Graphical Representation of Canonical Proof:

Two case studies

Willem Bernard Heijltjes

Doctor of Philosophy
Laboratory for Foundations of Computer Science
School of Informatics
University of Edinburgh
2011

Abstract

An interesting problem in proof theory is to find representad of proof that do
not distinguish between proofs that are ‘morally’ the saf@. many logics, the pre-
sentation of proofs in a traditional formalism, such as @ents sequent calculus, in-
troduces artificial syntactic structure called ‘bureaagtae.g., an arbitrary ordering
of freely permutable inferences. A proof system that is fsEbureaucracy is called
canonicalfor a logic. In this dissertation two canonical proof syssesne presented,
for two logics: a notion of proof nets for additive linear logvith units, and ‘classical
proof forests’, a graphical formalism for first-order class$logic.

Additive linear logic(or sum—product logicis the fragment of linear logic consist-
ing of linear implication between formulae constructedydndbm atomic formulae and
the additive connectives and units. Up to an equationalrtheeer proofs, the logic
describes categories in which finite products and copraduaatur freely. A notion of
proof nets for additive linear logic is presented, provgdoanonical graphical repre-
sentations of the categorical morphisms and constitutir@ctable decision procedure
for this equational theory. From existing proof nets for itidd linear logic without
units by Hughes and Van Glabbeek (modified to include thesuratvely), canonical
proof nets are obtained by a simple graph rewriting algoritfalledsaturation Main
technical contributions are the substantial correctnessfpf the saturation algorithm,
and a correctness criterion for saturated nets.

Classical proof forestare a canonical, graphical proof formalism for first-order
classical logic. Related to Herbrand’s Theorem and backing games in the style
of Coquand, the forests assign witnessing information tngjtiers in a structurally
minimal way, reducing a first-order sentence to a decidatdpgsitional one. A simi-
lar formalism ‘expansion tree proofs’ was presented by édjlbut not given a method
of composition. The present treatment adds a notion of cut,ivestigates the pos-
sibility of composing forests via cut-elimination. Cutdtection steps take the form
of a rewrite relation that arises from the structure of theedts in a natural way.
Yet reductions are intricate, and initially not well-bekdy from perfectly ordinary
cuts, reduction may reach unnaturally configured cuts tregt not be reduced. Cut-
elimination is shown using a modified version of the rewrékation, inspired by the
game-theoretic interpretation of the forests, for whiclrakvaormalisation is shown,
and strong normalisation is conjectured. In addition, by@erintricate argument,
weak normalisation is also shown for the original reductielation.

Acknowledgements

The past four years of my life have been defined by an oppordeaision to apply
for a position in Edinburgh, knowing nothing of the place epcit was supposed
to rain quite a lot, and by the—in my opinion, brave—decidiynAlex Simpson to
accept my application. | am deeply grateful to him for makingse years enjoyable,
productive, and possible. Alex provided me with the perfiepic for my dissertation, a
hard combinatorial problem with a deep mathematical mbawa—twice. Throughout
this period, he has been a fantastic guide through the wdrldgic and computer
science; | was the recipient of endless support, patiema]ille yellow correction
tags. Needless to say, without Alex | would not be where | amrtehind my desk,
at 4am, making corrections to this document. But seriotisnk you.

| am also deeply thankful for all the good times | had with myleagues and
friends: Julian and Teresa, whose slow-cooker makes the fiadmslous Colombian
dishes; Fulvio and Micaela, true Romans; Lorenzo, who hasrmaet a pun he didn't
like; Grant, who is awesome; Giulia, who fully embraced tmglish language—and
in particular the words ‘cake’ and ‘ice-cream’; Ben, whoirggthe tallest man in the
world, has a computer screen still large enough to hide lbel@avin, our token Scots-
man; Tom and John, who will hopefully explain Paris; Mattedo always carries a
little—actually, a significant—nbit of Italy with him; Ohadeé ultimate; Jeff, who is
an Austrian, a Canadian, and a Scot, and judging by his dgfaciholding alcohol,
the disjoint union of all three; Rob, Peggy, and Harry; Chhe brave Celtish warrior
against bureaucracy; Miles, who now lives in Glasgow.

In addition, I would like to thank Robin Cockett, Roy Dyckhdklessio Guglielmi,
John Longley, Richard McKinley, Michel Parigot, Albert ¥&r, and Philip Wadler.

Last, and most of all, | would like to thank my wife Saskia, whmed me in this
adventure, and promised to join me in the next. Ony va!

Declaration

| declare that this thesis was composed by myself, that thi& wantained herein is
my own except where explicitly stated otherwise in the tart] that this work has not
been submitted for any other degree or professional quetiific except as specified.

(Willem Bernard Heijltje¥

Table of Contents

Canonical proof 1

1.1 Introduction 1
1.2 Background 3
1.3 Linearlogicand proofnets 7
1.4 Classicallogic. 15
15 SYNOpSiS. e 20
Proof nets for additive linear logic 23
Sum-product nets 25

2.1 Introduction 25
2.2 Sum-—product categories and additive linear logic 27
2.3 Sum—productnets 32
2.4 Connectingnetsandterms, 37
2.5 Anequational theoryovernets 2 4
Saturated nets 51

3.1 Introduction 51
3.2 Deciding equivalenceofnets, 15
3.3 Thecategory of saturatednets 8 5
3.4 Correctness for saturatednets 67

3.5 Complexity e 69
The soundness proof 73

4.1 Introduction 73
4.2 Thefirsttwocases 75
4.3 Pointed and copointednets L. 79

Vil

4.4 Saturationviaconstruction 85
4.5 Deconstruction of saturatednets 92
4.6 Matchingpoints e 99
4.7 Finale e 107
4.8 Characterising saturatednets 108
4.9 Sequentialisation 110

Il Classical proof forestry 119

5 Classical proof forests 121
5.1 Introduction 121
5.2 Background 123
53 Cut. . . . e 129
5.4 Classicalproofforests. 341
5.5 Proof forests and the sequentcalculus 140

6 Cut-elimination in classical proof forests 151
6.1 Introduction 151
6.2 Reductions 152
6.3 The universal counterexample 67 1
6.4 The modified reductionrelation. 173

7 Exploring reduction 183
7.1 Introduction L 183
7.2 Weak normalisation withoutpruning 183
7.3 Discussionandrelatedwork 020
7.4 Non-confluence 207

8 Conclusions 213
8.1 Summary e e e 213
8.2 Furtherwork 216

Bibliography 219

Index 229

viii

Chapter 1

Canonical proof

1.1 Introduction

Proof theory is the study of formal proofs as mathematicgab. Modern proof the-
ory has its roots in the introduction of two proof formalisims Gerhard Gentzen in
the 1930s ([40])natural deductiorand thesequent calculusHowever, the represen-
tation of proof in these formalisms, in particular in the seqt calculus, is often not
canonical the formalism distinguishes between proofs that are ‘thoréne same.
The introduction of such artificial distinctions betweeqis by a proof system was
termedbureaucracyby Jean-Yves Girard. In the seminal paper [41] that intreduc
linear logic, Girard initiated a programme to eliminatedauwcracy from the new logic
by finding geometric representations of proof, calkeoof nets

The question of what constitutes bureaucracy in a proof &ism, of what are
natural and what are artificial distinctions between proigfalso the question of what
is a good notion oproof identityfor a logic: the question of when are proofs ‘morally’
the same. For many logics a notion of proof identity is cleant an established
semantics. For others, most famously for classical logits open to debate. Still,
also in the absence of an established notion of proof ideifditms of bureaucracy can
often be identified. The archetypical example of bureaycr@so for classical logic,
is that of two permutable inferences in the sequent calculine shape of a sequent
proof, in which inferences form a tree, means that it is nemgsto choose an order
for two inferences, while the actual order in which the iefeces are carried out may
be inessential.

One example of a canonical proof system is natural deduétionegative intu-
itionistic logic—the fragment consisting of implication@conjunction. The normal

1

2 Chapter 1. Canonical proof

forms of proofs in this formalism are free of bureaucracy also canonical from a se-
mantic perspective: for a suitable notion of normal forneyticorrespond one—to—one
with morphisms in free Cartesian closed categories (sed@9}). Another example
are Girard’s proof nets for multiplicative linear logic waut units [41]. These factor
out precisely the bureaucracy of permutable inferencdsaséquent calculus presen-
tation of linear logic.

Three main reasons why canonical proof representationataresting, are as fol-
lows. Firstly, a canonical proof formalism can be very imh@tive of a logic. By
eliminating bureaucracy, the intrinsic features of thadatgelf become more promi-
nent. Indeed, properties of the formalism cannot be atedbto bureaucracy, which
is absent, and instead are likely to be inherent to the logiar example, the non-
confluence of proof reductions in the classical sequenutizdchas in the past been
attributed to the behaviour of the structural rules of caction and weakening. How-
ever, in formalisms that bring these structural rules urabgtrol, such as the proof
forests presented in Part Il of this dissertation, reducteanains non-confluent. Thus
it seems as if non-confluence may be an even more strongigsittiproperty of clas-
sical proof normalisation than previously thought. Sedgnchnonical proof repre-
sentations, such as proof nets for linear logic, hold thense of unlocking the com-
putational content of logics. The reasoning to supportides will be expanded on
later in this chapter, but briefly, it can be summarised dsvi@. In the computational
interpretation of a logic, formulae correspond to typespfs correspond to programs,
and cut elimination corresponds to computation. If cut otidm is confluent, then the
computation it embodies is deterministic, which in manyesaseans the proof system
may be employed, more or less directly, as a language of catiguo. One of Girard’s
original motivations for proof nets was that they have cailtnormalisation, suggest-
ing the possibility of employing linear logic for computati. Thirdly, in many cases,
a main reason for studying a logic is its semantics. For exanfgr both intuitionistic
and linear logic the categorical semantics consists ofycaites with a natural, com-
mon structure, and models of (fragments of) these logicaibiguitous throughout
mathematics. In the presence of an accepted semanticsioa nbproof for a logic
is canonical if it captures precisely the identificationsdedy the semantics. The
canonical representation of mathematical structure iséuligol in its investigation,
and may be expected to enable efficient algorithms for itssa@tproblems (such as
term equality in categories). Examples of semanticallyocésal proof are intuitionis-
tic natural deduction, Girard’s proof nets for multiplicetlinear logic, and the proof

1.2. Background 3

nets for multiplicative—additive linear logic of Hughesdavian Glabbeek [59]. Also,
the proof nets presented in Part | of this dissertation anermiaal for categories with
finite products and coproducts.

This thesis investigates two canonical, graphical remiias@ns of proof, for two
different logics. The first, presented in Part |, is a noveioroof proof net, foradditive
linear logic. This notion of proof net offers a canonical treatment oftithe additive
units which have thus far not appeared in proof nets. The seconBait Il, is a
canonical proof formalism for first-order classical logalled classical proof forests
for which cut-elimination is investigated.

The remainder of the present chapter will discuss the backgl and motivation
of this work, starting with a quick exposition of the relevaeneral background in
Section 1.2. This section mainly concerns the success stamjuitionistic natural de-
duction, which served as a template for a modern approadahetarllogic and classical
logic to which this thesis subscribes. Section 1.3 will deslinear logic and proof
nets, the background of the proof nets for additive linegid@resented in Part I, and
summarise the results presented there. Section 1.4 wilheleame for Part Il, dis-
cussing the relevant background to classical proof for@éstsgiving an overview of
the results obtained for them.

This dissertation assumes some familiarity with clasdiogic and linear logic,
and their presentation in the sequent calculus. Introdostto these can be found in
[44] and [92]. In addition, a basic knowledge of categoryotiyewill be helpful, in
particular, for Part |, acquaintance with category the@ya as the notion of limit
and colimit. For an introduction, see [71].

1.2 Background

Proof theory, the study of formal proof, is considered ongheffour pillars of math-
ematical logic, along with model theory, recursion the@yd set theory. The for-
malisation of mathematical reasoning began with Gottla@gEr Bertrand Russell, and
David Hilbert. The idea of regarding proofs as mathematbgcts in their own right
is usually attributed to the latter, as the basis of his fasnmogram of proving the
consistency of all of mathematics.

The foundations of modern proof theory were laid in the n@3ds, when Gerhard
Gentzen presented natural deduction and the sequentuzldd]. Characteristic of
these formalisms are the proof transformations they altak~elimination, in the case

4 Chapter 1. Canonical proof

of sequent calculus, described by Gentzen; and normalis&ir natural deduction,
described by Dag Prawitz in the 1960s [83]The key concepts of Gentzen’s approach
are the following.

Subformula property An inference rule has theubformula propertyf its premises
are all subformulae of its conclusions. In the sequent dadcland any well-
behaved variant of it, the only rule that does not have théosotula property is
the cut-rule. Then any cut-free proof contains only subfdea®a of the conclu-
sion. As immediate consequences, the consistency of aerichlculus—that
it cannot prove a contradiction—is easily established byrnspection of the
rules. Also, proof search is strongly constrained in a dakwith the subfor-
mula property, in some cases to the point of being deciddbienstance for
many propositional logics.

Cut-elimination The cut rule, pictured in a general form below, embodies amsnp
tion, or transitivity of implication, and is a generalisatiof modus ponens (from
A andA — B, concludeB).

r-o0A ATFA
KW

Cut

In a sequent calculugut-eliminationis the process of removing instances of
the cut-rule; theut-elimination propertys the property that cut-elimination can
be carried out. As the calculus without cut is easily showheaaonsistent (as
was argued above), cut-elimination shows consistencyeotéiculus with cut.
That the classical sequent calculus has the cut-elimimg@tioperty was a main
theorem Hauptsat of Gentzen in [40].

The situation is analogous for normalisation in intuit&tig natural deduction, where
normal proofs, which are the equivalent of cut-free proonfhe sequent calculus, have
the subformula property.

The Curry—Howard correspondence

A landmark development at the end of the 1960s was the disgaadependently by
William Howard and Nicolaas de Bruijn, of a close correspamze between on the one
hand, proofs and formulae, and on the other, functionalesgions in the-calculus

1Recently, drafts on normalisation for natural deductior@@ntzen have surfaced [94].

1.2. Background 5

and their types [52], [30]. Now known as the Curry—Howardmsophism—in recog-
nition of similar connections for combinatoric logic andibért-style deduction dis-
covered by Haskell Curry [27]—or in its most general form faes mantra ‘proofs are
programs’, this correspondence describes a link betwegn &md computation that
is at the basis of modern type theory and functional programgmaAt its heart, the
Curry—Howard isomorphism is the observation tBatduction in the simply typed
lambda calculus is essentially the same operation as nisatiah in natural deduc-
tion for implication-only intuitionistic logic. Proofs @ahlambda terms are in a one—
to—one correspondence, and normalisation steps in natedailction corresponding to
[B-reduction steps in the lambda calculus.

Normalisation, and likewise, cut-elimination, is a redatibetween the proofs of a
deductive system; from a given proof, multiple reducticgpstmay be possible. The
following are central concepts describing reduction behav

Weak/strong normalisation A reduction relation on proofs, such as normalisation in
natural deduction or cut-elimination in the sequent caisuisweakly normal-
ising if some reduction paths reach a normal form, atrdngly normalisingf
there are no infinite reduction paths, and all reductiongatrentually reach a
normal form.

Confluence Confluencas the property that different reduction paths of a proof may
always be extended to reach a common form. The confluencenyap ex-
pressed in the diagram below, which states that if thereeahection paths from
ato b and fromato c, then there must be reduction paths frorand fromc to
a commonrd. Note that in the diagram all arrows represent reductiohgatot
individual reduction steps.

WS

If a reduction relation is confluent and weakly normalisihgr every proof has
a unique normal form—there may still be infinite reductiothsa unless also strong
normalisation holds. In the 1960s Dag Prawitz put forwardittea ofproof identity
by normality(see e.g. [84]): the idea that unique normal forms are a alatation of
proof identity, in the sense that two proofs are the samedfaanty if they have the same

6 Chapter 1. Canonical proof

normal form. In the view of proof reduction as computatidms is a generalisation of
the idea that the meaning of a functional expression is theevaevaluates to.

In the 1970s the Curry—Howard correspondence was extewndeateégory theory
by Joachim Lambek, who showed that Cartesian closed catsgme a semantics for
intuitionistic natural deduction and the simply typed latalralculus (see e.g. [69]).
The categorical semantics identifies proofs if and only éytihave the same normal
form, and thus may be seen as a natural concretisation ofl#geaf proof identity
by normality. There are technical subtleties: mainly, tagegorical semantics equates
proofs up top-n normal form. The presence of disjunction adds significattlyhe
problem of rewriting to canonical representations of thieired semantics, bi-Cartesian
closed categories. In addition B andn-equalities there areommuting conversions
and further semantic identities; obtaining canonical r@srfor these equations re-
quires considerable ingenuity [70].

The sequent calculus

The sequent calculus introduces bureaucracy in the forpeohutationsas follows.

Inferences in the sequent calculus operate on one or mareufaroccurrences in a
sequenta multiset of formulae, possibly separated into antecisdamd consequents
(sometimes a sequent is taken to be a list or even a set; thwatithe thesis, it will
be a multiset). When two consecutive inferences are apfaiddferent formulae in a
sequent, their order may often be exchanged; that is, thgybepermuted Permuta-
tions are pervasive in sequent calculi, and occur even iq@ese calculus presentation
for conjunction—implication intuitionistic logic; a singexample is given below.

ABI-C ABI-C
A AABFC AANB,BFC
AAB,AABFC AAB,AABFC

An important observation is that, for this fragment of ittuistic logic, permutations
are factored out by the translation from sequent calculiesriatural deduction. This
was a main inspiration for Girard’s idea pfoof nets[41], further explored in Sec-
tion 1.3. The idea of eliminating bureaucracy, and in patdcthe permutations of
the sequent calculus, by moving to alternative, graphealesentations of proof, is a
central theme of this dissertation.

Generally, cut-elimination in the sequent calculus is nonfluent. Because this
means that proofs have multiple normal forms, the idea obfadentity by normality
does not apply directly. If the normal forms of proofs difeerly by permutations, as is

1.3. Linear logic and proof nets 7

the case for example for multiplicative linear logic, themrconfluence is not a prob-
lem: a notion of proof identity can be based on equivalenassgs of normal proofs
under permutations. However, the picture is not alwaysdleair: the normal forms of
a proof may differ in other ways than by permutations, anted#ht cut-elimination
methods may produce different classes of normal forms. ¢h sucase, it can be an
interesting challenge to identify which equations betwesofs are bureaucracy, and
which constitute genuine differences.

The next two sections discuss the proof theory of two loghzd fare naturally
expressed in the sequent calculus: linear logic, in SedtiBnand classical logic, in
Section 1.4.

1.3 Linear logic and proof nets

Linear logic was introduced by Jean-Yves Girard in the sairj#il]. It originated in
an analysis of coherence spaces (see e.g. [44]), develgp&irérd as a semantics
of function evaluation in the lambda calculus. Linear logia refinement of both
classical and intuitionistic logic, in the sense that batpids can be interpreted in
linear logic by interpreting single classical or intuitistic connectives as one or more
linear connectives.

Syntactically, linear logic is naturally expressed in tleggent calculus, as dis-
played in Figure 1.1. The logic is divided into three fragtsecalledadditive multi-
plicativeandexponential The multiplicative connectivez, ®) are each other’s dual
under negation(—)*, as are the twmeutrals(1, L), which are thaunitsfor the two
connectives. Similarly, the additive connectiv&s @) and their unitg T, 0) are duals,
as are the two exponentiaodalities(!, ?). (That, for examplel is aunit of the tensor
(®) means that any formul&is canonically isomorphic té ® A and toA ® 1.)

Linear logic has been a transformative influence in theoamettomputer science,
by being a rich source of ideas in general, and by bringingahewving two important
concepts within the domain of logic in particular.

Resource-consciousneskh a proof of a linear implicatiolA — B (or A ® B) in
linear logic, the assumptioA must be used exactly once; this in contrast to
the classical or intuitionistic implicatiol’A(— B) where the assumption may be
used arbitrarily many times. In this and similar ways, linkgic is a logic of
resourceswhere classical and intuitionistic logics descrihgh.

Chapter 1. Canonical proof

Conjunction Disjunction
Tensor (), One (1) Par (%), Bot (L)
Multiplicatives
FILA FAB I, AB T
FMLAARB F1 FT,A%®B FT,L
With (&), Top (T) Plus (), Zero (0)
Additives
FILLA FT,B FI, A FI, B
FT,A&B -, T | FILA®B FTF,A®B
Of course (), Why not (?)
Exponentials
F, A HI, A = HIL72A7A
F2 1A el /N el /N HI, ?A
Ao, Cut FILA - FALA
xiom, 4 - A AL -T.A

Figure 1.1: Linear logic as a one-sided sequent calculus

1.3. Linear logic and proof nets 9

Concurrent computation Like classical logic, linear logic has amvolutive(i.e. self-
inverse) negation, which is handled in the sequent calquiesentation by al-
lowing multiple conclusions in a sequent—intuitionisteégsient calculus, in the
formulation by Gentzen [40], allows only one. Computatibndhe presence
of several conclusions may be interpreted as multiple cdatjouns that are pro-
cessed simultaneously, and that may interact. This wagaat in theory, linear
logic provides an account @oncurrentor parallel computation. Explorations
of the connection between linear logic and concurrencyared, among others,
in [1] and [12], and also the recent [22]; an overview is givef21].

One branch of research on linear logic, and of that inspingdt,bhas focused
on exploring these computational aspects. In particukaréisource-consciousness of
linear logic was quickly adopted by the functional programgncommunity, in the
form of linear types[95]. Recently, the intuitionistic variant of linear logiehich
allows only single-conclusion sequents, thereby empimgsiesource-consciousness
over concurrency, has been used to enrich the lambda calaitlu a refined theory of
computational effects [35].

Of the research into linear logic itself, and its semantibgre are three main
threads that are relevant to the present discussion. Ohati®t the categorical se-
mantics of linear logic, which will be briefly touched on b&loA second is that into
game-theoretic semantics, which may be seen as investighiee computational side
of linear logic via an alternate, more semantically orient@ute than the sequent cal-
culus. The other direction is the search for proof nets: naab, geometric proof
formalisms, intended as an alternative syntax to the seéqadculus.

Categorical semantics of linear logic

Soon after linear logic was introduced, it was noted by RbBeely in [86] that a
natural categorical semantics for linear logic is as foBowthe multiplicative frag-
ment is modelled by-autonomous categories (see also [10]), in which the addi-
tives correspond to products and coproducts, and the erpialeeform a (co)monad
structure with additional properties (the modern formola{14] requires anonoidal
(co)monad). An alternative formulation efautonomous categories was the result of
an investigation into a reasonable notionliakarity in categories by Robin Cockett
and Robert Seely [24].

These categorical models identify proofs under cut-elation, providing a notion

10 Chapter 1. Canonical proof

of proof identity in the tradition of proof identity by nordity. They also identify
proofs under permutations, and other, similar equationswynof which are forced by
the identification of proofs under cut-elimination. In teenodels the following are
essential concepts.

Composition via cut-elimination Composition of morphisms is an essential, basic
operation in category theory, producing a morphigm f : A — C from mor-
phismsf : A— Bandg: B— C. To similarly compose two proofs in the sequent

calculus, a cut may be used.

AF-B BFC
AFC

Cut

If a categorical model identifies proofs under cut-elimio it is natural to use
only normal (i.e. cut-free) proofs as representations ofphisms. Then the cut
used to compose two proofs must be eliminated; this is thee aleomposition

via cut-elimination

Associative compositionThe basic laws of category theory are that composition is
associative and has identity morphisms as (left and righitsu For a category
where morphisms are represented by the normal forms of graofl composi-
tion is implemented as cut-elimination, associativity ofrgposition is implied
by confluence of cut-elimination. This is easily seen: the mays of apply-
ing two compositions correspond to the two ways in which twtsanay be
eliminated in order; by confluence, these must yield the sas@t. (However,
confluence is not a necessary condition for associativigpaiposition to hold.)

Free categorical modelsif a logic has categorical models with a certain structure, a
term modelmay be constructed by taking as objects the formulae in thie,lo
and as morphisms the equivalence classes of proofs undéavwkeassociated
with the categorical structure. In such a categorical mddelgiven categorical
structure occurfeely. (A relevant example is how additive linear logic forms a
category with free finite products and coproducts, disaigs€hapter 2.)

Full completenessA categorical model of a logic i®lly completeaf every morphism
is the denotation of some proof. This is equivalent to thetfonfrom the free
category of the logic, into the model, being full (surjeetm morphisms). The
concept of full completeness—the term was coined in [3]—hat@ral strength-
ening of the traditional proof-theoretic notion of complegss, which requires
that if a formula is true in the model, it must have a proof ia syntax.

1.3. Linear logic and proof nets 11

The semantics of a logic is usually a main reason for whicldbie is studied. The
categorical models of linear logic have structure that 8dand common throughout
mathematics—and even physics. One branch of researchnety logic is the search
for natural models of linear logic, that are as close as pés$d the free model. Full
completeness is one measure of how close a model is—cradelly complete model
is a quotient of the free model.

One relevant series of investigations into characterjsamgl finding natural ex-
amples of, the categorical semantics of linear logic, agentbrks of André Joyal and
Hongde Hu in the late 1990s. Building on a modification of @limicoherence spaces,
the original semantics of linear logic, by Thomas Ehrhar86], and following up on
the work by Joyal on free bicompletions [63], categoriedwiriee limits and colimits,
they connect the categorical approach and coherence spaamscs, in [55] and [54].
This led to a coherence space model of the additive fragmtitout the units, that
is equivalent to the free categorical model, by Hongde HWbB].[A fully complete
model of the multiplicative fragment, also without unitspresented in [31]. Finally, a
fully complete coherence space model for the combined plidétive—additive frag-
ment is given by Richard Blute, Masahiro Hamano and PhiliptiSa [18].

Another route towards categorical models for linear logicia game theory. This
will be discussed next.

Game semantics of linear logic

A rich branch of investigation into the computational cantef linear logic is that
into its game-theoretic semantics, initiated by AndreasB[15] and Yves Lafont and
Thomas Streicher [66]. In an informal view of the game intetation, a formula de-
scribes a game between two players, Player and Opponeme, avproof is a winning
strategy for Player. The additive connectives are intégor@s a binary choice for
the Player (for the coproduct) or the Opponent (for the petdurhe multiplicatives
encode two games played in parallel, where either Playgh@roproduct) or Oppo-
nent (in the product) may switch between the two gansebddulg while the other
is forced to continue play in the currently active game. Tdw heutrals are winning
positions, the additive units of a global kind, and the nplitative units of a local
kind. The exponential modalities (?) and (!) allow Played &pponent, respectively,
to backtrack to return to an earlier position to make a new choice, int@aliito the
earlier one.

In the early and mid-1990s, research into formalising théeas led to solutions

12 Chapter 1. Canonical proof

to the long-standing problem of finding a good semantics foF RheProgramming
language of Computable FunctiariBhese results were obtained independently by two
traditions of linear logic games, each building on theipegtive formulation of games
for the multiplicave fragment [3],[61]. One tradition isathof Samson Abramsky,
Radha Jagadeesan, and Pasquale Malacaria [4] (see alsb¢8pther that of Martin
Hyland and Luke Ong [62]—while ideas similar to those of thtdr tradition were
independently put forward in the work of Hanno Nickau [81].

The above games are aquential strategies prescribe a fixed order of moves.
This is fine for the multiplicative and exponential fragneenbut as is discussed in
[2], for the additive fragment sequential games suffer frmich the same problem
as the sequent calculus: composition is not associative.possible way around this
problem is to incorporate concurrency in games, as pioddgyeSamson Abramsky
and Paul-André Mellies in [5], where a fully complete gamexiel for multiplicative—
additive linear logic is presented. This line of researcls wantinued by Paul-André
Melliés in [77] and [75], eventually leading to a fully conepé games model for full
propositional linear logic in [76]. These games aternating meaning that Player’s
and Opponent’s turns alternate. This allowsrerleavingapproach to concurrency,
which represents a concurrent computation by the colleafats possible execution
orders. A remaining challenge in game semantics for linegiclis to move away from
alternating games, towards a game-semantic treatmers sptht oftrue concurrency
where concurrency is inherent to the formalism [78], [37].

Proof nets

Proof nets, graphical representations of linear logic fs;omere introduced by Girard
alongside linear logic, in [41]. These original proof netsw known as MLL-nets,
were canonical for the multiplicative fragment without tsnifactoring out permuta-
tions. But the potential of the idea was clear: proof netsld/de a geometric de-
scription of morphisms in the free categorical model of énégic, combining the
best properties of syntax—e.g. the ability to do computeti@nd semantics—being
directly amenable to mathematical analysis of its strictihat the natural idea of
finding proof nets to eliminate bureaucracy, coincided vaitfinding a syntactic de-
scription of the free categorical model, was pointed out h&rd Blute in [16].)

An example MLL-net is displayed in Figure 1.2, along with teeguent proofs that
it is a translation of—and that are identical up to permotai Of the structure of a
sequent proof, a MLL-net retains just the axiomsaa®m links connections between

1.3. Linear logic and proof nets

FAAL ChC
BB FACHC®A"
FA®BL, B.CLHCoAL
FA®B-,B®C- C® A"

13

FAA- BB

-FA® B, BA" FCt.C
FA®BL,B,CHC®A"
FA®BL,B®C- C® A"

|] |

C AL
®
Figure 1.2: An example MLL-net

the leaves of the formula trees of the conclusion sequent. eMery configuration
of formula trees connected by axiom links, callegraof structure corresponds to a
sequent proof. The following are therefore central compt® the theory of MLL-

nets—and any other notion of proof net.

Correctness criteria A correctness criterioms a property that distinguishes the proof
nets from the proof structures. By their nature, differemtectness criteria for a
notion of proof net must be equivalent. Nevertheless, diffeformulations are
useful in different ways, and for a notion of proof net to hawdtiple correctness
criteria, as is the case with MLL-nets, can be instructiveaofrectness criterion
is generally expected to be intrinsic to the formalism,defined on the structure
of the proof net itself. Thus the property of being the tratish of a sequent
proof is not usually considered a reasonable correctnéssicn.

Sequentialisation Sequentialisatiors the term for the reverse translation from proof
nets to sequent proofs; it may be used to indicate the triamslalgorithm it-
self, or the property that one exists. While the translatiom proofs to proof
nets is usually a straightforward induction on the struetira proof, the prop-
erty of sequentialisation is closely related to correctrgeria, and requires a
deep analysis of the structure of the proof nets. Commoelyyuentialisation
is formalised as an algorithm on proof structures, that pced a sequent proof
if the structure is a proof net, and fails otherwise—in thatyveonstituting a
correctness criterion.

14 Chapter 1. Canonical proof

Correctness criteria and sequentialisation for MLL-nedsehbeen a subject of
study in their own right. The most well-known correctnessgecion for MLL-nets
is that of Vincent Danos and Laurent Regnier [29]. It stalted & proof structure is a
proof net if and only if for everyswitching which is a choice of deleting exactly one
of the two (dashed) links of every par-verteX)(the remaining graph is a tree (acyclic
and connected). Although the time complexity of this altjorn is exponential, cor-
rectness of MLL-nets can be decided in linear time [46]. Thpgy [13] introduced
the notion ofkingdom a notion of subnet corresponding directly to subproofda t
sequent calculus—to be precise: corresponding to smalldgiroofs under permuta-
tions. A recent study, [32], presented an approach to séglisation usingumps a
relation on the structure of a proof net that, wholly or lyi reflects the ordering of
inferences in a sequent proof translation of the net.

The amount of effort it has taken to reach the current levalraferstanding of
MLL-nets underlines how proof nets are not an easy subjedtt@extend MLL-nets to
larger fragments of linear logic has proven exceedinglffatift. Successive proposals
for a good syntax for the full multiplicative fragment, inding the multiplicative units,
are [17] and [65] in the late 1990s, and more recently [90][&@}l These approaches
all have good properties, but none is truly canonical, inséaese that none provides a
geometric description of the free categorical models oftiplidative linear logic, free
x-autonomous categories.

In another direction, several notions of proof net have [semggested for the com-
bined multiplicative—additive fragment, without the uiffter partial results in [43] a
notion of proof net was presented by Dominic Hughes and RalBlabbeek, in [59],
that is canonical for the categorical semantics for the iplidative—additive fragment:
semix-autonomousategories with binary products and coproducts.

Proof nets for additive linear logic

In Part | of this dissertation a new notion of proof net is praed, for additive linear
logic, the fragment of sequems- B whereA andB are additive formulae, constructed
from atomic propositions, the additive connectiv&s @), and their unitg0, T). The
categorical semantics of additive linear logic is that degaries with finite products
and coproducts—hence the logic is also known as sum—prdatyict The proof nets
are canonical for this semantics.

First, in Chapter 2, existing nets for additive linear logithout units, a fragment
of the multiplicative—additive nets in [59], are adaptedhimorporate the units in a way

1.4. Classical logic 15

thatis simple, but not canonical, forming a notiorsafm—product netsT he categorical
equations over the units force an equational theory overpunduct nets, which is
then decided by rewriting to canonical forms callemturated netsusing a simple
rewrite relation callecgsaturation presented in Chapter 3. To complete the theory of
saturated nets, it is shown how they form a syntactic chaeriaetion of the categorical
term models of additive linear logic, namely categoriehiiee, finite products and
coproducts. The results include a direct notion of compmwsior saturated nets and,
importantly, a correctness criterion and a sequentiaisaigorithm.

A main technical contribution of this work is the proof, in &jter 4, that the
saturation relation is correct, i.e. that saturated netgnaleed canonical. Of the several
issues confronted in this proof, an important example isithRigure 4.5 on page 94.

1.4 Classical logic

For classical logic there are fundamental obstacles tafgidoth computational mean-
ing and decent notions of proof identity. The discussion fivit cover the situation
for propositional classical logic, and consider first-aridgic later.

A first problem for finding a good notion of proof identity forgpositional classi-
cal logic is that cut-elimination in the sequent calculbg,traditional home of classical
proof, is highly non-confluent. In particular the so-callsdont example (see [44, Ap-
pendix B]), in Figure 1.3, shows that (under mild assum®j@ncut on two weakened
formulae forces any two proofs of the same sequent to beifekehtA further obstacle
is what is sometimes called Joyal’s theorem—or even Jopaladox, more for its
undesirability than for any mathematical paradoxicalitjte-observation that a Carte-
sian closed category with an involutive negation collapstsa preorder (see e.g. [69,
Section 1.8] or [42, Appendix B]). What this means is thattbitionistic proof, whose
semantics is that of cartesian closed categories, is eediph a classical, involutive
negation in the form of an isomorphisi= ——A, then any two proofs of the same
formula are identified.

Irrespective of these problems, there are several consteposals for what con-
stitutes proof identity in classical logic. However, theeoall picture is one of multi-
ple competing notions of proof identity. Below, an overviewll be given of several
prominent such proposals. Each of these approaches tacatdgemantics is based
on relaxing some of the assumptions leading to Joyal’s #mapthat is, dropping one
part of the structure of Cartesian closed categories witblirive negation.

16

Chapter 1. Canonical proof

M M;
A A
—W
-AB HBL,ACt
FAA !
- A
' Y
M P
A A
I—A,A\év I—A,A\év
A A

Figure 1.3: The Lafont example

Relax involutive negation The formulation of classical proof in natural deduction al-

lows good computational interpretations of classicaldodihis is exemplified
by Michel Parigot’s\p-calculus [82], which has a categorical semantics in Peter
Selinger’s control categories [87]. In classical naturdaction negation is not
involutive: the classical principle—A =- A, which may or may not appear di-
rectly as an inference rule, is not an isomorphism. Forrmasiatof this principle
as a proof construct have a computational interpretatia@oagol operators for
continuations [45], which allows a computational semantiche form of an ab-
stract machine [91]. A related approach to the use of claksatural deduction
is the interpretation of classical logic in intuitionistogic, by adouble negation
translation(corresponding, computationally, to a translation intatowation-
passing style). Since the early formalisations of intuigtic logic, different
such translations have been found by Kolmogorov, Godel tZ&en Kuroda,
and Krivine, among others (for a comparison and furtherregiees, see [38]).
This is also the route taken by Girard’s LC [42].

Relax bi-Cartesian structure Decent categorical models of classical logic can be ob-

tained starting fromx-autonomous categories, the categorical semantics of mul-
tiplicative linear logic, rather than Cartesian closedegaties. Several such
approaches are outlined below, that differ in the precisgcehof categorical
identities extending the-autonomous structure. What most have in common,
is that negation is involutive, but conjunction and disjime are modelled by
(dual) monoidal products, rather than by Cartesian predact coproducts. A

1.4. Classical logic 17

consequence of relaxing the Cartesian structure is thaelmade no longer
Cartesian closed. One approach along these lines are tHedBotategories by
Francois Lamarche and Lutz Stral3burger in [67], continue&toal3burger in
[88] and [89]. Also, non-trivial categorical models of cd&sal proof are ob-
tained by Carsten Fihrmann and David Pym in [39] by takingiseticalculus
proofs as morphisms, on which cut-elimination imposes aermng on proofs,
rather than forcing their identification. This model waseexted (from proposi-
tional logic) to first-order logic in Richard McKinley’s PD. thesis [72]. Further
approaches are Martin Hyland’s categorical proof invdsdrased on compact
closed categories, in [60], and the categorical and podgmatcal modelsin [11].

Relax Cartesian closureA third approach to categorical models of classical proof
maintains the bi-Cartesian structure of conjunction arsjudction, as well as
the involutive negation, but relaxes Cartesian closurés iBlthe approach taken
in [34], where a notion of proof identity is proposed basedofartesian cat-
egories with additional structure. These categories @@ ralbdels for additive
linear logic, and the syntax underlying these categoriesdagroof nets for ad-
ditive linear logic without units [33]. (These nets are thetdree fragment of
the proof nets presented in Part | of the dissertation.)

Syntactic approaches

In addition to the semantic, categorical approach, thegerish and inventive field
of syntactic approaches to classical logic. Firstly, ditymation for (variants of)
the classical sequent calculus, and in particular redocttations that are strongly
normalising, are of significant computational interest andtinue to be studied (see
e.g. [9], [7], [93], and [51]). Secondly, there is the proofrhalism calleddeep in-
ference which allows proof transformations on subformulae in destgminiscent of
term rewriting, and which has interesting normalisatiooparties (see e.g. [19] and
[47]). Thirdly, several graphical representations of ptwave been proposed for clas-
sical logic. Proof nets in the style of Girard’s MLL-nets atiscussed in [85] and
[73], which treat contraction as a connective, duplicapagts of a formula tree; and
in [68], which explores proof nets that consist solely ohfioita trees and axiom links.
A different graphical approach is the celebrated [58] by DoenHughes, presenting
a notion of proof that consists purely of functions betwespgs.

18 Chapter 1. Canonical proof

Classical proof forests

In the above it was discussed how propositional classicalfgras no non-trivial, gen-
erally agreed upon semantics; and that finding a good syotaki not an easy task.
For first-order classical logic, these issues may be exgdotbe worse. In addition
to the propositional fragment, it includes the first-ordesgs content associated with
guantifiers:eigenvariablego instantiate universally quantified variables, and the as
signment ofwitnessing term$or existentially quantified variables.

However, it is possible to give an account of first-order sileedl proof that sim-
ply ignores propositional proof. This is a consequence abkand’'s Theorem [50],
which separates first-order and propositional proof cdnigas the fact that propo-
sitional classical logic is decidable. An idea for a senwmnuf first-order classical
proof is then as follows: taking first-order proof contentpasnary, the meaning of
a proof is found in the assignment of witnessing informatomuantified variables,
while propositional content is ignored (not unreasonalhgigdecidability). The pro-
posal offers the possibility of a non-trivial semantics ddtfiorder classical proof (even
though the restriction to the propositional fragment wdagdrivial).

Part Il of this dissertation attempts to carry out this pesgme? It investigates a
representation of first-order classical proof calidaissical proof forestsntroduced in
Chapter 5. A proof forest is a proof for a sequent of first-ofdemulae (for simplicity)
in prenex-normal form. It consists of a forest structurehva tree for each formula,
that records witness assignments to universally and ewiatly quantified variables.
The trees branch out only at vertices representing exiatentantifiers; propositional
formulae are represented by the leaves, which are evalbgtadautology check. A
partial order called thdependencyecords when a choice of witnesses depends on a
witness assignment elsewhere in the proof forest. By atiguhis dependency to be a
partial order, classical proof forests factor out the paations of the sequent calculus,
whose inferences are arranged in a tree-ordering. In thgtelassical proof forests
are canonical for first-order classical proof.

A similar formalism to classical proof forests has been aered before by Dale
Miller [79], calledexpansion tree proofas an economic representation of higher-order
classical proof. Also, classical proof forests admit a raltgame-theoretic interpre-

2The idea of carrying out such a programme has apparently@tindependently to several people.
The technical ideas in the form pursued in this thesis west ifivestigated in by Alex Simpson in
the early 2000’s. Martin Hyland has told us that he has als&dd at very similar ideas himself.
Also, Richard McKinley independently began a closely edaprogramme of investigation, which is
discussed in more detail below.

1.4. Classical logic 19

tation, in the style of the game semantics for classicahengtic of Thierry Coquand
[26]. In this interpretation, a proof forest is a strategy #oise in atwo-player back-
tracking gameagainst her opponentoelard. The witness assignments to quantifiers
in a proof forest represent the moves by both players, whe tiatns selecting values
from a given domain. Branching on existential quantifieesents backtracking by
dloise. Different from Coquand’s games, which are sequkmtigroof forest does not
necessarily prescribe a fixed order of moves; rather, tlagegty supports any order of
play that respects the dependency ordering.

The present treatment of classical proof forests is an tigagfon into composition
via cut-elimination. The economic structure of proof fase#s natural game-theoretic
semantics, and the fact that they are canonical for the s¢gakulus, raised the hope
that cut-reduction might be well-behaved. Unfortunatetyperhaps interestingly, this
has not turned out to be the case, at least not initially. ®vthie design of the cut-
reduction steps, in Chapter 6, follows naturally from thedure of the proof forests,
reductions are very badly behaved. Starting from a peyfeciteptable configuration
dubbed the ‘universal counterexample’, displayed in Fegbu3 on page 167, reduc-
tions produce unnaturally configured cuts that are imptessdoreduce, and exhibit
cyclic reduction traces. However, partially inspired bg lame semantics, solutions
are found to both problems. For a modified reduction relati@ implements these
solutions, weak normalisation is proven, and strong nasagbn is conjectured.

The treatment of classical proof forests is continued, iagér 7, by an explo-
ration of the differences between reduction in proof f@estd in the sequent calculus.
By avoiding reduction steps that leave the image of the kaéios from the sequent
calculus, the original reduction relation on proof forestshown to be weakly nor-
malising, too. Several further, interesting modificatibmshe reduction relations are
discussed informally, including a comparison with a clgselated formalism called
Herbrand nets, by Richard McKinley [74]—see below. Finallshile reduction in
proof forests is weakly normalising, and plausibly eveorsgly so, it is not confluent.
An evaluation of non-confluence in the different reductielations and strategies—
where, again, the universal counterexample is central-etades the exposition on
proof forests.

