theoretical Com-

puter Science, 29, 1999.

[66] Yves Lafont and Thomas Streicher. Games semantics for linear logic.Proc. 6th

Annual IEEE Symposium on Logic in Computer Science (LiCS’91), pages 43–51,

1991.

[67] François Lamarche and Lutz Straßburger. Constructingfree Boolean categories.

Proc. 20th Annual IEEE Symposium on Logic in Computer Science (LiCS’05),

pages 209–218, 2005.

[68] François Lamarche and Lutz Straßburger. Naming proofsin classical proposi-

tional logic. Lecture Notes in Computer Science, 3461:246–261, 2005.

[69] Joachim Lambek and Philip Scott.Introduction to higher order categorical logic.

Cambridge University Press, 1986.

Bibliography 225

[70] Sam Lindley. Extensional rewriting with sums. InProc. 8th International Con-

ference on Typed Lambda Calculi and Applications (TLCA’07), pages 255–271,

2007.

[71] Saunders Mac Lane.Categories for the working mathematician, volume 5 of

Graduate Texts in Mathematics. Springer-Verlag, New York, second edition,

1998.

[72] Richard McKinley. Categorical Models of First-Order Classical Proofs. PhD

thesis, University of Bath, 2006.

[73] Richard McKinley. Expansion nets: proof nets for propositional classical logic.

Logic Programming and Automated Reasoning, 2010.

[74] Richard McKinley. Proof nets for Herbrand’s Theorem. arXiv:1005.3986v1,

2010.

[75] Paul-André Melliès. Asynchronous games 3: An innocentmodel of linear logic.

In Proc. 10th Conference on Category Theory and Computer Science, pages 1–

21, 2004.

[76] Paul-André Melliès. Asynchronous games 4: A fully complete model of propo-

sitional linear logic.Proc. 20th Annual IEEE Symposium on Logic in Computer

Science (LiCS’05), pages 386–395, 2005.

[77] Paul-André Melliès. Asynchronous games 2: The true concurrency of innocence.

In Selected Papers of CONCUR 2004, volume 358 ofTheoretical Computer Sci-

ence, pages 200–228, 2006.

[78] Paul-André Melliès and Samuel Mimram. Asynchronous games: innocence with-

out alternation. InProc. CONCUR 2007, Lisboa, 2007.

[79] Dale A Miller. A compact representation of proofs.Studia Logica, 46(4):347–

370, 1987.

[80] Samuel Mimram. The structure of first-order causality.Mathematical Structures

in Computer Science, 21(1):65–110, 2011.

[81] Hanno Nickau. Hereditarily sequential functionals.Lecture Notes in Computer

Science, pages 253–264, 1994.

226 Bibliography

[82] Michel Parigot. λµ-Calculus: an algorithmic interpretation of classical natural

deduction.Lecture Notes in Computer Science, 624:190–201, 1992.

[83] Dag Prawitz.Natural deduction. A Proof-theoretical Study. Almqvist & Wiksell,

Uppsala, 1965.

[84] Dag Prawitz. Ideas and results in proof theory. In J E Fenstad, editor,Proceedings

of the Second Scandinavian Logic Symposium, volume 63 ofStudies in Logic and

the Foundations of Mathematics, pages 235–306, 1971.

[85] Edmund Robinson. Proof nets for classical logic.Journal of Logic and Compu-

tation, 13(5):777–797, 2003.

[86] Robert Seely. Linear logic, *-autonomous categories and cofree coalgebras.Con-

temporary Mathematics, 92, 1989.

[87] Peter Selinger. Control categories and duality.Mathematical Structures in Com-

puter Science, 11:207–206, 2001.

[88] Lutz Straßburger. On the axiomatisation of Boolean categories with and without

medial.Theory and Applications of Categories, 18:536–601, 2007.

[89] Lutz Straßburger.Towards a Theory of Proofs of Classical Logic. Habilitation à

diriger des recherches, École Polytechnique, Palaiseau, 2010.

[90] Lutz Straßburger and François Lamarche. On proof nets for multiplicative linear

logic with units. Proc. 13th EACSL Annual Conference on Computer Science

Logic (CSL’04), pages 145–159, 2004.

[91] Thomas Streicher and Bernhard Reus. Classical logic, continuation semantics

and abstract machines.Journal of Functional Programming, 8(6):543–572, 1998.

[92] Anne Sjerp Troelstra and Helmut Schwichtenberg.Basic Proof Theory. Num-

ber 43 in Cambridge Tracts in Theoretical Computer Science.Cambridge Uni-

versity Press, 1996.