Herbrand nets

The research on classical proof forests was conducted oemtly with, and initially
independently of, a similar investigation by Richard Mcle€y) originating in his inves-

20 Chapter 1. Canonical proof

tigation of order-enriched categorical models of firstesrdlassical proof [72]. After
becoming aware of each other’s work, a fruitful exchangedefas and results fol-
lowed, leading to many possible directions for continuiegearch. The investigation
into classical proof forests was influenced mainly by the gaemantics, viewing the
divergence with the sequent calculus as an interestingrappty. The direction taken
by McKinley was to place additional structure on proof faseis order to obtain a
closer correspondence with the sequent calculus, regutithe Herbrand netgre-
sented in [74]. The main structural difference between Harth nets and classical
proof forests is that unlike the latter, Herbrand nets haf@ra of axiom linkscorre-
sponding to the axiom rule of the sequent calculus, and atteatnrway more closely
related to proof nets for MLL with quantifiers (see e.g. [13flowever, in a detailed
comparison of the two formalisms, in Section 7.3, it will egeethat the differences
between classical proof forests and Herbrand nets are suterficial. At the same
time, there is a strong common theme, in the form of the basest structure with a
dependency ordering that is shared by classical proofteesd Herbrand nets. In-
deed, it is perhaps more accurate to view the two approachemiants of essentially
the same approach to first-order classical proof, than apletdety distinct formalisms.

Throughout Part Il of this dissertation contributions by Wildey are carefully
identified and attributed.

1.5 Synopsis

As discussed, this thesis contributes to two separate doutected investigations into
canonical proof. The structure of the dissertation is dsvi.

Part | treats proof nets for additive linear logic. In thigtp&hapter 2 introduces
additive linear logic, its semantics of sum—product categoand its sequent calculus
presentation, and presents the (non-canonical) notiommfproduct nets and their
equational theory. Chapter 3 presents the saturation guoeeand the (canonical)
saturated nets, discusses identity and composition indbegory of saturated nets,
and describes the correctness condition for saturated Gatpter 4 covers the proof
that the decision procedure for term equality in free surodjct categories based on
saturation is sound.

Part Il treats classical proof forests. They are presemedhiapter 5, which in-
cludes a game-theoretic interpretation and a comparisthretsequent calculus. Chap-
ter 6 introduces a cut-reduction procedure, illustrates hds badly behaved, and

1.5. Synopsis 21

suggests modifications, resulting in a weak normalisati@otem (and a strong nor-
malisation conjecture) for the modified reduction relatidbhapter 7 gives a weak
normalisation result for the original reduction relatidiscusses other variations on it,
and illustrates how different variants of proof forest retiton are non-confluent.

Chapter 8 summarises the results in the thesis and suggests for future work.
Technically, this chapter does not belong to Part II; howetres is obscured by the
fact that theATeX command end{ part} has no visible effect.

Part |

Proof nets for additive linear logic

23

Chapter 2

Sum-—product nets

2.1 Introduction

Chapters 2, 3, and 4 will present a notion of proof nets fortaddlinear logic, the
fragment of linear logic consisting of linear implicatiortiveen strictly additive for-
mulae. As the principal account of semantics for this fragie given by categories
with finite products and coproducts it is also known as sumelpct logic. The proof
nets presented here are canonical for this semantics: itharene-to-one correspon-
dence between proof nets and morphisms in a free sum—proalacfory.

The motivation for investigating proof nets for this logg&threefold. Firstly, ad-
ditive linear logic is of independent interest because ®tdtegorical semantics. A
free sum—product category is the free completion with petgland coproducts of a
base category. As such, free sum—product categories are a restrictionyafl'$ free
bicomplete categories [63], which are completions witHialits and colimits, to the
(finite) discrete case. Also the game-theoretic semantiesiditive linear logic, ex-
plored in [64] and [2] among others, makes it an interesturgect of study; but this
will not be investigated further here.

A second, more specific motivation is that additive lineajidas a fragment of
the Enriched Effect Calculus by Jeff Egger, Rasmus Mggglbaed Alex Simpson
[35], a type theory for computation with effects, based dnitronistic linear logic. It
was suggested by Alex Simpson that the free sum—productletiompof the empty
category is a model for this calculus, and may possibly beraptete model—this
guestion, however, has not yet been resolved.

Thirdly, while additive linear logic is a relatively simpfeagment of linear logic,
the treatment of the units, or neutral elements, in prod$ fatlinear logic is notori-

25

26 Chapter 2. Sum—product nets

ously difficult. In addition, the the fragment includes muafithe complexity of the
full multiplicative—additive fragment, since the mulligdtive connectives are present
in a restricted form at the meta-level: as linear implicatmd composition (or cut). A
notion of proof nets for this fragment is thus an importamttabution to investigations
into the proof-net problem for larger fragments of lineagit The relatively simple
nature of additive linear logic, and the simplicity of itopf nets in the absence of the
units, make it an ideal setting for exploring the propertéthe additive units, which
have thus far not appeared in proof nets. To quote GirardildnAppendix A.3]:

There is still no satisfactory approach to additive nestfal.]! The only
way of handlingT is by means of a box or, if one prefers, by means of
a second order translation: on this Kamtchatka of linearc|othe old
problems of sequent calculus are not fixed. The absence diséastory
treatment ofT calls for another notion of proof-net. . .

Another quote is from Dominic Hughes in [56, Section 1], wehbe presents additive
proof nets without the units:

Work in progress aims to extend the approach presenteddarets (i.e.,
initial and final objects), and to an arbitrary base cate@@ther than a set
of atoms, i.e., discrete category). The former, if at alkfbke, appears to
be quite involved. This is evidenced by the fact that, wheptgmroducts
and sums are present, there is no obvious confluent and tingmewrite
system for the cut-free proofs (or proof terms) of Cockett Seely’s de-
ductive systend. If such a rewrite system can be found, it might provide
useful clues towards extending the approach presentedsipdbper to the
initial and final objects, yielding a canonical graphicaht&x for finite
products and sums.

The last sentence of the above quote describes what is pedsenthese chap-
ters: a canonical graphical syntax for finite categoricabpicts and coproducts. After
discussing background material, below, first sum—prodatetgories and additive lin-
ear logic will be discussed, in Section 2.2. In Sections 2@ 24 a notion of proof
nets, based on existing nets without units [59], will be diégtl. These nets are not
canonical for sum—product categories; in Section 2.5 aatsopual theory over nets is
defined, that equates nets that represent the same castgooiphism.

The next chapter, Chapter 3 will present a simple rewritilggrthm calledsatu-
ration, that, from sum—product nets, obtains canonical normah$ocalledsaturated

1The original text reads, “...which are fortunately extrémeninteresting in practice.” One can
only guess at the reasons for questioning the significan¢keofdditive units; after all, they are an
integral part of linear logic, and in the opinion of the auttend presumably in that of others who have
worked on them, pose a demanding challenge with interestiritnical consequences.

2This refers to [25].

2.2. Sum-—product categories and additive linear logic 27

nets Chapter 4 will be devoted to the proofs underlying the casityresult. Most of
the results in this part of the dissertation appeared in [A9]ew result, not presented
in that paper, is the correctness condition for saturatésl e Section 3.4. Also the
soundness proof, in Chapter 4, has not yet appeared in firoutdh it has accompanied
[49] as an appendix in the peer review process).

2.2 Sum-—product categories and additive linear logic

First, recall the definitions of categorical products angroducts. The&binary) prod-
uct Ax B of two objectsA and B comes withprojectionsmg: Ax B — A andry :

A x B — B, and for everyf : X — Aandg: X — B a uniqueproduct mapor pairing
(f,g): X — AxBsuchthatrgo (f,g)= f andmry o (f,g) = g. Dually, the(binary) co-
product A+ B of objectsA andB has twoainjectionsig: A— A+Band:; : B— A+ B,
and for every two map$: A— X andg: B — X a uniquecoproduct mar co-pairing
[f,9/: A+B— X suchthaff,g/o 1o = f and/f,g/o 11 = g. The equations in the above
definitions are expressed by the following commuting diaggra

A—2A+B<2—B

N NS

<— XB—>B

Equivalently, the uniqueness requirement for pairing amg@ing may be replaced
by the following equations, for magfs: X — Ax Bandg: A+ B — X.

f=(mgof, mof) g=/go0, 9o/

Theterminal objector nullary productl has a uniquéerminal map % : X — 1 out of
every objectX, while theinitial object or nullary productO has a uniquénitial map
?x : 0 — X into every objecK.
A sum—product categorgr bi-cartesian categorys a category that has all finite

products and coproducts, presented as binary and nullagupts and coproducts.

A free sum—product category is a category that isfiee sum—product completion
>M(c), the free completion with binary and nullary products angroducts, of a base
categoryc. Formally, for products and coproducts to occur freely nsdhat there is
a functori : ¢ — ZIN(¢) such that every functdf from ¢ to a sum—product category
o factors uniquely (up to natural isomorphism) Bso i, whereF’ : ZM(c) — D

28 Chapter 2. Sum—product nets

preserves products and coproducts.

Objectsi(A) and morphismga) in ZIM(¢), in the codomain of the functayare called
atomic For the remainder, let the base categorige fixed.

Free sum—product completions are a restriction to finitsgrdte limits and col-
imits of thebicompletionscompletions with all limits and colimits, studied by André
Joyal in [63]. This work was inspired by Whitman’s Theorenon the 1940s, which
characterises the free lattice completion of partiallyeoed sets by a property closely
related to the subformula property. Generalising Whitredrieorem, Joyal gave a
characterisation of free bicomplete categories by a ptgpailedsoftnessplus sev-
eralatomicityproperties for atomic objects; from this perspective, fegéces are the
special case of free bicomplete categories that are partials.

For the present case of free sum—product categories, seftaexpressed in the
following pushout diagram in the category of sets, wheredtiews are the natural
compositions with the appropriate projections and in@wi—e.g. the top arrow maps
f: X —Yjontof o,

|_|,,Jhom(X.,Yj) |_|Jh0m(|_||X|,Yj)

hom([iX;, LI;Y;)

For binary products and coproducts it states that a morphtisidy x X1 — Yo+ Y1

factors through one of the projections or injections, iresses as one of the following
compositions, for somg or h,
XoxX1l>Xi i>Y0—|—Y;|_ XoXX]_LYjLYo—i—Y]_

and if it factors through both a projection and an injectibdaes so via a common

2.2. Sum-—product categories and additive linear logic 29

morphismk : X; — Y;j (for somei andj), as follows.

— i

tj
Xox X —— X Yi Yo+Y1

\—/

g

For the initial and terminal object, the diagram states @haiorphismf : Xg x X; — 0
factors through a projection, that a morphisng : 1 — Yg + Y factors through an in-
jection.j, and that there is no map froirto 0. The atomicity properties for atomic ob-
jectsi(A) in ZM(c¢), part of Joyal’'s characterisation in [63], state the follogr maps
Xo x X1 — i(A) andi(A) — Yo+ Y1 factor through arj and.; respectively, and a map
i(A) — i(B) must be an atomic mapa), witha e ¢ (A,B). Since the objects in the cat-
egory2ll(c) are those generated over the atomic objects by taking firousts and
coproducts, what the above amounts to is that any ma} — Y can be constructed
by a combination of pairing, copairing, and compositioondrinjections, projections,
initial maps, terminal maps, and-maps, while passing only through objects that are
components oK andY.

Sum-—product logic

One motivation for Joyal's work was the connection betwesgegorical products and
coproducts and the additives of linear logic [86]. AdditiWear logic, or sum—product
logic, provides a term calculus for sums and products, anghtastic description of
free sum—product categories. Following the categorictdtian, and using the objects
of ¢ as the atomic formulae, the formulae of additive lineardagie generated by the
grammar below.

X = Aec |0 1] X+X | XxX

To recover Girard’s notation for linear logic, readfor +, read & for x, and readT
for 1. The sequent calculus for sum—product logic, with maps filoencategory” as
axioms, is displayed in Figure 2.1. The proof terms, whichlvé called=IM (¢)-terms
are suggestive of the interpretation of proofs as categlomorphisms irkM(¢); note
that the overloading of the composition symlfe) is harmless, sinca andi will not
occur in isolation.

Softness o2lM(¢) is related to the subformula property for sum—product Ipgic
and to cut-elimination. This was the subject of investigiasi by Robin Cockett and
Robert Seely in [25]. The equations in Figure 2.2, read frefntb right, form a cut-
elimination procedure for additive linear logic—note thta first case, which equates

30 Chapter 2. Sum—product nets

ac c(AB) XY, X-Lv x Ly

a v
A—B X 2\ x v Xox Xq 2 Y

?
0—X X L., Xo —5Y X —Y

X 4ty vy Xo+ X By
X 51
Xy v 2,7
idx Id sot Cut
X=X X=Z

Figure 2.1: Sum—product logic

composition inc and inZM(¢), would readb o a = b o a without the context of a
proof (see also Table 2 in [25]). Using the equations in FedliB also the identity rule
may be eliminated. Additional equations are given in Figire(see also [25, Table
2] and [23, Figure 2]). Many of these equations, in all thrgaris, are the traditional
permutations of the sequent calculus; for example, thedft@iuation of Figure 2.4,
illustrated below as a permutation on sequent proofs.

t t

X1 — Y X1 — Y
Xox X1 3 Yo = X, 1% o4y
Xo X X1 socltors) Yo+ Y1 Xo X Xq (LOL)OmYoJrYl

The equations of the three figures together form an equatioeary over proofs.

Definition 2.2.1. Two ZIN(c)-termss andt areequal I (c) = s=t, if they are
equated by the congruence over the equations in Figure2.3,2and 2.4.

That equality over terms is a congruence means that it coesmwith the term
constructors

—om o= (==) =] —o-
or in other words, that the following equations holdzf (¢) Et=t.

tom =t om t,s)= (t',s) ks/=Hf,s] tos=tos
tjot=y¢jot (st)= (st') [st]=[st] sot=sot

Two main results in Cockett and Seely’s paper, slightly parased, are as follows.

2.2. Sum-—product categories and additive linear logic 31

acc(AB) bec(BC)

- 5 boae c(AC)
A—B B—>CCt = boa
A—C
idot = t toid = t
lot = | to? = ?

(tomi)o (s0,81) = tos fo,t1/o(tjos) = tjos

to,t1)os = (tpos,t1os) to(som) = (tos)om
(tjot)os = 1jo(toy) to/s0,51/ = [ftosp, tosy/

Figure 2.2: Cut-elimination in sum—product logic

d - id e c(AA)
AL A AL A
ido = ? idx+y = [Jiooidx, tpoidy/
idp = 11 idxxy = (idx o, idy omy)

Figure 2.3: Identity-elimination in sum—product logic

tio(tomj) = (iot)om, | —lom
ioft,;s/=fiotos b=
ljo?="72
et (?,2)="7

(fto,t1/, [s0,51/) = [(to, o), (t1,51)/ lo="1

Figure 2.4: Equations in sum—product logic

32 Chapter 2. Sum—product nets

Proposition 2.2.2([25, Proposition 4.6]) The free sum—product completi@fl(¢)
is characterised by sum—product logic, by taking as objdesormulae and as mor-
phisms the equivalence classes of proofs under equality.

Proposition 2.2.3([25, Proposition 2.9]) For cut-free, identity-free proof terms s and
t, if ZMN(c) = s=tthen s and t are equated by the congruence over the equations
Figure 2.4.

The statement of this second proposition implies that mierps inZM(c¢) are
represented by equivalence classes of cut-free proofs timelequations of Figure 2.4
alone. The following three facts then immediately implyttttee word problemfor
>M(c), the problem of whether two proof terms denote the same niwrphs decid-
able if the word problem for is decidable:

* every proof term is equal to a cut-free one, by cut elimmati

* up to the choice ot -axioms, there are only finitely many proofs for a given
conclusion sequent;

» to decide whether two cut-free terms are equated by theraenge of Figure 2.4
is straightforward.

Following up on the work in [25], in [23] Robin Cockett and lgilSantocanale devel-
oped an intricate decision procedure for this decision leral(the word problem for
2MM(c)), which runs in polynomial time.

2.3 Sum-—product nets

Proof nets for additive linear logic, without units, weresdebed in an unpublished
report by Dominic Hughes in [56], while a similar approacipaared, in the same
year, in [33]. They are also a fragment of the proof nets fottiplicative—additive
linear logic without units by Dominic Hughes and Rob van Gladk (see [59, Sec-
tion 4.10]). (An alternative graphical formalism, basedaodifferent axiomatisation
of sum—product categories, can be found in [6].) In thisieagbroof nets in the style
of Hughes and Van Glabbeek will be adapted to include thesuitt not canonically.
This notion of proof net will be calledum—product netsand coincides with that of
Hughes and Van Glabbeek on the fragment of additive linegac ithout units.

2.3. Sum-—product nets 33

A sum—product net representing a morphsm- Y consist of the two syntax trees
plus a collection ofinks, connecting leaves in the syntax treexao leaves in that oY .
The object trees will be drawn facing each other with theawés, their roots pointing
outward. An example is drawn in Figure 2.5, together withtdren it represents.

%
/ B
/ /
@ /
N ida /
\
e
[(ida o 7, tooidgom), (idaomo, ty1oidcom)/
(AxB)+(AxC) — Ax (B+C)

Figure 2.5: An example net

Nets are read from left to right, and correspond to cut-fre@fterms in a simple
way. Links correspond to axioms, and are labelled with thepimiems in the base
categoryc which they represent. They are drawn slightly detached fvertices to
distinguish them from the solid lines in the object treesjolwhrepresent projections
and injections. Unlike the solid lines representimgnorphisms, injections, and pro-
jections, dashed lines are notimmediately interpretedaphisms—as injections and
projections they would run in the wrong direction, from tigh left. Instead, a pair of
dashed lines on a coproduct vertex in the source tree mayeneasecorresponding to
copairing/—,—/, and a pair of dashed lines on a product vertex in the target to
pairing (—, —).

To identify the actual nets among arbitrary collectionsioks$, there is the fol-
lowing correctness criterion, called tlsgvitching condition A switchingis a choice
selecting exactly one of the dashed edges of each coprodtteiin the source tree
and each product vertex in the target tree. A switctawgches offthe vertices in the
branches it does not select, awlitches orall other vertices in the tree. The switching
condition states that, for any switching, in the remainingpdy there must be exactly
one path connecting both root nodes; or equivalently, feryeswitching there is ex-
actly one link whose vertices are both switched on by theching.

34 Chapter 2. Sum—product nets

The nets so described are canonical for the unit-free fragnteey uniquely de-
scribe morphisms in categories with free, finite, non-emgtyducts and coproducts
(see also [56]). These nets may be extended to include the iora straightforward
manner: by adding (unlabelled) links that represent iratial terminal maps, as in the
following examples.

®\ /©\ ®\
® @ / e
©/ N a— ®/

(ida o mo, !) 2, 00]

The main technical difference is that these initial linksl &rminal links may connect
to vertices that are not leaves; in particular, the switgltondition is unaffected. Nets
of this kind will be calledsum—product netsrhey are not canonical for additive linear
logic with units—how to obtain canonical nets, using sunedpicts nets as a basis,
will be the subject of the remainder of this part of the ditstéyn. A quick note: the
feature that links may connect to non-leaf nodes is natwaah fthe perspective of
the sequent calculus, but it is not a strict necessity. luisegpossible to restrict all
links to connect only to leaf nodes, but though this wouldmify composition (see
Section 3.3), it would needlessly complicate everythirsgel

Definitions

Thevertices(or positiong in the syntax tree of an objeit are given as binary words,
elements of 0,1}, with the empty word denoted lgy as follows. The set of positions
of an objectX is defined as follows.

pogAc) = pog0) = pogl) = {e&}

POSX xY) = posX+Y) = {e} U {Ov|ve pogX)} U {Iv|ve pogY)}

Variablesv,w, ..., zare used for vertices, whileand j range ovef0,1}. The positions
in pog X) are ordered by the standard prefix orderigg.(The subformula of an object
X at a vertexv is denotedX,, defined as follows.

Xe = X (XOXX1>iv = (XO+X1>iv = (x|>v

When X is understood, the phrase fs Y’ will mean X, =Y. In this definition, a
positionv has childrenvO andvl if it is a product or a coproduct, and none otherwise.

2.3. Sum-—product nets 35

Definition 2.3.1(Prenets) A Xl (¢)-prenet(X,Y, R) consists of aourceobjectX, a
targetobjectY, and ainking, a relation

& < posX) x (hom(c) U {#}) x pogY)

(wherex ¢ hom(¢)), such that for anyv,l,w) € % , if | = x thenX, =0orY,, = 1; and
otherwiseX, andyY,y are objects irc, andl € ¢ (X, Yw)-

Variables f, g, h and k are used for prenets. Tihks in a prenet are the elements
(v,I,w) of the linking % , and may be rendergd, w) when the label is understood or
irrelevant. A prenet is calleemptywhen® = @. A link (v, *,w), whose label«) will
be omitted from diagrams, isumit link; if vis Qitis aninitial link, and ifwis1itis
aterminallink. A link labelled with ac-morphism isatomic

A switching ¢ of an objectX is a partial function on pdX), that chooses one
branch of each vertex that is a produgitv) € {0, 1} if X, is a product, while otherwise
¢(v) is undefined. The dual notion of@-switching is a partial function choosing
branches of the coproduct vertices in a syntax tree. A vevtiexswitched orby a [co-
]switchingg, writtencow, if for any ancestor (i.e. prefix) aff that is a [co]productg
selects the branch containing

cow <= (Vi<wAvedom)) = ¢v)=i.

Here, dontg) indicates the domain af as a function, i.e. the vertices on whighs
defined. A switching for a prenéK,Y, %) is a pair(¢, 1) of a co-switching; of X and
a switchingrt of Y. A link (v,w) is switched orby (¢, 1) if o vandt o w.

Definition 2.3.2(Nets) A ZIN(c)-netis a prenet f that satisfies the following correct-
ness criterion (thewitching conditioh

 Every switching(¢, 1) for f switches on precisely one link.
Let NET denote the set of alll(¢)-nets.

In the unit-free cas&ll(¢)-nets coincide with the proof nets in [56] and the additive
fragment of the proof nets in [59].

The example in Figure 2.6 illustrates a net, with its poagiindicated, together
with its formal definition. The dashed edges in the diagraraslase of nodes subject
to switchings and co-switchings (in the switching condijioThe net in Figure 2.6 has

36 Chapter 2. Sum—product nets

ida
0 0
B
€~ 10 €
®\ ®\
AN AN
10 1
7/
Dy

(A+0, A+(1x1), {(0,ida, 0), (1,%,1) })
Figure 2.6: Another example net

four switchings, shown below, each switching on exactly lime vertices and links
that are switched off are drawn in grey.

) @ id A) @ id A
@& D, @&
®/
®\ ©\ ®\
N @ AN N ©
®/

Itis easily observed that, in any syntax tree, any vertewitched on by at least one
switching, and at least co-switching; and that consequeaigb each link in a prenet is
switched on by at least one switching. When two links aredveitl on simultaneously
by some switching, they are said to ineompatible by the switching condition, a net
may not contain incompatible links. Figure 2.7 shows exaspf incompatible links.
This notion is formalised below.

Definition 2.3.3 (Incompatibility). In a prenetX,Y, ®) verticesx,X in pogX), ver-
ticesy,y in pogY), or links (v,w), (V,w) in & are (pairwise)ncompatible

x# X y#y or (vyw)# (VW)
if there is a switchindc, 1) for (X,Y, %) such that
C o XX Toyy or (6T o (ww), (VW)

respectively.

2.4. Connecting nets and terms 37

Figure 2.7: prenets with incompatible links

Thus, the verticex and X' in a source objecK are incompatible if there is a
co-switchingg that switches them on simultaneously. As is easily sees,dbcurs
precisely when one (strictly) dominates the othek (X or X' < X) or their greatest
common ancestor is a product,

Jvij. vi<x, vj<X, i#]j, andX,is a product.

Verticesy andy in the target objecY are incompatible if a switching switches on
both simultaneously, or equivalently if neither dominates other and their greatest
common ancestor is a product. Two linksw) and (V,w') in % are incompatible
precisely wherv#V andw # w'.

The switching condition has an at—least component, whid¢hoeicalled thecon-
nectedness conditipand an at—-most component, tt@mnpatibility conditiorThe fol-
lowing are technically useful classes of pre-nets.

Definition 2.3.4(Connected prenetsp pre-net isconnectedf every switching for it
switches on at least one link.

Definition 2.3.5(Partial nets) A pre-net is gpartial netif it satisfies thecompatibility
condition the condition that any switching for it switches on at maseé dink. Let
PNET denote the set of partial nets.

The compatibility condition is so named because it is edenato the statement
that a prenet may not contain incompatible links.

2.4 Connecting nets and terms

The connection between sum—product nets and the (cutfme®f terms of sum—
product logic will be made via an inductive construction hoet for nets. It will

consist ofbasicnets, corresponding to axioms, andt constructorscorresponding
to inference rules. These will give rise to a translationcedure from terms to nets.

38 Chapter 2. Sum—product nets

Showing that all nets are so constructed will give an in&ggdron of nets as terms, or

sequentialisation
Basic netsare those consisting of a single link connecting the rodices of both

objects. Define the following abbreviation for basic nets.
XY, £ (XY, {(ele})

Below, basic nets are illustrated, and additional notati®dh) is introduced for nets
consisting of a single initial or terminal link. Hera,is a morphism inc (A,B), and
X andY are2l(c)-objects; note that the unlabelled nodes in the diagranmsl $ta
subtrees, not just leaf nodes.

66 ©@—O O—0

(A,B,a) 2 = (0Y,%) Iy = (X,1,%)

Theconstructorsare the following, foiZl (¢)-objectsX andY, andi, j € {0,1}.
MXxY)=) == (=) (=4(X4Y))

The annotation with object® xY andX +Y, in the first and last constructor above,
will mostly be omitted. The constructors are illustratedrigure 2.8; the dotted lines
labelled f and g denote the pre-nets to which the constrsi@m applied, while the
unlabelled vertices abbreviate syntax trees of arbitr@fgais. The notation for terms
and for nets is distinguished by the use of different alptafsgt and £ g, h, ... respec-
tively), the use of italics for terms and an upright font fats, and different notation
for composition with projections and injections. (The ohist notation is introduced to

help avoid confusion.) Using the following operations,

u-®x = {{uv,l,w)|{vlw)ex} R-u = {(vlLuw | (vIw)er),

the constructors are defined, on pre-nets, below; noteilteatHe term constructors,

they are subject to well-typedness conditions.

5 (Xo X X1); (%, Y, &) = (Xo x X,Y, i %)
[(X,Z,%),(Y,Z,5)] = (X+Y,Z,(0- 8)U(1-5))
(X.Y,R),(X,Z,8)) = (X,Y x Z,(% -0)U(s - 1))

XY, R)iti(Yo+ Y1) = (X, Yo+ VY1, % -0)

2.4. Connecting nets and terms 39

f f Oy
O o ®
g O/
To; f (f.0)
O f f
@ e O
\O g
[f,g] fito

Figure 2.8: Net constructors

The translation from (cut-free) proof terms to nets, imiplic the naming of con-
structors, is made explicit §s-] below.

Definition 2.4.1. The translation functiorff—] from ZM(¢)-terms toZlM(¢)-nets is
defined as follows.

[WI=2 [IIxI=!x [tem]=m[t] [ts)] =t Is])
[a:A—B]=(AB,a) &8 =10 Is)) [ejot] =Mty

Applying a constructor is calleconstruction The reverse notiomeconstruction
is the extraction of a pre-net f or g from ongf, (f,g), [f,g], or f;1;. Both construction
and deconstruction preserve the switching condition, aockover, the connectedness
and compatibility conditions, individually, as well.

Lemma 2.4.2.Construction and deconstruction preserve the connectesiaied com-
patibility conditions.

Proof. There are four cases, one for each of the constructors. Ediirgt case let
f=(Xo,Y,%), so that(tph(X);f) is (X,Y,0- %), depicted below.

For any co-switching, of X there is a co-switchingg of Xg defined bygo(v) = ¢(0v),
and this mapping is surjective: any switchingXy is a switchinggy for someg. It
follows thatqw Ov if and only if ¢o w v, while all links in 1p;f are of the form(Ov, w).
Clearly, any switchingc, 1) for 1o;f switches on precisely as many links as dogst)

40 Chapter 2. Sum—product nets

for f. ThenTtp;f is connected, respectively a partial net, if and only 8.fThe case for
my;fis symmetric.

Next, let f= (Xo,Y,®Rp) and g= (X1,Y,R1), so that[f,g] is (X,Y,0-%o U 1-R1),
illustrated below.

Given a co-switching let ¢o and¢; be co-switchings oXg andX; respectively, defined
by ¢i(v) =¢(iv). Conversely, every pair of co-switchingsfor Xo and¢; for X; defines
two co-switchings; andd’ for X, by lettingg(iv) = ¢/(iv) = g(v), while ¢(¢) = 0 and
d(g) = 1. For any co-switching for X it follows thatqwiv if and only if ¢(¢) =i and
G o V. Then a switching¢, 1) for [f,g] switches on precisely as many links as does
(Go,T) for fif ¢(¢) =0, and as many as doég, 1) for g if ¢(g) = 1. It follows that
[f,g] is connected resp. compatible if and only if both f and g are.

The third and fourth case, f¢r,—) and(—;1;), are dual to the above. O

From the above lemma, and the fact that basic nets are nistsninediate that the
translationt] of a term is a net. It remains to show that all nets arise agémslkation
of some term. Call a prenédgft-constructibleif it is of the form m;f or [f,g], and
right-constructibleif it is of the form (f,g) or f;1;. Call a pre-netonstructibleif it is
left-constructible or right-constructible, amdconstructibleif it is both. Recall that
a partial net is a pre-net satisfying the compatibility ctind.

Lemma 2.4.3. A partial net is empty, basic, or constructible.

Proof. Let f = (X,Y, %) be a partial net. It will be assumed that f is neither left- nor
right-constructible, nor empty, to show that f is basic oatdave at a contradiction.
The assumption of f non-empty and not left-constructiblegitwo possibilities:

1) % contains some linke, w),
2) Xisaproduct, an& contains some link&v,w) and(1V',w/).

These options are exhaustive: Xfis an atom or unit, the links i all havee as
their source; ifX is a coproduct, then f is left-constructible if and only if hoks

in & have source; if X is a product, f is left-constructible if and only if, for some
i € {0,1}, all links in £ are of the form(iv,w). Dually, assumingk non-empty and
not right-constructible gives two options,

2.4. Connecting nets and terms 41

a) % contains some linkv,),
b) Y is a coproduct, ang. contains some linkéx, Oy) and (X', 1y’).
This leaves four combinations to be verified.

la) Ifthe link in 1) and that ina) are distinct,(€,w) # (v,€), the compatibility con-
dition is violated, since # v andw # € (recall that # denotes incompatibility, the
relation that vertices are switched on simultaneously byies¢co-)switching).
Otherwise,®_is the singleton{(g,€)}: the presence of any other link,w)
would violate the compatibility condition. Then f must beslza

1b) Given (g,w), (x,0y) and (xX,1y’), sincee # x ande # X' the compatibility con-
dition demands that neithev # Oy norw # 1y’. But sinceY is a coproduct, if
w = 1w then W # Oy, if w= 0w then @ # 1y, and ifw = € then bothe # Oy
ande # 1y, a contradiction.

2a) This case is dual told) above.

2b) The links given by 2are(Ov,w) and(1V/,w'). Because @# 1V, by the compati-
bility condition it cannot be thaw # w'. This means thatr andw must reside in
the same branch of the coprodiYgtthat is,i < w andi <w for somei € {0,1}.
Without loss of generality, assume that@vand 0< w'. Dually, the links ofb)
are (x,0y) and (X, 1y’), and (without loss of generality) assume that & and
0<X. Thenx # 1V and & # w/, violating the compatibility condition because
of the links(X', 1y’) and(1V/,w/).

O

The above lemmata are used to show, firstly, that partial awetrecisely the
pre-nets constructed over basic nets and empty pre-netssexmondly, that nets are
precisely the pre-nets constructed over basic nets.

Proposition 2.4.4. PNET is the smallest set containing all empty pre-nets and basic
nets, closed under constructiomET is the smallest set containing all basic nets,
closed under construction.

Proof. Both statements will be proved simultaneously. In one divecit is immedi-
ate that empty pre-nets are partial nets, and basic netetspand by Lemma 2.4.2
construction preserves connectedness and compatibility.

42 Chapter 2. Sum—product nets

For the other direction, let f be a partial net. It will be shothat f is constructed
over empty pre-nets and basic nets, or only basic nets if fristaby induction on
the source and target object of f. By Lemma 2.4.3 the pargaf is empty, basic or
constructible. In the first two cases, the statements arestiate (f is non-empty if it
is a net). In the third case, f is of one of the four forms below.

;g (gh) [g.h g

By Lemma 2.4.2, since f is compatible so are the componentsdgha and if f is
connected, so are g and h. Moreover, either the source oairtpet tobjects of g and h
are strictly smaller than that of f, while the other remauteritical to that of f. Then if
fis a partial net, so are g and h; by the induction hypothésisd are constructed over
empty pre-nets and basic nets, and hence so is f. Similafig & net, g and h are nets
that, by the induction hypotheses, are constructed ovér hats, and hence fis also a
net. L

Sequentialisation is then an immediate corollary.

Corollary 2.4.5 (Sequentialisation)Every sum—product néts the translation of some
termt,f = [t].

Proof. Immediate from Proposition 2.4.4. O

The present proof of sequentialisation is similar to thd6®] (see Proposition 3
and Subsection 4.2.3 in that paper). There, the absencatsfslightly simplifies the
argument, because links connect only to leaves; howewecdmbinatorial reasoning
is very similar in both cases. The proof in [59] is not dirgatbmparable, due to the
complicated issues arising from the presence of the migiéiftve connectives.

2.5 An equational theory over nets

Sum-—product nets factor out some, but not all of the equattieer sum—product logic
displayed in Figure 2.4. It will be shown how the remainingi@ipns form an equa-
tional theory over nets, whose equivalence classes regriggemorphisms of the free
sum—product catego3f1(c).

Firstly, bi-constructible pre-nets—those that are bofttidenstructible and right-
constructible—come in four kinds, illustrated in Figur8.2They are governed by the
following equations.

2.5. An equational theory over nets 43

Figure 2.9: Bi-constructible pre-nets

Proposition 2.5.1. Sum—product nets satisfy

(m;f)5 = () ([f,hl[g,k]) = [{f,9),(h,k)]
[f.glsty = [(F), (o) ((m:56),(;9)) = m;(f,0).

Proof. Immediate from the definition of the constructors. O

The corresponding equations over terms are the four nohMimgpthe units, i.e.

lj © (t © 71-l> - (Li © t) O Tj (ﬁ()vtl/v /50781/) - /(to,So), (tlvsl)/

tioft;s/ = [iiot,ijos/ tom,som) = (t,s)om.

Because initial and terminal links are labelled uniformbtasatisfy[!o] = [?1] =
(0,1, %), absorbing the additional equatibn= ?1. That nets do not accidentally equate
too many proof terms is established by the following proposi

Proposition 2.5.2. For cut-freeZN(c)-terms s and t, ifs] = [t] thenZM(c) Es=t.

Proof. By induction on the construction of a net f it will be shown ttladl termss
such that[s] = f, of which there is at least one by Corollary 2.4.5, are eggah
2M(c). The base case concerns basic nets, and the induction stepumible nets;
it is immediate from the definitions that a net cannot be baisidand constructible.

For basic nets, if = (A,B,a) thens can only bea € ¢ (A,B), by the definition of
the translation functiofi—]. Next, if f = (0,1, %) thensis either?; or !o, while if f is
some other nef0,Y,) or (X, 1, *) thenscan only be?y and!x respectively.

For constructible nets, f can be of the form

;9 [Qo,01) (ho,hy) or hij,

44 Chapter 2. Sum—product nets

of which the two leftmost are mutually exclusive, as are the tightmost. Without
loss of generality let £ 15;g. From the induction hypothesis it is immediate that all
termst o 7 translating torg;g are equated. If f is only left-constructible, there are
no other terms translating to f. Otherwise, f is bi-congihle; then let f be of the
form h;i; (the case for £= (hg,hy) is similar). It follows from the definition of the
constructors that g k;1; and h= 1,k for some net k, and as in Proposition 2.5.1,

o= mkiy) = k).
Lett’ be a term such thgt’] = k. Then for any termso 7; and.j o t translating to f,
[s] = [tjot] and [t] = [t'om].
The induction hypothesis and the sum—product equatiomsgive
SN(c)E som = (jot)om = (jo(t'om) = ijot.
L

The four remaining equations over sum—product logic, belaimpose an equa-
tional theory over netgquivalencé<«), illustrated in Figure 2.10.

l=lomg =M1 2=140?2 2= (272

Equivalencg <) over nets must reflect that the term equations above form graen
ence. For example, the following nets must be equivalenthesare the translations

00—
@

= oo
o

(Jtoo?,110?]omg, ?20m1) = (Jtoo?,?]omp,?0m)

of equated terms.

The natural way of defining equivalence of nets is via gragriting, by inter-
preting the equivalences in Figure 2.10 as replacingsutmetwith another, leaving
the context intact. In the remainder of this section it wél §hown that<), defined
as a rewrite relation on nets, naturally corresponds tolggwh >N (¢)-terms.

Firstly, to define(«<>), a notion of subnet is needed. sibpreneof (X,Y, %) will
be a prenet between subformulaecéndy, with a subcollection of the links between

2.5. An equational theory over nets

45

@i D < @<\® © o ©/
I=lomg ?=10907
@) O O O
// // \ \\ / \\
@ o & @ /© © @ ©\ ®
O O o o
=M1 ?=(2?)

Figure 2.10: The unit laws force an equational theory over nets

them: a prenetXy, Y,) such thaw- s -w C % . Call two prenetparallel if they have
identical source objects and identical target objects dafiche, on parallel prenets,

(X,Y,5)C (X,Y,R) <= sSC=.
Define, for a prenet£ (X,Y, R),

fuw = (Xv, Yo, Kv,w)
{(V, L, W) [(wW, l,ww) e R }.

II>

Ryvw

Definition 2.5.3(Subnets) A subprenedf a prenet f is a prenet@ fy. If g C fthen
g iswide, if g = fyy then g isfull, and g is ssubnetif it is a net. The set of subnets of
a prenet f is denoted byus(f).

The notation {g}yw denotes a pre-net f with the sub-prengf, freplaced by a
parallel prenet g. Formally, for prenets=f(X,Y, %) and g= (Xy, Y, S), define

A

flahw = XY, R{5}hw)
R{shw = {(V.LW)ER [VLV VWELW) U (V-5 -W)
The general form of rewriting in context is given by the feliag relation.

f{g}vw :[g|h]:>v,w f{h}vww

The relation= g|h=w replaces the prenet between vertivesndw, which is re-
quired to be g, with the parallel pre-net h, leaving the ceinitetact. An equivalent

46 Chapter 2. Sum—product nets

formulation would be Hfyw|h=yw f{h}yw. Dropping the subscript w indicates
the union over al’ andw, and a single application of a rewrite relatiefg|h}= (i.e.
for somev andw) will be called arewrite step

Definition 2.5.4 (Equivalence) The equational theory (equivalencgon ZI-nets is
the equivalence relation generated by the following folatrens.

St LR 202 2k

The four rewrite rules in the above definition are the eqeneés illustrated in
Figure 2.10, interpreted as rewrite steps from left to rightsubnets; naturally, in the
equational theory=, they are applied in both directions. From the illustratibis
easily observed that they preserve the switching conditmte that there are no side-
conditions to the application of these equations—unlileertwriting in multiplicative
proof nets with units, where rewrites only apply on the ctindithat they preserve
the correctness criterion for multiplicative proof netegg417] and [57]). It remains
to show thats reflects precisely the equational theory over sum—produoig. The
first step will be to show that subnets of sum—product netaaatéogous to subterms
in sum—product logic. To make this more precise: for any stigrof a net f, there is
a termt with subterms such that £ [t] and g= [s]. This is established below.

Lemma 2.5.5. For a netf the setsuB(f) of subnets of is the union of{f}, LsuB(f)
andrsus(f), where:

(

suB(g)usug(h) iff =[g,h

LsuB(f) =< suB(g) iff =m.g
| @ otherwise

(sus(g) iff =gt
RsuB(f) = { sus(g)usus(h) iff =(g,h)
1%} otherwise

\
Proof. One direction is immediate:sus(f) C sus(f) andrsus(f) C sus(f). For the
other it must be shown thaus(f) C {f} ULsuB(f) URsUB(T).

Firstly, if gfyw is a net, g=fyw: if fyw violates the compatibility condition (i.e.
has a switching that switches on more than one link), so desesde there is always a
switching for f that switches on v and w. Then consider thenstl,, of the net f. By
Lemma 2.4.3 f is basic, or left- or right-constructible. lsfbasic then\fy is empty
unlessv = w = g, which means that the only subnet of f is f itself.

2.5. An equational theory over nets 47

For left-constructible f, the only case that is not immeeliat = €, by the following
reasoning. Firstly, if &= 15;g andi <vthen {,,, is a subnet of g, and henceliBuB(f);
if on the other hand resides in the branch oppositei.e. (1—i) <, then {, is
empty, and not a subnet. Secondly, #f|g,h] then {, is a subnet of g or h unless
v = €. Thus for left-constructible f, unless= ¢ the statement is immediate. Dually,
for right-constructible f only the cas® = € is not immediate. For bi-constructible f
this leaves only the case= w = €, which is again immediate.

Of the two remaining cases, consider the one where f is tafsttuctible, but not
right-constructible, and = € butw # €; the other case is dual. Sinesus(f) is empty,
and £ is not inLsuB(f), it must be shown thatfy is not a net. Let &= (X,Y,%).
Because f is not right-constructible, either sotmege) € %, orY is a coproduct and
some(x,0y), (X, 1y) € g . If (x,€) € %, let¢ be a co-switching oiX such thaig v x.
Sinceeg is switched on by any switching ofi there can be no other linkg',y') in %
such thagow X'. Then in £, there are no links switched on g, T), for any switching
TonY, violating the connectedness condition.

In the remaining cas¥ is a coproduct andx,0y), (X,1y’) € ® . Becausew #
€ either 0O< w or 1 < w; without loss of generality let ¥ w, as the other case is
symmetric. Fix a co-switching of X and a switching of Y such that(x, Oy) is the
only link switched on, while simultaneoustyw w (sinceY is a coproduct, such a
switching exists). Then in f no link/,w') such thatv < w is switched on by andr.
Let T’ be the switching o¥,y that agrees witlt, in the sense that(u) = T(wu). In fe
no link is switched on by andt’, violating the connectedness requirement, so it is not
a net. L

The proposition below establishes that equivalence ovarpuoduct nets is sound
and complete for term equality & (c).

Proposition 2.5.6. For cut-free proof terms s and t of sum—product logic,
MNc)Es=t <= [J<1]t].

Proof. From left to right, the argument is by induction on the derwaof term equal-
ity. If XM (c) = s=tis an instance of one of the equations

Li © (t © 71-J) - (Li © t) O Tj (ﬁ()vtl/v /50781/) - /(to,So), (tl,sl)/

tioft,s/ = [iiot,ijos/ (tom,som) = (t,8) om

48 Chapter 2. Sum—product nets

then[s] = [t] (see Proposition 2.5.1). Secondlyfl(¢) = s=tis an instance of
one of the equations

' =lomp =M1 2?2 =907 ?= (27

thens < t follows from an application of one of the rewrite steps bel@w either
direction).

=T e =L e =H?[(2?) Pree =22 Pree

Thirdly, if ZMN(c) = s=t by a series of equations, th§sj < [t] follows by transitivity
of . Finally, letXM(c) = s=t be an instance of one of the following equations,
whileZMN(c) = =t andZN(c) =5 =t".

Som =t om s,8')=({t,t")
tjos =jot [s.s']=[t'.t"]

The case where= s o iy andt =t’ o 7j is treated explicitly; the others are similar. The
induction hypothesis gives] < [t']. This equivalence consists of a series of rewrite
steps=g|h}=vw. Butif g = fyy then also g= (15;f)ivw. Then by taking the rewrite
step=]g| h}=ivw for each step abovés o] < [t o).

From right to left, firstly, if[s] = [t] then by Proposition 2.5.2MN(¢) E=s=t.
Otherwise, let the equivalends] < [t] consist of a single rewrite step

[s] ='motHww [t

The other cases are similar, and the general case, for heuttigps, follows by tran-
sitivity. The present case is shown by induction on (the tlea@f) v andw. Since
g = [sJvw, by Lemma 2.5.5 one of the following five cases holds:

1. v=w=¢g, and[s] =! and[t] = (1p;!)

2. [s] = m;f, the vertexvisiu, and !=f
3. [s] = [fo,f1], the vertexvisiu, and != (fi)yw
4. [s] =f;1j, the vertexw is ju, and !=fy
5. [s] = (fo,f1), the vertexw s ju, and != (fi)yy

2.5. An equational theory over nets 49

The first case is the base case of the induction. In this sasast be! or possibly
?1, and likewiset is ! o g Or ?1 o 7p; it follows immediately tha&M(c) =s=t. In
the remaining cases neithfs] nor [t] is basic, and by Lemma 2.4.3 both must be
constructible. Lef]s] be of the form(fo,f1); the other three cases are similar. It is
easily inferred that the rewrite steg! | ;! =,w does not affect right-constructibility
(for this particular case, it is sufficient that it does notladrooted link(x, €)). Then
[t] is of the form(go,g1). Without loss of generality, let = 1u; the rewrite step under
consideration is then

<f07f1> :[! | T;!]:>v,1u <907gl> .
It follows that f, = go and
fi ol o

Let sp, s1 andt; be terms translating t@ff; and g respectively. By the induction hy-
pothesiZM(c¢) = s1 =t1. The remaining equations below follow by Proposition 2.5.2

from [s] = [(s0,s1)] and[t] = [(so,t1)]-

Nc)E s = (o8) = (ol) =t

Chapter 3

Saturated nets

3.1 Introduction

In the previous chapter sum—product nets were introducetif avas shown that equiv-
alence classes of sum—product nets under the equationaytlze) are in one—to—one
correspondence with morphisms in free sum—product catgyorhe current chapter
will present a simple rewrite relation callesturation in Section 3.2, that rewrites
sum—product nets to a canonical form caltsdurated netsThe description of satu-
rated nets, which are a canonical representation of free-groduct categories, is a
central contribution of this part of the dissertation.

The category of saturated nets is described in more det&kation 3.3, which
includes a treatment of identity and composition in the gaitg of saturated nets. A
second main contribution, a correctness criterion forrséda nets, is discussed in
Section 3.4. The final section of the chapter, Section 3dkdat the time complexity
of saturation as a decision procedure.

3.2 Deciding equivalence of nets

The equivalence relatiof=) over nets will be decided by rewriting equivalent nets
to a common canonical form. A natural first question is whethsuitable, confluent
rewrite relation can be obtained by orientating the eqeived rewrites, i.e. by restrict-
ing them to one direction. Two straightforward candidatesta rewrite towards the
leaves or towards the the roots of the trees. A first, coneretenple illustrating that,
in fact, equivalence rewrites need to be employed in botbctions, is given by the
example equivalence chain in Figure 3.1.

51

52 Chapter 3. Saturated nets

Figure 3.2: Rewriting towards the leaves is non-confluent

3.2. Deciding equivalence of nets 53

A more precise analysis will show that neither direction @ivriting is conflu-
ent. For rewriting towards the leaves, an example of norfhgence is illustrated in
Figure 3.2. For the other direction, rewriting towards tbets, the situation is more
delicate. To solve the non-confluence of the example in Ei@u8, definitions can be
adapted to allow the following ‘net’.

T this is not a legal link

To permit this simple construction merely requires an adidél type of link, which it
is possible to define coherently, while no modification to¢beectness criterion for
nets, the switching condition, is needed. However, the cumrfluence of the example
in Figure 3.4 has no solution along these lines.
0——
&

© v REG
/}@ \
® N , O

Figure 3.3: Rewriting towards the roots is non-confluent (1)

/©_®\
@ >< ©
B ®
/© ®\ g & /© ®\
@ ® @ "®
idA IdA
N %
?

Figure 3.4: Rewriting towards the roots is non-confluent (2)

Since confluent rewriting seems impossible without bregkine switching condi-
tion, the obvious next step is to break it. Then when two natsite into each other,
the easiest way to obtain confluence is to combine the link®tf, as in the example
of Figure 3.5. This gives a simple rewrite relation, that \wé calledsaturation

54 Chapter 3. Saturated nets

@) O
// \ s
& /® s O @)
O O
Y 14
O
o >@
O

Figure 3.5: Saturation

To formally define the saturation relation a different forfmewriting is required,
whereby links are added to a net, rather than replaced. Eketrtion of two parallel
pre-nets be the union of their collections of links,

XY, R)UXY,8) = (XY, 8 US) .
Define a second template for specifying rewrites as follows.

f %g\h}%\aw f{fuwUh}uw if gCfuw

Informally, if the pre-net f contains the subnetgf,,,, add the links of the pre-
net h, parallel to g. The difference with the first rewrite ptate= g| h}=w, used in
Section 2.5 to define equivalence over riets) (Definition 2.5.4), is that in(g | h}»\ﬂw
the subprenet,fy may contain other links than those in g, and the links of h doked
to those of h, instead of replacing them. Dropping the sujpis¢he rewrite relation
~(g|h)» includes all rewrite steps{g| h}»wv for somev andw.

Definition 3.2.1. The saturationrelation ~ on pre-nets is the union of the following
eight relations.

~TH sy~ (221~
T AL 21228 2020
The relation~ is the irreflexive restriction ofs.

The eightsaturation stepsn Definition 3.2.1 are illustrated in Figure 3.6. Note
that for each saturation stegdg| h)» there is a corresponding equivalengg|hk:
although Definition 2.5.4 lists only four equivalence ste@@s) is symmetric. The
main differences between saturation) and equivalencés) are: one, saturation is a
directed, single-step rewrite relation, whéete) is an equivalence relation; two;»)

3.2. Deciding equivalence of nets

=
>

©)

~(Tio; [1)

~! ot

(L1

SIS

(2,92

~21(2 7))

~(?10]?p

(2|10}

@i\@
@Q\
O

S

@
@

Figure 3.6: Saturation steps

55

56 Chapter 3. Saturated nets

is defined on prenets, whefe>) is defined only on nets; threé;) only adds links

to a prenet, wheré<) as a rewrite relation replaces links with others. In general
the relation~(g|h)+,, is reflexive for nets that already have h (and g) as a subnet
between vertices ahd w. In order to provide saturation with a standard notion of
termination, the irreflexive variants™ is defined. Both~ and ~ will be referred

to as saturation, with the distinction only made when neargss$-igure 3.7 shows an
example net being saturated; the first image, top left, shberriginal net, the last,
bottom left, its saturation. In between, for each saturesi@p the links that trigger it
and the links that it introduces are displayed in black, fopbasis, while other links
are shaded grey; an equals sign indicates when two nets aliffgin shading.

Ve @ - 7/ @ - Ve @
ST ST O
‘o— @ ‘@
<
Jo }@ o ? o
@ « @ = @
\@)\ ‘o— KO}
Ve @ }9 Ve @ Ve @
@ ~ @ ~ @ /
‘0— \©/ ‘o

Figure 3.7: Saturating a net

Proposition 3.2.2. The saturation relation{") is confluent and strongly normalising.

Proof. For strong normalisation it is sufficient to observe thathesiep in~ adds
one or two unit links to a pre-net, while the number of unikénn a pre-netX.,Y,)
is bounded by the size of pOs) x pogY).

3.2. Deciding equivalence of nets 57

For confluence, let£ (X,Y,®), letd = (X, Yw,s), and let h= (X, Yy, 7). Ob-
serve that the result of applying a saturation st¢g|g'), , to fis just

f{lawUdhw = XY, & Uv-§-w).

The following diagram shows local confluence for

(X,Y, %)
- N
(919)vw (h[h")xy
7 It
(X,Y,® U V-5-w) (XY, R UX-T-y)
N ~
(h[N)xy (919)vw
AV

(XY, R UV-5-WUX-T-Y)

Then also~" is locally confluent, and in the context of strong normal@athis im-
plies ~ is confluent.]

The normal form of a pre-net f with respect o is denotedsf, and, if f is a net,
is called asaturated net The idea is that saturation provides a decision procedyre b
comparing saturated nets, i.e<fg if and only if of = og. The left—to—right direc-
tion, f < g = of = og, states that comparing saturated nets is complete fodidgci
equivalence, i.e. it makes all the identifications that) makes. From right to left,
of = 0g = f < g states the soundness direction, that comparing saturatsanakes
only the identifications that=) makes.

Theorem 3.2.3(Completeness)For netsf andg, if f < g thenof = og.

Proof. Iff < f’ is witnessed by a single stepfg| h}=w f’ in the equivalence relation,
then there is a common pre-nétduch that f~f” and f ~f”, as illustrated below.

Hahvw = [9[h]uw = f{h}vw

. s
@lhvw (h[Gvw
N
f{guh}yw

Any equivalence = g can be decomposed as a series of single-step equivalences
f=f1 < fr< ... < fy=g. Confluence then completes the following triangle diagram
(note that the tip of the triangle need not be the normal foetn &s further saturation

58 Chapter 3. Saturated nets

steps may be possible).

fi=—=f) — - — fj

N N S VI
° ° °
\&.J

O

The soundness theorem is stated below; its elaborate pritidferthe subject of
the next chapter.

Theorem 3.2.4(Soundness)For 2N (¢)-netsf andg, if of = og thenf < g.

3.3 The category of saturated nets

An immediate consequence of the soundness and completbieessms of the previ-
ous section, Theorem 3.2.4 and Theorem 3.2.3, is that sadlmats uniquely describe
the morphisms in the categoRf1(c).

Theorem 3.3.1.For cut-free, identity-fre&N(C)-terms s and t,
2MN(c)Es=t < o[=o0]t].
Proof. Immediate by Proposition 2.5.6, Theorem 3.2.3, and The@2™.]

This section will give a more complete picture of the catggafr saturated nets.
Firstly, an alternative characterisation of saturated matl be provided. This will
be used to provide a direct account of identities and contiposior saturated nets,
describing the category of saturated nets independentlyeofranslation to and from
sum—product logic.

Firstly, the following proposition asserts that the satioraof a net contains pre-
cisely the combined links of all equivalent nets.

Proposition 3.3.2. The saturation of a ndtis J{g | f < g}.

3.3. The category of saturated nets 59

The saturation process gives an intuition why this mighdhaind it is immediate
from the completeness theorem that a saturated net coratiileast the links of all
equivalent nets. Nevertheless, proving the propositiomtsstraightforward, and will
be postponed until Section 4.8 in the next chapter, whendtenaulated lemmata will
have brought a proof within easy reach.

Composition and identity in the category of saturated netsraaturally, fully de-
termined by the translation from sum—product logic. Tratisf and then saturating
identity proofs in sum—product logic gives the saturatezhidieso(idy) for each ob-
jectX, where the net id is defined as follows.

- @ 00— O—®
ida = (AAida) idp £ (0,0,%) id, £ (1,1,%)
/O o~ A : .(.j..)f.‘.o\
@ ®
\O 'dY 'dY O/
idgsy = [(idx;1o), (idy;11)] idxy = ((Toidy), (T;idy))

From the above it is easily deduced that in an identity netdd X, X, ®), before sat-
uration, the linkingg_ is the identity relation on the leavesXy labelled appropriately.

Composition of nets

Before turning to composition of saturated nets, first cositpm for nets will be dis-
cussed. An indirect account of composition is via cut elition in the term calculus:
to compose two nets f and g,

find termss andt such thafs] = f and[t] = g;

e compose the two terms with a cut to fotm s;

apply cut elimination td o s, yielding a ternt;

and then translateto a netfr].

All operations above preserve the denotation of terms amsl aw categorical mor-
phisms. Thus, while composition need not be associativeguse cut elimination in
the term calculus is non-confluent, it is associative up tovedence.

60 Chapter 3. Saturated nets

For unit-free nets it was established by Hughes and Van @kbthat composition
is the relational composition of linkings (see [56] or [59]) the presence of the units,
this does not work immediately: the following compositioowld be empty.

©

As is illustrated by this simple example, the problem is eausy links connecting to
arbitrary nodes, whereas in the unit-free case, all linkseat to the leaves. Because
all nets have equivalent nets whose links connect only teelgareached simply by
applying rewrites towards the leaves exhaustively, thabl@m will not be hard to
solve. First, some terminology will be introduced.

Definition 3.3.3. A pair of prenetgX,Y, %) and(Y’,Z,s) is composablef Y =Y.
Therelational compositior{e) of composable prenets is defined as

XY, %) o (Y,Z,8) = (X, Z,{{ulekw|(ulvex, vkw es}),
where the composition of labels is given by
(x o 1) & « (I ox) 2 « (aeb) = (boa).
A pair of composable nets f and gnsatchingif f e g is a net.

Note that like the notion of composability, the property eirig matching is not
symmetric. Also, note that relational composition is defirma all prenets, while
matching describes the class of (pairs of) nets for whichti@tal composition is
well-defined. In the lemma below relational compositiorhiewn to satisfy a series of
equations, corresponding to elimination and permutatiepssof the cut-elimination
procedure for sum—product logic, given in Figure 2.2 in BecR.2.

Lemma 3.3.4.Relational composition of prenets satisfies the followiggegions: for

basic nets,
(A,B,a)e (B,C,b) = (A,C,boa) boa = boa
(0,Y,x) e (Y,Z,1) = (0,Z,x) to? = ?
(XY, D e (Y,1%) = (X,1,%) los = I,

for right-constructible prenets composed with left-constible prenets,

(f;1) @ [9o,01] = f'eg; fo,t1/o (¢jos) = tjos
(fo,f1) o (5;9)) = fied (t'omi)o (so,81) = t'os,

3.3. The category of saturated nets 61

and forf e g with a left-constructible prendtor right-constructible preneg,

[fo,f1]eg = [foeg,fie(] to/sn,51/ = fosptos/
(r;f)eg = T15;(f e Q) to(Som) = (toS)om
fe(ditj) = (fed); (tjot'yos = jo(t'oy)
fe(do,01) = (fego,feqr) to,t1)os = ({postios).

Proof. Immediate by unfolding the definitions. For example, for therth equation,
links (u,v) in f and (v,w) in go give rise to a link{u,w) in fe gg if and only if (u, v0)
in f;10 and(vO,w) in [go, g1] give rise to the same linku, w) in the composition of the

latter two prenets. O
f /O Jo
f.go
O ° @\ O = Q) o 0)
o !
/O fo /O foeg
@: O e O 9. e) — @: 0O
\O f1 \O fl‘g

Figure 3.8: Composition via elimination and permutation steps

Two of the equations in Lemma 3.3.4 are illustrated in Figdi& For matching
nets, these equations give a complete description of cotiggsas is asserted by the
lemma below. In addition, the lemma shows that for nets to &thing, it is sufficient
that for the central, common object, links in both nets ordpreect to leaves. From
this it is immediate that any composable nets f and g havevalguit nets’fand d that
are matching, by moving links towards the leaves. That tloegss of moving links
towards the leaves is non-deterministic is not a problentesihe result of composing
two nets need only be unique up to equivalence.

Lemma 3.3.5.For composable nets= (X,Y, %) andg= (Y,Z,5),

1. the equations of Lemma 3.3.4 characterise the relatiooalpositiorf e g if and
only if f andg are matching;

2. ifalllinks connected to the central object Y, in parteudll initial links in f and
all terminal links ing, connect only to leaves of Y, thbandg are matching.

62 Chapter 3. Saturated nets

Proof. For 1, from left to right is immediate: if the equations of Lera 3.3.4 char-
acterise fe g, they do so by constructing it from basic nets. For the odivexction, it
is easily verified that since f and g are constructible (Psdpm 2.4.4), the equations
of Lemma 3.3.4 are exhaustive for all ways of constructingd g if equations for the
following two cases are added:

(0,Y,*) e g fe(Y,1x%)

where g is only left-constructible and f is only right-constible. But these pairs are
not matching: since g is left-constructible, it containslinés (€, w), while (0,Y, x)
contains only the linke, €); then(0,Y, x) e g is empty, and not a net. The case for
f e (Y,1,x%) is similar. Furthermore, the last four equations in Lemn8a43preserve
matching, in the following sense. For example for the equmati

[fo,f1]leg = [foeQ,freqg],

since[fp,f1] and g are matching, both sides of the equation are nets; thefya g and
f1 e g are nets, which means thgtdnd g are matching, as argdnd g. For matching
nets f and g it then follows by induction on their construntibat the equations of
Lemma 3.3.4 are exhaustive, which shows the remainingtebreof 1 above.

For 2, it is easily observed that the two cases above,

(0,Y,*x) eg fe(Y,1 %)

where g is only left-constructible and f is only right-canstible, cannot transpire, as
follows. By assumption, since initial links i(0,Y, x) only connect to leave¥, is a
leaf; but then g must be basic or right-constructible, am@atttion. The other case is
symmetric. Then the equations of Lemma 3.3.4 charactdreseamposition of nets f
and g with links only connecting to leaves in the central obye and 2 follows from
1. O

Next, it will be shown that, for matching nets, relationahgmosition is the right
notion of composition, in the sense that it commutes, up tovadence, with compo-
sition via the term calculus, as outlined above.

Proposition 3.3.6. For matching netgs] and [t] translated from terms, the relational
composition[s] e [t] is the translation[r] of a normal term r equal to ¢ s, the com-
position of s and t by a cut.

3.3. The category of saturated nets 63

Proof. Let [s] = fand[t] = g. The statement is then shown by induction on the con-
struction of f and g, following the equations of Lemma 3.3vjch by Lemma 3.3.5
are exhaustive. Of the equations for basic nets, the sesaneted, repeated below;
the other two are similar.

(0,Y,%) o (Y,Z,]) = (0,Z,%) to? = ?

In this casesis a term equal t@ (since[s] = (0,Y,*)), while t is a term such thd]
is a basic net. Lat= ?; the statement is then immediate from the following equregjo
plus the term equation above right.

[?] =f=(0,Y,x*) [th=9=(Y,Z]I) feg=1(0,Z,%)=[7]

Next, of the six equations for constructible nets, the firgt be treated, repeated
below; the others are similar.

(f;15) @ [90.01] = f e g fto,ta/o (tjoS) = tjos

In this case, sincef;1, there is a terns’ such that f= [.g o S]. By Proposition 2.5.6
(soundness and completenessef) for term equality under translation), from this and
[s] = f it follows that ZM(c) = s= g o §. Similarly, there are termy andt; such
that g= [o, t1/] andZM(c) =t = fto,t1/. Because f and g are matchin@,§=f' e g;

is a net, which means it is immediate thaahd g are matching. Then the induction
hypothesis can be applied, giving the following equatidoissome normal term.

[S)oltl = [S]et] =] =N()kr = oS

By the equatiorEl(¢) = fto,t1/o (¢j o S') =tj o S’ (one of the equations for cut elimi-
nation in Figure 2.2), it follows th&lM(c) = r =t o s, concluding the statement]

The following proposition is then immediate, from the abawel the earlier result
that translation between terms and nets commutes with tqualiéy and net equiva-
lence (Proposition 2.5.6).

Proposition 3.3.7. For netsf < f' andg < ¢, if f andg are matching, and’ and ¢’
are matching, thehe g < f' o .

Proof. Immediate from Proposition 3.3.6 and Proposition 2.5.6. O

64 Chapter 3. Saturated nets

Composition of saturated nets

With composition for nets defined and shown to be correct,pmsition for saturated
nets will be considered next. The simple example belowtiihiss that relational com-
position is not sufficient as a notion of composition for sated nets: the first two
nets, which are saturated, compose to form the third; horveus net is not saturated;
its saturation is pictured fourth.

© 0—
& \@ o @/}® = }9 ~"
© ©

In the following, it will be shown that composition for satled nets is relational com-

position followed by saturation.

Definition 3.3.8. The compositiorog o of of composable saturated netband og is
defined as relational composition followed by saturati@foows.

ogoof = o(ofeog)

The main idea is as follows. Since saturation must commutie @omposition
for nets and for saturated nets, what the compositioafand og should be is the

following:

* the saturatiorw(h e k) for any pair of matching nets$> f and k< g (note that
by Proposition 3.3.7 above, for any choice of h and k the casitiom he k is
equivalent).

By Proposition 3.3.2 a saturated net is the union of an etprica class of nets. This
means that the relational composition of two saturatedfrestsl g is the union of the

following:
 the compositions l k of all pairs ofmatchingnets he f and k< g;
 the compositions l k of all pairs ofnon-matchingiets he f and k< g;

» and nothing else, since every linkaf occurs in some k= f, and every link in
0g occurs in some k> g.

It is clear that the compositioag o of contains sufficient links, since the relational
compositionof e ag contains at least onedhk for some matching pair h and k. To
show that it does not contain too many links, it must be shdve the presence of
prenets h» k for non-matching h and k is harmless. This is establishéalbe

3.3. The category of saturated nets 65

Lemma 3.3.9.For composable nefsandg there are equivalent nets< f andk < g
that are matching, such that
feg C hek.

Proof. Let Y be the target of f and source of g. The matching nets h and kbwill
generated by moving links towards the leaves in the cenbijgcbY. A measure of
how close f and g are towards that goal is to consider, foirédkl(u, v) in f and (v, w)
in g, the depth of the subtrees\atThe multiset of these depths, for all links in fand g
combined, provides a convenient measure for inductiom@tifl be noted that simpler
measures are also possible).

The base case is where in f and g all links connect to leav¥s(ihe measure is
a multiset of zeroes). Otherwise, rewrite steps pushingkadown towards the leaves
may be applied to f or g, or both simultaneously. izée a vertex in the target of f that
is not an atom or unit; w.l.0.g. letbe a coproduct. To form netsdnd d, for any link
(u,v) in fand(v,w) in g apply the following rewrite steps, replacing the forrtiek by
(u,v0) and the latter byvO,w) and(v1,w).

o
;»©/>9 V=V \®W

\O/

‘o

If vis chosen such that there is at least one such(link) or (v,w), then f and d are
smaller, in the proposed measure, than f and g. The indubtipothesis gives nets h
and k satisfying the following.

gef of kedeg feg C hek.

To show that alsoég C f'ed/, let (u,w) be a link in fe g is due to links(u,x) and
(x,w). If x#£ v then, clearly{u,x) and(x,w) are in f and d respectively, andu,w) is
in ' e g’. Otherwise, ifx = v, then the link(u,x0) is in f', and(x0,w) is in g. Then,
too, (u,w) isinf eg'’. O

The following proposition then shows that this notion of gmsition is indeed the
right one.

Proposition 3.3.10.Composition of saturated nets satisfies
oft] c o] = ofr]

for some normal term r equal toots

66 Chapter 3. Saturated nets

Proof. Letf < [s] and g [t] be matching nets. By Proposition 3.3.6 the equivalence
below left holds, from which the equation below right follswy the completeness of
saturation (Theorem 3.2.3).

feg & [r] o(feg) = ofr]

In addition, by the same theoreof¥, = g[s] andog = oft]. What remains to be shown
is the following.
o(ofeag) = o(feQ)

One direction(D), follows becausef contains f andog contains g, while both rela-
tional composition and saturation are monotone with resfoesubset inclusion. For
the other direction, it suffices to show the following.

ofeag C o(feg)

It will be shown that this inclusion follows from the fact theaturated nets are unions
over equivalence classes (Proposition 3.3.2).(uat) be a link inof e 0g, originating
in links (u,v) in of and (v,w) in og. Then by Proposition 3.3.2 there are nétsff
and d < g, respectively containin, v) and(v,w). For these nets, Lemma 3.3.9 gives
equivalent, composable nets h and k such they fC hek. Since[s] < h and[t] < K,
Proposition 3.3.6 gives a normal temequal tot o ssuch that kk < [r], and by
completeness (Theorem 3.2@)he k) = a[r]. Combining the above, the following
equation then shows that, w) is in o(fe g).

(uw) € fegd C hek C a(hek) = ofrf] = o(feq)

O

Corollary 3.3.11 (CharacterisingzlN(c¢)). The categoryzI(c¢) is characterised by
the following.

» Objects are given by the grammar

X = Aec |0 1] X+X | XxX.

* Morphisms are given by saturated nets.
* The identity morphism for an object X is the saturatedat(édy)

» The composition of two composable saturated oétsndog is og o of.

3.4. Correctness for saturated nets 67

3.4 Correctness for saturated nets

A central part of any notion of proof net isa@rrectness criteriona condition that
identifies the proof nets among the proof structures (see3dstion 1.3). Typically,
such a condition is expected to be combinatorial, mainlysuee that it is more infor-
mative, and possibly easier to verify, than a criterion paed by a translation proce-
dure from proofs (i.e. the criterion that a structure is aifed only if it is the transla-
tion of some proof). In the absence of the units, where suodtmt nets are canonical,
the correctness criterion is the switching condition, aidetermines whether a prenet
is a net. For additive linear logic with units, the canonigalof objects are saturated
nets. Here, a correctness criterion for saturated netdb@itliscussed, that separates
the saturated nets from the arbitrary prenets.

Two conditions a saturated net must satisfy are immediai@hgpicuous: one, it
must be connected, since it is obtained from a net by sabm;adind two, it must be
saturated. These two conditions are not sufficient: theysatisfied by all prenets
that contain all possible links and are connected, whicmatealways saturated nets.
For example, of the four (connected and saturated) pree&ts/oonly the second and
fourth are saturated nets.

G

The problem is to distinguish a saturated net from a prenetdd by the union of
several saturated nets. What separates these is that iaratedtnet, all links can be
obtained by saturation from a single net. TieEghbouringrelation, defined below,
is used to verify whether one link may arise from another lyrsaion; informally, it
relates links that occur together in the diagrams for theration steps.

Definition 3.4.1. Theneighbouringelation—~ over the linksg in a prenetX,Y, R)
is defined as the smallest symmetric relation satisfying

(Vi,w) —~ (v,w) (V,Wj) —~ (v,w) .

Since in a net a switching switches on exactly one link, a &tt'empt at a refined
criterion for saturated nets would be to formalise the idhea if two links are switched
on by the same switching, one must be introduced by satuaraliois can be stated as
follows: if two links are incompatible (Definition 2.3.3)v,w) # (x,y), then they must

68 Chapter 3. Saturated nets

be related in the reflexive—transitive closure of the neggitimg relation,(v,w) —~*
(x,y). However, this criterion does not suffice to characterigeraged nets: the pre-
net below left is not a saturated net, although it is conme&aturated, and all its links
are related in~*.

S — /®_
LX > EX P o>

The first of the two switchings of the prenet above left, pietuto the right of it,
suggests a refinement to the criterion. Although all links(@&ransitive) neighbours in
the whole prenet, this no longer holds if the neighbouringtien is taken just over the
links that are switched on. Thus, let. denote the neighbouring relatien restricted
to links switched on by, and let—¢ be its reflexive—transitive closure.

Definition 3.4.2. A prenet isclose-knitif for any switchingg
CO (VW) A Qu(XY) = (W) ~c(Xy).
The correctness criterion will then be as follows.

Theorem 3.4.3(Correctness of saturated netd) prenet is a saturated net if it is con-
nected, saturated, and close-knit.

One direction of the proof is easily established.
Proposition 3.4.4. A saturated netf is close-knit.

Proof. Trivially, f is close-knit, since a switchingfor f switches on exactly one link.
This is preserved in saturation, because any link added atusagion step is a neigh-
bour of an existing link. For example, in a saturation step(y [!,!]}»\LW g, repro-
duced below, if¢w (vO,w) andqo (X,y), alsoquw (v,w), and if g is close-knit then
(MO, W) —~¢ (VW) —~¢ (XY).

O O
V®: ®W x(| ‘ [!,!])\}vw V®: \®W
ke | o

O

The other direction will be stated here, but not proved; thewoprelies on the
lemmata of the soundness proof for saturation, and will mepteted in Section 4.9.

3.5. Complexity 69

Proposition 3.4.5.If a pre-neth is connected, saturated, and close-knit, it is a satu-
rated netof.

For a connected, saturated, close-knit prenet h the protifeoproposition will give
an actual net f such thatf = h. This means it provides a ‘de-saturation’ algorithm
that, together with the interpretation of a net as a termstitutes a sequentialisation
procedure—a method of translating a saturated net intona tieat is inverse (up to
term equality) too[—], translation followed by saturation. This is discussed oren
detail in Section 4.9.

3.5 Complexity

In [23] Robin Cockett and Luigi Santocanale present andatd decision procedure for
the word problem of sum—product logic—the equational thebdFigure 2.4. The time
complexity of this algorithm, in deciding equality of twoteinee termss;t : X — Y, is
given in big-O notation as

0 ((hgt(X) +hgt(Y)) x [X| x [Y])

where|X| denotes the size of the syntax tree of an objedte. the number of vertices,
andhgt(X) denotes its height.

Here it will be argued that, with an appropriate implementatthe decision pro-
cedure provided by saturation slightly improves on thisjmgthe following bound.

o (IX] > [Y])

Starting with cut-free terms andt of type X — Y, the decision procedure would
compute whetheo[s] = oft] holds. This involves three steps: translating both terms
to nets, saturating the nets, and comparing for equality.

An algorithm implementing these steps will be outlined sty for a net(X,Y, %),
the linking®_ is represented by a two-dimensional array of §ex |Y|, whose entries
are the labels of the links (i.e. strings representingiaps orx) or a null-value to
describe the absence of links. The verticeX iandY are the indices on the horizontal
and vertical axes respectively, while the tree-structdrthe objects is implemented
by functions indicating parent vertices, children, and tyyge of a vertex (product,
coproduct, initial, terminal, or an atol). An impression of this representation is
given in Figure 3.9. The illustration shows two nets, witkithsaturation added in

70 Chapter 3. Saturated nets

grey, along with two corresponding terms, and an arrayesgntation of the saturated
nets, on the right; the arrows between the object arraygsept thearentfunction.

The translatiorf—], from a cut-free ternt into a net in this representation, can
be implemented as follows. An easy inductiont@®hows thatt|, the size ot in the
number of term constructors, is equal to or smaller tidrx |Y| (this is not the case for
proof termd with cuts). The objectX andY oft, if not explicitly present, are extracted
by a simple walk ovet. The vertices of a syntax tree fi can be indexed, and their
parent-function and children-function extracted, in éinéme in|X|, each by a simple
walk overX. To translate into a net can be done by a function walking over the term
t, while simultaneously keeping track of the indicesXmand|Y| (via the children and
parent functions). The output of this function would be talaje the corresponding
entry in the linking array whenever@map or unit map is encountered, and to add the
positions(x, y) of unit links (x,y) to a stacks. Each step in this algorithm consists
of nothing more than a few array lookups and updates, plusglesstack push, and
would thus be constant time. The time complexity of the atgor as a whole is then
linear in the size of the termt|, and hence smaller thaX| x |Y|.

Saturation steps can be implemented as follows. Poppingeam(ix, y) from
the stacks gives the position in the matrix of a recently added link. Plaegent and
children functions give the indices of links that may neetiéadded in the saturation
step; since both have maximally two children, one paremt,ae sibling (which must
be inspected for rewrite steps of the kirgd(?,?) | ?}» and ~[!,!]|!)+), at most eight
positions are accessed. The positions of newly added lirkshan pushed onto the
stack. Consisting of a constant number of array lookups godtes, and stack pops
and pushes, a saturation step is thus performed in congtaat or the complete
saturation procedure, each link in the saturation appeatsestack only once, when
it is added to the matrix. The complexity of saturation istlheunded, by a constant
factor, by the number of entries in the linking arrgy| x |Y]|.

Finally, comparing the two saturated netfs] anda[t] for equality is done by a
simple equality test of the two linking arrays. The completecess of translation,
saturation, and equality testing, for cut-free terms, isstherformed in time bounded
by o (|X] x |Y]). (The complexity in the presence of cuts has not been ealyat

3.5. Complexity

* * A A

®\ * * X \ X

©/ x | ok | ok | ok | % 1 >< 1

* * + +

x| % | x| k| % 1 / 1
110?10m Al+]10|x]0
(A+0)x0— (Ax 1) +1) \k/
Al+|0|x|0

idA * A\A

* X X

* | ok | ok | ok | ok 1 >< 1

* + +

* 1 / 1

oo (fida,?a/, ' t0/) o mo Al+]0]x]0

(A+0)x0— (Ax1)+1)

Figure 3.9: Two saturated nets in different representations

Chapter 4

The soundness proof

4.1 Introduction

This chapter will concern, mainly, the proof of Theorem 3,2hat saturation) is
sound as a decision procedure for sum—product categotespibof itself, presented
in Section 4.7, will proceed by induction on the source angetaobject of a pair
of parallel nets, and will rely on a body of lemmata, cargfudbnstructed over the
course of the chapter. At the end, the two further outstanplinofs will be completed:
firstly, in Sections 4.8, the proof of Proposition 3.3.2 ttbaturated nets are unions of
equivalence classes of nets; and secondly, in Sectiorh& proof of Proposition 3.4.5,
which describes the correctness criterion for saturatésl e addition to the proofs,
this chapter presents one new addition to the main body oftsesn saturated nets: a
sequentialisation algorithm, also in Section 4.9.

The soundness proof will be outlined below. To be provenas tWwo nets f and g
with the same saturationf = og = (X, Y, ®) are equivalent, that is€¢> g. The proof
is by induction onX andY, with the above statement as the induction hypothesis. As
a first overview, there will be three cases:

» one ofX andY is an atom or unit,
e X is a coproduct oY is a product, and
» X is aproduct an® a coproduct.

The first two cases are relatively straightforward, and bdltreated in Section 4.2.
The main body of the proof is concerned with the third casaclis that of nets of

73

74 Chapter 4. The soundness proof

the form f=f';1; and g= 1%;d as illustrated below.

For this third case, there are three primary obstacles tocouge, which will be out-
lined below.

Inductive saturation

To apply the induction hypothesis it must be possible totegla.g., a saturated net
o(f;1p), to the saturation of its component net, This is addressed by providing an
alternative characterisation of a saturatedaiglby induction on the construction of the
net f. In Section 4.2, Lemma 4.2.3 presents the case for bass¢ and Lemma 4.2.5
that for nets of the fornif,g) and[f,g]. The case for nets;;f and f;1j, Lemma 4.4.1,
will be the most involved. Section 4.3 will provide suppogimaterial for this lemma,
which will itself be presented and discussed in Section 4.4.

Nets over different projections and injections

The second obstacle is that nets constructed over diffprefgctions and injections,
e.g. f;10 andp;d, as illustrated above, but alsqif and H;11, may have the same
saturation. Naturally, in such a case the induction hymitheannot be applied twf’
andag’. This problem will be addressed in Section 4.5. It is shovat thf’;15 and
;g have the same saturation, then this saturation must caattiiast one initial link
(v,€) (and one terminal linke,w)). Then Lemma 4.5.1 will show that sincgf’;1o)
contains the linkv, &), there must be a net £quivalent to f 1o, also containingy, €).
From the presence of this link it can then be deduced thist Ieft-constructible, and
over which projection it is constructed. Since the sataratifp;d’ is the same as that
of f';10, the same argument shows thgtg’ is equivalent to a net’g containing the
same link(v,€), and constructed over the same projection”asThen the induction
hypothesis can be applied to the deconstruction$ ahtl d'.

Major reconstruction

The third obstacle is that nets constructed over the sameqgpien or injection, e.g.
f;10 and glg, may have the same saturation, while their components, add not.
An illustration of this is provided in Figure 4.5 on page 94. Section 4.6 it will be

4.2. The first two cases 75

shown how to transform the net§;into an equivalent net by such that h does have
the same saturation as g, so that the induction hypothesibeapplied to g and h.
The formal details are recorded in Lemma 4.6.3.

Finale

The soundness proof is concluded in Section 4.7. Then inddet8 and 4.9 the two
remaining proofs from Chapter 3 are completed.

4.2 The first two cases

The first case of the soundness proof concerns parallel eisensource or target is
an atom or unit. For nets with soureand targety, this gives six possibilities, that
are pairwise dual. Four are immediateXifis an atom o, or dually if Y is an atom
or O, illustrated below, it is easily observed that no rewritsaturation steps apply.

For such nets f and g, it follows thataff = og then f= g.

For the remaining two cases, nets with source olfjestll be calledinitial, and
with targetl, terminal The links in an initial net0,Y, %) can move up and down the
syntax tree off essentially without hindrance. From this, the lemma beloNows—
and the one after as well. In the next lemma, recall that twe areparallel if they
have the same source objects and the same target objects.

Lemma 4.2.1.All parallel initial nets are equivalent, as are all paralleerminal nets.

Proof. It will be shown, by induction on the construction of an iaithet f= (0,Y, %),
that f is equivalent toy?, from which the statement follows by transitivity.

If f is basic, f=2/. With 0 as source object f cannot be left-constructible. If f is
right-constructible, for £ (fo,f1) the induction hypothesis givess2. fori € {0, 1}.
Then(fo,f1) < (?,?), and by a single rewrite step, belo{®, ?) < ?.

O\ O\
8@/ :@8 (2?7 “O :@8
et o

Next, if f = f';1; the induction hypothesis gives?,. Then by a single rewrite step,
below, f;1; & ?)1j & 2.

o

& =?0|?Pee HO) &

76 Chapter 4. The soundness proof

The case for terminal nets is dual. O

The above lemma confirms, syntactically, tBandl are initial and terminal ob-
jects, respectively, in the category of nets modulo eqgaeiveg, and that consequently
any decision procedure for initial or terminal nets is sauhs impossible to identify
too many of them. Thdl andl are also initial and terminal in the category of saturated
nets is a matter of completeness. It follows from TheorenB3I2at all parallel initial
or terminal nets have the same saturation. It will be usefdlescribe these saturated
nets explicitly.

Definition 4.2.2. A prenet isfull if it contains all possible unit links (but no atomic
links), i.e. if it is of the form

(XY, {{v,x,w) | Xy=00rYy=1}).
Clearly, for a given source and target object there is pedcisne such prenet.
Lemma 4.2.3. The saturation of initial and terminal nets is full.

Proof. First, it will be shown that the saturation of a ngt2 (0,Y,*) is full. Let

o = (0,Y,R). It follows from the saturation steps that if a lif +, w) € ® connects
to a vertexw with childrenwO,wl € pogY), then also(g, x,w0), (g, *,wl) € %, as
follows. If Y,y is a product,

QWO owo
0——0" 722, E@<—i®w
Owt Owt
and ifY,, is a coproduct,
w0 w0
E© w —\(’?‘ ?;IO)“>€7W 8©/ w
wl wl
w0
«(?|?;11)~>€W 8©/ w
b \
wl

Then since ¥ contains the linke, x, €), its saturation is full:
R = {(&* W) [we pogY)} .

By Lemma 4.2.1 any initial net f with targat is equivalent to . Then by com-
pleteness (Theorem 3.2.3) f angd Rave the same saturation, anddadas full. The
case for terminal nets is dual. O

4.2. The first two cases 77

The second case of the soundness proof concerns nets whiose soa coproduct
or whose target is a product; call thesgproduct net&ndproduct netsrespectively,
illustrated below.

Ve O O\
@: 0O Q) e :®
AN O O/

Product nets are not just the nets of the fofhig), since they need not be right-
constructible. However, it is easily shown that they areivadent to such nets, and
that dually coproduct nets are equivalent to nets of the forgp.

Lemma 4.2.4. A product netg is equivalent to a netgo,g1). A coproduct nef is
equivalent to a nefffp, f1].

Proof. Let g= (X,Y, %) be a product net, i.& is a product. By the definition of the
constructors, g is of the forgo, g1) unless it contains initial linkév, x, €) for somey,
connecting to the root of. By applying the following rewrite step for any sugh

O\ O\
‘o ®F H21(2) e V©/ ®F
O/ \O/

a net of the form(go, g1) is obtained from g. The case for coproduct nets is dudll

As equivalent nets have the same saturation, the above lengaas that a satu-
rated product neig can always be described as the saturation of agaet);). Relat-
ing the latter saturation to those of its componeatg, andog:, will allow induction
on saturated nets. To this end, consider a saturation patlgda;) that first applies
all possible saturation steps tg @nd g individually, as follows.

(0,01) ~ ... ~ (0Qo,001) ~ ... ~ G{(Qo,01)

The only saturation steps that can be appliedagy, 09;), in the irreflexive variant
~, are those of the form below.

O\ O\
V©/ ©F (2,7, V@/—:@)8
\O/ ’ \O/

That the second part of the saturation path above contalpsoch steps follows from
the observation that the newly added lihke) does not trigger any new saturation
steps: the only step that can be applied to it, is the revéepasthe one that introduced
it. These observations are summarised by the lemma below.

78 Chapter 4. The soundness proof

Lemma 4.2.5.1f [ofg,0f1] = (X,Y, %) thena[fo,f1] = (X,Y,® US) where
S = {{ExW) [Yy=1, (0,x,Ww) € R, (Lx,W)ER}.
Dually, if (0go,001) = (X,Y, %) theno(go,91) = (X,Y, % US) where
S = {(v,x€) | Xy=0, (\,x,0) € R, (V,x,1) € R } .

Proof. It can be observed (following the above reasoning) thatdhgration path from
(09o,001) to 0(do,01) consists of the steps((?,?) | ?}, , for thosev such that both
0gp andag; have a link(v,€). The case foffo,f1] is dual.]