[93] Christian Urban and Gavin Bierman. Strong normalisation of cut-elimination in

classical logic.Fundamenta Informaticae, 45(1-2):123–155, 2001.

[94] Jan Von Plato and Gerhard Gentzen. Gentzen’s proof of normalization for natural

deduction.The Bulletin of Symbolic Logic, 14(2):240–257, 2008.

Bibliography 227

[95] Philip Wadler. Linear types can change the world! In M. Broy and C. Jones,

editors,Programming Concepts and Methods. North-Holland Publ. Co., Amster-

dam, 1990.

[96] Glynn Winskel. Events in Computation. PhD thesis, University of Edinburgh,

1980.

Index

Mathematical notation in Part I

⇔, 46

f{g}v,w, 45

fv,w, 45

#, 36

MAXCP, 87

MAXP , 87

⌢, 67

NET, 35, 41

, 35

PNET, 37, 41

pos(−), 34

•, 60

=[−|−]⇒, 45

(−|−) , 54

σ, 57

, −, 54

ΣΠ(C), 27

ΣΠ(C)-net,35

J−K, 39

∪, 54

Xv, 34

Mathematical notation in Part II

⊥, 135

, −, 176

#, 173

→, 135

→M, 138

≤, 137

≤M , 138

E, 135

Eς, 138

lab, 135

, 157–160

[−/−], 139

J−K, 140

∪, 157

V, 135, 136–137

val, 139

atomic link, 35

backtracking games, 124

basic net, 38

bipointed net,82

bureaucracy, 1–2, 6, 128–129, 145

circle of cuts, 169, 186

classical proof forest,137

close-knit,68

co-switching, 35

completeness of proof forests, 127

composition,10

of proof forests, 129

of saturated nets, 64–66

of sum–product nets, 59–63

compound reduction step,176, 175–180

conflict,173, 173–175

confluence,5

non-,seenon-confluence

229

230 INDEX

of saturation, 56

connected,37

conquest, 203

constructible (left-, right-, bi-), 40

construction, 39

constructor, 38

copointed prenet,80

coproduct net, 77

correctness,13

of cut-free proof forests, 126

of proof forests, 132–134,139, 174,

200–202

of saturated nets,68, 110–118

of sum–product nets,35

cut,4

in proof forests, 129–134, 137, 147–

149

cut-elimination,4, 10

in sum–product logic, 29

decomposition, 131–132

dependency, 124–128, 147–149

minimal,seeminimal dependency

ordering,137

relation,135

dependent subforest, 140

desaturation,111

disposal step, 152–153,158

empty prenet, 35

equivalence of sum–product nets,46, 44–

49, 51–53

expansion tree proofs, 127, 200–202

full prenet,76

Herbrand correctness, 201

Herbrand nets, 19–20, 205–206

Herbrand’s Theorem, 123–124

impermutability, 128, 147

incompatible,36

initial link, 35

initial net, 75

legal configuration, 136

link (sum–product nets), 35

logical reduction step, 153–154,158

matching prenets,60

maximal (co)pointed subnet, 87

minimal dependency, 126, 138, 139

neighbouring links,67

non-confluence

of proof forest reduction, 207–210

normalisation, 4

strong,seestrong normalisation

weak,seeweak normalisation

parallel prenets, 45

partial net,37

permutation, 6, 30, 147–149

pointed object, 79

pointed prenet,80

pre-proof forest,135

prenet,35

primary cut, 160

primary edge, 160

product net, 77

proof forest,137

propositional reduction step, 152,157

pruning,174

reduction cycle, 167

INDEX 231

reduction step

compound,176, 175–180

disposal, 152–153,158

logical, 153–154,158

propositional, 152,157

structural, 154,159

rooted (co)pointed subnet, 87

rooted link, 80

safety,156, 174

saturation,54, 53–58

separation,185

sequentialisation,13

of proof forests, 131–132

of saturated nets, 110–118

of sum–product nets, 42

soundness of proof forests, 127

straddling,193, 202

strict calculus, 127

strong normalisation,5

in proof forests, 167, 181

of saturation, 56

strong safety,185

structural reduction step, 154,159

subforest, 140

subnet, subprenet,45

substitution, 139–140

sum–product

category, 27

logic, 29

net,35

switching

condition, 33,35

for proof forests, 132,138

for sum–product nets, 33, 35

synchronised equivalence step, – satura-

tion step, 81

terminal link, 35

terminal net, 75

unit link, 35

universal counterexample, 167–173, 208–

210

value,139

weak normalisation,5

in proof forests, 169–173, 180–181,

199, 200