Crucially, in the above lemma the linksjnare all of the form(v, &), and thus easily
separated from those originally belongingagy, which are all of the formv, Ow), or
those belonging tag;, which are of the formyv, 1w).

099,,,..»40 ogQ_“‘,A...O

Q:iii::“ :@ ~* @ ®

/

0@1“""'0 cg'i""--a.O
It follows that by simply restrictings(go,g1) to the subprenet betweenand 0, or
betweere andl, the saturations ofggand g can be recovered.

Lemma 4.2.6. Saturation of product and coproduct nets satisfies:
(offo,fa])ie = ofi (0(do,G1))ei = OGi -
Proof. By Lemma 4.2.5,
(0(90,91))ei = (0Q0,001)e,i
and by the definition of the constructors,
(0Q0,001)ei = O -
The case for coproduct nets is dual.]

These two lemmata suffice to complete the case for productaprbduct nets
in the soundness proof. For parallel product nets f and g thithsame saturation,
Lemma 4.2.4 gives equivalent néts, f1) and(go, 1) respectively. By Lemma 4.2.6

ofi = (o(fo,f1))ei = (0(00.01))ei = O

fori € {0,1}. The induction hypothesis of the soundness proof gives @i, and the
equivalences below follow.

f < (fo,f1) < (00,01) < 0

4.3. Pointed and copointed nets 79

4.3 Pointed and copointed nets

In a category, gointis a map out of a terminal object. Points are also known as
constantsin particular in the category of sets. An objécthat has a poinp:1— P

will be calledpointed Note that this is non-standard: more commonly, a pointed
object is taken to be a pa{P, p). However, for the present purpose it will mostly
be relevant whether an object has a point, but not which oaetlyx moreover, for a
pointed object a point is easily reconstructed. In free qunmeluct categories, points
and pointed objects are given by the following grammargeesvely.

p:="!(p,p)ltjop P:=1|PxP|P+X|X+P

Both are illustrated by the construction of nets with sowisgctl, below.

o—0 o ® o @
Py B

In the dual notions, @opointis a map into0, and an object that has a copoint is
copointed These are given by the following grammars.

q:= ?|[a,9/|go Q:=0[Q+Q|QxX[XxQ

Note that a pointed object may have more than one point, anidbsly for copointed
objects, but that an object is never both pointed and copdim\nother useful obser-
vation is that pointed objects are precisely those for wigedry switching switches
on at least one terminal node. Dually, copointed objectserge whose co-switchings
switch on at least one initial node. Also, If1(2), the free sum—product completion
of the empty category, where atoms are absent, these grananessimilar to the eval-
uation of truth or falsity in boolean expressions; in thitegary every object is either
pointed or copointed.

A point p into a pointed objecP composes with terminal maps to fornpainted
map p o !'x from any objectX into P (thus, in the present non-standard definition,
pointed objects are precisely the weakly terminal ones)nEts, the (relational) com-
position of a terminal map with a point gives a net with onlgntanal links connecting
to the left root, as in the example below. (Note that sincé tt@mmon object is a
single leaf, such nets are always matching—see also S&&8on

80 Chapter 4. The soundness proof

Call initial links of the form(v, %, €) and terminal links of the fornfe, x, w) rooted

Definition 4.3.1. A prenet ispointedif it contains only rooted terminal links, and
copointedf it contains only rooted initial links.

By this definition, pointed nets with a given source obpgctand copointed nets
with targetY, are described by the following grammars over constructors

p = (X,L%)[pitj| (p,p) d = (0,Y,x)|[9,q] | T5;q

The definition restricts pointed and copointed nets to a eniant syntactic form, but
other, equivalent nets may also correspond to pointed nsrsh In other words,
every pointed map is described by some pointed net, but resy enet that describes
this map is pointed.

Since pointed nets consist of terminal links with a commourse, these can be
moved around in tandem, for example as follows.

\\ // =! T[Oa' * \\ //
\ /@ [‘]:> /®

This way, for example, a pointed net p with a coproduct soig@sjuivalent to a net
[po, p1]- More generally, this can be applied to a partial pointedmas well, if it

is a sub-prenet of a net g, i.e.pg. For example, if the source of g is a coproduct,
it is equivalent to a net’gwith a sub-prenetpo, p1] (this was used in the proof of
Lemma 4.2.4). Here, if p is the preneX,P, 8) and X = Xo + X1, then[po,p1] is
the pre-ne(X,P,0-® U 1-%). The pre-netspand p are(Xo,P, 8) and(X1,P, %)

/Q_.....‘_,I?_o
NPT @ 0
1|05 0

=!|my;!]:>* p'lﬂ_,,‘.n--O

Figure 4.1: Synchronised equivalence steps

4.3. Pointed and copointed nets 81

respectively; as an artefact of the way vertices are adeldetise nets p,qpand p share
the same linkingg . Applying an equivalence step to all links in a partial pethor
copointed net will be called synchronised equivalence stéfustrated in Figure 4.1,
informally, this will also be referred to amovingpointed and copointed nets up and
down a syntax tree.

Figure 4.2: A synchronised saturation step

A similar notion will be that ofsynchronised saturation stepthe application of
a saturation step to all links in a pointed or copointed stdngt, as illustrated in
Figure 4.2. In the illustration, several saturation stepthe form «(?;lo|?)~>v’€ are
grouped together. It is then easily seen that if a saturagedfnhas a sub-pre-net
(g;10) C of with q copointed, it must also have the copointed sub-megnC of—and
vice versa. For easy reference, there is the following lemma

Lemma 4.3.2. The saturation of a copointed prergt (Q,Y, %) contains a sub-pre-
net(Q.Y, % -w) C aq for any vertex win'Y . Dually, for a pointed pre-net (X,P, %),
for any v in X there is a sub-prenéX,P,v- %) C op.

Proof. The copointed pre-net q is a collection of initial linkse). For each such link,
by Lemma 4.2.3 the saturation of the initial subnet betweande in oq is full, and
contains an initial link(v,w) for anyw in Y. It follows that® -w is a subset of the
linking of aq. The case for p follows by duality. O

A categorical morphism can be both pointed and copointedh soaps will be
called bipointedhere. Bipointed maps feature heavily in the decision proceadf
Cockett and Santocanale [23]—where they are callsdonnects-because of the fol-
lowing property: there is precisely one bipointed map frooopointed objec@ to a
pointed objecP, and none between other objects. The uniqueness properagily
observed from the fact that in the diagram below the copgiahd the pointp are
arbitrary.

82 Chapter 4. The soundness proof

The corresponding notion for nets will again be restricted syntactically useful

form.

Definition 4.3.3. A net (Q, P, %) is bipointedif it is pointed or copointed, and more-
over its source objed is copointed and its target objdets pointed.

The uniqueness property of categorical bipointed morpsisairies over to nets
and saturated nets in the following way: any parallel biednnets are equivalent,
and have the same saturation, which is full. Figure 4.3 showstail an equivalence
between a copointed net and a parallel pointed one. In théviiossteps the copointed
net, consisting of the linkg00,&) and (1,¢), is moved down from the right root to
the two terminal objects of the target tree, vertices 00 anbh The resulting net, the
subnet highlighted in picture four, between the left rood déime bottom right node,
is a terminal net. This subnet rewrites into a basic net, isting of a single rooted
terminal link, following Lemma 4.2.1 (picture five). The ethsubnet, highlighted in
the sixth diagram, is also a terminal net, and likewise r@srto a single link in the
next diagram. The result, in the final picture, is a pointetd A&e following lemma
generalises the above reasoning to the case where one adtthis partial.

Lemma 4.3.4. For parallel prenetsp andq, if p is a pointed partial net andj a co-
pointed net, there is a nétsuch thatp C f andq < f. Dually, if pis a pointed net and
g a copointed partial net then there is a rggsuch thatp < gandq C g.

Proof. The case for f will be shown; that for g is dual. The argumeoreis as above.
Moving the copointed subnet g down proceeds inductivelepliby the construction
of the partial net p, as described by Proposition 2.4.4. mds pointed, it is either
empty, basic, or right-constructible.

* If pis empty then let f be q; trivially, g f and g< f.

* Ifpisbasicitisthe netX,1,x). Letf=(X,1,x) as well; that pC f isimmediate,
and since g is a terminal net, it is equivalent to f by Lemmal4.2

* If p is a partial net{po,p1), rewrite the copointed net g to the equivalent net
(0o, q1) by moving it down from the right root. Fare {0,1} the induction
hypothesis, applied to @nd q, gives a net;fwith p; C fj and q < f;. Let f be
[fo,f1]. The equations below follow.

p = (po,p1) C (fo,f1) = f q < (qo, 1) < (fo,f1) = f

4.3. Pointed and copointed nets

© Q
/ \ _
@ °
\© ®/

Figure 4.3: Transforming a copointed net into a pointed net

83

84 Chapter 4. The soundness proof

* If p=p';1j then form §;1j < q by moving the links in g down from the root,
to the vertexj. The induction hypothesis for pnd d gives f, with p’ C f’ and
q < f'. Letfbe f;1;, and the equations below follow.

p=pi Cfy=f qe d;1 < 1 =f

The equivalence of parallel bipointed nets is a direct cqusace.
Lemma 4.3.5. Any two parallel bipointed nets are equivalent.

Proof. Let f and g be parallel bipointed nets. If one is pointed amddtner copointed,
Lemma 4.3.4 proves their equivalence immediately. If bo#h @ointed, there is a
parallel copointed net h because the common source objdcarad g is copointed.
The previous argument then gives:sfh < g. The case where both nets are copointed
is dual. O

Next, it will be shown that the saturation of a bipointed reefull. An example,
of saturating a copointed net with a pointed target, istthted in Figure 4.4. (In the

Figure 4.4: Saturating a bipointed net

4.4. Saturation via construction 85

illustration, the first figure on each line displays the sameenet as the last figure of
the previous line, but with different links highlighted.)ir$tly, the copointed net is
moved down to all vertices in the target object. This form&mminal net between
the left root and any vertex with a terminal object, as higiied in the third diagram
for the bottom right vertex; filling it in gives the fourth pige. The fifth and sixth
diagram fill in the two terminal nets formed by the left rootdahe other two target
vertices with terminal objects. At this point, the pre-nehtins all possible terminal
links, and all initial links except the two highlighted inehast diagram. These can be
added by repeating the above procedure for the pointed geligiited in the seventh
diagram. The argument is formalised in the following two teata.

Lemma 4.3.6. The saturation of a pointed (respectively copointed) nett@os all
initial (respectively terminal) links.

Proof. Let f=(Q,Y,®) be a copointed net; the case for pointed nets is dual. It must
be shown that if,y = 1 andv € pogQ) then the terminal linkv,w) is in % . For the
vertexw, Lemma 4.3.2 gives a sub-pre-i€, P, 8 - w) C of. Sincew is 1 this gives a
terminal subnetQ,1,®) C (of)e w, Whose saturation is full (by Lemma 4.2.3). O

Lemma 4.3.7. The saturation of a bipointed net is full.

Proof. Let f = (Q, P, %) be bipointed and copointed; the case for pointed nets is dual
By Lemma 4.3.6 abovef contains all possible terminal links. Then siriRes pointed,

it contains a pointed subnet: pointed objects are precthelse that admit a point, and
since the prenet at this stage contains all possible tetrmmka, it must contain also
the point thatP admits. Again by Lemma 4.3.6f contains also all initial links, and
must be full. O

4.4 Saturation via construction

The properties of pointed and copointed nets establishéakiprevious section will
be used to characterise the saturation of nets of the fpyinand f;1j in terms ofof, in
the upcoming Lemma 4.4.1. This lemma will form the basis efgloof of the present
case in the soundness proof, concerning parallel nets frpraduct into a coproduct.
Together with Lemma 4.2.3 and Lemma 4.2.5, which describe#turation of initial
and terminal nets and, respectively, product and copratkist Lemma 4.4.1 will give
an alternative characterisation of saturation, by inaunctin the construction of a net.

86 Chapter 4. The soundness proof

Because the statement of the lemma is relatively complexllitirst be motivated
informally. In the illustration below, the net on the leftpiets a copointed subnet q,
between a node and the right root, in the saturation of a net f. The sourcedlyf f
is drawn as a dotted triangle, with the nodeade explicit.

q C (of)ye q C (of;to)vo € (a(fito))vo
Above on the right, the pre-neff; i, which is a sub-pre-net of the saturation abf;
has the same subnet g between verticaad 0. (The vertexv is an arbitrary one in
the lower branch of the target ofif;) Because q is copointed, the saturation of f;
adds the copointed subnétlaelow left, a displaced duplicate of . This can be viewed
as happening through a synchronised saturation step, rikacthé one illustrated in
Figure 4.2.

q C (o(f;10))ve q’ C (o(f;10) Juw

Next, in the saturation of f the copointed subnet ¢ duplicated to any vertex in the
target tree, as described by Lemma 4.3.2; for a givethe subnet ‘¢ betweenv and
w is highlighted in the picture above right. W is pointed the subnet’qgs bipointed,
and its saturation is full, illustrated below left. Note thiathe target of fjq is itself
pointed, the sub-pre-net betweemande will be full in the saturation (below right).
Also, if a vertex @ in the upper branch of the target of§;is pointed, therof must
already be full betweemandu.

(a(f;10))vw is full (0(f;10))ve is full

4.4. Saturation via construction 87

To summarise the above, the saturation of a ngtdpntains three, possibly over-
lapping, collections of links, described in terms of theusation of f:

» the saturation of f itself, in the context of an injectiofof;1o)—containing,
among others, the links in g above;

* any possible linkv,x,w), if v has a rooted initial linkv,,€) in the saturation
of f—the links in d and d’ above;

« any possible linkV,x,w) that is between some nodesindw (i.e.v <V and
w < W) such thatwv is pointed, anaf contains a copointed subnet q between
ands—the links in the full subprenets above.

In formalising this, the following definitions will be conment. In a pre-net £
(X,Y, R), say that a vertexin X has arooted copointed subnétthere is a copointed
net qC fye. If vis minimal among the vertices X that have rooted copointed subnets
in f, thenv is said to have anaximal copointed subneet MAXCP(f) denote the set
of such vertices in f. Note that if v becomes smallgg, hecomes larger; hence the
minimal v gives themaximalcopointed subnet. Dually, letaxp(f) be the set of
vertices inY that havemaximal pointed subnetge. are minimal among the vertices
that haveooted pointed subnets

Lemma 4.4.1.For a netg;1 the following holds.

a. Letog= (X,Yj,®) and leta(g;1j) = (X,Y,s). Thens = (R -j) U T U A,
where

M= {{v,x,W) | Xy =0, (v,x,€) € R }

A = {{v,x,w) | Xy =0o0rYy=1,
IV <v.V € MAXCP(0Q),
Iw < w. Y,y is pointed}

Dually, for a netrg; g the following holds.

b. Letog= (X;,Y,%) and leta(tg;g) = (X,Y,S). Thens = (i-®) U T U A,
where

88 Chapter 4. The soundness proof

M= {<V7*7W>|YW:17 <87*7W>ER}
A - {<V,*,W>|XV:00I'YW:1,
IV < v. Xy is copointed

Iw <w. w € MAXP(0Q) }

Proof. Case a. will be treated; b. is dual. Without loss of generddit j = 0. One
direction, thai{® -0) UT U AC s, isas follows. Thatz -0) C s, or equivalently that
00;10 € 0(g;lo), follows from the fact that every saturation stefh| k}»wv applied to
g has a corresponding step-ih| k}»vm ing;lo. Thatl” C s follows by Lemma 4.2.3,
which states that the saturation of an initial net is full{\vife) is an initial link in og,
then this link forms an initial subnét; 1) C (0(g;t0))ve; filling this subnet means
contains all initial links(v,w) for anywinY. ForA C s, if g C (0Q)y, iS a maximal
copointed subnet then by a synchronised saturation step ihe copointed subnet
q < (o(g;10))ve. Then by Lemma 4.3.2, for any copointedn Y there is a copointed
subnet § C (o(g;l0))ve; this is a bipointed net, which by Lemma 4.3.7 has a saturatio
that is full; thens contains all possible unit links of the forfrv, ww').

For the other direction, it will be shown thék -0) U ' U A is closed under
saturation &). Since it contains the links in gy, this is sufficient to show that it
containss. There are eight cases to consider, one for each saturédipn s

o ~?[?0i),

e

©) ~ O

It must be shown that ifv,*,w) is in (% -0) UI UA then so is(v,*,wi). The
assumption gives three cases. For the firstyifv) € ® -0 thenw = 0w’ for
somew and, since

of ~(?|?iry, Of,

(v,Wi) € 8, so that(v,wi) € ® -0. In the second caséy,w) € I'. Sincel’
fills the subnet betweemand the root ofY, also(v,wi) € I'. The third case is
(v,w) € A. For the first constraint set fy, because of the applied rewrite rule
v must be0. The second constraint, that somie< v has a maximal copointed
subnet, holds fofv,wi) as it does forv,w). For the third, ifw’ < w then also
w < wi. It follows that(v,wi) € A.

4.4. Saturation via construction 89

. (22

@) @)
\\ / \\

© ® -~ ©\ ®
o o

To be shown is that ifv,w) is in (% -0) U UA, both (v,w0) and(v,wl) are as
well. The proof is similar to the above: {f,w) isin ® -0, respI’, resp.A, so

are(v,w0) and(v,w1).
© T
G

To be shown is that ifv,w) isin (% -0) Ul UA, so is(vi,w). The proof is mostly

similar to the first case above: {¥,w) is in ® -0 respA, so is(vi,w), and(v,w)
is notinl” sincev is a product, no0.

o~ TP
) O
// // \
" ® ~ & /@
O ko)

To be shown is that ifv,w) is in (% -0) UT UA then so arév0,w) and (v1,w).
The proof is as above: iy, w) isin g -0 respA, so are(vO,w) and(v1,w), and

T,

To be shown is that ifv, wi) is in (% -0) Ul UA then so isiv,w). If (v,wi) € 8 -0

(v,w) isnotinTl.

NI S

either 0< w, orw = ¢ andi = 0. In the former case alsw,w) € ® -0. In the
latter cas€v,wi) is (v,0) € % -0; then(v,€) is a link in . and, by the definition
of the rewrite rule, is initial. It follows thafv,w) = (v,e) is in . Next, if
(v,wi) € I' then also(v,w) € I". Finally, if (v,wi) € A, then some/ <v has a
maximal copointed subnet, whilais 0 by the definition of the rewrite rule. For
the remaining condition, that, wi) is in A means some/’ < wi is pointed. There
are two casesw’ < w orw = wi, for which it must be shown that somé¢ < w
is pointed. In the former this is immediate. In the lattencsiY,y; is pointed and
Yw IS Yao + Y1 (by the applied rewrite rule)y must be pointed. It follows that
(v,w) € A.

90

Chapter 4. The soundness proof

. (27|,

@) O
/ AN N \ N
©\ ® ~ 0 -®
o o

To be shown is that if botkv,w0) and (v,wl) are in(® -0) Ul UA then so is
(v,w). If both (v,wi) are ing_ -0 then also(v,w) is in & -0. If either (v, wi) is

in " then immediatelyv,w) € I". If both (v,wi) are inA then so is(v,w): by

the rewrite rulev is 0; someV < v has a maximal copointed subnet; either some
w < w is pointed or botlw0 andwl are, in which casw is pointed becausé,

is Yuo X Yw1. This leaves the case where one link, $ayl), isin ® -0 and the
other,(v,w0), in A. It will be shown that also in this case both links are\iror
both are ing_-0.

Firstly, w cannot be the root of, since the former is a product and the latter a
coproduct. Then & w, becauseév,wl) isin % -0. For convenience, |t = Ou,

so thatu andw are corresponding vertices in f andgfrespectively. Because
(v,w0) € A somew < w0 is pointed. If alsasv < w, then(v,wl) must be inA,

a case already covered. 8omust bew0. That(v,w0) is in A also means that
someV < v has a maximal copointed subnetdh Let this subnet be

(Xv,Y0,Q) C (af)ye.

Then by Lemma 4.3.2 there is also the sub-pre-net

(XV'7Y07 Q- UO) - (O-f>V',S

which forms a copointed subnet betweéandu0 in of (note thatuO is the posi-
tion in f corresponding tev0 in f;1g). As u0 is pointed, this subnet is bipointed,
and by Lemma 4.3.7 must be full in the saturation of f. This ns¢at(v, u0) is

in ®_, or in other words thatv, w0), as well asv,wl), isin ® -0, a case already
covered.

~(T5 Dy

\©«>

@

To be shown is that ifvi,w) isin (g -0) UT UA, sois{v,w). Firstly, if (vi,w) is
in g -0 then so iv,w). Secondly, if(vi,w) € I thenof contains an initial link
(vi,€). Because of the applied rewrite rutés the produc,o x Xy1. Then the

4.4. Saturation via construction 91

link (vi,€) forms a copointed subnet betweeande in of, illustrated below (for
i=0).
©

\Oe

Y&
O

Then there is & < v with a maximal copointed subnet f; moreover, the
rewrite rule forcesv to bel, and hence pointed, which means thaw) is in A.
Thirdly, if (vi,w) € A then some/ < vi has a maximal copointed subnetah
Eitherv = vi orv <v. The former case is ruled out because a copointed subnet
for vi can never be maximal: if g is a copointed subnetirbetweenvi ande,
thents;q is a copointed subnet betweeande. In the latter case it is immediate

that also{v,w) € A.

O O
// \ //
o 0~ & @
O 0

To be shown is that if botkvO,w) and (vO,w) are in(® -0) Ul UA, then so is
(v,w). Firstly, if both (vi,w) are in® -0 then so iSv,w). Secondly, suppose one
(vi,w) is in . Then there is an initial linkvi,€) in the saturation of f, which
forms a copointed subnet betweeinande; then some/ < vi has a maximal
copointed subnet. Since by the rewrite rulés 1, and thus pointedyi, w) is in

A; this case is then reduced to the following ones. Thirdlppgse bothvi, w)
are inA. If someV < v has a maximal copointed subnet, a{sow) is in A. The
other case is ruled out: if bot¥D andvl have maximal copointed subneis g
resp. g, then[qop, g1] would form a larger copointed subnet (illustrated below).

Q)
o

The final case is where one link, s&0,w), is in 8 -0, and the otheryvl,w),
in A. 1t will be shown that alsqvl,w) must be ing -0, reducing this case to
a previous one. FronvO,w) € % -0 it follows thatw = Ou for someu, and
(vl,w) € A means that somé < v1 has a maximal copointed subnetif Let
this subnet be

(Xv,Y0,Q) C (of)y e .

92 Chapter 4. The soundness proof

Then by Lemma 4.3.2 there is also the sub-pre-net

(XV'7Y07 Q- U) - (O—f)V',S 5

which forms a copointed subnet in f betweérandu. This subnet is then bi-
pointed, since the applied rewrite rule means 1, and hence pointed. By
Lemma 4.3.7 theof is full betweenv andu, and in particulakvl,u) € % , and
(vi,w) € % -0.

4.5 Deconstruction of saturated nets

The two remaining obstacles for the present case in the sessdoroof, of parallel
nets between a product and a coproduct, are:

| nets constructed over different projections or injecsiomay have the same sat-
uration, and

Il the induction hypothesis may not apply even when nets arstcucted in the
same way.

The main lemma of this section, Lemma 4.5.1, will solve th&t fisnd make a start on
the second.

An illustration of the first problem, below, shows three net:structed over dif-
ferent projections and injections, with the same, full eation, indicated by the grey

&S &> &

;!
In general, for nets that are constructed differently, £1g.andy;g, or f;lp and gj1,

links.

there is no hope of applying the induction hypothesis of thensiness proof to f and
g, which need not even be parallel.

A direction in which to look for a solution is suggested by tiy@mamics of saturat-
ing a net f]o, as explored in the previous section. After first saturatjige next step
in saturatingf; 1o must be to move an initial linkv, 0) up to the root, addingv,)—all

4.5. Deconstruction of saturated nets 93

other steps stay within f, and have already been performed.

JorT et ol L 0F—p

Then consider a corresponding equivalence step?yo|?=v¢ h between two nets
equivalent to fip, with g containing the initial link(v,0) and h containingv,€). Be-
cause(v,€) connects to the right root, the net h cannot be right-con8bie. In the
case of nets between products and coproducts, it must théfthmnstructible, of
the formm;i. Moreover, as illustrated below, the projection over whiis net is
constructed is determined by which branch of the sourceymtadesides in: if 0< v
then itismg;H, and if 1< vthenty;h'.

@ y o
@é £ % L

To summarise, the presence of a rooted initial or termimdlilh a net from a product
into a coproduct determines over which projection or ingecttt is constructed. What
the soundness proof needs to show is that any rooted liaknmust occur in some net
f' < f. It will then be immediate that two nets with the same sdtama containing the
same rooted link, must be constructed similarly.

In fact, Lemma 4.5.1 below proves the following generaiat any pointed or
copointed partial subnet @ff occurs as a partial subnet of some rietff. Recalling
that a partial netis a pre-net satisfying compatibility, tot necessarily connectedness,
another way of phrasing the statement of Lemma 4.5.1 is thatallection of rooted
initial links in of that, by the switching conditions, may occur together m$hme net
at all, will actually occur in somé = f; and similarly for any such collection of rooted
terminal links.

This generalisation is prompted by two considerations. iStlee need for a suit-
able induction hypothesis in the proof itself. The otheoigrfd in an analysis of prob-
lem Il indicated above, of similarly constructed nets toethihe induction hypothesis
of the soundness proof nonetheless does not apply. In tistrdkion in Figure 4.5, in
isolation the upper two nets are not equivalent, but afteciph them in the context of
an injection into0 x 1, forming the lower two nets, they become equivalent. (In the
illustration, saturations are indicated by the grey linkssaturation steps apply to the
upper two nets.)

94 Chapter 4. The soundness proof

0—0O © ©)
& & /
) ©
© Q
& & / (D
© @

Figure 4.5: Nets may become equivalent by composing with an injection

More generally, supposaf and og are saturated nets that are similar, except that
of has a copointed subnet g between some vertaxd the right root, while og has a
different copointed subnet k. Then after placing f and g ed¢hntext of an injection
into a pointed object, the resulting netspfand g1 will have the same saturation, as
schematically illustrated below: the subnets g and k arewlesl in the saturation, as
the latter is full betweewm ande.

The solution, discussed in detail in Section 4.6, will beltow the equivalence of both
copointed subnets in the context of the injectiong@nd kjg. However, q and k are
subnets of the saturated netisand og, but not of f and g themselves. Addressing this
is the second reason why Lemma 4.5.1 is stated the way it thisiparticular case, it
concludes that q is a subnet of sorhe:ff, and k of some g& g.

Lemma 4.5.1.1f fis a net andy C of is a partial pointed or copointed net, then there
isanetgs.t.qC gandf < g.

Proof. The proof is by induction on the construction of f. The caseerehq is co-
pointed is treated explicitly, while the case for pointecbtidws by duality. The two
cases should be considered as simultaneous, as both fothesiofluction hypothesis
are needed for the present case.

Recall that a partial copointed net q is either the basic net @mpty, or is con-
structed a$gp, 1] or astg; q;. If g is empty then g can be chosen as § for this reason
g is generally assumed non-empty below. The constructidmma$ seven cases.

» If f = (A,B,a) then g must be empty.

4.5. Deconstruction of saturated nets 95

 Iff =(0,Y,*) then g must b¢0,Y, x) (it is not empty). Let g=f.

o Iff =(X,1,%)itis pointed, while q is a (parallel) partial copointed nieor f and
g Lemma 4.3.4 gives the required net g witk-fg and qC g.

o Iff = [fp,f1], then g is of the forniqo, g1}, as it must be left-constructible.

Fori € {0,1}, by Lemma 4.2.6 the two saturated nefsare the subnet®f); .
Then since ¢C of also q C of;. The induction hypothesis then providesand
01, from which g is constructed as=g[go, 91].

* Iff = (fo,f1) and q is the partial néX,Y, Q), then let(gp, q1) be the partial net
(X,Y,Q -0 U Q -1), obtained from g by moving it down from the root of the
target object.

O :@ (@ Pt q : ® O :®
flO/ O/ qu/

Each g is a sub-prenet affj, since by Lemma 4.2.6f; = (of)¢ j. The induction
hypothesis providesggand g such thatf< g and q C gi. However,(go,01)
has(qo,q1) as a sub-prenet, but not q itself. To obtain g frags,g;) the links
in go and g must be moved up to the root again, which is done by applyiag th
following rewrite step togo, g1), for every link(v,€) in q.

@) @)

V©/ :®g :[<77’)>|7]:>V8 V@ :®E
\O/ O/

ThenqC gandf= (fo,f1) < (00,01) < g.

o Iff =p;f’ (the case fory;f’ is symmetric) andf’ = (Xo,Y, %), then the linking
of of = (X,Y,s) is described by Lemma 4.4.1b as the collectjos (0- %) U
MrUA.

Three cases will be distinguished: one, some link in g i5;itwo, some link in
g isinA; and three, all links in g are iaf’.

96

Chapter 4. The soundness proof

For the first case, recall thatis a collection of terminal links, with targét If

it contains a link from g, which are all of the forfw, €), thenY must bel. Then
fis a terminal net, and by Lemma 4.2.1 equivalent to the basi¢X, 1, x). For
this net, which is pointed, and the partial copointed netaima 4.3.4 gives the
required net g, for which ¢ g and g& (X,1,%) < f

For the second case, if somee) is in A, by the definition ofA the right
root € must have a (maximal) pointed subnétpof’. Applying the induction
hypothesis—in its dual form to the one being discussed-&md the pointed
net g gives a net gwith f' < ¢ and p C g, and since pis a net, § must be
p' itself. Then also = mp;f’ andp;p’ are equivalent, while the latter has an
equivalent pointed net p, by moving it up to the left root.

For the pointed net p and the partial copointed net g Lemmd 4i8es the net
g, with gC g, completing the equivalence below.

f=mf & mp ©peg

In the remaining case, @ 1p;f’, which means that q must be of the forgi (/.
The induction hypothesis fof &nd d gives a net gsuch that C g’ and f < ¢'.
These two properties carry overig;g’, which is the required net g, as per the
following.

q=Toq C M, =g f=mf < md =g

If f =f;10 (the case for'fi; is symmetric) anaf’ = (X, Yo, R), then the linking
in of = (X,Y,s) is described by Lemma 4.4.1a as the collectjora (% -0) U
I UA. Let gC of be the partial copointed n¢K,Y, Q). Firstly, since the links
in q are all of the form(v,€), none can be ik -0. Two further cases will be
distinguished: one, all links in g are in and two, some link in q is id.

For the first, ifQ C T then, by the definition of , for any link(v,€) in Q there is
a link (v,0) in (of’);1p. These constitute a partial copointed subriet gf’, for
which the induction hypothesis gives a néegquivalent tofand containing q
Then d;10 has ¢;19 as a sub-pre-net, but not q itself; g is obtained frdmydy

4.5. Deconstruction of saturated nets 97

moving d up to the root, as follows.

/

o =7

The remaining case is where contains at least one linky,€) in q. By the
definition of A, the target objecY of f must be pointed. Theh C A, and since
Q does not share any links with - 0, alsoQ C A.

To apply the induction hypothesis, a partial copointed net gf’ will be built
from a selection of the maximal copointed subnetsdh LetV be the following
collection of vertices irX with maximal copointed subnets af’.

V = {veMmaxcpP(of’) | Fu>V. (u,x,€) € Q}

Note that for every link{u,€) in q there is av < uin V, becaus€u,€) is in A.
Next, For eaclv € V choose a maximal copointed subngk of’.

kV - (XV7Y077<:V> g (O'f/)\as

Construct gas the combination of allkas follows, so that(g = ky.

q = (X,Yo,Q") Q= U (v-xv)
veV

By construction §is a copointed sub-pre-net of’. For it to be a partial net,
any two links in ¢ must be compatible. For links within a single nettkis is
immediate. For links in differentkand k;, it is sufficient to show that andv/
are compatible. Firstly, neither< Vv norVv <v, by maximality of k, and K.
Secondly, by the definition &f, there are linkgu, &) and(U',€) in g, withv<u
andVv < U'. Since the least common ancestov@ndV is the same as that of
andu/, fromv#V it would follow thatu# u'. But then the linkgu, &) and (U, €)
in g would be incompatible, a contradiction since q is a péartet.

The induction hypothesis applied tband f gives a net gequivalent to fand
containing ¢ In particular, for each €V,

The net g will be obtained from’gg by replacing, for every in V, the subnet
kyv;lo by an equivalent subnet lzontaining g¢. For a giverv €V, firstly, ky;1o

98 Chapter 4. The soundness proof

is equivalent to a copointed nelf By moving it up to the root. Recall that, the
target of K, is pointed (because the links in g arefip Then there is a pointed
net p, to which K, is equivalent, by Lemma 4.3.5, since both are bipointed.

Since g is a partial copointed net parallel tg bemma 4.3.4 applies, and gives
a net y equivalent to pthat has ¢ as a sub-pre-net.

Because the vertices Wi do not dominate one another, the domains of the dif-
ferent rewrites are disjoint, so that none invalidates tlee@ndition for another
(that the subnet to be replaced, between source vedesd target vertex 0, must
be k). It follows that g< d';1p, since for eachv € V the nets k19 and K

are equivalent. Recall that;qn < f';1¢9 = f by the induction hypothesis, giving

g < f. Finally, because any link in g is in somg,land g = hy forallve V, it
follows that qC g.

O

The argument at the start of this section, showing how Lemr&d 4olves the
problem of equivalent nets that are constructed over @iffeprojections and injec-
tions, gives the following lemma. In the statement of therieam recall that non-
constructible nets are those that are neither left-coaside nor right-constructible.

Lemma 4.5.2.Letf andg be parallel nets between a product X and a coproduct Y,
with the same saturatioof = og = (X,Y,®). If this saturation is non-constructible
then there are nets;;f’ < f and 15;g’ < g constructed with the same projection

and netd”;1; < f andg”;1; < g constructed with the same injection

Proof. Without loss of generality let f be of the forng;fg. Let the linking ofaf be
described by -OUTI UA as in Lemma 4.4.1, wherg is the linking ofafg. Since f

4.6. Matching points 99

is non-constructible at least onelofandA must be non-empty; but i is non-empty,

ofp has a maximal copointed subnet, whose rooted initial limkesial". ThusT is
non-empty, and contains at least one rooted initial {inke). This link forms a partial
copointed net, and by Lemma 4.5.1 there is a net equivaleéntaataining this link.
This net cannot be right-constructible and so must be of ¢hm fg;f’. Since g has
the same saturation as f, which contai{nse), by the same argument there is a net
;9. By duality,;f’ andm; g/, having the same, non-constructible saturation as f, are
equivalent to nets’f1; and d';1; respectively. O

4.6 Matching points

The present case of the soundness proof, of parallel nats dr@roduct into a co-
product, is nearly complete. It was shown that if their (comminsaturation is a con-
structible prenet, the induction hypothesis can be appiredediately, and that if it
is not constructible, they are equivalent to nets constdiover the same injection or
projection, say fip and g}o. A final obstacle, already highlighted in Section 4.5, where
it inspired the formulation of Lemma 4.5.1, is the fact tHait components f and g
need not have the same saturation, and indeed need not bvaleqti The general
mechanism by which this transpires is that bipointed nets baturations that are full:
if of andog contain copointed subnets g and k, these are no longernsede in the
saturations of fig and gjo.

In a little more detail, the saturation of §;has the subnet gj betweerv ande. By
applying a synchronised saturation step (see Figure@(R)p) contains the copointed
subnet gbetweerv ande, as well. Then if the target ofify is pointed, §is bipointed,
and its saturation must be full.

The above prompts two observations. Firstly, if the tardet g is not pointed,
the final steps in this scenario do not pertain, and no linksadded to the saturation
of f. Secondly, if the target of f is pointed, the subnet q os falready bipointed,
and its saturation full; then saturatingigcannot add any more links. These two
unproblematic cases are summarised by the following lemma.

100 Chapter 4. The soundness proof

Lemma 4.6.1.Letf;1; be a net from X to Y. IfjMs pointed or Y is not pointed, then
of = (a(fi1j))e,j -

Dually, lettg;g be a net from X to Y. Ifi{s copointed or X is not copointed then

og = (0(15;0))ie -

Proof. Consider the case for f; that for g is dual. Without loss ofegefity let j =0
and, following Lemma 4.4.1a, let the saturations of f angllbe described as follows.

of = (X,Yo,R) o(f;l0) = (X,Y,s) Ss=®R-00uruaA

In one direction, it is then immediate th@df;19) C o(f;10). In the other direction,
let (v,0w) be a link in the saturation dff;1p), i.e. ins. It must be shown thajv, w)
is in ® . The non-trivial cases are whefeOw) isinT or A. If (v,0Ow) isinT then by
the definition ofl” there is a link(v, x,€) in £ . Then the initial subngtXy, Yo, *) of of,
betweenv andg, is full, by Lemma 4.2.3, anv,w) is in % .

If (v,Ow) is in A then some/ < v has a maximal copointed subnetdfy and some
w < w is pointed. IfYp is pointed therof has a bipointed subnet betweenande,
which is then full, containing in particular ar(g, w). If Y is not pointed thenv # .
Sincew < w it must be thatw' = Ou for someu. By Lemma 4.3.2, the maximal
copointed subnet af in of has a corresponding copointed subnet betwéemdu,
which is then bipointed. Then the subnetadfbetweenv andu is full, and contains
(V,W). O

The solution for the last remaining instance is as followg@se that netsify and
0;1o0 have the same saturation, whittandog have different copointed subnets g and k
between some vertaxande. By moving them up to the root, gyand kjo each have
corresponding copointed netsand K. By the above lemma, the target ofigjand
k;1o must be pointed, making them bipointed, and thus equivédlsnLemma 4.3.5),
illustrated below.

4.6. Matching points 101

The equivalence of gz and ki does not immediately shom§ and gjo to be equiv-
alent. Rather, the argument proceeds as follows. Firstigesy is a subnet aff, it is

a subnet of a net equivalent to f (by Lemma 4.5.1); for sinifgliassume q is a subnet
of f itself. Because qj is equivalent to ki, after replacing g with k in f there is the
following equivalence.

filp & (f{k}v,e);lo

The final step is then to show thaftkf}, ¢ has the same saturation as g, so that the
induction hypothesis can be applied to show their equivaden

In fleshing out this argument there are a few remaining oketa©ne is thawf and
og may differ on several copointed subnets, and not just orddkarf the copointed
subnets obf, taken together, form a partial net, then Lemma 4.5.1 aéiibetapplied.
However, that they do form a partial net is far from obviousj avill need proof.

Another issue is the following. A natural way of proving thit the running ex-
ample, fk}ye and g have the same saturation, would be to show it by inductio
their construction, using the fact thet{k}ye);1o and gio have the same saturation.
Unfortunately, this proof idea does not go through, becaledatter property is not
preserved in the induction steps. A weaker statement thed darry over in the in-
duction, is the following: if the saturations ofK}, andog have the same maximal
copointed subnet k at the same ventexhey are identical betweanande. To make
this work, firstly, it will be immediate from Lemma 4.6.2 belahat the same vertices
have maximal copointed subnetsahand og, given that fip and gjo have the same
saturation. After that, Lemma 4.6.3 will prove the statetradrove, generalised to al-
low for multiple copointed subnets. In the statement of tiéowing lemma, recall
thatmAxcpP(f) denotes the collection of vertices in the source of f thaehaaximal
copointed subnets; and that duallyxp (f) collects the vertices with maximal pointed
subnets.

Lemma 4.6.2. For a netf the following statements hold.
MAXCP(o(f;1j)) = MAXCP(of) MAXP (o(Ttg;f)) = MAXP (of)

Proof. Consider the case fori and f; that for fj1 is symmetric, and that fomg;f is
dual. It must be shown that a vertexin the common source object ofd;and f, has a
maximal copointed subnet m(f; o) if and only if it has one irof. In both directions,
it will be shown that ifv has a maximal copointed subnet in one saturation, sofmg
has one in the other; the statement then follows by the milityrad v.

102 Chapter 4. The soundness proof

In one direction, ifv has a maximal copointed subnet

q - (XV7Y07 Q)

in of, then ina(f;1p) there is a corresponding copointed subrigbhtained by moving
g up to the root, from ap to the parallel § Then somei < v has a maximal copointed
subnet ino(f;1p).

In the other direction, let have a maximal copointed subnet qah

q C (o(f;10))ve -
It will be shown by induction on q that some< v has a copointed subneétiq of.

» If g = (Xy, Y, *) it consists of the linkv, €).

a

Let o(f;10) = (X,Y,$) and letof = (X,Yp, %), so thats = (% -0)UT UA in
accordance with Lemma 4.4.1a. Since the lwle) is in s there are three cases.
Firstly, (v,€) cannot be ing - 0. Secondly, if(v,€) is in T, then the link(v,0) in

® -0 forms a copointed subnet af betweenv andg; let this be the required' g
Thirdly, if (v,€) is in A then some/ < v has a copointed subnetaf; let g be
this subnet.

* If g = [0o, q1],

then by the induction hypothesis sowie< vO has a copointed subnej o of’
and some/’ <Vl has a copointed subnétin of’. If V <vletq =q, if V/ <v
let = ¢}, and otherwise let'g= [qp, 3]

 If g = 19;qo (the case ¢ m;q; is symmetric),

then by the induction hypothesis some< vO has a copointed subnej o of’.
If V <vletd = qp, otherwise let §= 1; qp.

4.6. Matching points 103

The main argument is then carried out by the following lemma.

Lemma 4.6.3.Letf andg be parallel nets such thataxcr(of) = mAXxcpP(og), and
whose target is not pointed. Then there is ameiith the following properties:

(1) f;15(Y) < h;i(Y) if Y is pointed,;
(2) mAxcp(ch) = MAXcP(of) = MAXCP(ag);
(3) (oh)ye = (0Q)ye for any ve MAXCP(ah).

Proof. Item (2) is present solely for the purpose of clarity, as ilofes from (1): by
completeness (Theorem 3.2@8);1j) = a(h;1;); then Lemma 4.6.2 for f and h gives

MAXCP(af) = maxcp(a(f;1j)) = maxcp(a(h;tj)) = MAXcP(ch) .

Items (1) and (3) will be shown by induction o

If MmaxcP(of) = MAXCP(og) = @, which is precisely wheof and og contain no
rooted initial links, then both (1) and (3) are immediatelict f.

If MAXCP(af) = MAXCP(0Q) = {€} (note that by minimality, ife has a maximal
copointed subnet, no other vertex does), let, so that (3) is immediate. For (1), let
g C of and kC og be copointed subnets. Lemma 4.5.1 gives fland k< g. In the
context of the injection, q;(Y) and k1;(Y) are equivalent to copointed netsamd K,
respectively. Then i¥ is pointed both are bipointed, and equivalent by Lemma 4.3.5
completing the equivalence chain below.

fl, & qi & d & K & ki & gl

In the remaining case, some vertexther thans has a maximal copointed sub-
net inof. By Lemma 4.5.2 f is equivalent to a net containing this dopedl subnet,
which must then be left-constructible (if it was basic, itwa be (0,Yj, *), but then
MAXCP(of) would be{e}, a case already considered). In g, the same vertexist
have a copointed subnet, too; then g is likewise equivateatleft-constructible net,
and moreover if the source of f and g is a product, both havivalgmt nets constructed
over the same projection. Thus, there are two cases to @nsid

f < [fo,f1] and g< [go, 01 femf and ge md .

104

Chapter 4. The soundness proof

In the first case, where< [fo,f1] and g< [go,d1], the saturation of each &nd
g is a sub-pre-net of that of f and g, according to Lemma 4.Z &lkows.
ofi = (of)ig 00 = (0Q)ie

Sincee ¢ MAXcP(af), i.e. there is no copointed subnettgof, any maximal
copointed subnet q iaf is between a vertei and the right roog, and is also a
maximal copointed subnet betweeande in f;. This gives the following.

MAXCP(of) = {iv|ve MAXcP(ofi)}

MAXCP(0g) = {iv|ve MAXCP(0gi)}
Thenmaxcp(ofi) = MAXCcP(0g;). The induction hypothesis gives neigdnd
hy such that each;lsatisfies (1), (2) and (3) w.r.t. &nd g (note that the target

of f; and g is not pointed, as required for the induction hypothesisabse it is
the same as that of f and g).

Let h= [ho,h1]. The following equations show that h satisfies (1), i.e. that
equivalence fij < h;1j holds for injections into a pointed target.

fip e o fafiyy = [(forr), (f1;1))]
)
hity = [ho,hafity = [(hosty), (hastj)]
They are justified by the equivalen@;1;) < (hi;1j), which is the property (1)
for hp and h, and the equations for bi-constructible nets in Propasifdb.1,
e.g. thatfo,f1];10 and[(fo;10), (f1;10)] denote the same net, illustrated below.

Next, h satisfies (2) as it follows from (1), which means ttegt $ame vertices
have maximal copointed subnetsafy og, andoh. Then, since ¢ mAxcp(ch)
and because Lemma 4.2.4 gied); ¢ = ohy,

MAXcP(ch) = {iv|ve maxcp(ah;)} .
By the equations below h satisfies (3): for any veitex MAXcpP(ch),
(oh)ive = (ohi)ve = (0Gi)ve = (0Q)ive -

The middle equation is due tq Bnd g satisfying (3), while the first and last
follow from Lemma 4.2.4.

4.6. Matching points 105

* In the second case, without loss of generality letf Tp;f’ and g & 109
To apply the induction hypothesis tbdnd ¢ it must be shown that their satu-
rations have maximal copointed subnets at the same vertieésg andog’ be
described as follows, as in Lemma 4.4.1b.

od = (Xo,Y',R) og=(X,Y',s) s=(0-g)UruA

Let qC (oQ)ve be a maximal copointed subnet. If any lifik) in qisinl’, then

Y’ must bel, while if (u,€) is in A, then there must be a pointed subnet pg'.

In both case¥’, the target of f and g, must be pointed, which contradicts the
assumption that it isn’'t. Consequently, all links in g mustib(0- %), forming

a maximal copointed subnetip og’. This gives the two statements below (the
first by repeating the argument for f).

MAxcP(of) = {0v|ve maxcp(of’)}
MAXCP(og) = {Ov|ve MAxcpP(od)}

Thenmaxcp(of’) = MAXcP(og'), and the induction hypothesis gives a nét h
satisfying (1), (2) and (3). Let b my;H. That h satisfies (1) follows by the
equations below (the centre one is (1) fox h

fi;, o mfy e by = hig.

As (1) implies (2),maxcpr(ch) = maxcp(of), and as for f and g earlier, the
following holds for h.

MAXCP(ch) = {Ov|v e mAaxcp(ch’)}

Then for (3) it must be shown that the sub-pre-netolbfandog between a
vertex O/ € MAXCP(oh) and the right root are equal. Le{Ovu,w) be a link
in 0g, so that(u,w) is a link in the sub-pre-nefog)ove. Let g be a maximal
copointed subnet betweer 8nde in og, and betweer ande in og'.

@i @éow a

It will be shown that(Ovu,w) is in ch. Recall thatz ands = (0-®)UT UA
denote the links iog’ andog respectively. IfOvu,w) is in (0- %) then (vu,w)

is in og/, and because€’ Isatisfies (3) and has a maximal copointed subnet in

106 Chapter 4. The soundness proof

oh, the link (vu,w) is in oh/, and(Ovu,w) is in oh. Otherwise, i Ovu,w) isinT
or A, then someVv < wis pointed: in the first case becausés 1, in the second
because some < w has a maximal pointed subnet. SinoecOMAXCP(ch)
there is a copointed subnétliptween 0 ande in oh. By moving it down from
€ tow, there is a copointed subnét hetween 0 andw'. Then { is bipointed,
and by Lemma 4.3.@h is full between 0 andw/, and must contaifOvu, w).

The reverse argument, that a ligBvu,w) in ch must be inog, is symmetric to
the above case. Then h satisfies (3).

The final case of the soundness proof can now be concluded.

Lemma 4.6.4. For parallel netsf and g whose target is not pointed, ift(Y) and
g;1j(Y) have the same saturation and Y is pointed, there is erseich thatf;1;(Y)
andh;tj(Y) are equivalent ang andh have the same saturation.

Proof. Because f;j and g1 have the same saturation, and by Lemma 4.6.2, the fol-
lowing equations hold.

MAXCP(af) = MAXCP(a(f;1j)) = MAXCP(G(g;lj)) = MAXCP(0Q)
Then Lemma 4.6.3 applies to f and g, giving the net h such that
(1) f;1; < hy,
(2) maxcp(ch) = mAxcp(of) = MAXcP(ag), and
(3) (oh)ye = (0Q)ye for anyv e maxcp(ch).

It remains to show thatg = oh. Using Lemma 4.4.1, let the saturations of the nets
involved be given by the following equations—note that bygid completeness (The-
orem 3.2.3) frj and hj; have the same saturation.
o(f;1;) = o(g;tj) = o(h;tj) = (X,Y,S)
og = (X,Y},%) S=(@®-jHurua
oh = (X,Y},R’) S=@R -Hurun

It will be shown thatg C % ’; the reverse follows symmetrically. Lét,w) be a link
in % . Then(v, jw) € (% - j) C 5. The casdy, jw) € (8-) isimmediate. Otherwise,

4.7. Finale 107

some/ <vhas a maximal copointed subnetih—if (v, jw) isin4’, by definition, and
ifitisin I'’, becausey,) is arooted initial link inch. Then by (3)(ch)y ¢ = (0Q)v ¢,
and(v,w) isin g '.

U

4.7 Finale

To complete the soundness proof is a matter of connectinditieeent lemmata.
Proof of Theorem 3.2.4 (Soundness)or 2I1(c)-netsf andg, if of = og thenf < g.

Proof. Letfand g be parallel nets with sour¥eand targeY. The proofis by induction
onX andY.

 If X is an atom od thenof = f andog = g, so that = g. The same holds when
Y isan atomo®. If XisOorY =1, then f< g by Lemma 4.2.1.

* If X is a coproduct, then by Lemma 4.2.4 f is equivalent to ajfpet;], and g
to a net[go,01]. Lemma 4.2.6 gives the equations below, showing thand g
have the same saturation (iog {0,1}).

ofi = (of)ie = (0Q)ie = 0G;

The induction hypothesis gives< g;, from which the equation below follows.
f < [fo.f1] < [go, 1] < 9

The case wher¥ is a product is dual.

* In the remaining cas¥ is a product and a coproduct. If the saturation of f
and g is constructible, say of the formp;h (without loss of generality), then
accordingly f and g are of the formy;f’ and ;g respectively. Lemma 4.4.1
gives the equations below since, in the terminology of tinenh&, ™ andA are
empty for both fand d.

To;0f = o(Tf') = o(To;d) = o300
As of’ = od the induction hypothesis gives# ¢, so that

f=mfemg=g9.

108 Chapter 4. The soundness proof

If the saturation of f and g is not constructible, then by Lesr¥in5.2 they are
equivalent to nets constructed over the same projectiom@ction, say

f < g g< d;lo.
If Y is not pointed olYp is pointed, by Lemma 4.6.1
of’ = (0f)eo = (09)e0 = oY
from which the induction hypothesis givés# ¢'. It follows that
fefipedioeqg.

Finally, if Y is pointed andyp is not pointed, then Lemma 4.6.4 gives a net h
such that hp < ;10 andoh = og’. By the induction hypothesis,4- ¢'. This
completes the equivalence of f and g, as below.

f< filgpe hlge dlp &g

4.8 Characterising saturated nets

The main lemmata of the soundness proof provide a basis frioicivio complete two
outstanding proofs from Chapter 3. The first is the proof ajp®sition 3.3.2, that a
saturated net is the union over an equivalence class of néis. will be completed
in the present section. The second is the proof of Proposgid.5, the correctness
condition for saturated nets. This will be completed in tletrsection, where, in
addition, a sequentialisation algorithm for saturated mell be given.

Formally, Proposition 3.3.2 states that

of = (H{glf=g}.

(Note that this does not itself imply soundness, which nexguihat different equiva-
lence classes must have different unions.) To prove theggibpn, it must be shown
that any link in a saturated nef occurs in a net equivalent to f. This will first be
shown for the saturation of a bipointed net.

Lemma 4.8.1. For a bipointed nef and a unit link(v, x,w) in of there is a neg < f
containing(V, *, w).

4.8. Characterising saturated nets 109

Proof. Let (v,*,w) be an initial link (the case for terminal links is dual) andtaut
loss of generality let f be a pointed netp(Q,P,#) (by Lemma 4.3.5 even if f itself
is not pointed it is equivalent to a pointed net). Moving p dofrom the left root,
as in Lemma 4.3.2, gives an equivalent rewith a pointed subnet’gbetweenv and
€. Because(v,x,w) is an initial link, Q, = 0 and g is an initial net, equivalent to
?» = (0,P, %) by Lemma 4.2.1. Consequentlyj$ equivalent to’f = f'{?}.

-4 -4 -4 i,

Jo p Of @ Vo OF @ v Of @ v WO

p & f/ & ! & g

Finally, the net g containingy, *,w) is obtained by moving the initial linkv,€) in f”
down towardsw. O

The proof of the general proposition is completed below.

Proof of Proposition 3.3.2. The saturation of a ndtis

U{glfeg}.

Proof. One direction, thatJ{g | f <& g} C of, is immediate from completeness (The-
orem 3.2.3). For the other it will be shown, by induction oa tonstruction of f, that
any link (v,w) in of belongs to some netg> f.

* For basic nets, if f is atomic thesf = f. Next, if f is an initial net(0,Y,), for
any link (g, %, w) in its (full) saturation a net g can be found by moving the link
(g, *,€) in f down towards the leaves. The case for a terminal retX, 1, x) is
dual.

o If f = [fo,f1] then by Lemma 4.2.5 its saturation(iX,Y,® U), whereg are
the combined links ibfy andofy, ands contains precisely the rooted terminal
links (g, u) for which also bottofg andaof; contain a rooted terminal linke, u).
For the link (v,w), if v =0V the induction hypothesis oafy gives a net g
containing(V',w). Then g= [go,f1] is equivalent to f and contains,w). The
case forv = 1V is symmetric, leaving that for = €. In that case{e,w) must
beins, and(0,w) and(1,w) are in® . The induction hypothesis, applied t f
and f, gives a nefgo, g1] containing(0,w) and(1,w). Then g is obtained by a
single rewrite step applied to these links.

O O
// \ //
8@ @W o= 8®—@W
\\ / \\

O O

110 Chapter 4. The soundness proof

So(v,w) isin g. The case £ (fp,f1) is dual.

 Iff =f';1pthen letof = (X,Y,$) andof’ = (X, Yo, %), so thats = (% -0) U UA
as in Lemma 4.4.1. Ifv,w) is a link (v,0w’) in £ -0, then{v,w') is in of’. The
induction hypothesis gives a netg f' containing(v,w). Then g=d';1p is
equivalent to f and contains, w).

If (v,w) isinT then(v,€) is a rooted initial link inof. This link forms a partial
copointed subnet, for which Lemma 4.5.1 gives a hetd containing(v,€). By
moving the initial link(v, &) down from the right root tav, the net g is obtained
from d.

If (v,w) isinA, then some&’ < v has a maximal copointed subnétig of’, and
somew < wis pointed. Themf contains a copointed subnet q betwaeande,
found by moving qup to the root.

Vo €

The copointed subnet g constitutes a partial copointedesulifrof, for which
Lemma 4.5.1 gives a net g> f such that ¢ , = q.

In ¢, by moving g down toward®/, an equivalent net’gis obtained containing
a copointed subnet’g= g(/w. Becausav is pointed { is bipointed, and as
oq” is full it contains the link(v’,w"), wherev = VV' andw = ww’. Then
by Lemma 4.8.1 there is an equivalent netkg” containing(v’,w”). Finally,
g < fis obtained from ¢ by replacing ¢ with k.

The case £ ;11 is symmetric, and £ ;' is dual.

4.9 Sequentialisation

An important aspect of saturated nets still to be addressaskiquentialisatioproce-
dure: a translation from saturated nets back to sum—praduos. As was mentioned

4.9. Sequentialisation 111

in Section 1.3, in general, sequentialisation and coresstrof proof nets are closely
related. In the case of saturated nets, sequentialisatibmaturally proceed via a
notion of desaturation a translation from saturated nets to nets that is inverséo u
equivalence, to saturation. Such a desaturation procedlifee provided by the out-
standing proof of Proposition 3.4.5, the correctness d¢mrdfor saturated nets, that
will be completed in this section. The proposition states gprenet that is connected,
saturated, and close-knit is a saturated net. Since a (ootige) proof of this propo-
sition provides a net of whose saturation is again the aaiginenet, it will naturally
constitute a desaturation algorithm. Before making thigieit, a simpler approach to
desaturation will briefly be demonstrated to be inadequate.

©

©\ N\
// g \\ //
—0 Q

Figure 4.6: One saturated net as a subnet of another

A natural question is whether simply taking a subnet of ars#td net constitutes,
in itself, a desaturation method. This turns out not to bectse, as is illustrated by
Figure 4.6. The figure displays two nets, with their satoraincluded in grey; the left
one, which is already saturated, is a subnet of the satarafithe right one. Thus,
saturating a subnet of a saturated net is not the identiyioal.

The desaturation algorithm used in the proof Propositidrb3s given below. The
algorithm is non-deterministic, which is natural, giver tact that it finds one net from
an equivalence class of nets. Although it may be possibtfnieally, to construct
a deterministic desaturation algorithm, this would reguion-canonical choices, for
example between source object and target objects, or betivedwo projections of a
product. Also, in the present formulation, not all nets ireganivalence class are found,
non-deterministically, by desaturation. It is not unlikehat giving a desaturation
algorithm that does return all nets, i.e. one that is therseeelation to saturation,
would be possible. (This was not pursued, for the reasonittiatiikely to require
significant effort to find all the nets whose saturation ig tifaa (co)pointed net, while
the (co)pointed net itself is readily found.)

Definition 4.9.1 (Desaturation) A desaturatiorof a prenet h= (X,Y, %) is a prenet f
obtained by the following algorithm.

112 Chapter 4. The soundness proof

« If X=1,Y =0, or one ofX andY is atomic, let f be h; iiX = 0let f be(0,Y,*);
if Y =1letfbe(X,1,x).

* If X =X+ Xy then recursively obtain prenetgffom hy ¢ and f, from hy ¢, and
let f = [fo,f1]. If Y = Yo x Y1 then recursively obtain prenetgffom he o and f
from he 1, and let f= (fo,f1).

« If X is a product and a coproduct then of the sub-prenets and h ; of h,
choose one that is connected. Fgjj hconstruct the sub-prenetgh j as fol-
lows. For eactu € MAXcpP(h) choose a copointed subnet G hy j, then let
MAXCP(h) = {u,...,uy} and construct the following series of pre-nets.

hs,j =991 .-, =9 where g = gifl{GqUi}ui,s

From g recursively obtain a nét fet f = f';1;. For a sub-prenet athe procedure
is dual.

The desaturation algorithm is essentially an inversiorhefihductive description
of saturation, in Lemma 4.2.5 and, mainly, Lemma 4.4.1. Imigalar the third case,
whereX is a product and’ a coproduct, reverses the process of obtaining the satorati
o(f’;1) from of’;1; as described in Lemma 4.4.1. Theogf’;1;) is given agof’;1j) U
" UA (abusing notation), wherE contains the duplication of rooted initial links in
of’, andA contains the bipointed nets formed by linkdinTo reverse this operation,
for a prenet h with a connected sub-prengt,Hor each vertexu that has a maximal
copointed subnet, desaturation takes hnd replaces the sub-prenet betweeand
e with a(qu), the saturation of a copointed subngt@ hyj. The idea behind this
treatment is that if the saturated rdt contains a maximal copointed subngt then
the subnetof’), ¢ is preciselyo(qy).

It remains to be shown the this algorithm yields the desiesdit, i.e. that for satu-
rated nets, desaturation has saturation as its inversgisl$tiown by Proposition 4.9.2
below, which, together with sequentialisation for netsr(@lary 2.4.5), gives sequen-
tialisation for saturated nets. The proof of this statemethbe combined with that of
the correctness condition, in Lemma 4.9.3 below.

Proposition 4.9.2. For a saturated neh desaturation gives a nétsuch thatof = h.

Proof. The statement follows from Lemma 4.9.3, below, since a a&tdrnet is con-
nected, saturated, and close-knit by Proposition 3.4.4.]

4.9. Sequentialisation 113

Restatement of Proposition 3.4.5If a pre-neth is connected, saturated, and close-
knit, it is a saturated nedf.

Proof. By Lemma 4.9.3, below. O

Lemma 4.9.3.1f a pre-neth is connected, saturated, and close-knit, then desatwgatin
it gives a nef such thatof = h.

Proof. The proof will naturally follow the desaturation algorithm

e If X=1,Y =0, or one ofX andY is atomic, let f be h; iiX =0let f be(0,Y, x);
if Y =1letfbe(X,1,x).

If X=1,Y =0, or either is atomic, the neighbouring relatien must be empty since

all links in & connect only to leaves. As h is close-knit it must be then catibfe,

I.e. its switchings switch on at most one link, and since &l& connected it is a net.
Next, if X =0orY = 1then his full since it is connected and saturated, and f may be
chosen asy?or !x respectively.

¢ If X=X+ X1 then by induction obtain prenetgffom ho ¢ and f, from hy ¢, and
let f = [fo,f1]. If Y =Yo x Y1 then by induction obtain prenetgfrom he g and f
from he 1, and let f= (fo,f1).

The case wher¥ is a coproduct will be shown, that wheYes a product is dual. It is
immediate that the sub-prenetssrand h ¢ are saturated; that they are also connected
and close-knit will be established below.

Let ¢ = (¢, Gr) be a switching for ke, and lett = (1,Tz) be a switching on h that
agrees withg on vertices in b¢ and chooses 0 omin X, i.e.,

T.(¢) =0, 10U =¢(u, and TR = G.

To show hy¢ is connected, letw (v,w) in h. If v= 0V thencw (V,w) in hoe. Otherwise,
if v= ¢ then(v,w) is a terminal link, and since h is saturated it contains alsw/),
so thatqw (g, w) in hge. Note thatt would switch offv in case 1< v. Next, it will be
shown that B¢ is close-knit. By desigm, o Ov if and only if ¢ o v, while Tz = Gg;

114 Chapter 4. The soundness proof

this means thato (Ov,w) if and only if o (v,w). Then if Qo (v1,Wi), (Vn, W) in hge
the corresponding link&0vy,wy) and (Ovy, Wy) in h must be connected by a path of
neighbours,

(OV1,Wp) ~¢ ... — (OVp,Wp) .

This translates directly into a path of neighboursr,tunless somg; is € (no vertex
1vin X is switched on byr). But a link (¢,w;) has only one neighbou(D,w;); then
the path in h must contain the segment below left, which careplaced by that below
right.
. A0,W) ~¢ (E,W) ~¢ (O,W) (0,wy) ...

After so removing all edge&,w) from the path of neighbours in h, it translates into
a path(vy,wy) ~C (Vn,Wn) in hge. This shows thatdy is close-knit. By a symmetric
argument, also{y is connected, saturated, and close-knit.

Applying the induction hypothesis gives netsand g such thato(g) = hj¢; let
g = [go,01]. Since h is saturated and@h it holds thatog C h, and it follows by
Lemma 4.2.5 that k£ og, so that h= og.

« If X is a product andt’ a coproduct then of the sub-prenetsg land h j of h,
choose one that is connected. Fgj,hconstruct the sub-prenet@h, j as fol-
lows. For eactu € MAXcpP(h) choose a copointed subnet G hy j, then let
MAXCP(h) = {u,...,uy} and construct the following series of pre-nets.

hej = do, Qi ., On where g = gi-1{00y}u.e

From g obtain a netjfby induction; let f= fj;i;. For a sub-prenet;j the
procedure is dual.

First, it will be shown that fx or he j is connected, for somer j. If h contains a rooted
link, say (Ov,€), then Iy is connected by the following argument. Let (¢, Gr) be
a switching for [¢, and lett be a switching for h that agrees withas follows.

T (0u) = ¢ (u) TR =G

By connectednessswitches on at least one link,y). If x=0x thenqw (X,y), and
if x= € then h must also contai{®,y) because it is saturated, andgo(g,y).

<

4.9. Sequentialisation 115

Otherwisex = 1X'. Construct a second switchipgfor h that switches on bottOv, €)
and(1x,y), in the following way.
0 ifOud<Ov

pL(Ou) =) pL(1u) = 1 (1u) Pr = Tr
1 otherwise

Because h is close-knifQv,e) —~¢ (1x,y). Since this path of neighbouring links con-
tains links both of the forni1u, z) and of the form(Ou, z), it must contain a section

(Ov,€) ~p ... ~p (L, W) ~p (&,W) ~p (O,W) ~p ... ~p (IX,y)

for some vertexv. But sincepr = Tg = g the vertexw is switched on by, while the
vertex 0 cannot be switched off; thew (O,w). Then ly¢ is connected.

The above showed that one gffand h j is connected, under the assumption that
h contains a rooted link. It will now be shown that h does irt faantain a rooted link
(u,€) or (g,2). Assume for contradiction that none of the four sub-preisatsnnected.
Then there exist switchingsandp such that, without loss of generality (Ov, Ow)
andp o (1x,1y). A switchingq = (¢_,) is constructed fromr andp that switches on
both these links, as follows.

¢.(Ou) = 1.(Ou) G (1u) = p(1u) G(0z) = 1=(02) &(12) = pr(12)

Thengo (Ov,0w) andqo (1x, 1y), and since h is close-knif0v,0w) ~¢ (1x, 1y). As
before, this path of neighbouring links must contain théofeing segments, for some
uin X and someiny.

<U,0> ¢ <U,8> ¢ <U, 1> <07 Z) ¢ <87Z> ¢ <17 Z>

Then h contains two rooted linkéy, €) and (€,z), and by the above one oph and
hie, and one of hp and iy 1, must be connected.

Having shown that at least ongclor he j is connected, without loss of generality
suppose that the algorithm selects the connected prepet Recall that g is then
obtained from ko by replacing each sub-prenet between a vautexmaxcp (h) ande
with a(qy), the saturation of a copointed subngthy . Such a choice gfor every
u € MAXCP(h) exists since h is saturated: it is obtained from the maxiropbinted
subnet ofu by a synchronised saturation step moving initial lifk€) down to(v,0).
Since h contains gand is saturatedyqy C hy, and as g is obtained from b by
replacing o with aqy (for eachu € MAXcP(h)), also gC hgo. In the following, let
qu be fixed for everyu € MAXcP (h)

116 Chapter 4. The soundness proof

To apply the desaturation algorithm recursively to g, it trlus shown that g is
connected, saturated, and close-knit. For the first, sipgashconnected, so is g—
each g is connected, so replacing a sub-prenet witf) cannot break connectedness.
For the second, ¢p is saturated because h is. Also, eaxfj is saturated. It will be
shown that replacing a subnetdwith oqy does not break saturatedness. Assuming
the contrary, there is a saturation ste(f | k}»\ﬂw on g, where f is a subnet of g, but
some link in k is not in g. Sinceqy C hy, this link in k must be in the latter but
not the former; however, ifi < v the entire rewrite step is iaqy, which is already
saturated. This rules out the four saturation steps whex®. Thenw must bel, and
u must bevO or v1; without loss of generality, lat be vO. The two saturation steps
wherev is a product are ruled out: the copointed subngisgnaximal, whilettg;qy
would be a larger copointed subnet, forOf the two remaining saturation steps, only
the following one adds a link that is in,b.

ok ON
Y / w 11T v ./ \ w
‘0 | o

But this link, (u,w), is already inoqy, since the latter contains all terminal links, by
Lemma 4.3.6. Thus g is saturated.
Before it is shown that g is close-knit the following staterneill be proved.

| If (x,1y) is a link in h then some < xis in MAXCP (h).

Since R o is connected every switchingthat switches orix, 1y) must also switch on a
link (v,0w); and because h is close-knfY, Ow) ~¢ (x,1y). The path of neighbouring
links connecting these links must pass through a rooteiiifink, and traversing the
path from(v,0w) to (x, 1y}, there is a last such linlu, €). In other words, for every
such thago (x, 1y) there is a link{u, €) such that

<U,8> S <U, l> ¢ <V17 1W1> TG TG <Vn7 an> ¢ <X7 1y>

Without loss of generality letx, 1y) be such thak is minimal, i.e. no(xX,1y’) exists
in h such thatd < x. Thenx <v; for all i < n, and in particulax < u: the path
cannot reach a link such thatt v; without also crossing a linkvj,w;) wherey; is the
common root, the greatest common prefixxahd v. For everyg such thato (x, 1y),
this argument provides a rooted initial liflg, €) with x < u andqo (u,g). Then in
the subnet f, every switching switches on at least one rooted initiék.liBelecting
exactly one such link for each switching then provides a aupd subnet ¢C hye.

4.9. Sequentialisation 117

Sincex has a copointed subnet, it follows that som€ x has a maximal copointed
subnet, showing.

To show that g is close-knit, lgtbe a switching for g and letw (v,w) andqw (X, y).
Since gC he g and h is close-knit, for an arbitrary switchimghat agrees witlg where
possible, i.eT v (v,0w) wheneveigw (v,w), there is a path of neighbouring links in h

(v,0w) = (Vo,Wo) —~t (V1,W1) —~p ...~ (Vn,Wn) = (X,0y) .

It will be shown that g contains a path of neighbovsv) —~¢ (x,y). This path will
be obtained from the above path in h by replacing the stretalirereu < v; for some

u € MAXcpP(h). For the other links, thosés,w;) where nou <v; is in MAXCP(h),

| above gives that & w;. In addition, ifw; cannot beg, since a link{vi,&) must be
an initial link, constituting a copointed net, and contrdihig the assumption that no
u <v; has a maximal copointed subnet. Thus, ifune v; is in MAXCP(h) thenw;
must be of the form @/, and since the linKv;,0w)) is not replaced in the substitution
of some o by oqy, the link(v;,w) is in g.

Next, consider a verteni € MAXCP (h), and the subnetj. For alink(v,w) where
ui < v, no neighbourv,w) is outside hi¢. Moreover, a neighboufv,w) is outside
huie only if ui £ V. That s, if (v,w) —~¢ (V,w), while ui < v butui £ V, then it must
be thatV = u andv = ui, and thatw is 1. In addition, by the above, sincé is not
dominated by a vertex that has a maximal copointed subnetwO Together, these
observations imply that the only neighbouring steps betwaeénk inside ki and a
link outside it, are of the form

(ui,Ow) —~¢ (u,0w)

where Qv is terminal. Then a segment of the path of neighbours in hehtdrs and
exits the subnetj. is of the following form:

.<U,OW|> 1 (UI,OW|> T ... TT <UI,OW]> T <U,OWJ>.
It will be shown that in g, this segment can be replaced bytergtath of neighbours,

L UW) (Ui w)

c (ui,wj) —~¢ (u,wj)...

Such a path exists because of two facts. Firstly, since ftfies {ui,w;) and (ui,w;)

are terminal links, the corresponding linksw;) and (g, w;) exist inoqy;, because by
Lemma 4.3.60q; contains all terminal links. Secondly, singgy; is a saturated net,
by Proposition 3.4.4 it must be close-knit; then there mesalpath of neighbours

118 Chapter 4. The soundness proof

between(e, w;) and (g,w;) in oqy; for any switching—including the one that agrees
with ¢andt. This shows the above segment in g exists. Then the@ath —~¢ (x,y)

in g is constructed by taking the corresponding path in hevhdu < v; has a maximal
copointed subnet, and replacing the path by another by tneeadonstruction for the
segments where sone< v; does have a maximal copointed subnet. Thus, g is close-
knit.

At this point g has been shown to be connected, saturated;lase-knit, and by
induction the desaturation algorithm gives a net f suchdiiat g. It remains to show
thato(f;19) = h. In one directiong(f;1p) C h is immediate since fy C g;10 € h, and
h is saturated. For the other direction, first the followitagesment will be proved.

Il. If (x,y)is alink in h such that some< xis in MAxcp(h), but(x,€) is notin q,,
then somev <y is pointed.

For the link(x,y), lety be minimal in the following sense: there is no lifk y') in h
such that/ <y. Let¢be an arbitrary switching such thav (x,y). Sinceu < x alsou

is switched on, and since, @s a copointed net, by the switching condition at least one
link in qu, an initial link (v, &) with u <, is switched on by. By assumption(x, €) is
notin q,, so(v,€) is distinct from(x,y). Then since h is close-knit it contains a path of
neighbours of the form

(X,Y) ~c (V1,W1) —~¢ ... —~¢ (Vn, Wn) —¢ (V,E) .

Sincex s distinct fromvy, this path must contain at least one segment of terminad link
(Vi,w),...,(vj,w), wherew is 1. Assume this is the first such segment. Then the path
before it must be of the fornx,y), ..., (x,w); that is, ifw; is the first terminal target
vertex in the path abovey = x for all k <'i. By the assumption of minimality of, it
follows thatw <'y. This argument provides, for every switchigthat switches om, a
terminal nodev <y. This is equivalent ty being pointed.

To show thato(f;19) 2 h, Lemma 4.4.1 describegf; o) asof; 10U UA, wherel’
are all links(v,w) wherev is 0 and(v,€) is in of, andA contains all links\v,w) where
someV < v has a maximal copointed subnet and samec w is pointed. Let(x,y)
be a link in h. Ifu < x for someu € mAxcP(h) then byll either the link(x,€) is in
Qu, in which casgXx,y) is in ", or somew <y is pointed, in which caséx,y) is in A.
Otherwise, ifu £ x for all u € Mmaxcp(h), then 1£ y by |. Moreovery # €, because
otherwise(x,y) would be an initial link constituting a copointed subnet.emt0<y
and(x,y) is in g;ip = of;10. This concludes the proof thatho(f; o). O

Part Il

Classical proof forestry

119

Chapter 5

Classical proof forests

5.1 Introduction

In this part of the dissertation a canonical graphical daktor first-order classical
logic, here callealassical proof forestss investigated. The cut-free calculus was first
described by Dale Miller [79] aexpansion tree proofs compact representation of
first-order and higher-order classical proof. The presppt@ach, based on Herbrand’s
Theorem and a semantics of backtracking games in the stylleiefry Coquand [26]
and the exponential modaliti€8,!) of linear logic, adds composition via cut and cut-
elimination. The current chapter will discuss backgrouraterial and related work
and present the forests themselves. The next chapter, &l&gptill introduce the cut-
reduction steps and give a proof of cut-elimination. Chaptwill discuss variations
on the reduction relation, and provide a detailed discussiagelated work.

Classical proof forests, as a representation of first-aridasical proof, have a strict
focus on witness assignment to quantifiers and dependebetesen such assign-
ments, and ignore the (decidable) propositional side afsital logic. This approach
is familiar from Herbrand’s Theorem, which shows that aahlg witness assignment
to quantifiers of a first-order formula is sufficient to makelécidable. By allowing
the dependencies between different witness assignmeisntoa partial order, the
proof forests factor out the permutations of the sequerutad, and are in that sense
canonical. The game-theoretic semantics allows an iaéuriterpretation of the forest
proofs as strategies for a two-player game, and providesiséd insights in addressing
several of the more technical issues encountered in thik.wor

An interesting challenge for such a representation of pi®td find a notion of
composition via cut-elimination. Unlike in the sequentocélis, whose pervasive bu-

121

122 Chapter 5. Classical proof forests

reaucracy means cut-elimination is dominated by pernanatand similar inessential
operations, it may be expected that cut-elimination in aboa&al formalism such as
proof forests consists solely of conversions that are Sggmt. In addition, the unde-
sirable reduction behaviour of the sequent calculus is contyrattributed to cuts on
two weakened formulae (the Lafont example in Figure 1.3)aurtd on two contracted
formulae (see [28, Section 3]). Since proof forests rulesoigh cuts, because contrac-
tion and weakening are restricted to existentially quadiformulae, it may be hoped
that cut-elimination is well-behaved.

This part of the dissertation describes the results of ararome investigating
composition via cut-elimination for classical proof foi®sA first contribution is the
definition of a cut-reduction relation, naturally inspirby both the structure of the
forests, their game semantics, and the interpretation quiesg proofs. Still, these
reduction steps turn out to be badly behaved: certain cutaatebe reduced, and
what is worse, such badly behaved cuts can be reached bytimdirom perfectly
ordinary ones. The example proof forest exhibiting such fgalliction behaviour is
non-trivial, and its discovery is a main contribution ofgkvork. Two further principal
contributions are the two solutions to this problem that Wé presented. The first
solution identifies the structure causing bad reductiorabielir as redundant, and
provides a way of removing it. A modified reduction relatidrat includes this an
operation removing the unwanted structure is shown to be&iwewrmalising, and
conjectured to be strongly normalising. The second salutidoased on an analysis of
when reduction steps cause the loss of weak normalisatidinc@nsists of a reduction
strategy that avoids those steps, obtaining weak norntialisi@r the original reduction

relation.

The present chapter will discuss the proof forests, anddlite a notion of cut.
Section 5.2 will introduce the proof forests informallyrinca discussion of the back-
ground material; Section 5.3 will discuss composition weitth, and in Section 5.4 the
forests be will defined formally. In Section 5.5, translatprocedures between sequent
proofs and proof forests will be discussed, and it is illattd how proof forests fac-
tor out the bureaucracy of the sequent calculus. Differantmnts of cut-elimination
will be treated in Chapters 6 and 7; the latter chapter willadldition, compare proof
forests to related work in more detail. The results in Chaieand 6 appeared in [48];
the material in Chapter 7 is new.

5.2. Background 123

5.2 Background

In this section classical proof forests will be introducetd anotivated, from three
points of view: one, Herbrand’s Theorem; two, backtrackyagnes; and three, the
sequent calculus. Proof forests will first be treated infaltynin a cut-free setting.

Herbrand’s Theorem

Herbrand’s Theorem [50] states that a first-order formfula valid, if and only if it
can be transformed into a propositional tautology by thelwoation of the following
operations (applied to the formula transformed to negatiomal form).

1. Expansion an occurrence of a subformulx.B is replaced by a disjunction
of any number of copies of itselgx.BV ...V Ix.B. This may be repeated an

arbitrary number of times.

2. Prenexificationcasting the expanded formula into prenex-normal form, by-m
ing quantifiers from inside the formula to the front (and manzy variables when
necessary).

3. Witness assignmerthe existentially quantified variables in the prenex folanu
are each replaced with a first-order term. A teérsubstituted for a variabhgin
a formulaQ1xz ... Qnxn.3Jy.B, where eacl®); is a quantifiery or 4, may use no
other bound variables than thosexgf. . x, that are universally quantified. Of the
resulting universally quantified formula, the matrix is ¢ak(the propositional
part).

In [20] Samuel Buss describes a calculusH#rbrand proofs which consist of the
above three steps, followed by a tautology check.

The expansion of the formula essentially allows an arhjitrarmber of choices
of instantiating each existentially quantified formula.isThuggest a tree-notation in
which universal quantifiers have unique successors, asteeial quantifiers arbitrar-
ily many. The prenexification is a topological sort of the qifgers in the expanded
formula (it imposes a linear order that respects their nabiree-ordering). This de-
termines what universally quantified variables may be usela withessing terms for
the existentially quantified variables. However, the sautesstutions may be enabled
by several different ways of turning a formula into prenexmal form. The sugges-
tion is then, that rather than imposing a linear order on tfiers, a partial order may

124 Chapter 5. Classical proof forests

be more pertinent. These two suggestions combined, of anttion with a super-
imposed partial order, are at the basis of Miller's expamsiee proofs [79]. Here the
same ideas inspire classical proof forests, which are lglasedelled on expansion
tree proofs.

Backtracking games

Backtracking games were used by Coquand [26] in the earl§489 a means of giving
evidence for statements of classical arithmetic. Backiracgames can be defined in
several ways: for instance, some games allow backtrackingdth players; others,
like the ones used here, for just one of the two. Since not rhualpes on the precise
choice of definition, the games will only be informally ske¢d.

A game is played by two playersybelard’ (falsifier) and 3loise’ (verifier), on
a chosen structure. The players take turns assigning wese®lements from the
domain of the structure, to the quantifiers in a sequent afgéormulae. Positions
in the game are (partially) instantiated subformuldleise can revert to any previous
position where it was her turn and assign a new witness; hiegrmyposition is recorded
and can be a target for later backtracking. She wins the ghitmeaches a quantifier-
free position that is true in the structure.

A proof is a strategy fodloise that is winning on any structure. Traditionally,
strategies are functions that, given the history of a gamwjge the next move. Proof
forests deviate from this, abstracting away from irrelévamices in the order of
moves: moves in the strategy are only partially ordered, ginein the history of a
game the strategy suggests a range of possible moves. ddessimade by proof
forests are that the strategies the represent are finitejrafadm, in the sense that itis
not influenced by which structure the game is played on.

Cut-free proof forests

A classical proof forest represents a strategy-loise, for a game specified by a se-

quent of first-order formulae in prenex-normal form. A fdregntains a tree for each

formula in the sequent and is defined as a graph, with edgessesting moves and

nodes corresponding to positions. The order in which movegpkayed is only par-

tially specified, by means of a partial order on nodes andsdgked thedlependency
As an example, consider the proof of the drinker’s formieFigure 5.1.

1This typical example of a classically valid formula with nenstructive proof is so named after the

5.2. Background 125

Ixvy. P(x)V-P(y)

b
vy.P(a)v—P(y) W) Vy.P(b)v-P(y)
c

P(a)v—P(b) P(b)v—P(c)

Figure 5.1: A forest proof of the drinker’s formula

The root node at the top is the starting position: in the itatsons, edges point
downwards. The strategy opens on the left branch, whkriee assigns an arbitrary
value from the domain (represented by the variapte the existential quantifier. Next,
Vbelard instantiates the universal quantifier with a cenailae, recorded ds. If the
position bottom left is true for these valuedipise wins. Otherwise, she backtracks
to the root of the tree, this time taking the right branch assigning the valud to
the existential quantifier. Then, whichever vatuébelard chooses for, at the bottom
right positionP(b) v —=P(c) must be true, since previously in the gaR@) v —P(b)
was false.

The arrow in the diagram indicates whefleise’s choice of witness relies on ear-
lier witness assignments b{pelard. Together with the ordering of the nodes and edges
in a tree—which reflects that before the subformulae of atjpmscan be reached the
position must be reached itself—this forms trependency ordering@acktracking is
represented by branching at existential positions, wherstrategy does not necessar-
ily define which branch to take first.

P VXA XA

B SR
a t1 R (n>0)
Ala/X Alt1/x] Altn/x]

Figure 5.2: Forest components

A cut-free classical proof forest is a forest of trees buiinfi the components in
Figure 5.2, plus a dependency ordering over the combinedshadd edges. In the
diagram P andA are propositional and prenex formulae, respectively, aedstnaller

interpretation: ‘there is a man in a bar, and if anyone dritlesdrinks.” This is also the example used
by Miller [79].

126 Chapter 5. Classical proof forests

circles represent arbitrary nodes (that need not be leates)n left to right are dis-
played a propositional position, a move Wyelard, and several moves from the same
position bydJloise.

A dependency ordering on a proof forest will be a relation odes and edges
subject to three conditions: 1) an edge is larger than itsceonode and smaller than
its target, 2) an edge carryirighelard’s choicea is smaller than an edge indicating
dloise’s choice if aoccurs free irt, and 3) it is a partial order. Since the dependency
indicates a constraint on the order of play, two distinct esostepending on each other
would constitute a form ofleadlock where each is waiting for the other; the latter
condition, that the dependency must be a partial order, laamtie seen as preventing
deadlock. The smallest dependency on a forest is callechthenalone. Later, a
forest will be allowed to carry a non-minimal dependency, fom now the minimal
one will be used.

A correctness condition for cut-free proof forests follavegurally from the game-
theoretic interpretation. A proof forest is a proof of itggent if it represents a winning
strategy for3loise, regardless of the actual structure on which any @deai game is
played. This is precisely the case when the disjunction allgaropositional nodes in
the forest forms a tautology. A cut-free forest with thisgeay will be calledcorrect

Ix-Px VXY (PxA-Py) Vx3y.(=PxAPy) 3x.Px

® ®
V a b W
® : a ®
® ®
-Pa Pan—Pb -PbAPa Pb

Figure 5.3: An example proof forest

A second example forest, pictured in Figure 5.3, illuss@eependency that is not
a linear order. A play starts with eithergdbelard’s two moves, top center, assignang
or b—which one is not determined by the strategpelard’s movea enablesiloise’s
move at the vertex v, andbelard’s mové enables her move at w. The moves at x and
y depend orboth of Vbelard’s moves. As witlvbelard’s moves before, the strategy
does not give an order of play for the four movesibyise.

5.2. Background 127

The dependency, central to classical proof forests, ajrapgears in Miller's ex-
pansion tree proofs [79], of which cut-free proof forests #re (prenex) first-order
fragment. Soundness and completeness are establishexd patber, and also follow
from translations with the sequent calculus, describedrimélly in the next subsec-
tion, and in more detail in Section 5.5.

A first-order sequent calculus

Taut T, Ala/X] . L AL/X]
AL A FT.UxA ° FT,9xA

F T, 3x A, IXA -
FILaxA & FroaxA”

I—F,A,ACR Fr we LA o
FTLA LA T, T

Cut

* \/[L, A is a propositional tautology ~ ** ag¢fv(I")
Figure 5.4: A sequent calculus for first-order prenex formulae

Figure 5.4 displays a one-sided sequent calculus for préorexulae. The five
rules above the central line, together referred to asthet calculus, are a tautology
axiom, universal and existential introduction rules, aadttaction and weakening on
existentially quantified formulae. This calculus is cal&dct because in addition to
being cut-free, it restricts contractions and weakeniogsxistentially quantified for-
mulae. Due to the absence of cuts and conjunctions, prodfseistrict calculus do
not exhibit any branching. The three inference rules belwwvcentral line are admis-
sible. For the general contraction rule, this follows frdme proof transformations in
Figure 5.5, mentioned by Buss in [20]; the argument for gaingeakening is similar.
Admissibility of the cut rule follows from Gentzen’s shan@sl Hauptsatz (also known
as the midsequent theorem) [40]. As a consequence, thecsticalus of Figure 5.4 is
sound and complete.

Cut-free proof forests and sequent proofs in this systembeatranslated back
and forth straightforwardly. Here, the translation pragedwill be briefly sketched; a

128

Chapter 5. Classical proof forests

Taut

FT.PP Taut
IR =

TP R TP
n

Mia/b]

l—r,A[a/x],A[b/X]vR N |_|—,A[a/:x],A[a/x]

FT, AR/, VXA
R HT,Aa/x

FT, VXA, VXA zR R
FT, WA =T, VXA

Figure 5.5: Admissible contractions on propositional and universal formulae

complete treatment, which includes cut, can be found ini@e&t5. Edges in a forest

correspond t&R-inferences andR-inferences, branching on existential nodes to con-

traction, and an existential position without branchesesponds to a weakening. The

dependency witnesses a non-permutable ordering of irdeserin the strict calculus

this may arise, by transitivity, for two reasons: one, beeaane inference’s conclusion

is another’s premise, or two, due to thigenvariable conditionthe side-condition on

VR-inferences that the eigenvariable may not occur freearctimtext. Both are illus-
trated in Figure 5.6; an occurrence of these will be calletrgrermutability

FTA - T Ala/X.Blt(@)/y]
T, BE; ~T.Ala/x, Jy.B
-T.C FT, YxA, 3yB

Figure 5.6: Impermutabilities

Informally, then, the dependants of a move in a forest cpoed to the inferences

in the smallest possible subproof of a sequent inferencall e possible permuta-
tions of the sequent proof. To translate a forest to a sequeif involves making
contractions explicit and topologically sorting the degemcy; the other direction in-

volves the reverse.

Proof forests factor out the remaining two forms of bureaagrof the strict calcu-

lus of Figure 5.4 (after restricting contraction and weakgrno existential formulae).

Firstly, proof forests use branching in place of binary cactions; although it should

be noted that a similar effect can be obtained in sequentiical@s well, by having

contractions of arbitrary arity and forcing these to oceumediately above the rule

5.3. Cut 129

that has the contracted formula as a premise. Secondlyf, jorests factor out the pos-
sible permutations in sequent proofs in the strict calgulushe same way that they
abstract over the choice of prenexification in Herbrand fs;cand the precise order
of moves in a backtracking game: by allowing the dependendyeta partial order,
where otherwise a linear order is used. For these reasat,fprests may be consid-
ered bureaucracy-free, and in that way canonical for dakproof. A more detailed
discussion will follow in Section 5.5.

5.3 Cut

A notion of cut, used to compose forests, will be introduagdrimally. Two game-
theoretic interpretations of cuts will be discussed; onkhle the main inspiration for
the formal implementation of cuts, the other will providedance in designing the
cut-reduction steps in Chapter 6. Finally, it will be showowhto decompose a forest
along a cut, yielding a correctness criterion for foresthwuit.

/ r \ /A AL r

Figure 5.7: Composing forests for I, Aand A+, I’ with a cut

Forests for sequenis A andA*-, I’ (whereA+ denotes the DeMorgan dual Aj
can be composed usingaat, a link between the two dual trees from both forests.
Figure 5.7 gives a schematic impression, where trianglésti@pezoids abbreviate
trees and forests respectively, and the cut is labelled thalcut-formula The result
is a forest for the sequeht ', whose formulae are represented by the remaining root
nodes.

A first interpretation of the cut is as a composition of sig@s. The common
game-theoretic interpretation of composition, among nmathgrs found in [26], is to
let the two strategies play against each other on the formind A linked by the
cut. Moves bydloise in one game are interpreted as moves/bglard in the other
game, and vice versa.

This interpretation works well with strategies as functiamdicating the next move,
but not so well in the present setting of backtracking andiglgr ordered moves. In

130 Chapter 5. Classical proof forests

particular, if backtracking occurs in both the strategyAirand that inA*, it is not
obvious that when they play against each other, the gameénates. Coquand’s argu-
ment in [26] uses the linear ordering of moves available at #etting; but a notion of
cut that depends on a given linear order on a forest is notrgealo In addition, the
interpretation of a cut as an interaction between strasdagieloser to a description of
cut-eliminationthan a description of cut itself. For these reasons the almegpre-
tation will guide the design of the cut-reduction steps iratier 6, while the formal
definition of a cut will be guided by a different, complemegtamterpretation in terms
of moves in a game.

In this second interpretation a cut consists of two suceessoves: firstlydloise
chooses a cut-formuld, introducing the positio A A-; next, Ybelard chooses one
branch of this conjunction. To represent the first move bydgeen a forest, it will
be modelled as a move instantiating the generic contradicti with a specific one
ANAAL. The idea thatlL is a position available taloise at all times is natural from
the view that it is the empty sequent, and the unit of disjiomcfas embodied by the
commas of a sequent). The combined construction is displayé&igure 5.8; the
simple bar on the left will be used as an abbreviation.

Figure 5.8: Cuts

The translation of a cut in the sequent calculus is by conmgpsvith a cut, the for-
est translations of the two subproofs of the cut in the seurenf. For example, after
translating the subproofd andl’ below to forests fof, A andA®*, I, the translation
of the whole, including the cut, will be as in Figure 5.7.

M '

FTA FALT

Y

T

Cut

In a sequent proof, a cut-formula may contain occurrencebefkigenvariables of

5.3. Cut 131

VR -inferences, as illustrated below left.

n n’
=T :P(a) F-=P(a) :F’ Bla/X] gf g\f/—@
| Fr,r B[a/X,] | . \(gg)o -
ST T YXB S %

The fact that this constitutes an impermutability meansithproof forests, cuts must
be part of the dependency, as illustrated above right: itdamula contains an occur-
rence of an eigenvariable introduced in a movérbglard, then that cut must depend
onVvbelard's move.

This interpretation of cuts has several conceptual adgastaBy describing a cut
as two consecutive moves in the game, it gives an interpoatttat is internal to the
game. Moreover, it accounts for the fact that the dependearages over cuts in a
natural way, by describing the introduction of a cut-forenak a move byloise, that
may depend on previous choicesWelard.

Correctness and decomposition

Two more, closely related, issues will be taken up here tliziggroof forests with cut
will need a correctness criterion. Secondly, for sequésaon (a translation back to
the sequent calculus), it must be possible to de-composecd farest along a cut; i.e.
from a proof forest with a cut on trees féarand A*, it must be possible create two
forests, one with the tree fgk, and one with the tree foh-. As suggested by the
illustration below, after proof forests fdr, A and forA*-,I" have been composed with
a cut, itis not generally possible, in the composed foresdetermine which trees and
branches in the combinddandl™”’ used to belong to which original forest.

A

r,.r A\ /AL

An idea towards solutions to both issues is provided by ttexpmetation of the cut
as two consecutive moves in a game. The second of these ntlbgexynjunction, is
a choice byvbelard for either branch. In any given play, the positioread@s) in the
branchnot chosen byv/belard will never be played—and neither will those depegdin
on them. Since a proof forest, representing a winning gjydte Jloise, should offer a
counter-strategy tanypossible move bybelard, this suggests the following treatment

132 Chapter 5. Classical proof forests

of cuts: for the two trees linked by a cut, removing either phes all of its dependants
should leave a proof forest that is a winning strategy.

To decompose a proof forest along a cut on treesAfand A, one forest is ob-
tained by removing the tree féx-, and all its dependants, the other by removing that
for A, plus all dependants. The proof forest illustrated abowel f[" and with a cut
onA andA®, is thus decomposed into the following two forests (assgmim depen-
dencies between the trees farA+ andl",).

Y Ay

The resulting proof forests above are faf”’, A andl",I’, A-. Using decomposition

to translate a cut in a proof forest to one in sequent caldhlusgives the cut in itad-
ditive formulation, below—as opposed to thultiplicativeformulation in Figure 5.4.

FMLA FTLAL
T

Add.Cut

The additive and multiplicative formulations are equivlelassical logic, due to the
presence of contraction and weakening. This will be usecerti®&n 5.5 to provide a
translation from proof forests with cuts to sequent proofthe calculus of Figure 5.4.
Another, more concrete example of decomposition is picturd=igure 5.9.

The correctness criterion that will be introduced for priwwésts is closely related
to decomposition. Let awitchingbe a choice for one branch of every cut—intuitively,
a strategy forvbelard on conjunctions. Then for every switching, after ogimg
for every cut the branchot indicated by the switching, plus all its dependants, the
disjunction over the remaining propositional positionsstniorm a tautology. This
will be formalised in Section 5.4.

The most important aspect of the correctness criterioraisitishould be preserved
by the following operations:

» compositionthe composition of two correct proof forests must be cdrrec

» decompositionthe two proof forests resulting from the decomposition cba
rect proof forest must be correct;

* cut-elimination cut-reduction steps, to be defined in Chapter 6, when appie
a correct proof forest must again yield a correct proof fores

5.3. Cut 133

Ixvy.(PxvQy)
VX.—Px I PX\/QX
Pa\/Qb —=PcA—=Qc Pc\/Qc PtvQt
IxXvy.(PxvQy)

VX.—Px Ix.PxvQx

® €

a t

® : P ®

-Pa PavQb PtvQt
VX.—Px Ix.PxvQx

al~

®

-Pa -PcA—Qc P(,\/QC Pt\/Qt

Figure 5.9: Decomposing a proof forest

134 Chapter 5. Classical proof forests

The first two of these requirements are treated in Sectiontbesfirst by Proposi-
tion 5.5.1, the second by Lemma 5.5.3. The third will be aslsizd in the next chapter,
after defining the reduction steps.

A brief discussion of the game-theoretic interpretatiothefcut will conclude the
present section. There are clear conceptual advantageswomg a cut as a combi-
nation of two moves in a game, which follow from having an iptetation of the cut
that is internal to the game semantics:

* the interpretation of the cut is independent of cut-eliation;
* it naturally accounts for the participation of cuts in trependency; and

* it provides a natural correctness condition for proof tsewith cuts.

On the technical side, a choice has to be made to use one ahéra@mplementation;
though nothing hinges on the exact choice, except conveaiddowever, in that re-
spect it is not clear-cut whether it is better to implementaas a link between two
trees, as in the abbreviated notation, or as a combinatian evertex and a\-vertex.
The former has the disadvantage that a cut is an undirectg] ethere the other edges
in a forest are directed; the latter has the problem of intcatyy two additional kinds
of vertex. The choice was made in favour of the latter impletaigon.

5.4 Classical proof forests

In this section proof forests and their translation fromuwsaqg calculus will be for-
malised. The definition of proof forests will closely mirrwve diagrams; in particular,
the arrows drawn to relate dependent moves will be impleetkais an explicit depen-
dency relation—) on edges, from which the dependency ordelirg will then be
generated. This will provide a better basis for reductiepsthan directly defining the
dependency as a partial order.

First, the language of first-order classical logic, overroiteary but fixed signature
>, will be formalised. LetvAR be a (countably infinite) set of variables and let the
signatureX consist of a collection of function symbols each of a given arity,
and a (distinct) collection of proposition symb®&of a given arityn. The first-order
language then consists of the following fragments.

* A collection oftermsTERMS defined by the grammar

t := Xe VAR | f(ty,...,tn)

5.4. Classical proof forests 135
* A collection ofatomic formulaeToms defined by the grammar
X = P(tl,...,tn)
* A collection offormulaeForM defined by the grammar
F:=X|-X|L|FVF|FAF | V¥F | 3xF

For convenience also the fragments of propositional andgxérmulae, included in
FORM, will be identified.

» The fragment opropositional formulaes defined by
P:=X|-X|L1L|PVP|PAP
» The fragment oprenex formulaés defined by

A:=P | WA | XA

In this definition, negation is restricted to atomic propiosis. Generalised negation is
implemented using DeMorgan duality, by the meta-operatgr-.

Vx.F+
IxFL

XJ_
(=X)+

-X (FVG)*t FLAGH (Ix.F)*+

FLvGh (Vx.F)+

A A
A A

> >

In addition, there are reserved characters L and R, usedlicate the left and right
branch of a conjunction.

Definition 5.4.1(Pre-proof forests)A pre-proof foresf is a tuple
(V,L,lab,E,—)

consisting of a finite set of vertices V with a distinguishésheent L, a labelling
functionlab : V — FORM assigning first-order formulae to vertices, a set of laldelle
edges

E C V x (TERMSUFORMU{L,R}) x V,

and adependency relatiof—) C E x E; with the edges forming a forest of trees:

(V1,11,w), (vo,lo,w) eE = vi=vVp l1=1Is (parents are unique)

<V17 |17V2>7 AR <Vn7 |n,Vn+1> € E (n Z 1) = Vi1 7& Vn+1 (aCyC“Clty)

136

Chapter 5. Classical proof forests

The variable letters v, ...,z range over vertices, while e is used for edges. An

edge(v,l,w) may be rendere@/,w) when its label is understood or irrelevant. Stan-

dard notions used are as followsiot nodes are those not the target of any edge; the

edgesf a vertex are those of which it is the sourtegvesare vertices without edges;

and thechildrenof a node are the targets of its edges.

To ensure that nodes and edges a proof forest are well-coedigiive types of ver-

tex are defined below, forming four disjoint subsets 6f YL } in a given forest: V),

V(3), V(P), and MA). Nodes in these subsets are said to beliggal configuration

in a proof forest all vertices will be required to be such. Eonsistency VL) will
denote the seft }.

* A propositionalvertex ve V (P) is one that is a leaf, and is labelled with a propo-

sitional formulaJab(v) € PROP.

®» P

* A universalvertex ve V (V) is one that is labelled with a universally quantified

prenex formulajab(v) = ¥x.A € PRENEX, and has exactly one edge,a,w),
labelled with a variable € varR and with a target labelleldb(w) = Ala/x].

gf VXA
Ala/x]

 An existentialvertex ve V(3) is one that is labelled with an existentially quan-

tified prenex formuldab(v) = Ix.A € PRENEX, and that has any number of
edges(v,t,w) such that the labelis a termt € TERMS and the targetv labelled

lab(w) = Alt /x].
XA
Alty/X] tli t”l Altn/X]

» A cutvertex ve V(A) is one that is the target of an edge, —)v, is labelled

lab(v) = AA AL whereA € PRENEX s a prenex formula, and has precisely two
edges, onév, L, u) with lab(u) = A and onglv, R,w) with lab(w) = A*.

/®\ AAAT
L R
A © AL

5.4. Classical proof forests 137

» The special vertex is in a legal configuration if it is labelleldb(L) = L, and
each of its arbitrarily many edged ,A,v) is labelled with a prenex formula
A € PRENEXand has a target cut vertexaV/ (/) labelledlab(v) = AAA*.

1
Aq ... An
AL ANAT AnAAY

Four types of edge are derived from the type of their sourceenan edge e (v,w)
is auniversaledge e= E(V) if v is a universal vertex & V (V); it is anexistentialedge
ec E(3) ifv € V(3); itis aconjunctionedge e= E(A) if v € V(A); and it is acutedge
ec E(L)ifv=_1¢eV(L) (note that there are no propositional edges). The nauhe
will refer to both cut edges (B.)) and cut vertices (YA)).

To define proof forests, only the notion of a dependency ntililsbs formalised.

Definition 5.4.2 (Dependency) The dependency orderingt on a pre-proof forest is
the smallest preorder on nodes and edges Y such that

(—) C (X) and v<(V,w) <w.

The choice to have the dependency range over both edges ding@vevas made for
technical convenience.

Definition 5.4.3(Proof forests) A pre-proof forest
F=(V,Ll,labE,—)
is aclassical proof forestor a sequenk of prenex, first-order formulae if
1. allnodesinV are in legal configurations,
2. I is equal to the multiset of the labels of root nodes i Y.L };
3. for a universal edgév,a,w) € E(V) the following conditions hold:

» ais not free in any formula ifr,
» a = bfor any other universal edge,b,y) € E(V),
o (v,a,w) — (X,l,y)if (x,y) € E(3)UE(L) anda € fv(l);

4. ifeg — extheng € E(V) and e € E(3)UE(L); and

5. the dependendy<) is a partial order (it is antisymmetric).

138 Chapter 5. Classical proof forests

Condition 3 in the above definition governs thgenvariablegepresenting the
choices made bybelard. Sincevbelard’s moves are independent of each other, in
the sense that he may assign different values for each,wigehles are required to
be unique. An existential edge or cut edge whose witnesging br cut-formula
contains an occurrence of an eigenvariablepresents a move bjloise responding
to the move wher&belard chooses; thendloise’s move must depend aftbelard’s.

A dependency over a forest can be computed using the occeroéeigenvariables
alone—this will be called theninimaldependency. The use of the explicit relation
(—) is a natural generalisation to allow larger dependencleagahe idea that a de-
pendency representdoise responding t&/belard’s moves. To enforce this natural
property, Condition 4 of Definition 5.4.3 requires that nomimal dependencies re-
spect the pattern that—) relates universal edges to existential edges and cut edges.
The minimal dependency on a proof forest, denatgd is imposed by replacing—)
with (—y), defined as follows:

(v,aw) — (X, Ly) <= (v,w)eEW) A (X,y) € E@)UE(L) A aefu(l),

It is easily observed from the definitions that the depengefyg is indeed minimal,
in the sense that given a forest F with an arbitrary relatier), for all v,w € V

v<pyw = v<w.

Let theminimisationof a proof forest F be the proof foresyy= (V,_L,lab,E, —u).

Correctness

Next, the correctness condition for proof forests will béirkd. First, a switching is a
function a choice for one of the two branches of each cut node.

Definition 5.4.4 (Switching) A switchingg in a forest F is a functior : V(A) —
{L,R}, indicating a set EC E(A) that contains one branch of each conjunction:

ES = {(v.l,w) € E(A) [q(v) #1} .

A vertex v isswitched offoy a switchingg if e < v for some ec ES, andswitched on
otherwise.

The edges E are the branchegbelard doesot choose; their dependent positions
become unreachable in the game, and are ignored iuatue of the forest, the dis-
junction over the remaining propositional nodes.

5.4. Classical proof forests 139

Definition 5.4.5. The value va(F,¢) of a proof forest F under a switchingis the
disjunction over the propositional nodes in F that are naotched off byc;

val(F,¢) = \/{lab(v) [veV(P) A YecES.e£V}.
Correctness is then defined as follows.

Definition 5.4.6 (Correctness)A proof forest F iscorrectif for any switchingg the
valueval(F, ¢) is a tautology.

A first convenient property is that correctness is preseweter minimisation.
Proposition 5.4.7.1f F is a correct proof forest, so By .

Proof. Any switching¢ for Fy is one for F, and ifc switches on a vertex v in F, it
switches on v in [p. Then ifval(F,¢) is a tautology, so isal(Fu,(); it follows that
Fu is correct if Fis. O

Operations on proof forests

Finally, two natural operations on forests will be definadibstitutionwill be intro-
duced as a means of manipulating vertices and edges, andba nbsubforestsas
a suitable kind of subgraph of a forest, will be given. Thedémove useful in the
definitions of translation with sequent proofs, in Sectioh, &nd in the definition of
the reduction steps.

The standargubstitutioroperation, as used on formulae and terms, will be applied
as a natural way of renaming nodes and variables througHotgst. On a forest F, let
the substitutiori/a], wherea andf3 are either both variables, both vertices, or both
edges, be defined as follows.

* a[B/a] = B: if the substitution encounters the variable, vertex, ayesal it
replaces it with3; otherwise,

« §B/a] = {X[B/a]| X €S} (Sisa set): if the substitution encounters a set,
such as Vlab, E, or(—), itis applied to all its elements; otherwise,

o (X1,...,X0)[B/a] = (Xa1[B/al,...,Xn[B/a]): if the substitution encounters a
tuple, such as a pre-proof foredt, | ,lab,E,—), a pair(e,€) in (—), or an
edge(v,l,w) while a and 3 are variables or vertices, it is applied pointwise;
otherwise,

140 Chapter 5. Classical proof forests

* y[B/a] = vy: if the substitution encounters anything else, such astawerari-
able, or edge other than or a formula wherm is a vertex or edge, it stops.

For example, this allows a substitution of one eigenvaeidbt another, sajb/al, to
be applied easily throughout a (pre-)proof forest. A secexample, it provides an
easy notation for merging two vertices v and w in a forest Fsibyply applying the
substitution Fv/w]—or symmetrically by fw/v], or by merging both with a fresh
vertex X, as in B /v][x/wj.

To obtain a reasonable notion sidfibforesthe general graph-theoretical notion of
induced subgraphwhich is the largest subgraph over a subset of verticestended
to forests. Letf|x denote the restriction of the function: Y — Z to the subdomain
X CY, and letR|x be the relatioRC Y x Y confined toX x X (whereX CY). Define:

Flx = (XUL, L, lablx, E|x, —|gy)) -

whereX C V. In this characterisation|k is the largest subgraph of F over the domain
XU{L} CV; clearly, the axioms of pre-proof forests are preservedeurthis oper-
ation. If Fx is a proof forest, it is called aubforestof F. In particular, a subforest
contains the children of any universal and conjunctioneseit contains, which are
the vertices with a fixed number of edges—conceptually, susktX may be seen
as closed underbelard’s moves. In addition, it must respect that eigeaideis do
not occur free at root nodes, part of condition 3 of Definittod.3. For example, if
X is closed under dependency thelg i a subforest, and X is {v | x £ v} with x

a cut node or existential node, then, to¢x 5 a subforest. The subforesfxFwhere

X ={v|a < v} for some vertex or edge is thedependent subforesf a.

5.5 Proof forests and the sequent calculus

In this section the translation between proof forests andeset proofs, in both direc-
tions, will be discussed. The first direction to be formalise the translation from
sequent proofs, in the calculus of Figure 5.4 plus cut, tmpforests. A sequent
proof 1, whose eigenvariables are assumed to be distiractslatesto a proof forest
F, written[] = F, as follows.

» An instance of the tautology axiom,

FPL P

5.5. Proof forests and the sequent calculus 141

translates to a proof forest F consisting solely of propas#l vertices, with
V ={v1,...,vn, L}, with lab(v;) = B, with E= @, and with(—) = @.

For the remainder, let the sequent prboWvith conclusion sequem, ..., A, translate
to a proof forest k with root vertices{vy,...,vn, L}, labelledlab(vi) = A;. In all
cases below, for the resulting proof foregt fhe dependency-g is chosen to be the
minimal one(—w). It should be noted that another natural choice would beke ta
the maximal possible dependency consistent with the argerf the inferences in the
sequent proof.

 The proofl followed by an application of theé-right rule toA; = B[a/x] trans-
lates to a proof forestds; as follows.

A Ve = VaU{u} (u¢Va)
= B[a/x],Az,...,An labg = laba U {u— Vx.B}
F \V/X.B, Az,...,AnVR EB = EA U {<U,a,V1>}

The proof forest E is illustrated below.

u

a
Bla/x /Ax /An\

 The prooff1 followed by an application of thé-right rule toA; = BJt/x] trans-

Vx.B

lates to a proof forestd-as follows. (It is assumed that a suitable terns
provided by the sequent proof also wheis not free inB.)

A VB = VaU({x} (X¢Va)
- B[t /X, Az, ..., An labg = labs U {x— 3xB}
- 3xB, A, An " Es = EaU{(xty)}

The proof forest g is illustrated below.

X

t
Blt/X] /Ax /An\

» The proofl1 followed by an application of thé-weakening rule translates to a

Ix.B

proof forest Ig, as follows.

142 Chapter 5. Classical proof forests

I_:I Vg = Va U {X} (XGVA)
= Al""’AnWE labg = labp U {X»—) ElX.B}
F3x.B,Aq,..., A, Ee = Ea

The proof forest E is illustrated below.

AN

» The proofll followed by an application of the-contraction rule toA; andA;
translates to a proof foresgFas follows.

I':I VB = Va—{vi,v2} U {x} (X¢Va)
- 3XB, HX.B,A3,...,AnC3 labg = laba[x/v1,X/V2]
F o 3IxB, As,...,Aq Es = Ea[X/v1,X/V7]

The first picture below illustratesaFthe second §-

A A A A A A

For the translation of the cut-rule, let the sequent pfdafanslate to |k andll’ to Fg,

wherel has conclusiongd, ..., A, B and’ conclusionsB, A, 1,...,A,. Assume
that the proof forestsg&and Fg have no vertices in common, except, conveniently, the
1-node: VANV = {L}. Apart from_L, let the root nodes of£be v, ..., v, X with
laba (vi) = Ay andlaba (x) = B, and let those of gbe y, iy 1, . . ., Vo With labg (y) = B+
andlabg(vj) = A.
« The combination of the proofd andn’ by a cut onB andB™,
M rn’
- Ad...,AGB FBLY At An
FA1,...,An

translates to a proof forestFas follows.
Ve = Va UVpU/{c} (c¢VaUVp)
labc = laba U labg U {c— (BABY)}
Ec = Ea UEg U {(Ll,B,c),(c,L,u),(c,R,w)}

Cut

5.5. Proof forests and the sequent calculus 143

The proof forest E is illustrated below.

Proposition 5.5.1. The translation]] of a sequent prooffl with conclusion is a

correct proof forest fof .

Proof. It is immediate from the translation th@fl] is a pre-proof forest satisfying
conditions 1 (all vertices are in legal configurations) an@h2 labels of root nodes
formT). Conditions 3 and 5 follow from the eigenvariable conditanVR-inferences,
which enforces that below'#R-inference with eigenvariabkeno formulaA contains
afreely. Thena ¢ fv(I"), and any edge added in a translation step is always minimal in
the dependency: in the case of an existential dgev) becausa ¢ fv(t), in the case
of a cut edge L, B,c) because ¢ fv(B), for any eigenvariabla in M. Condition 4
((—) CE(V) x (E(3) UE(L))) follows because the minimal dependency is used.
Then[M] is a proof forest; it remains to show that it is also correiis immediate
that the translation of a tautology axiom is correct, and trenslating an inference
other than a cut preserves correctness. For the transt#taaut, let the proof§l and
', the forests k, Fg and kc, and the vertex c be as above. A switchgidor Fc is the
union of a switching; for Fa, a switchingc’ for Fg, and eithefc— L} or {c— R}.
If ("(c) =L, i.e. the tree foB from Fa is switched on, all the propositional vertices
from Fa under the switching, are switched on in & (plus, possibly, some proposi-
tional vertices from E). Thenval(Fa,¢) impliesval(F¢c,¢”), and since the former is a
tautology, so is the latter. Symmetrically,gf(c) = R thenval(Fg, ') = val(Fc,¢’),
and the latter must be a tautology. Then translating a csepves correctness. [

The translation of the cut immediately gives a notion of cosifion for proof
forests. One thing to note about cuts is that, in a sequemif,ptie cut-formula of
an inner cut (one not at the root) may contain occurrencesgeheariables of/R-
inferences below it. When translated to a forest, thesewllitthen be dependent on
moves byvbelard. However, otherwise there is nothing to distingaiem from the
translation of a top-level cut. This is only natural: cutrfulae have no ancestors in a
sequent proof, and since cuts may often be permuted, whial aeatually at the root
is not always significant.

144 Chapter 5. Classical proof forests

Translating proof forests to sequent proofs

The translation in the other direction, from proof forestséquent proofs, will first be
described for proof forests without cuts. Translation ste mostly the direct inverse
to those in the translation from proofs to forests (see atspdxition 5.5.2 below). A
correct, cut-free proof forest frfanslatesto a sequent prodfl in the strict calculus of
Figure 5.4, written F=- 1, if I can be obtained from F by the following inductive,
non-deterministic procedure.

« If F contains a universal root node v, with unique edgsa, w) and labelx.A,
then Fy_;y is a correct proof forest, obtained from F by removing theeser
v, the edgev, —)w, and any dependenci€g —)w — e. Let the sequent trans-
lation of this proof forest be the prodt with conclusion sequerit,A. Then F
translates to the following proof.

n

-, Ala/x
AT, VxA

The side-condition of thgR rule, that the eigenvariabéemay not occur free in
I, is satisfied by condition 3 of Definition 5.4.3, by whiahmay not occur free
in the label of any root node of F.

 If F contains an existential root node v with no edges, laoebx.A, let the
sequent translation of the correct proof foregt Fy; be the proof1 with con-
clusion sequerit. Then F translates to the following proof.

n

e
I axA

« If F contains an existential root node v with exactly oneexfigt,w), and this
edge is minimal in the dependency£€v,w) for all edges e), lefab(v) = Ix.A
and let the sequent translation of the correct proof forgst 5, be the proofT
with conclusion sequeriit. Then F translates to the following proof.

n

H F,A[t/x]

AT, 3xA

5.5. Proof forests and the sequent calculus 145

« If F contains an existential root node v with»> 2 edgesgv,ti,wi), ..., (V,th, Wn)
and label3x.A. Let F be the proof forest obtained from F by distributing the
edges of v over v and a fresh vertéxwhere both end up with at least one edge,
as follows. For some(0 < i < n), replace the edggs,t1,w1),. .., (V,t,w;) by
edges(V/,t1,w1),..., (V' ti,w;), where Vis a fresh vertex. If Ftranslates to the
proofl1 with conclusion sequeifit, Ix.A, 9x.A, then F translates to the following
proof.

Il

- T 3xA IXA
FT,3xA

* If the proof forest F consists purely of a collection of pospional vertices
V1,...,VplabelledPy,. .., Py, then F translates to the following proof.

FPL

Acyclicity of the dependency guarantees that to any procddbat least one of the
above steps applies. In particular, if a proof forest hag eristential root nodes with
a single edge, one of these must be minimal in the dependency.

The two translation procedures are almost inverse, butunteg.gqro ensure that the
translation from proof forests to proafis>) terminates, it is prevented from generating
successive contractions and weakenings on the same ewbktermula, as illustrated

below.
I axA W
FILax A IxA
FT73axA XA
c3
T 3xA

Such constructions of successive contractions and weaemiay occur in the se-
guent calculus, but are generally considered bureaucracy.

Proposition 5.5.2.For a prooflT in the strict calculus of Figure 5.4, without successive
contractions and weakeningg]] = .

Proof. By inspection of the two translation procedures. O

As highlighted in Section 5.3, the translations of the c@ aot inverse to one
another. Firstly, how proof forests are decomposed is fosein the lemma below.

146 Chapter 5. Classical proof forests

Lemma 5.5.3.Given a correct proof forest with a cut edgé L, ¢) such thae £ (L, c)
for all edgese, and with conjunction edge&, L, x) and (c,R,y), the subforest&|x
andFly are correct proof forests, where X and Y are as follows.

X ={veV|y<£Lv,c£V} Y ={veV|x£v,c£V}

Proof. It is easily seen that|k and Hy are proof forests. For correctness, for any
switchingg for F|x there is a switching,U {c+— L} for F that switches on the exact
same propositional vertices. Thefxks correct if F is, and by symmetry so isfF [

Then to complete the description of the translation prooeducorrect proof forest
F with cuts translates to a sequent prbloh the calculus of Figure 5.4, written= I,
with the translation steps for cut-free proof forests abplas the following one.

« If (L,A,c) is a cut edge in F that is minimal in the dependency (€L, c) for
all edges e), letc,L,x) and(c,R)y) be the edges of the vertex c. Let the proof
forests Fx and Ry, where

X ={veV|y£Lv,c#V} Y ={veV|x£v,cAV}

translate td1 with conclusionl”, A and M’ with conclusionl", A* respectively.
Then F translates to the following proof.

M r
FTLA EALT
Fror

First, it will be argued that the translation relation is eegmpty.

Proposition 5.5.4.1f Fis a correct proof forest then there is at least one sequembipr
I such that~ = T1.

Proof. Firstly, as was argued above, the acylicity of the depengdensures that to

every forest at least one step applies. Secondly, the &@msiprocedure must be well-
defined, in the sense that at each point the induction stgppiged to a correct proof

forest. That induction steps are applied to proof foredtevis by an easy inspection
of the translation steps, and that these are correct is inatgfdr all but the translation

of the cut, which follows by follows from Lemma 5.5.3. Finglthe procedure must
terminate. This follows from the observation that each dlation step reduces the
following measure: the multiset of the number of edges oheatex in the forest,

ordered by the standard multiset ordering.]

5.5. Proof forests and the sequent calculus 147

Cuts, permutations, and dependencies

Some of the main differences between proof forests and séqgueofs arise from the
nature of the cut in both formalisms.

The translation step for cuts, from proof forests to seqpemtfs, is essentially the
translation from the additive cut to the multiplicative @athe sequent calculus. This
gives the formal side of the point made in Section 5.3, th&g cuproof forests are of
an additive nature, but that composition of proof foresesutem in a multiplicative
sense. The important technical difference between thdiaeldut in sequent proofs
and the cut in proof forests is that the sequent cut strictjyasates the two proofs
it combines,lN andM’ in the translation step above, while the proof foredfs &nd
Fly may have a common, shared part. Also, the difference bettveenorrectness
condition of proof forests, in Definition 5.4.6, and the tdagy axioms of sequent
calculus, disappears in the light of the translation praced the values of a proof
forest, under all its switchings, are precisely the tawgglaxioms of its sequent proof
translation.

In Figure 5.10 it is illustrated how proof forests factor ¢l permutations in the
sequent calculus. The first of the examples pictured shosvgg¢mutation of tw&/R-
inferences; both translate to the same forest, picturexhbitlem. The second example
shows the permutation of aiR-inference with a cut. In this way the translatipa],
from proofs in the strict calculus of Figure 5.4 plus cut togfiforests, factors out any
permutation that the sequent calculus admits.

The dependants of an edge in a proof forest then correspard]lyn to the notion
of a smallest subproof under permutations in the sequeantilcal. However, in the
presence of cuts the correspondence is not precise: it®deatr inferences may not
permute, while their corresponding edges in the foresstadion are nonetheless not
dependent. Such impermutabilities occur, for examplehétollowing way.

-T,B,A -AL B,
I—F,B,B,F’CR
Fr,B, I

Cut

In the above example, the cut and the contraction cannotripeyped, because the two
contracted formulae end up each in a different subproof.rdofoforests, there is no
corresponding dependency. This has the consequence thatraof forest translated
from a sequent proof, a the dependants of an edge may bdyssncaller than the
minimal subproof of the inference it is a translation of.

148 Chapter 5. Classical proof forests

- Ala/x, B0/, - Ala/X],Blb/x,T
FAa/x, Vy.B, T - VXA, Blb/x],T
- VXA WB, '} - VXA W.B, "
VXA vy.B
a b
-
Ala/x] [b/y]
l—AL,B[t/x],I"HR FT,A I—AL,B[t/x],I"C
ut
FTA AL SXB T UL R L
FT,3x B, ! T, 3xB, I
A Ix.B

r r
A Al Bt /x|

Figure 5.10: Permutations are factored out in proof forests

5.5. Proof forests and the sequent calculus 149

To summarise, in the absence of the cut, proof forests absivar the linear order
of inferences in a sequent proof, the translations back artld &re essentially inverse
to one another, and dependency corresponds exactly toeromdpability. The addition
of cuts increases the differences between proof forestsemakent proofs: translations
are not inverse, and not all causes of non-permutabilitgapéured in the dependency.

Chapter 6

Cut-elimination in classical proof

forests

6.1 Introduction

In this chapter, cut-elimination for classical proof fasewill be discussed. The cut-
reduction steps for classical proof forests, presenteeatié 6.2, will be based on a
natural notion of composition of strategies, and corredpdasely to reduction steps
in the sequent calculus. However, these reduction stepsouirto be far from well-

behaved. A first hint of this, in Section 6.2, is the existenmioeuts configured in such a
way that they cannot be reduced; such cuts will be calleshfe Then in Section 6.3,

a problematic proof forest will be presented, dubbeduherersal counterexample
Though it may arise in the translation of a sequent proof,yocdmposition, it has

infinite reduction paths, and reducing it introduces unsas. (That it is also non-
confluent is shown in Section 7.4.)

To obtain weak normalisation, in Section 6.4 two modificasido the reduction
relation are proposed. The problem of unsafe cuts is adebtdssa simple operation
calledpruning, which may be added to rewrite steps. A further modificaticougs
together the reduction steps on the same cut. The modifiecttied relation thus
obtained is then shown to be weakly normalising, and coajedtto be strongly nor-
malising.

151

152 Chapter 6. Cut-elimination in classical proof forests

6.2 Reductions

The cut-reduction steps in proof forests will come in fourds: for propositional cuts,
and for first-order cuts with zero, with one, and with moresextial branches. The
reduction steps are natural from a game-theoretic petigpeand similar in spirit to

those in the sequent calculus, although of course therebeitechnical differences.
However, it will turn out that reduction steps are not natyraell-behaved, and that
certain cuts cannot be reduced. The four reduction stepéinsilbe introduced infor-

mally, omitting in part how the dependency is treated, bubhwnough detail to show
where the problems arise.

l. Propositional reduction steps Firstly, a propositional cut is reduced inpaopo-
sitional reduction stepwhich simply removes the cut from the proof forest. In the
illustration below, the asterisk on the right indicatest thathing remains of the cut
itself; the unaffected parts of the proof forest are not ldigpd.

P

© o

The corresponding reduction in the sequent calculus, ont avith a propositional
cut-formula, is illustrated below.

———=Taut T o o, raut

1L
aLils Pl = FRP

Taut

Y

-,

After permuting the cut upwards until on both sides only adblgy axiom remains
above it, the cut is removed, and the two tautology axiomkoegal by a single one.

Il. Disposal steps ~ Next, a cut on a first-order formula with no existential bisegis
reduced in alisposal steppictured below.

QxB

Q@ @ ~ %

IA

The reduction step removes the cut plus all its dependantiseiabove illustration the
dependants of the universal edge of the cut are represesféd &his is similar to
what happens in the corresponding reduction step in theesggalculus, for a cut on

6.2. Reductions 153

a weakened formula, depicted below.

I'I
5 n’ Il

T : — :

——WR 1 =

FILA HAST cut T r,r’WR

B

The reduction step removes the subprbiéf on the opposite side of the weakening.
The other formulae in the removed subproof, depicted’hywre introduced by weak-
enings in the result. A disposal step may remove individuahbhes of an existential
node, while leaving other branches and the node itself whigd. That this can be seen
as similar to introducing weakenings becomes explicit waelisposal step removes
all the remaining branches of an existential node, leaviag & leaf.

1. Logical reduction steps The reduction step for a cut with exactly one existential
branch, dogical reduction stepimplements the external interpretation of the cut, as
two strategies playing against each other, described itidées.3. In this interpreta-
tion Vbelard's choice on one side of the cut mirrailsise’s move on the other side.
The reduction step, depicted below, makes this identiboasit a syntactic level, by
substituting all occurrences gbelard’s eigenvariable witHloise’s witnessing term.

A

QX_B A A/
N ; x [t/a]
€) ® Blt/X]
N—t a— 0 (L—(L C]

In the diagram, the dependency is adjusted according tolthelgsubstitutiorit /a),
while preserving existing dependencies. For the depengefromA’: any eigenvari-
ableb that is free int will, in the result, be free in the new cut-formudt /x| and in
any witnessing term or cut-formula wheaevas free before. For those frofm any
eigenvariable free i@Qx B will be free inBJt /x|, and the dependencies frakto © are
preserved. The corresponding reduction in sequent cadsisimilar.

I—II

| : M mt/a
: - ’,B a/x 5 :

B LD ML = ek FrBtid

I A} VR
FT.3xB T, wxBt : cut
T, e RrT

The reduction step applies to a cut on first-order formul&®duced by logical rules
(VR anddR). After permuting the two inference rules to be immediaéddove the cut,

154 Chapter 6. Cut-elimination in classical proof forests

the two logical inferences are removed, the cut is replageohie on the premises of
the logical rules, and the substitutiftia is applied to all (relevant) occurrences of
the eigenvariable.

IV. Structural reduction steps In the game interpretation, for a cut with two or
more existential branches there are several moveddige, and just one forbelard.
To allow these to be identified, the natural approach is toarapies ofvbelard’s
move, until there is one for each dfoise’s moves. Along withvbelard’s move, the
minimum that must be duplicated is its dependants: thesthamoves that respond,
directly or indirectly, tovbelard’'s move, and for each different choice Wyelard a
different response must be permitted séuctural reduction stepon a first-order cut
with two or more existential branches, is then as follows.

The reduction step duplicates the cut and all its dependartitse universal side, repre-
sented by, and moves one existential branch, the one assigning tinesdtabove,
from the original cut to the duplicated one. The eigenvaeisiof the duplicated de-
pendant$1’ are renamed, in the way thaltis. The duplicated cut is dependent on the
same edges and vertices that the original was, and likeweigeralencies towards the
existential branches of the cut, including that assignjrage preserved.

A corresponding proof transformation in the sequent cakuior a cut on a con-
tracted formula, is depicted below.

e © A
: I'I : L M
: . FTLAA FALT 5
: C
;l_r’rAAACR i T A " FALT
— -, !
) =——7F7F—0C
N

The subproofl, on the other side of the cut than the contraction, is duggtzand to
remove the contraction each of its premigesre connected to one of the subproidfs
with a cut. The contractions dri correspond, in proof forests, to the duplication of the
edges on an existential node, but not the node itself. Itlshmeinoted that the above
sequent proof transformation is not strongly normalisirieew both cut-formulae are
contracted—see, e.g., [28, Section 3].

6.2. Reductions 155

The reduction steps follow naturally from the interpredatof the cut as strategies
playing against each other: witnesses and eigenvariabplestioer side of a cut are
identified, and when backtracking occurs on one side, ther atinategy is modified to
respond, uniformly, to each witness it is presented withe fidduction steps are also
closely related to their counterparts in sequent calcwhtl, the removal and duplica-
tion of dependants corresponding to removal and duplicaifqsmallest) subproofs.
However, there is one caveat, discussed at the end of SécBornn the presence of
cuts, the correlation between a set of dependants and aestr&lbproof is imprecise,
and the former may be strictly smaller than the latter. Asrssequence, the reduction
behaviour of both formalisms will be significantly diffetenthis will be addressed in
Section 6.3.

Safety

With logical and structural reduction steps, problems oeduen there are dependen-
cies between the universal and the existential edges of. 8Belbw on the left, if the
unique existential edge of a cut depends on the universal, edducing the cut with a
logical reduction step creates a cycle in the dependency.

3 &
9) (alea v 2

Above right, the eigenvariabkeof the universal edge of a cut occurs free in the witness
t(a) of the existential edge. Semantically, reducing this cutidaoequireVbelard’s
witnessa and3dloise’s witnesg(a) to be identified. Resolving the cut with a substitu-
tion [t(a)/a], which leaves free occurrences of the variadble the substituted terms
t(a), is clearly undesirable.

A structural reduction step on a cut with a dependency betwiseainiversal edge
and an existential edge is also problematic. From the irdbaescription of the re-
duction step it is not immediately obvious how the differel@ments, duplicating the
cut and moving one existential edge to the duplicate, shbeldpplied. The illustra-
tion in Figure 6.1 explores the three options that confortéofollowing, reasonable,
constraints: the dependent edge should be duplicated,omghcopy dependent on
the original universal edge, and the other on the duplicatiege; and in the result the
original cut and its copy should each have at least one etiat@dge. In the two up-
per central diagrams, the cut that is being reducedptimeary cut, is indicated by the
black token. The first two possible reduction steps pictakaal/e return, in one logical

156 Chapter 6. Cut-elimination in classical proof forests

Figure 6.1: Structural steps on unsafe cuts create reduction cycles

reduction step, to the original configuration, creating @icyreduction path. The third
possibility leaves the original cut intact, while its dugaltion creates a problematic
logical cut.

As the above illustrates, the configuration where an existeadge of a cut de-
pends on the universal edge of that same cut creates sera@hlems for cut reduction.
It is also an unnatural configuration: it does not arise framposition—and hence
not from the translation of sequent proofs—since there bélino dependencies be-
tween the two proof forests that are composed. This obsenatovides a reasonable
constraint to impose on cut reduction.

Definition 6.2.1 (Safety) A cut c issafeif its dependants on both sides are disjoint.
That s, let c have the edgés,L,x) and(c,R,y); then c is safe if

—veV.x<vAy<v.
A proof forest issafeif all its cuts are safe.

The reduction steps, as they are defined below, will apply wdafe cuts. The restric-
tion thus imposed on reduction is intentionally weak. A sger criterion would be to
confine reduction steps to forests that are the translafiansequent proof—ideas in
this direction are explored in Chapter 7. However, one airthefpresent approach is
to investigate proof reductions in a general setting, irdelent of those in the sequent
calculus, and for this reason the present, weaker consisamployed.

6.2. Reductions 157

Formal definitions

Before defining the reduction steps formally, it will be exipled how the duplication
in structural reduction steps is implemented. Briefly, drgilon proceeds as follows:
the vertices in the part in a proof forest that is to be dupdidare first renamed using
a substitution; then the renamed forest and the originaistaaire combined by taking
their union, which is defined pointwise over their composent

First, let theunionof two pre-proof forest be given as follows.
FAUFs = (VaUVg, La, labaUlabs, EAUEg, (—a)U(—g)) [La/Ls]

The speciall-vertex in the union is obtained by merging thevertices of the com-
ponent forests by a substitution. Then Figure 6.2 illuegdow substitution and union
are used to implement duplication. To copy the dependarttseafiode v in the forest
Fa (these are the vertices v, y, and z), first the forgstid-created by applying the
substitutiongV’/v], [y'/y], and[Z//z]. In addition, the eigenvariableis renamed to
b/, because it belongs to an edge that is duplicated. ThesnB Fg are combined by

u X v
ajl—— t|l=——Db
w y z

Fo = FalV Y I/ = o
w y 7z

- e L1

Figure 6.2: Duplication (of the node v and its dependants)

taking their union.

The formal definitions of the reduction steps, below, areoagEanied by further
illustrations.

Definition 6.2.2 (1. Propositional reduction stepd)et F be a proof forest with a cut
(L,Pc), whereP is a propositional formula, and edgé&sL,v) and(c,R,w). Then
F3 F|x with a propositional reduction stegvhereX =V — {c,v,w}.

158 Chapter 6. Cut-elimination in classical proof forests

@)

P
o ~
®" ®"
Definition 6.2.3(ll . Disposal reduction stepd)et F be a proof forest with a cyt_, c)
and edgesc, u) and(c, x), where the vertex x is an existential leaf. The# F|x with
adisposal reduction stepvhereX = {ve V | c £ v}.

In the illustration above, also the cut-formulas.B indicated, wher&) is a quantifier,
and the dependaniisof the universal edge of the cut. What is removed in the rednct
step is the vertices ¢, X, u, and thosdinplus their edges and dependencies.

Definition 6.2.4(lll . Logical reduction steps).et Fa be a proof forest with a safe cut
(L,QxB,c) whereQ € {V,3}, edges(c,U,u) and(c, X,x) where{U,X} = {L,R},
and edgesu,a,w) and(x,t,y), where x is an existential vertex with exactly one edge,
andu<£ay. Then R 5 Fg with alogical reduction stepwhere F is defined as follows.

* Vg =Va—{ux}
« labg(c) = BAB*[t/x]; otherwisdabg(v) = laba (V)[t/a]
» Eg is obtained from k5 by replacing the five edges
(L,QxB,c) (c,U,u) (¢, X,X) (u,a,w) (x,t,y)
with the three edges
(1,B[t/x],c) (c,U,w) (¢, X,y)
and replacing any other edgey, Y, vz) with (v1,Y[t/a],vy)

* The relation(—g) is the smallest relation ongEsuch that
e1—p€& If egr—aey, or
er —a (L,c)and(u,w) —a e, or
e1 —a (X,y) and{u,w) —p e, or
e1 —a (X,y)ande = (1,c)

6.2. Reductions 159

~ A,A’A@ [t/a]

2 B[t/X

gy oW

Definition 6.2.5(1V . Structural reduction stepsl.et Fa be a proof forest with a safe
cut(L,c), edges(c,u) and(c,x), and existential edgex,y) and(x,y1),...,(X,Yn)-
Then R 53, Fg with a structural reduction stepwhere F is defined as follows. Let
X be following set of vertices, and lptando be the following substitution maps on
nodes and (eigen)variables, respectively (wheiis the strict version o).

X = {veV|x£aV}
p = {v—V]|ve{cx} Vvu<av}
o = {a—ad|(v,aw)€Ea(Y) A u<a (v,w)}

where all v anda’ are fresh for | (and w.r.t. each other). Themn s as follows:

Fg = (Fa U Falx[pl[a]) [(x".y)/(x,y)] .

A
-

IN

..... I_Il

Technically, a structural step proceeds as follows. Thedéants of the existential
side, of the vertex x, are removed, and the cut and its uraveide are renamed,
creating ki |x[p][o]. The effect of taking the union of this proof forest with théginal
Fa is to create a duplicaté of the cut c, but without any existential branches. Then the
substitution(x’,y) /(x,y)] moves the edgéx,y) from the original cut to the duplicate.

160 Chapter 6. Cut-elimination in classical proof forests

The design of the reduction step depends on the assumptbn th safe. Other-
wise, if some dependant of u depends also on X, it will be ddlet Fa|x. Then the
subforest of Gis strictly smaller than that of u, while it should be an exdaplicate.

For a structural reduction step, 4 Fg the superscripty indicates tpemary edge
of the reduction step, and may be omitted. The superscriptany reduction step
Fa 5 Fg, indicating theprimary cut may likewise be omitted.

Basic properties

The first main properties of reductions to be establishedttzethey preserve the
axioms of proof forests, in Definition 5.4.3, and that theggarve correctness, Defini-
tion 5.4.6. For propositional and disposal steps, whicly oeiove nodes and edges,
this is mostly straightforward. On the other hand, logical atructural reduction steps
involve adding and restructuring edges and dependenclashwnakes in particular
showing that they preserve the antisymmetry of the depayderdering non-trivial.
To provide a technical basis, the following two lemmata déschow logical and
structural reduction steps modify the dependeficyon a forest.

Lemma 6.2.6.1n a logical reduction steffa 5 Fg, wherec,u,w, x,y are as in Defini-
tion 6.2.4, for allvy,v, € Vg,

Vi<a V2 = V1 < V2

or vie{l,c} A Jde (uw)—pe<aVz

Vi<pVy = V1 <A V2
or vi<a (X,y) A (Uw) <aVz
or vi<a(X,y) Ava=cC.

Proof. For convenience, an illustration of the reduction steppsaduced below.

~ A A’Q@ [t/al

Y

sy oW

A dependency ¥< vy arises from a sequence,v.., Vv, where for each < n either

(Vi—1,Vi) €E or (Vi-1,2) — (Z,vi)

6.2. Reductions 161

for some vertices z,z-note that no steps of the forfwi_1,z) — e— (Z, v;) or similar
are possible, since the same edge is never both a sourcergetind—).

For the first statement, let\Ka Vv, Firstly, if no v is y or u, then also nojvs
X, since y, # x because y€ Vg and otherwise jv1 would have to be y. Then any
edge(vi_1,Vi) € Ea has a counterpatti_1,v;) € Eg, and if (vi_1,z) —a (Z,v;) then
also(vi_1,z) —g (Z,vj). Next, if some vis u, then y_; = ¢ and either v.1 =w or
(u,w) —a (Z,vi+1). In the former case/c,w) = (vi_1,Vj+1) € Eg. In the latter case,
if vi € {L,c} the second disjunct of the statement applies; otherwises¢heence
Vi,...,Vp CONtains a section;\o, . .., Vi1 where

<Vi_2,Z> —A <L7C>7 <C,U>, <U7W> —A <Z/7Vi+1>7

in which cas€\vi_1,z) —g (Z,vj;1). Finally, if some yis y, then either ¥ ; = x and
Vi_2 = C, in which caséc,y) = (vi_2,V;) € Eg, or (vi_1,Z) —a (X,Y), in which case
(Vi_1,z) —g (L,c) and(c,y) € Eg.

For the second statement, lat¥g vy,. Firstly, for each edgév;_1,v;) in Eg there
is also an edgév;_1, Vi) in Ea, except for(c,y) and(c,w), which have corresponding
paths(c,x), (x,y) and(c,u), (u,w). Next, for(vi_1,z) —g (Z,v;) Definition 6.2.4
gives four options.

1. <Vi,1,Z> —A <Z/,Vi>

2. (Vi_1,z) —a (L,c) and(u,w) —a (Z,vi)
Then v_1 <a vj because als(c,u) € Ea.

3. (Vi_1,Z) —a (X,y) and(u,w) —a (Z,vi)
Then vy_1 <a (X,y) and(u,w) <a vj, and the second disjunct of the statement
applies.

4. (Vi_1,Z) —a (X,y) and(Z',vi) = (L,c)
Unless v = ¢, in which case the third disjunct of the statement apphes,
is either y or w. In the former case it is immediate that;v<p y; in the lat-
ter the second disjunct of the statement applies, since\poth—a (x,y) and

(U,w) <A W =Vij,1.

(Note that the last two cases cannot apply for more than ehe without there being
a cycle in(<a) or c being unsafe.) O

For structural reduction steps, there is the following leamm

162 Chapter 6. Cut-elimination in classical proof forests

Lemma 6.2.7.In a structural reduction stepa 5 Fg, where the nodes,u, x,y; and
the renaming convention— V' are as in Definition 6.2.5, for all,w € Va,

vV<pW = VAW

v <gwW = V<AWAUZAV

vV <gw = v<awAve{cx}t AYi<aw
Vv <gw = V<A W

Proof. For convenience, an illustration of the reduction steppsaduced below.

It is immediate from the way duplication is implemented ttiet dependencies
vgw v<gw vV <gw V <gw

are mirrored by a dependency<ia w. For the remaining parts of the statement, if
u<aVv<awthen v<gwandV <gw, but not V<gw orv<gw. Firstly, this
means that if W<g W' then v cannot be a dependant of u ig. Secondly, if v<g w
then, since neither v nor w can depend on u anldat v is still a duplicated vertex, v
must be ¢ or x; moreover, the dependants’afrd X in Fg include, besides' and X,
only those of yand those of {j then w must be among the former.]

With the description of how dependencies are modified bycllgand structural
reduction steps complete, it can now be shown that redugposserve the axioms of
proof forests.

Proposition 6.2.8.If Fa 5 Fg thenFg is a proof forest.

Proof. For all four kinds of reduction stepgHs straightforwardly seen to obey most
conditions of Definition 5.4.3. The following details aredted explicitly.

1. Allnodes in V are in legal configurations.

6.2. Reductions 163

The requirements in of legal configurations concerningli&bed witnesses are
easily verified. The other requirements fix the arity (the banof edges) of universal
nodes(V(Y)) and cut nodegV(A)). Removal and duplication in disposal and struc-
tural steps (Definitions 6.2.3 and 6.2.5) affects only they af existential positions
and L, since by condition 4 only edges in(¥ or E(_L) are targets inf—); other
edges are removed or duplicated only along with their sonockes.

3. For a universal edgr,a,w) € E(V) the following conditions hold:

* ais not free in any formula ifr,
» a=# bfor any other universal edge,b,y) € E(V),
o (v,a,w) — (X,l,y)if (x,y) € E(3)UE(L) anda € fv(l).

In a logical step (Definition 6.2.4) the reorganisation @& ttependency traces the
substitution[t /a], as follows. Let the edge&,t,y) and (u,a,w) be as in Defini-
tion 6.2.4. If the eigenvariable of an edge®Ea(V) is free int then @ —a (X,Y);
for an edge gwheret is to be substituted eithepe- (1 ,c) or (u,w) —a €, and after
reduction @ —p &. For a structural step the duplication of eigenvariables)gwith
vertices, ensures that their uniqueness is preserved hahthe dependency relation
(—p) traces their occurrences(if-4) does.

5. The dependendi<) is a partial order.

For a structural step it is immediate from Lemma 6.2.7 tkag) is antisymmetric
if (<a)is. For alogical step, let ¥g V' and Vv <g v for some v+ Vv'. Lemma 6.2.6
gives three cases—(i), (ii), and (iii)—for ¥g V' and three—(a), (b), and (c)—for
Vv <gV.

(i) v<aVv (i) v <a (X,¥) A (uw) <pV (i) v <a{x,y) AV =c
@ v<av (b)) V<aXy) A{uw) <av (€) V<alxy) Anv=c

In case (i) and (a) holdsa is antisymmetric; if (i) and (b) hold thefu,w) <a V' <a
v <a (X,Y), which means that the cut c is unsafe i, & contradiction. If (i) and
(c) hold then ¥ c since V# v, and V ¢ {x,u} since V € Vg. Then since ¢p V/
also y<a V' or w <a V/, giving the inequalities below, respectively; the formezdks
antisymmetry of <a), while the latter makes c unsafe in F

y<aV <a(X,y)<ay (u,w) <aw <p V' <a (X,y)

164 Chapter 6. Cut-elimination in classical proof forests

Next, the case (ii—a) is symmetric to that of (i—b), and ifgind (b) hold theru, w) <a
v <a (X,y), and cis unsafe. Similarly, in the case (ii4a)w) <a V' <a (X,y). Finally,
the cases (iii—a) and (iii—b) are symmetric to (i—c) anddjirespectively, and (iii—c)
requires v=c = V/, a contradiction. O

Proposition 6.2.9.1f Fa 5 Fs andFj4 is correct, then so i§g.

Proof. Let (1 ,C,c) be the primary cut and letbe a switching for g. The four types
of reduction step will be addressed in turn. For each of theetlfirst-order reduction
steps a switching’ for Fa will be given such that ifval(Fa,¢') is a tautology so is

val(Fg, Q).

I. Propositional steps If Fa 5 Fg is a propositional step (Definition 6.2.2), there
are two switchings for k, with the following values of the switched forests:

¢ = qu{c—L}; val(Fa,q) = val(Fg,q)vC
¢’ = qu{c—R}; val(Fa,¢") = val(Fg,q) VC*

If both values are tautologies, soval(Fg,).

Il. Disposal steps If Fa 5 Fg is a disposal step (Definition 6.2.2), lBtagree with
¢on all cuts in g, and switch off the universal side of the primary cut c, asstitated
below, where the dependants(ofu) are greyed out.

QxB

Formally, choosey = qU {c — X}, so that(c,u) € E; then a propositional vertex
v € Va(P) is switched on in E/ if and only if it is switched on in E. It follows
immediately thaval(Fa,) is a tautology if and only if/al(Fg, ¢) is.

1. Logical steps IfFa 5 Fg is a logical reduction step, let the five edges
(L,QxB,c) (c,U,u) (€, X, X) (u,a,w) (x,t,y)

be as in Definition 6.2.4. There are two cases to consider.

6.2. Reductions 165

1. Suppose the cut ¢ is not switched off fjyi.e. no e<g c is in Eé Letd =¢,
let v e Va be a propositional vertex, and assume thaigev for some e= Eé.
For e<g vLemma 6.2.6 gives three options; however, two are ruledecause
e <a (x,y) would imply e<g c, contrary to assumption. The remaining option
gives e<p V; since is immediate that alsoceES , it then follows thatval(Fg, Q)
is a tautology ifval(Fa, () is.

2. Suppose c is switched off by somg<g c in Eé Again let ve Va be a propo-
sitional vertex and assume thatg v for some ec EZ, but this time let/ agree
with ¢ on all cuts except ¢, where it switches on the existentiaidita

¢ = {v V) |[VE VAN AVECHU {c X},

so that(c,u) € Eg. The idea of the proof is that also ir}ilFaII propositional
nodes depending on c are switched off, since eithete(L,c) or ey <a (X,Y),
the latter of which is illustrated below.

[————

¢ ©

It will be shown that v depends on e WhileeeEf\/, or that v depends omper

(c,u), both of which are in ﬁ It then follows that v is switched off in}'/, and
since Va(P) = Vg(P), thatval(Fg,) is a tautology ifval(Fa,(') is. Firstly, for

e<g Vv Lemma 6.2.6 gives three options, one of which is ruled oatbse v is
propositional, so that ¥ c. This means that either

e<aV or e<a (X,y)and(u,w) <a V.

In the latter case(c,u) <a v; also the former is immediate ife Ed, which is
the case unless-e (c,x), since¢ andq agree on all cuts other than c. Then
since v#£ x (v is propositional) andc, x) is not a source ifi—4), it follows that

y <a V. For g <g ¢, Lemma 6.2.6 gives three options, but sifaew) <a c
would violate the antisymmetry ¢) only two remain:

e<acC or &<aXy).

In both cases,g<a y <a V, and v is switched off in E,

166 Chapter 6. Cut-elimination in classical proof forests

IV. Structural steps If Fa (3, Fg is a structural reduction step, let the existential
edges(x,y) and(X,y1),...,(X,yn) be as in Definition 6.2.5, as well as the ¥eand

the substitution maps ando. Three cases are distinguished, depending on the choice
the switchingg for Fg makes on ¢ and'cthe second and third case overlap.

1. If ¢on both c and’cselects the existential brangtc) = ¢(c’) = X, letd on Fa
agree withc;

¢ ={vqW)|veVa(n)} .
2. If ¢on c selects the universal brancl¢) = U, again letg and¢’ agree:

¢ ={v—qV)[veVa(r)}.

3. If ¢on ¢ selects the universal branatic’) = U, letd : Va(A) be as follows:

(V) ifviev
)= W) T Ve
¢(v) otherwise.

Let v e Va(P) be a propositional node switched on &yin Fa. First it will be
shown for cases 1 and 2 that v is switched orghy Fg. Since Vi (P) C Vg(P) this
requires only the following:

JecEg.e1<gVv = HezeEf\/.engv.

The edge gis either an original one or a duplicated one. If it is oridjnlaen g < EX
and g <p V. Ifitis a duplicate, then by Lemma 6.2.7 it can only @& x'), since v is
an original node. In case 1¢,x) € E; and(c,x) <a v; in case 2{(c,x’) ¢ Eg.

For case 3 it will be shown, for every propositional vertexwitshed on byc’ in
Fa, thatg in Fg switches on Vif u < v and v otherwise. If v does not depend on u
it is not duplicated, and the argument is the same as abovernfiise, if u<a v, let
e <gV forsomegec Eé. Then these are the possibilities.

» e €Ea. Theng <av, and, by Lemma6.2.7,# e;. Thus, there is no duplicate
of the source of £ and¢’ agrees withg in such cases, which gives e EC/, a
contradiction.

» ¢, =€ for some ec Ep. Then ec Ej and e<pa v, a contradiction.

6.3. The universal counterexample 167

Since if u£a v the label of v contains no eigenvariables substituted bhe label is
unaffected by itlab(v)[o] = lab(v). Thus, for every propositional vertex v with label
laba (v) switched on by in Fa, there is a vertex switched on lgyin Fg with label
laba (v)[o], which is V if u <a v and v otherwise. Thewal(Fg,¢) is a tautology if
val(Fa,d) is. O

6.3 The universal counterexample

Figure 6.3 displays thaniversal counterexampl@ proof forest consisting solely of
two cuts. It may be obtained by composing the example in Eigu8 with two in-
stances of the proof forest for the drinker’s formula in Fegb.1 (in this composition,
the universal counterexample would be accompanied by axbat two additional
trees). Labels and witnesses are omitted; naturally, ilatiem, there is no choice of
labels that makes the universal counterexample correctk §iis a proof forest for the
empty sequent.

Figure 6.3: The universal counterexample

The universal counterexample is reduced in Figure 6.4 oe (18, until a single,
unsafe cut remains. Throughout the reduction, the depengketnat contribute to the
loss of safety are drawn in black, while other dependenced@wn in grey. In places
several reduction steps have been taken at once; suchsteps-are indicated by{).
The example shows the following.

Proposition 6.3.1. The reduction relatiori~) is not strongly normalising. This holds
even for the class of forests that arise from cut-free ferbgtcomposition with cut.

In addition to creating cuts that are unsafe, the universahterexample may ex-
hibit infinite reduction paths. An example of suchealuction cyclas shown in Fig-
ure 6.5! The diagram at the bottom right of the reduction of the ursakcounterex-
ample in Figure 6.4 gives rise to a reduction cycle similah®one in Figure 6.5.

1The observation that reduction cycles may exist withousipasthrough unsafe cuts, as happens in
Figure 6.1, is due to Richard McKinley, via private commution.

168 Chapter 6. Cut-elimination in classical proof forests

®

Figure 6.4: Reducing the universal counterexample to an unsafe forest

6.3. The universal counterexample 169

ITET:

iy
@
.¢@
@
—@
o=@
,
o
o
o
-

Figure 6.5: A reduction cycle

On weak normalisation

The universal counterexample does have normalising reatugaths, one of which is
displayed in Figure 6.6 on page 170. The reduction path fdtices the cut on the
rightin its entirety, before reducing that on the left. Amyh path, and only such paths,
where one of the cuts is reduced before the other, are n@imgliWeak normalisation
of (~) is thus not ruled out—at least for proof forests that arisedayposition.

Figure 6.7 on page 171 explores where in the reduction oftihestsal counterex-
ample weak normalisation is lost. The left column shows tret four steps of the
normalising reduction path of Figure 6.6, while the threleotreduction step(sg)
each produce a proof forest that does not normalise. Whaettigee proof forests
have in common is a configuration of the kind below, where isd\stinct cuts are
‘chained’ together into a circle by dependencies betweeir iranches (this will be
referred to as aircle of cuty. Such a configuration is not weakly normalising, and
although a similar one already exists in the universal cenexample itself, the crucial
difference is that there, the circle passes through the satsdwice.

A T

While the universal counterexample may arise (in contextinfthe translation

of a sequent proof, the unsafe proof forests that it reduzeand the configuration
above, do not. The important observation to be made heratgtlrigure 6.7, the five
proof forests in the left column are translations of seqpenofs, while the three proof

170 Chapter 6. Cut-elimination in classical proof forests

0 @
<
© O O ®
v - ® ® O

Figure 6.6: Normalising the universal counterexample

6.3. The universal counterexample 171

S0
O

\

S
@

O—W
O—

20

o o
s
3%

y ® ©

Q @ ® @ @ @
<a
MY

N

Figure 6.7: Losing weak normalisation

172 Chapter 6. Cut-elimination in classical proof forests

forests in the right column are not: the three reductionss([ép) that cause the loss of
weak normalisation, are also precisely the ones that tak@rbof forest outside the
image of the sequent calculus translation. More specifictike vertical steps in the
left columnsimulatereduction in the sequent calculus, up to permutations,eathi¢
horizontal steps between the columns do not. The mecharnysnhizh this happens
is as follows. In each of the three horizontal stéﬁ;‘b, the collection of dependants
that is duplicated is strictly smaller than the subproot thauld be duplicated in the
corresponding reduction step in sequent calculus, forehsan explored at the end
of Section 5.5. To illustrate this, the universal countaraeple after one reduction
step is depicted in Figure 6.8 in a ‘planar’ fashion, suggesif the topology of a
corresponding sequent proof, part of which is depictedveet® proof forest. In the
partial sequent proof, the contraction cannot permute eletther cut, since its two
premises originate in different subproofs, onélimnd one iM1”. In which subproofs
the occurrences afy.A(a) must occur is determined by the dependencies in the proof
forest.

iYE

I—Il I‘I//
I_I . .
: FCL,D - D+, Hy.A(a)C :
- 3y.A(a),C NETC)
- 3y.A(@), Iy.A®@) cut
= Jy.A(a)
Fo YX3y.A(X) "

Figure 6.8: A subproof larger than the corresponding set of dependants

In the remainder of this chapter, a first solution to the peobbf weak normali-
sation will be presented. In Section 6.4 the reduction ielas modified by adding a
pruningoperation, to make unsafe proof forests safe, and groupuhgction steps on

6.4. The modified reduction relation 173

the same cut, to avoid reduction cycles as in Figure 6.5. Arssolution is presented
in Chapter 7. Itis based on a formalisation of the above ofsien, that the problem-
atic reduction steps that cause the loss of weak normalisate those that duplicate
dependants which don’t correspond exactly to any subpromtiorresponding sequent
proof. It will be shown that it is possible to avoid such retime steps, to obtain weak
normalisation for(~).

Reducing the universal counterexample is also non-cortflyslding both nor-
mal forms and unsafe forests. Non-confluence will be exglarenore detail in Sec-
tion 7.4.

6.4 The modified reduction relation

The two main obstacles to obtaining weak normalisation la@etcurrence of unsafe
proof forests in reductions, and cyclic reduction pathsefkind shown in Figure 6.5.
Both will be addressed in turn, below, resulting in a modifiedsion(~) of the reduc-
tion relation(~), that will be shown to be weakly normalising, and conjeatuiebe
strongly normalising.

The notion of safety, defined in Section 6.2, was motivatethkyobservation that
dependencies between the two branches of a cut may resulitsntttat cannot be
reduced, while such dependencies may never arise from cotigpoor translation.
This motivation explains why the concept of safety is needéwt it is also a natural
concept, closely related to correctness, becomes clear tihe game-theoretic idea
of a cut consisting of two consecutive moves, explored iniged.3. In that view,
the second of the two moves is a binary choicevbglard, who chooses exactly one
branch of the cut in any particular game, after which the ddpats of the other branch
become unreachable. The observation that a vertex demeodiboth sides is then
unreachable in any game, yields a simple solution to thelpnolof unsafe cuts: the
offending vertices may be removed from the proof forestgatber, in an operation
calledpruning Formalising this idea starts with the following definition

Definition 6.4.1(Conflict). The symmetricconflictrelation(#) holds between nodes
that depend on different branches of the same cut:

Vi# Vo PN I(c,u),(c,w) eE(A). uZw Au<vy Aw<vy.

The conflict relation indicates, precisely, when two vessi@are never both reach-
able in any particular game. This gives an alternative aggrdo defining correctness.

174 Chapter 6. Cut-elimination in classical proof forests

Proposition 6.4.2.In a proof forestF the maximal conflict-free subsets\ofare pre-
cisely the sets of vertices switched on by the switchings @he values oF are the
disjunctions over the labels of the propositional vertioests maximal conflict-free
subsets oY/.

Proof. For each cut c with children u and w, a maximal conflict-freiensest contain
exactly one of u and w (or a vertex that conflicts with both)it Hontains u, it cannot
contain the dependants of w, which are all in conflict with his tcorresponds to a
switching that switches off w. The details are straightfarsv Note, however, that it
would be incorrect to use the slightly different charac&tion of correctness as a tau-
tology requirement over the maximal conflict-free sets @igmsitional variables. The
reason is that to account for a switching that selects artestial leaf, such vertices
must be considered in the maximality requirement.]

In addition, safety can be characterised as follows.
Proposition 6.4.3. A proof forest is safe if and only (#) is irreflexive.

An interesting observation is that safe proof forestseaent structure§96]. An
event structuréV, <,#) consists of:

* a set ofeventsv;

* a partialdependencgrder(<) on V, such that for any event v the down-closure
{x|x < v} isfinite;

» a symmetric, irreflexiveonflictrelation(#) on V, satisfying

u#v<w = u#w.

Event structures model concurrent computation as a calecf events V, with the
relation (<) representing their causal dependency, and the conflidioel&#) ex-
pressing the incompatibility of certain events. It is easirified that the vertices,
dependency, and conflict relation of a proof forest F formamestructurgV, < ,#).
Since the correctness condition is based on which posifilmise can reach in any
particular game, safety can be enforced by removing seiflicting vertices.

Definition 6.4.4 (Pruning) The pruning function removes all self-conflicting nodes
from a proof forestprungF) = F|x, whereX = {v eV | ~(v#V)}.

6.4. The modified reduction relation 175

A pruned proof forest is by definition safe. Below, it is edigtied that pruning a
correct proof forest yields a correct subforest.

Proposition 6.4.5. Pruning preserves the axioms of proof forests, and coressn

Proof. Most conditions of Definition 5.4.3 are preserved straigifrdly, though it
should be noted that the branching condition on universalkaim vertices is preserved
because their edges are never targets-); if such an edgeu,v) € E(V) UE(A) is
removed, so is u, since v# v only if u # u. For correctness, tagimal, conflict-
free subsets of vertices in F andpnungF) are identical, since exactly the vertices
that show up in no such subset in F are removed by pruning.eit tollows from
proposition 6.4.2 that the valuespfungF) are precisely those of F, and that pruning
preserves correctness. O

The final, unsafe cut in the reduction of the universal cawx@mple in Figure 6.4
is pruned, and then reduced, as follows.

@ ©® prune Oq ® %

Compound reduction steps

The second problem is that of infinite reduction paths of ihd Ehown in Figure 6.5,
where cuts with mutually dependent branches can duplicath ether’s existential
branches. This problem is addressed by grouping reducteps $ogether in aom-
pound reduction stepvritten (=), which performs all the possible structural reduction
steps on a given cut, one after another, and reduces the fawigd logical cuts, by
one step each. A compound reduction step is depicted in &ig&—the illustration
omits the details of renaming nodes and eigenvariablesiodhtexts14 throughliy,
which are the duplicates of.

The problem of infinite reduction paths on a configuratiorhefkind below, where
cuts are chained together in a circle by dependencies bettliee branches, is then
resolved as follows. Using compound reduction steps thebeumf cuts in the circle
will strictly reduce, until only one, unsafe, cut remaingyieh can then be pruned.

FA

176 Chapter 6. Cut-elimination in classical proof forests

TAWAN] A, An

Blt1/X Bltn/X

Mie/a Pnfto/a
l Y1 l W1 ' ([Yn l Wn "

Figure 6.9: A compound reduction step

Compound reduction steps have the following good properténce they consist
of a sequence of reduction steps(in), plus pruning, compound steps inherit the
preservation properties dfs), e.g. the preservation of the axioms of proof forests
and of correctness. Moreover, the order in which the redoateps in~) that make
up a compound reduction step are performed, is irrelevanta afe cut c in a proof
forest Fa, there will be exactly one compound reduction stapiFFB (in the sense
that if also R 5 Fc, then i = Fg). As a consequence, the result of a compound
reduction step can be defined directly, as is done in Defméid.7. For these reasons
compound steps may be viewed as a proper reduction relatiatier than a (local)
strategy for(~)—consisting of one, uniform reduction rule for first-ordets; and one
for propositional cuts.

To establish these properties, compound reduction stelppdevdefined in two
ways, which are then proven equal. The first will define thatreh (=) as a series
of steps in(~); the second will define a relatigis') that computes the outcome of a
compound step directly. Weak normalisation will be showntlfie relation=»), which
adds a concluding pruning step.

Definition 6.4.6(Compound reduction stepsh compound reduction stef < Fg on
a safe cut c in a proof foresikis inductively defined as follows.

The relation(=~") is the smallest such thahF@* Fp if:

* Fa 5 Fp by a propositional step (Definition 6.2.2), or a disposap gteefini-
tion 6.2.3), or a logical step (Definition 6.2.4); or

6.4. The modified reduction relation 177

* Fa < Fg by a structural step (Definition 6.2.5), wherdascthe duplicate of c,
Fg «d> Fc by a logical step, and
C_
Fc~ Fp.

If Fa S Fg then i S prungFg).

To illustrate the definition, for a cut ¢ with existential es$gx,y1),...,(X,yn) a
compound reduction step consists of the following seriesltefnating structural and
logical reduction steps, plus a pruning step at the end icdlse of(~):

CYn-1 Cn—1 c

CYy1 C: Cy2 C; Cn_2
<~ B 3 Fz 5 R 2008 Fonra ~7 Fon2 ~ Fone1 ~ Fop

F1
where in each structural stee(fa’gi) the renaming substitution of Definition 6.2.5 as-
signs fresh vertices (rather than {). Note that there is one fewer structural step than
there are logical steps in this sequence, since aftet structural steps the cut ¢ will
have only one existential branch remaining.

The second, direct, definition of compound reduction steas ifollows.

Definition 6.4.7. For a safe first-order cut ¢ in a proof forest,Rhe reduction step
Fa ~' Fr yields the pre-proof forest as follows. Let ¢ have edges,U,u) and
(c,X,x), with universal edg€u,a,w) and existential edge&,ty,y1), ..., (X,th,Yn).
Let /g be as follows.
Fr = (FaU U (Falx[pi][ai))) [1]
1<i<n

where for alli (1 <i < n), with all vi andg; fresh w.r.t. i and each other,

X = {VEVA|X¢AV}

pi = {v—vi|ve{c,x} Vu<av}
o = {a—a|(v,aw)ecEa(Y) Au<a (v,w)}
T = Y= (Y | 1<i<n}.

Let Fs = Fr|y whereY = {v € Vg | c £r V}. Let Fr be as follows. Firstly, V¥ is Vs
minus the verticesjxand y for all i < n. Secondlylabr(c) = BAB![ti/x] and, for
other verticeslabr(v) = labs(v)|[ti/&]. Next, E is obtained from k by replacing for
everyi < nthe edges

(L,QxB,cy (G,U,u) (¢, X,xi) (u,a,wi) (Xi,t,Vi)

178 Chapter 6. Cut-elimination in classical proof forests

with the edges
(L,B[ti/x],c) (c,U,wi) (¢, X,yi),

and any other edgév,Y,z) with (v,Y]t/al,z). Finally, (—T) is the smallest relation
on Er such that
et —re if er1—se, or
er —s (L,c) and(uj,w;) —s e for somei, or
er —s (Xi,Yi) and(u;,w;) —s e for somei, or
er —s (X,yi)ande = (1,c) .

The above definition, which combines features of the defingiof disposal, logi-
cal, and structural steps (Definitions 6.2.3, 6.2.4, andb®,. proceeds as follows. The
proof forest Ir results from duplicating the cut ¢ and its dependants on tineetsal
side as many times as there are existential branches of enawihg each existential
branch to its own copy. The cut c, with no existential braisde, is removed in the
proof forest ks, in the way it would be in a disposal step. The proof forgstsFwhat
would be the result of applying all possible structural step one disposal step, to the
proof forest R—plus one renaming substitutipnand oneo;, where(x, y;) is the last
existential edge remaining on the cut c. Then the proof tdfess the proof forest §
after all duplicated cuts tave been reduced by a logical step.

That(~") and(=') are the same reduction relation is established below.

Proposition 6.4.8. For a proof forestFa with a safe first-order cut, if Fa 5 Fp and
Fa ~' Fr thenFp = Fr (up to the naming of vertices and eigenvariables).

Proof. Let Fr, Fs and i be as in Definition 6.4.7. A main observation is that the set
X in Definition 6.4.7 contains all the dependants of u: since safe, u< v implies
x £ v. There is the following statement.

1. Forvin R, the vertex vis in Fs if and only if 1 <i < n and either i<a v or
v e {c,x}.

A second observation is that, sincenoves each existential edge, y;) from x to the
vertex X in Fg, the cut ¢ in g has no existential branches. Removing the cut cgin F
removes also the dependants of u, but no dependants ofx ifiHere is the following
statement.

2. Forvin Ry, the vertex v is also in &if and only if v is different from x and c,
and not a dependant of u (i.e.#x V).

6.4. The modified reduction relation 179

To show b = Fr, firstly, if ¢ has no existential branches, =S Fp consists of a
single disposal step. It is easily verified thatF Fa and s = Fy = Fg.

Secondly, if ¢ is a logical cut with existential branghys), then R S Fp consists
of a single logical step. Observe that byand2. above, s is just Fs = Fa[p1][01].
Then i = Fp[p1][o1].

For the third case, of a cut ¢ with two or more existential ohas, the reduction
step R S Fp consists of a structural step\Fg Fg, a logical step k i’; Fc, and a
compound step E~ Fp. It will be shown that \§ = V7 (up to the same simple
renaming as in the logical step above). Along the way, it tatdshed that the cuts
¢ and c are safe ing~and k- respectively; this shows that there is at least one proof
forest Ip such that Ix S Fo.

Let the existential edges of ¢ 4&,y1),...,(X,yn), and let(x,yj) be the primary
branch of the structural step\lgl);j Fg. To align the notation of the structural step with
that of Fa ' Fr, let Fg be the following proof forest, wher¥, pj, ando; are as in
Definition 6.4.7.

Fs = (FaUFRalx[pjlloj]) [(X,yj)/{(X},¥))]

It follows that the vertices of g-are those of k plus the se{v; | v € {c,x} V u<aVv}.
Moreover, u<a V<= u <g Vv: from left to right, in the definition of E only the
substitution[(x,yj)/(x;,y;j)] removes dependencies, angy x; from right to left is
immediate from Lemma 6.2.7 (which relates dependencieg o Ehose in). From
this lemma it is also immediate that ig Both c and ¢ are safe.

Then after the logical stengCi Fc removes yand X, the vertices in E are

Va U{vjlv=cVu<aVv}.

In addition, uﬁc vj, and u<c v if and only if u<a v, for all v in F,, as follows.
Firstly, if u <c v; then by Lemma 6.2.6 either<g vj or u<g (Xj,yj). If u <gvj,
by Lemma 6.2.7 &4 v, but then by the abovej\should not exist as a vertex inFa
contradiction. If u<g (xj,yj) then by Lemma 6.2.7 €A yj, contradicting safety of c.
Then ugcvj forall vin Fa.

Above, it was shown that gg v <= u <p v. To show that Kcv <= u<gv,
firstlet u<cv. By Lemma 6.2.6, g v, the other cases, where<tg (xj,yj), were
ruled out above. For the converse, letg v. By Lemma 6.2.6, &K Vv unless u is one
of ¢c and x, which clearly cannot transpire. Theggv <= u<a V.

Next, it is shown that in g the cut c is safe. Supposes¢ v and u<c v; by the
above, K v, which means v is in k (it is not a duplicated node‘jy Then for x<c v

180 Chapter 6. Cut-elimination in classical proof forests

Lemma 6.2.6 gives xg Vv, unless(uj,wj) <g Vv or v= c;j, which are ruled out since
Vv # V. For x<g vLemma 6.2.7 gives X V; then c is unsafe in & a contradiction.
In Fc the cut ¢ has1— 1 existential edgesyx,y;) for 1 <i < n such thati # j.
By induction on the number of existential edges of c, the coummgol reduction step
Fc 5 Fp is computed by EaC:# Fp (up to a renaming of vertices). Recall that the
vertices in k& are
Va U{vjlv=cVu<aVv}.

Applying 1. and2. to F¢c <! Fp, the vertices of F are the duplicated ones,
{vilveVg,1<i<n,i#j,u<cvvv=c},

plus the original ones that are not removed,

{veVc|vé{xc}, utcv}.

Applying the characterisation of/ above, to these sets, while using the earlier estab-
lished fact that .(¢c v <= u <a v, gives the following two sets, respectively.

{Vi|veVap, 1<i<n/i#j,u<avVvv=c}

{veValvé{x,c},ugav} U{vj|veVa, v=CV u<aVv}

Their union, the following set, are the vertices ¢f.F
Vp = {veVa|vé{x,cl,ugav} U{vi|veVa,1<i<n u<avVv=c}

By 1. and2. it is then immediate that Yy = V1. From this, to show thatd-= Ft is
straightforward. O

Weak normalisation

A compound step replaces a cut with cut-form@la- VYx.B by a number of cuts each
with a cut-formulaB|t /x| for some ternt. The strict reduction in formula complexity
allows an easy proof of weak normalisation. Let t@mplexity comgt) of a cut
(L,C,c) be the number of quantifiers @, and let thecomplexityof a forest be the
multiset of the complexities of all its cuts.

Theorem 6.4.9(Weak normalisation)For any safe proof foreska there is a finite
reduction pathFa ~* Fg such thatFg is cut-free.

6.4. The modified reduction relation 181

Proof. Given a forest |k that is not cut-free, select a cutecVa (L) that has no cut
with equal or higher complexity amongst its dependants:

vde Va(l).c<d = complc) > compld);

by the acyclicity of the dependency such a cut exists. ThEp % Fg the complexity
of Fg is strictly smaller, in the usual multiset ordering, thaattbf Fa: the primary
cut c is replaced by several cuts of smaller complexity, amdut of same or higher
complexity is duplicated. The smallest value in the comipyaxeasureg, applies to
forests that are cut-free. O

The proof is similar to Gentzen’s original proof of weak nalisation for the se-
guent calculus, and in that sense, standard. The conditippsed on reductions in
the above proof is simple and general: any cut whose depé¬etude only cuts of
lower complexity may be reduced. Moreover, using the madlifegluction algorithm
the original counterexample in Figure 6.3 now strongly nalises, and no other mech-
anism has been found that may generate infinite reductidrs pgor these reasons the
following conjecture is put forward.

Conjecture 6.4.10.The relation(=>) is strongly normalising.

To conclude this section, Figure 6.10 shows a normalisidgaton path in(~)
for the universal counterexample. The path uses pruningsaodnsistent with the
condition in Theorem 6.4.9 that a cut may not be reduced dstdependants of higher
complexity. This illustrates that for the theorem, bothrpng and the use of compound
steps is necessary.

182 Chapter 6. Cut-elimination in classical proof forests

d ®
YA
® O G © @@
.....
® O & ®
¥a
& ® . .

Figure 6.10: Reducing the universal counterexample with compound steps

Chapter 7

Exploring reduction

7.1 Introduction

This chapter will further explore the behaviour of cut-retlon for classical proof
forests. The main body of the chapter is formed by Sectionii.@hich it is shown
that the original reduction relatiofdy), without pruning, is already weakly normalis-
ing. The approach is based on an analysis of the reductidreairtiversal counterex-
ample, and the connections with the sequent calculus. Byilpitong certain reduction
steps, reductions can be forced to stay within the imageefrmslation of sequent
proofs (this translation was defined in Section 5.5).

The treatment of reductions in Section 7.2 suggests furdpgroaches to cut-
elimination in proof forests. Their discussion in SectioB &xplores the differences
between reductions in proof forests and those in the sequaatlus, ending with
an examination of McKinley’s closely related notion of Hexbd nets [74]. The final
subject discussed, in Section 7.4, is that of confluencetheadifferent reduction vari-
ants discussed in this and the previous chapter, confluailsdrf a variety of ways;
however, interestingly, the universal counterexamplenigarsally non-confluent.

7.2 Weak normalisation without pruning

A remaining question is whether the original reductiontietg (~), might be weakly
normalising. This is left open by the universal counterepkanwhich does have ter-
minating reduction paths to a normal form (one is illustdaite Figure 6.6). In this
section a proof of weak normalisation @$) will be constructed, without the need for
pruning. The core idea of the proof is to avoid reduction stigyat duplicate a sub-

183

184 Chapter 7. Exploring reduction

forest that is strictly smaller than a corresponding subpir sequent calculus would
be. In the discussion of the universal counterexample ini@e6.3 such steps were
pinpointed as the cause of the loss of weak normalisatiais ireduction paths.

In Section 5.5 in the previous chapter it was shown how thdlestaubproof of
an inference may contain more than just the dependants afatiesponding edge
in a proof forest. It was demonstrated, by the example beédty that an inference
cannot permute above a cut when it has premises in both safispsbthe cut, while
no corresponding dependency need exist in the proof forasslation of the proof.
Below right a similar impermutability is depicted; heregtpremise of a universal
guantifier introduction is used in one subproof of a cut, wit# eigenvariable is used

in the other.
-Ct, B(a) .
-T,B,A - AL B, r'Cut - A(a),C FCL,ay.B(y)Cut
-T,B,B, F’CR F A(a), Jy.B(y) =
Hr,B, I’ = VX.A(X),3y.B(y)

The first thing that will be addressed is to formalise a notbseparationn proof
forests, that corresponds, morally, to ‘being in separalbpoofs’ in a sequent proof.
For the above two examples, where the subproofs are geddrgta single cut, the
conflict notion (Definition 6.4.1) would be adequate: theatggants on either side of a
cut correspond to (smallest) subproofs, and the confliceggad by the cut indicates
when vertices depend on different sides. However, in Sedi8 the reduction of
the universal counterexample provided an example, in Eigu8, where the premises
of an inference are in subproofs separated not by one, buvbdycats. This can be
generalised to the configuration below, where two formuleandB, are separated by
a number of cuts, that may be interspersed among other indese

My M2 M3 Mn
FAT1,C FCi,M2,Co +Cy,M3,C3 -Cqiln,B
Cut?R
FATL,....ThB ”’

The notion of separation to be established will thus needtaioemeasure of tran-
sitivity. But full transitivity is too much, since separati must also be symmetric;
together this would mean that a vertex v that is separated &oy other, is imme-
diately separated from itself. This would render the notiseless: a self-separated
vertex is precisely what should indicate that a proof foigsit the translation of any
sequent proof. A notion of separation that captures thd agtount of transitivity is

7.2. Weak normalisation without pruning 185

defined below. It allows vertices to be separated by a sefiests, as long as those
cuts are distinct. The separation of vertices v and w by afsetitsC = {cy,...,cn}

is written v #F w, illustrated in Figure 7.1 (note the annotation of the ablated cut
with the name of the cut vertex, rather than the cut-formula)

C1 C2 Cn
alg 1>4b1 Beg 1>‘b2 Bng l‘bn

< > < >

v,
A

v=vg © v © vy © Ovn1 Ovp=w

Figure 7.1: Separation

Definition 7.2.1(Separation) In a forest F the ternaryeparatiorrelation
—## — C Vxe(V(L)xV
is the smallest relation satisfying the following.

v #e w o if (c,v), (c,w) € E(A) and v#£w
v #°C w ifv##C uand u## w for some ue V, andCND = @

v ##C w if v/ <v, w <w, and v ##° w'

If v ##< w it is said thaC separates and w. The notatio##) denotes the union
over all relationg##°) for all sets of cutsC C V(L) in F. The conflict relatior{#) is
recovered as the union ¢#) over all singleton€.

Definition 7.2.2(Strong safety) In a forest F, if v ## v for no vertex & V, then F is
strongly safe

Since v # w implies v ## w, if a proof forest is strongly safeisialso safe. The
translation of a sequent proof is strongly safe.

Proposition 7.2.3. A forest[] translated from a sequent probifis strongly safe.

Proof. The translation of an instance of the tautology axiom isrgjlp safe, and
it is straightforward that strong safety is preserved by ttheslation steps forR-
inferences,dR-inferences, contractions, and weakenings, since thelyeaold root
nodes, or modify them. If two forestsaFand Fg are combined by a cut c, then there
are no dependencies between them, and no vertices othec theare dependants in
both. If v ## w in the composed forest, then eith@rC Va(A) and v #§ w, or

C CVg(A) and v#E w, orve Va, we Vg, and ce C.]

186 Chapter 7. Exploring reduction

The two causes of non-normalisation explored in Sectiom@&®, firstly, unsafe
cuts, and secondly, circles of cuts, illustrated below. Wsafety, based on the conflict
relation, rules out unsafe cuts, strong safety prohibisetkistence of a circle of cuts
in a proof forest.

FHA

Of the proof forests arising when reducing the counterexantpose that are not

weakly normalising are those that are not strongly safe. rEdection step where
strong safety is lost is always the structural reductiop sggplied to the second orig-
inal cut of the example, as in the exploration of the loss oékvaormalisation in
Figure 6.7.

Before moving on, it will be proved that propositional, disgl, and logical steps
preserve strong safety.

Lemma 7.2.4.1f Fp «d> Fg with a propositional stepl(Definition 6.2.2) or disposal
step (I, Definition 6.2.3) thew ##5 w only if v ##, w.

Proof. The statement is immediate from the fact thgti& a subforest of k, i.e. the
fact that g = Fa|x for someX C Va. O

Lemma 7.2.5.1f Fa ~d> Fg with a logical reduction stepl (I, Definition 6.2.4) andra
is strongly safe, them ##S w only if v ##5 w for some DC CuU {d}.

Proof. Let vg ##g Vph be witnessed as in Figure 7.1: eét= {c1,...,cn}, let each cut
¢ have childrenaand b, and let v, ..., v, be vertices such that & vi_1 and b <\v;,
for 1 <i < n. Let the primary cut d of the reduction step be configured havis.

rl’\d rr,
@ @ ~ T N
[— —=A J)—J) A
y W y w

By Lemma 6.2.6, for a dependencydg w there are three options:
(). there is a matching dependencyy w, or
(i). v <a (X,y)and(u,z) <a w, or

iii). v <a (x,y) and w=d.

7.2. Weak normalisation without pruning 187

For each individual cutjan C, witnessing y_1 ##éci} v;, there are four possibilities.

(1). The cutis unaffected by the rewrite stepzad and (i) above applies to both the
dependency;a<g vi_1 and to h <g vi. Theny_1 ##A{\Ci} Vi.

(2). The cut is itself reduced; e d. Theny_1 ##,id} Vi, as illustrated below (only
one of two possible orientations for d is shown—the othentasdu swapped).

d

ambl &~ a. Abi

v
IN
V.,
In

(3). For the dependence $ v; item (ii) above applies.

o :
ab &b ay bb X“
O O w

> < >
B . S "<

Vi-1 o E Vi Vi-1 o oy
As illustrated, v_1 ##ici} y andy ##id} vi, and henceiv ##ic“d} Vi

(4). For the dependence d€p vj_1 item (ii) above applies. Then similarly to (3)
above, v_1 ##j\va} Vi

For both a<gvj_1 and b <gv;j item (i) subsumes item (iii). Considering the latter,
item (i) gives h <g d in Fg, and b <a (X,y) in Fa. But since d<g y, there are also
the dependencies kg y and b <a y; then y may be used instead of d as thewhe
sequencey. .., V.

Then the four options above are exhaustive, and for a single they are mutually
exclusive. That (1) excludes the others is immediate. @@R) means thatja=y or
bi =y, (3) implies b <a (X,y), and (4) implies a<a (x,y). Having both a=vy
and a <a (x,y) would violate the antisymmetry af, while b =y and a <a (X,y)
would meary##g(;i} y. Then (2) excludes (3) and, symmetrically, (4); similaifljaoth
g <a (X,y)and b <a (x,y) would hold, agairy##ici} y, making (3) and (4) mutually
exclusive.

For v ##g vn the following is then immediate. If (1) applies to all cutsGrthen

ufd}

Vo ##‘A3 vp, and if it applies to all but one cuts @, then \ ##(A: vp. However, the

general case is not immediate: i§ #4#5"P v, because y##S vi and v ##5 vy, for

188 Chapter 7. Exploring reduction

u{d} Du{d}

some vy, then even if \4##2 vi and v ##, Vp, it does not necessarily follow
that o ##, Vi, because the sets of cuts are not disjoint.
First, the case will be considered when there are precisalyctts inC to which
(1) does not apply. Letjaenote the first andjahe second; they are configured as
follows.
Cj
a«'é—&‘bi aié—&bj
= < =

Vi1 o vi.x.o ##g Ofvj,l o Vj
Here,C’' C Cis the subsefci1,...,cj_1}—note thatifi = j — 1 then y=v;_ instead
of v ##5 vj_1, which does not affect the argument below. Since (1) appdiedi other

<

cuts inC than ¢ and g, in particular it applies to all cuts i@, so that v##g vj_1 (or
Vi = Vj_1) also before the reduction step, ia.F

There are nine cases to be considered: one of (2), (3), arap@les to ¢ and
simultaneously one of (2), (3), and (4) applies jo Eor each case it will be shown
that either

Vi1 ##ici} V| or Vi1 ##ici} V| or Vi1 ##/ici’cj} v,

and hence thato\##,'f vp for someD C C, or that the case cannot transpire, for example
because it would imply a separation vg## in Fa, contradicting the assumption of
strong safety.

* If (2) applies to both cand g then ¢ = ¢j = d, while g and g were assumed to
be distinct, a contradiction.

« If (2) applies to ¢and (3) to g, there are two ways in which @and d can be
identified: ais on the existential side and bn the universal side of d, or the
other way around. In the former case (for later referencé#h thie existential
side ‘on the left’), there is the following configuration in F

d

7 * , > @) @) .
Vieg © vio HHS oV Ov;j

Note that in the above illustration the distinct occurrenoéthe vertices x and

u, and the cut d, must be identified. As d is a logical cut x h&g @me edge, and

g =Y. The remaining equalities and inequalities below are rpadiserved.

a <a KYy) <a Yy = a <a Vi

7.2. Weak normalisation without pruning 189

A direct consequence of & vj_1 is then y_; ##icj} Vj.

The other possible way of identifying and d (with the existential side on the
right) gives the following configuration.

d
u X
bi u X g b
N sl 1y
> < / - W Oy <
vi_1 © v; © ##X Ovi Ov;
From the following dependencies
u < (uw) < vj1 X < b <

the first of the two separations below follows.
viiy #EY v S v,

Since d¢ C', the vertex y_1, among others, is separated from itself, contradict-
ing the assumption thatsFs strongly safe.

* If (2) applies to ¢and (4) to ¢, again d and jccan be identified in two ways.
One gives the following configuration inF

d
9 @ C; d
ab b 3l b .t.’.’ﬁ.._g X :
> < > & bure
vi_y O v, © ##g Oy 4 y w f~-..,..oV,

The three separations below are readily observed.
a #Y v #S vi_ m y

Because (2) does not apply t@ vhich is then distinct from d, the three sets of
cuts involved are disjoint, and ##, y. ldentifying both occurrences of x means
g =Y, itthen follows that y #4# y, a contradiction.

The other orientation of d gives the configuration below.

190 Chapter 7. Exploring reduction

The following separations and (in)equalities can be olegrin particular, y=
b; by identifying both occurrences of x.

vi #45 vi_g w0y y=b <v
Combining the equations above givest, v, a contradiction.

» The case where (3) applies tpand (2) to ¢ is symmetrical to the above one,
where (2) applies toj@and (4) to g.

« If (3) applies to both cand g, there is the following configuration inJF

In the illustration, from left to right the following threeeparations can be ob-
served.
y #° vi #5 vi_ # y

Since all three sets of cuts are disjoint, y,## a contradiction.

« If (3) applies to ¢and (4) to g, there is the configuration below.

From left to right, the following separations can be obsdrve
y ##89 v #4S vi_, mS y
Theny #4, y, a contradiction.

» The case where (4) applies toand (2) to ¢ is symmetrical to the second case
above, where (2) applies tg &nd (3) to ¢. That is, if d has the existential side
on the right, then 1 ##ici} vj, otherwise the case leads to a contradiction.

* If (4) applies to ¢and (3) to ¢, then Ky contains the configuration below.

7.2. Weak normalisation without pruning 191

On the far left and far right, the following separations carobserved.
viiy #9 y y #4590 v,
{cici}
Then y_1 ##, Vj.

» The case where (4) applies to bothand g is symmetrical to the fourth case,
where (3) applies to both cuts.

The case where three or more cutLinlo not satisfy (1) would follow by induc-
tively taking fragments S’ v; of the separationg##S vy, such thaC’ C C contains
precisely two cuts to which (2), (3), or (4) apply, after wihibhe statement would fol-
low because W##y v; for someD’ C C'. However, in fact it can be observed that
having three or more cuts @ not satisfying (1) always leads to a contradiction. The
three cases above that do not immediately prove a contiaadiate those where (2)
and (3), or (4) and (2), or (4) and (3) apply toand g respectively. The first two of
these are symmetric, which means that (2) applies with areifit orientation in both:
in the first, with the existential side on the left, and in tleea@nd, with the existential
side on the right.]

Straddling

Before, it was shown that forests translated from sequefprare strongly safe, and
that strong safety is preserved in propositional, dispasal logical reduction steps.
Since strong safety is lost in the reduction of the countamgXde, structural steps do
not preserve it. The remainder of this section will expldre way structural reduction
steps interact with separation, and use the findings to kerst class of reduction
strategies that preserve strong safety.

There are two ways in which a structural step may introduceparstion; strong
safety is lost when both occur simultaneously. The firstatysed below, as it occurs in
the reductions of the universal counterexample. A deperydeetween the existential
branches of a cut ¢ introduces a separation \###w’ for every v and w such that
u < v,w; that is, between every non-duplicated and every dugdtdependant of the
universal side of c.

192 Chapter 7. Exploring reduction

A generalisation of the above example replaces the depeptetween the existential
branches of the cut by a separation, as follows.

c c c
O @ ' 9 o @
S S Vo A.‘A'O w Vo o w' S S v :‘:o ‘x‘o w
O w0 O «HHf-0

The above way that separation is introduced is unavoidahts:with dependencies
between their existential branches do occur, and it mustiplesto reduced them. The
second method by which structural steps create separattooh may be avoided, is
as follows. If the cut below left is duplicated by a structst@p, the cut below right is
created; note how v ## w and## w, but not v ## W, or vice versa.

c c

<

v,
v
IA

VO OW V/O OW/

However, if only the vertices v and w are duplicated, but hetcut c itself, the result

is as follows.

>5 B
o Sy WO
In this case not just v ## w and ## W, but also v ## Wand v ## w. Again, this
can be generalised, by replacing the single cut ¢ separatargl w by an arbitrary
separation(##°). The situation thus described is exactly that where the rtgoets
duplicated in a structural step are strictly smaller thaonraesponding subproof in the
sequent calculus, described in Section 6.3. Then when hésexistential branches
of the cut contain a separation, the reduction step breatsgsafety, as illustrated

below.
c c

IA

7.2. Weak normalisation without pruning 193

In the resulting proof forest, E = DU{c,c’}, then v## w’ and w ##F v, which taken
together give v ##E v and w ##°“E W’ In the same way,\and w are self-separated
due to the separatior ##5 w, but note thaE does not separate v from w, drfvom
w.

The mechanism thus described is precisely what causesshetstrong safety
in the universal counterexample. It will be shown that peatétic reduction steps of
the kind described above can be avoided, yielding a weak alcgation proof for(~).
First, in the situation where a vertex u has dependants v aseparated b, while
some c inC does not depend on u, it is said thagtrtaddlesc, written ua c. Straddling
is defined below, and aic is illustrated in Figure 7.2.

Definition 7.2.6. A vertex ustraddlesa cut ce V (L), written ua c, as follows.
uac <= 3Iv,w,C. u<v,w, ugc, v##w, and ceC

The set of cut€ is awitnessfor u a c.

ol

> <

Jol# o o ## oy,

Figure 7.2: Straddling

For flexibility, if C is a witness for w c, the definition of straddling does allow
other cuts irC than c to depend on u. By the following easy lemma a smallaeresg
D C C can always be found such that u straddles all cuf3.in

Lemma 7.2.7.1f C is a witness fox a ¢ then there is a withess D C for x a ¢ such
thatx < d for all d € D.

Proof. Let x < Vo, Vn, letC = {cy,...cn}, letvi_1 ##{%} vi for 1 <i <n, and let c= ;.
If x < ¢ then x<vj_; and x< vj. Leti be the largest index smaller tharsuch that
x < ¢j, ori =0 if no such ¢ exists; and lek be the smallest index greater than
such that x< ¢, ork =n+1 if no such ¢ exists. Then X v; and x< vi_1, while

194 Chapter 7. Exploring reduction

vi ##° vy _1, whereD = {Gi,1,...,C_1}. In particular, c= D, while x<£ dforallde D.

o OX
........... St g
o o T .
5l Y I
> < z s > <
vo Hit o vjo ##t o o ## oy, o ## oy,

Straddling captures, in proof forests, an impermutabilityhe sequent calculus
not accounted for in the dependency, between a cut and aemeiewith premises (or
eigenvariable occurrences) in both subproofs of the cuiceSihe ordering formed by
the combination of the straddling relation and the depecyglén U <)*, represents a
non-permutable ordering of inferences in a sequent proaf,natural to require it to
be antisymmetric. In fact, this is already the case in angffarest that is strongly
safe, as will be established in Lemma 7.2.11. Then in a sly@ade proof forest there
is always a cut that has no dependants of greater complexity,does not straddle
another. Showing that reducing this cut preserves strofiegysan Lemma 7.2.10, will
then allow a weak normalisation proof along the lines of tifatheorem 6.4.9, again
using compound reduction steps to obtain a simple reducessnore.

Formalising this proof idea starts with an easy, but coreetriemma.

Lemma 7.2.8.In a structural reduction stepa < Fg (1V, Definition 6.2.5) no dupli-
cated vertex’ depends o in Fg.

Proof. If u and x are respectively the universal and existentidtiabfic, then v cannot
depend on u in §, because by Lemma 6.2.7 no dependants of u are duplicatés, an
must depend on x. At the same timépwist be Xor ¢, or a dependant of pbecause it

is a duplicate. However,€g ¢’ (and also &g x’) would mean x<g ¢’ oru<g ¢, and
hence c<a x <a c or c<a U <p c, contradicting antisymmetry afa. Then i <g VvV

and hence «a v, and in R, the vertexv depends on both x and u, contradicting that
¢ must be safe in&for the reduction step to apply. O

Next, it is shown that a reducing a cut that straddles no stpegserves strong

safety.

Lemma 7.2.9.In a structural reduction stef-a 5 Fg (IV, Definition 6.2.5) on a
strongly safe proof foresta, wherec straddles no cud, then () Fg is strongly safe,
and @) c straddles no cuts ifg.

7.2. Weak normalisation without pruning 195

Proof. A separation##°) in Fg whereD is a singleton takes one of the following
eight forms, where v are w are vertices, and d is a cutain F

T 0N 11 VPO C SV () B
var® sy el sl

These options will first be narrowed down. By Lemma 6.2.7 uiplicated vertex
has a non-duplicated dependant, the duplicated vertex Ineugtor ¢. Then in two
cases above,’ #éd/} w and v ##éd/} w/, the cut d must be ¢ the duplicate of the
primary cut, because an original vertex, w or v respectj\adypends on it.

Two other cases are ruled out altogether. Oné 1;5#&“ w/, top right, which could
only be produced in the reduction step ikg d (a contradiction), by the following
reasoning. Let u be the universal child of the primary cutral & the existential
child; since ¥ and w are duplicates, & v,w. By Lemma 7.2.8, which states that ¢
has no dependants insEhat are duplicates, #a d; otherwise, u<g d would mean
c<g V,W. Moreover, x<a d would imply x< v and u< v, and hence Vv #i#v. Then
c £ din Fa, so that aa d, a contradiction.

The second case ruled out is végﬁ w, bottom left. Since’d<g v, by Lemma 6.2.7
the cut d must be the primary cut c itself, and v must resideerptimary branch of the
reduction step. Similarly, w must reside in the primary leigrbut for the separation
to exist in kg, it must also depend on the universal nodefit/, and on u in 5. Then
W##/ic} w, a contradiction.

In addition, in the case’\##éd} w and the one symmetric to it, the cut d cannot be
the primary cut c itself, since by Lemma 7.2.8 no duplicatedes depend on c ingF
This leaves the following six possibilities.

vt w v {d}w(dyéc) v w (d#c)
v T v #T W NETICE BV

Thatin all of these cases v#ﬁ w (or v##ic} w) is straightforward from Lemma 6.2.7.
However, this does not mean that in general y ##or V' ##; W/, etc.) implies v ##
w: if in u##S v #4S w the seC contains a cut d whil€’ contains its duplicate/dthen
even if u## v and v #4 w, not necessarily u ##w.

For (1), assume v#@tv orv ##g V' for some vertex v in k. Firstly, if C does not
contain both a cut d and its duplicate then v # v whereD = {d|d€ C v d’ € C}.
OtherwiseC does contain two cuts d. From the six cases above it can be observed

196 Chapter 7. Exploring reduction

that on one side of’cat least, all dependants are duplicatéswhile on one side of d
all dependants are originals w froma FThenC contains at least one cut

Vit or v # {d}w,
where ¢ # ¢, and one cut

vt w o oor vt w ,

where ¢ # c. This gives three possible configurations: the two illstd below, and
one symmetric to the second. The two illustrated cases wilireated; in the first,
C={d,d} UXUY, in the secondC = {d;,c'} UXUY.

di o
£ !
> < By <
o \"o ##X o": o HHEY oy
Vi_q i #B Vk-1 Vi #B Viel
di d
. m4
2 < > g
Viiy o Vino ##é(o:Vk—l Vf;o ##g °vi_y

W.l.0.g. it may be assumed th&tcontains only cuts of the kind v é%é w, where v,
w, and d are originals. Inf the vertices ¥ ; and \ both depend on u, the universal
child of c. Also, d cannot depend on ¢ by Lemma 7.2.8. In the first case,

Y

Vi_1 17'-'r‘L¢If;\(U{di Ak Vi

sinceX contains no duplicated cuts. In the second case,

Vio1 ##:U{di} Vk-1,

while ¢ <a Vvi_1 (the case differs from the first for the possibility tbétontains c). In
both cases, s d;, a contradiction.
For (2), assume gg d for some cutd in . Let c<g v,w and v##g w withd e C;
by Lemma 7.2.7 it may be assumed that no cu€idepends on c. I€ contains no
duplicate cuts then v ##w. Otherwise, one of the following configurations pertains,
whereX contains no duplicated cuts.
d ¢

> < > <

vo #HH#X o".;(/ “o HHY oy vo #HH#X o".;(y;"'o HHY oy

7.2. Weak normalisation without pruning 197

In the first case, whereg; anay be c itself, c<a x and v #;% X. SinceX cannot be
empty (v# x’), and no cut inX depends on ¢ by assumptionycd for some de X,
a contradiction. The second case follows similarly, unkss empty, when = x. In
that case the argument may be repeated symmetrically, witikking the place of v;
then the second case cannot apply becalisascthe wrong orientation, i.e/, gannot
take the place of x.]

It was established earlier that other reduction steps presgrong safety. There-
fore, the preservation of strong safety extends to compoenhatction steps, as follows.

Lemma 7.2.10.1f Fa S Fp with Fa strongly safe and no cuts.t.c ap d, thenFp is
strongly safe.

Proof. Since the forest kis strongly safe, it is also safe, and the compound s%ep
may be applied. If the compound st(a%r) consists of a single propositional step (
or disposal stepk), then Fp is a subforest of k, and the statement is immediate. If it
consists of a single logical stepl(), the statement follows directly from Lemma 7.2.5.
It remains to show, for the following successive structarad logical reduction steps,

Fa $Fs SFc S P

that the forest E is strongly safe and thatg d for no d, after which the strong safety
of Fp follows by induction.

Firstly, by Lemma 7.2.9 no €g d and no v ## v in the forest Ig. Next, if v ##- v
in Fc then by Lemma 7.2.5 u ##u for some vertex u. That leavesgd. Letc<cv,w
while v ##5 w with d € X. By Lemma 7.2.7 it may be assumed that no cut Xin
depends on c.

Then in kg, by Lemma 7.2.5 v #§W for someY C XU {c'}. Also, c£c, by
Lemma 7.2.8 (no dependants of ¢ are duplicates). Then nadutéepends on ¢, and
crg Yy for some ye Y, a contradiction. O

It remains to be shown that for strongly safe proof fores¢s(thansitively closed)
combination of the dependency and straddling forms a patker.

Lemma 7.2.11.In a strongly safe forest< U a)* is antisymmetric.

Proof. Consider a series of dependencies and straddlings.

COSVlAClS...SVnACn:CO.

198 Chapter 7. Exploring reduction

For 1<i <n, let each cut chave children @aand b, and let vy a ¢; be witnessed as
follows: v; < uj,w;, while y ##5 w; with G, = X U {ci} UY;, asillustrated below.

~O.Vi
= ab b .
y o HHS Oy, yi © #it' oy,

In the casan = 1 there are the dependencigs\c; and g < vi. Then either a<vi
or by <vq; w.l.o.g. assume the latter. Via the following separatiand dependencies
this gives y ## u, a contradiction.

Up #H X1 o) b1 <vi < uy

For the general case, since £< v; < u;,w;, either ¢_1 a ¢ or vi_1 < ¢_1 < Gj;
in this latter case, the cycle may be shortened by skippingand v. Then assume
the given cycle, reproduced below, is the shortest over the cuts £...c, = Cp; In
particular, ¢ € G if and only ifi = j, since otherwisejc 1 G;.

CQACLA ... ACh=Cp

Next, in G_1 a ¢; the vertices pand w, which depend onjc;, must each depend
ona_j; orbj_;. If one depends on & and the other onjb,, as illustrated below left,
then y ##591%-1} y; (by Lemma 7.2.7 it may be assumed thatc# C) contradicting
strong safety.

Ci_1 Ci—1
a—lbm‘bi—l a-1 (g—‘(kvbi—l
> Ci R = Ci "
wo ## o o ## oy, wo ##t o o ## oy,

Without loss of generality let both and w depend onpfor all 1 <i <n, asillustrated
above right. Thenju1 ## u, as illustrated below, and,d## u.

V..
IA

7.2. Weak normalisation without pruning 199

This gives the following sequence.
up mpadled vl bl

To conclude that u## up, the sets< U {ci} must be disjoint. Recall thaf ¢ X; unless

i = j. To show that also all seb§ are disjoint, let; andC; be such thakiNC; # &
withi < j, andi is the greatest index for which this holds, i.e. there i$ ik < j with
XNCj # 2. In X;, illustrated below, from left to right let d be the last cutipthat
also appears i@j; i.e. letD C X; be disjoint fromCj, let d have children a and b, and
let a #PVU1dc}

d Ci Cj—1
acg g)b g (g g)bi a,-,l(J; g)bj,l
yo (55 o ##° O&i w+Jo ##Xuﬁi #i-L dffj
O.:v ,Ej %
< ab b
. 2.': A".S . A‘".
u o #HE o o ## oy,

Let v be a vertex such thatav and either y##= v or w; ##° v (the former is used
in the illustration above), where@E C C;. Then v ## v, where

Z={d}uDU{c}UXUXj_1U{cj_1} UE X= J Xu{c}

i<k<j—1

—Dby construction, all components dfas listed in the equations are disjoint. [
Finally, the previous lemmata combined allow weak nornadilis to be proved.

Theorem 7.2.12(Weak normalisation without pruningyor any strongly safe forest
Fa there is a finite reduction patha (=~)* Fc such that~c is cut-free.

Proof. Let Fa be strongly safe, and not cut-free. Select a cut c that doestraaldle
others and has no dependent cuts of same or higher compleity

vdeVa(Ll).cgd A (c<d = complc) > compld)) .

Such a cut ¢ must exist, since the relation U »)* on Fa is a partial order, by
Lemma 7.2.11. Then Iethff Fg. By Lemma 7.2.10 the proof foresgks strongly
safe, and its complexity is smaller than that @f By induction, s(~")*Fc, and the
statement follows. O

200 Chapter 7. Exploring reduction

Since compound reduction steps consist of finitely manynangi reduction steps,
the following is immediate.

Corollary 7.2.13. The relation(~) is weakly normalising.

7.3 Discussion and related work

The closest relatives of classical proof forests are Millekpansion tree proofs [79],
and the Herbrand nets investigated by McKinley [74]. Thigtise will illustrate how
these formalisms relate to proof forests, via a discussi@number of modifications
to various aspects of proof forests. These modificatiorisdecalternative correctness
criteria, a further variation on reduction steps, and thditaah of tautology links A
further variation, found in the literature, is the fragmehproof forests that disallows
contraction and weakening [80]. Since the presence of actibn is a primary reason
for the complexity of reductions in proof forests, this i has a much better behaved
cut-elimination procedure. However, the discussion hatiebe restricted to related
formalisms in which contraction does occur, and the full ptawities of classical logic
are present.

Expansion tree proofs

Two main distinctions between proof forests and Miller'pamsion tree proofs as
presented in [79] need no further explanation: expansiea proofs allow higher-
order and non-prenex formulae, but have not been given aalsation procedure. A
minor point is that expansion tree proofs require exisg¢modes to have at least one
branch. A third, important difference is in the correctnesteria employed.

The correctness condition for expansion tree proofs us¢@i) when stated for
proof forests, assigns two formulae to a forest: $hallowformula and thedeepfor-
mula. The shallow formula of a proof forest is the sequentnit by the labels of
its root nodes. The deep formula is the propositional foenuldtained by interpreting
the trees in a proof forest as propositional formula tregsere the branching at an
existential node is interpreted as disjunction, and cuggraated as conjunctions. The
shallow and deep formula of a propositional leaf node cdiecand the deep formula
of a universal node is the same as that of its child. A proadgowould then be correct
if its deep formula is a propositional tautology.

7.3. Discussion and related work 201

This correctness criterion corresponds directly to thathefHerbrand proofs by
Buss [20], discussed in Section 5.2; for that reason, cafleitorand correctness
Compared to the actual correctness criterion used in payests, of Definition 5.4.6,
Herbrand correctness is equivalent to a switching conditi@mt ignores the depen-
dency. That is, a proof forest is Herbrand correct if for gveossibility of deleting
one child of each cut node, and recursively deleting itsdclil (but not necessarily its
dependants), the disjunction over the remaining proposatinodes is a tautology.

Several of the operations on proof forests used in norniedis@o not preserve
Herbrand correctness. First and foremost, Herbrand doess is not preserved by the
pruning operation. Given that pruning is essential to thelifre reduction relation,
and that reductions need to preserve correctness, thentaoeectness condition is a
crucial component of the weak normalisation result in Teen6.4.9.

Disposal reduction steps also do not preserve Herbrandatosess, as is illustrated
below: while the deep formula on the left is a tautology, the on the right is not.
The deep formula of a weakened existential node—which doesatur in expansion
tree proofs—is taken to he, the empty disjunction.

@ @
iH ® ®
(LAP VvV QV-Q 1 Vv Q
Operations that do preserve Herbrand correctness are &itiopovia cut, and propo-
sitional, logical, and structural reduction steps. Forweak normalisation of~),
Corollary 7.2.13, Herbrand correctness may then replaeedhrectness criterion of
Definition 5.4.6, provided weakening (existential nodethaut edges) is disallowed.
One drawback of Herbrand correctness is that it does nat @lle current transla-
tion of the cut, from proof forests to sequent proofs, asgmtsd in Section 5.5. The
translation is easily amended: the two subproofs of a cuth@reroof forests obtained
by removing each of the two trees below the cut, ignoring #ygetidency. However,
as the example in Figure 7.3 demonstrates, this introdueesviriables into the se-
qguent proof. These are eigenvariable occurrences whosersal introduction rule
has been removed—and, technically, now resides in the sti®roof. In the exam-
ple a proof forest is translated according to the naturaktedion procedure supported
by Herbrand correctness. The eigenvariable occurrbreethe rightmost edge in the
proof forest is in the left subproof of the sequent proof nogler an occurrence of the
eigenvariabld, which is introduced only in the right subproof. Note thahaligh in
this example, to obtain the subproofs for the sequent @#nslthe proof forest could

202 Chapter 7. Exploring reduction

® @& ® O
ajl—a b|—
® ® & ©

P —P(a) P(b) —P(b)

- P(a), —P(a), -P(b) ReR - P(a), P(b), —P(b)
FVX.P(X), 3x.=P(x), X.=P(x) FVx.P(x), Vx.P(x), 3x.=P(X)
- VX.P(x), 3x.=P(x), ¥x.P(X), 3X.=P(X)

- Vx.P(X), 3x.—P(X)

VR,3R
Cut

Figure 7.3: Translation based on Herbrand correctness

simply be split through the middle, in general the deep fdamvould be of the form
AV (BAC) VD, which only allows to concludav BV D andAvCVD.

Other modifications

In Section 7.2 the straddling relation was defined (see Qeimi7.2.6), to account
for the impermutability of cuts with inferences that havemises or eigenvariable
occurrences in both subproofs. Seeing that one interpyetaf the dependency in
proof forests is as an account of impermutability in the seqealculus, it is natural
to ask whether straddling could be incorporated into theeddpncy. Furthermore,
straddling and strong safety are related to a multiplieainterpretation of the cut,
whereas safety, correctness and pruning are related toditivadnterpretation, as
was argued in Section 5.5. In this light, a natural questsowhether the notion of
strong safety allows the construction of a translation fnormof forests to sequent
proofs that is inverse tf—]. Pursuing these ideas, below, leads to a range of subtle
modifications to the calculus of classical proof forestsmsf which are more, some
less semantically meaningful.

It was established in Section 7.2 that the only way that redis cause the loss of
strong safety is by a structural step on a cut c that stragdiether cut d. The idea
behind the first question, of incorporating straddling itte dependency, is that strong
safety would not be lost if d were dependent on ¢ instead. Stnadldling is a relation
between nodes, while in proof forests the dependency isgtatkby the relatiof—)
from universal edges to existential edges and cut edge®stiamobjection, because
the loss of strong safety is caused by the duplication of épeddants of the universal

7.3. Discussion and related work 203

branch of c; it is then sufficient to make the cut d dependertheruniversal side of
the cut c.

Implementing this idea, reductions can be augmented weihfoHowing con-
quesstep, applied after each reduction step: for every univedze(u,w) and every
cut edge(L,c), if u a c, add the dependency,w) — (L, c) to the proof forest. It is
immediate from Lemma 7.2.11 that, for a strongly safe prooést, the dependency
remains antisymmetric after a conquest step, and it is wadiféicult to see that strong
safety itself is preserved. However, correctness is nagoued, as can be seen in the
following example.

N . conquest c

Lot d; ;b '-QOW voy.. d; ;b ‘-%OW

A switching that switches off the node u, switches off allfafi v, w, x and y after
the conquest step, but only v and w before, while ¢ switcheerdy one of x and y.
If the above configurations are part of a proof forest F on dffie &ind F on the right,
with x and y propositional verticeg,a switching that switches off u, arfidis the value
of F' under the switching, then the value of F undeyis " vVlab(x) or ' VV lab(y),
depending on the choice qfon c. For correctness to be preserved, it should be that
I vlab(x) andl Vv lab(y) together implyl". This is not in general the case, because
there is no obligation folab(x) andlab(y) to be each other’s negation.

However, dependencies are ignored in Herbrand correctméssh is therefore
trivially preserved in conquest steps. The following istipait forward as a conjecture,
for the informal nature of the arguments supporting its @nestion properties.

Conjecture 7.3.1. The reduction relatior{~») supplemented with conquest steps, on
strongly safe, Herbrand correct proof forests without weradd existential nodes, is
weakly normalising.

As weak normalisation fof~) was proven by Corollary 7.2.13, conquest steps are
redundant in the above conjecture. It is mentioned for theae that the calculus with
conquest is expected to have stronger normalisation pieperperhaps even strong
normalisation if conquest is applied eagerly—than thewdakwithout. Still, the cal-
culus described in this conjecture is an odd combinatioreaiantically only tenu-

204 Chapter 7. Exploring reduction

ously related concepts: reduction steps plus conquestaaedion the multiplicative
cut in sequent calculus, while Herbrand correctness isdbase direct interpretation
of Herbrand’s Theorem. From this point, a natural directimmvestigate is towards
a correctness criterion that allows a purely multiplicatinterpretation of the cut in
proof forests.

This is precisely the question of a correctness conditiahdliows an inverse trans-
lation to [—]. First and foremost, strictly speaking it is impossible biain such an
inverse without adding additional structure to proof féseby the following example.

® ® @

P P P P -P
There are two different sequent proofs that translate ® phoof forest—and these
are not equal up to permutations. Still, the example leapes adhe possibility of a
translation that is the inverse ¢f] up to propositional contractions and tautology
links—which is reasonable, given that propositional cahie (supposed to be) ig-
nored in both calculi. To find such a notion, an obvious diggctollows the idea that
the notion of separation (Definition 7.2.1) indicates, f@raof forest translated from
a sequent proof, which vertices originated in differentmobfs of the sequent proof.
It is tempting to use separation to give a notiorswbng correctnesdy analogy to the
way conflict may be used to define correctness, as was don@pos$ttion 6.4.2. In
this notion, a proof forest would be strongly correct if fweey maximal separation-
free subset of V the labels over the propositional vertioesifa tautology.

However, this notion of strong safeness does not bring tegatkinverse transla-

tion procedure much closer, and moreover suffers from tta¢ fmoblem that it is not
preserved under logical reduction steps. This follows fthenexample below.

QGGGGGGG
P Q R S T P Q R S T

On the left, under strong correctness there are the follgwhnee tautologiesP V S,
QVT,andQVRVS Crucially, the values under correctness are these thuos®pl T;

however, since the two outermost propositional verticesseparated, this is not one
of the tautologies of strong correctness. Then on the rigjet,tautologies for both
strong correctness and correctness are the following fourT, PVRV S QV T, and
QVRVS Whereas correctness allows all four to be proved from thitagies of the

7.3. Discussion and related work 205

proof forest on the left, strong correctness cannot proaeRl T is a tautology. The
above also illustrates that ‘strong correctness’ is notmgor@priate name, since for the
proof forest on the left, it does not imply correctness.

A final modification of proof forests will be discussed, onattis more invasive
than the previous, but perhaps not as much as it initiallpnsed he idea is to add the
tautology rule of the sequent calculus of Figure 5.4 to pfoodsts as #&autology link
by analogy with the axiom links of MLL-nets. This is the ditiea taken by Richard
McKinley, resulting in the Herbrand nets discussed below.

Herbrand nets

Like proof forests, the Herbrand nets developed by McKififéy are aimed at provid-
ing a canonical representation of first-order classicabpby removing bureaucracy,
and share the same basic forest structure. Different fraofgorests, in Herbrand
nets the sequent calculus is taken as primary, and in pkmtitoe axiom rule—or
in the first-order case, the tautology rule—is considerecbtatribute to the essential
proof content. By addingautology linkscorresponding to the tautology rule of Fig-
ure 5.4, Herbrand nets provide a notion of proof net for a-brsgier sequent calculus
similar to the strict calculus in Figure 5.4 plus cut—spesaillly, it includes proposi-
tional contraction, but not existential weakening.

The technical distinctions between the two formalisms castiy be ascribed to
two properties, required of Herbrand nets in order to be saable notion of proof
net: one, translation from nets to sequent proofs shoulanetible up to permuta-
tions; two, this translation should commute with reducsiam either formalism. To
achieve invertible translation the main ingredient, ararttain distinction with proof
forests, is invertible composition.

The tautology links of Herbrand nets are reminiscent of tkiera links found in
other forms of proof net, but connect several propositiomales that, by taking the
disjunction over their labels, form a tautology. In additi@ propositional node can
participate in multiple tautology links, which correspsnih contraction on proposi-
tional formulae in the sequent calculus. Tautology links @anplemented as special
vertices without parents or children, indexed by naturahbars, to which proposi-
tional nodes connect via pointers. These pointers are tieamporated into the depen-
dency. Figure 7.4 illustrates a Herbrand net with two taanggllinks.

The correctness criterion of Herbrand nets is a Danos—Regtyle switching con-
dition [29], familiar from MLL nets, on the dependency grapha forest. A switch-

206 Chapter 7. Exploring reduction

O

Figure 7.4: Herbrand nets are proof forests with tautology links

ing chooses: one edge of each existential node; one taytbidgfor each proposi-
tional node; and for each universal node u either its unigigeeer one connection
(u,w) — (x,y) from u to y. For each switching, after removing other suchnemn
tions not chosen by the switching, the remaining graph isired to be connected and
acyclic.

Reduction steps in Herbrand nets, which need to presersedhniectness condi-
tion, differ from those in proof forests in several respe@snitting weakening, there
is no equivalent to disposal steps in Herbrand nets, butébgteps in both formalisms
are identical, modulo the presence of tautology links. Bsdpnal steps in Herbrand
nets unify two axiom links, in the way that is obvious from tieduction step in the se-
guent calculus, described in Section 6.2. A propositionahéth a child that connects
to two or more links, rather than inducing a duplication frtima implicit propositional
contraction, is left unreduced pending the unification ekthlinks.

A structural step in Herbrand nets duplicateskimgdomof its universal child. The
notion of kingdom (see [13]) originated in the study of praefs for multiplicative lin-
ear logic. There, and likewise in Herbrand nets, the kingdbmnode is the smallest
subnet of which it is a root—where a subnet is a subgraph hatgroof net—and
corresponds to the smallest possible subproof under patimg in a sequent proof.
Kingdoms in Herbrand nets are precisely dependent suli$oafier a conquest step,
i.e. after straddling is incorporated into the dependenarere the dependency differs
from that of proof forests by including the pointers of tdagy links.

To summarise, Herbrand nets are proof forests with tauydiogs, with reduction
steps comparable to proof forest reduction with conques{74] it is demonstrated
that Herbrand nets have invertible composition and inblertiranslation with sequent
proofs, and weakly normalising reduction steps that coremith those of the sequent
calculus.

7.4. Non-confluence 207

7.4 Non-confluence

In formalisms that respect the symmetry of classical logics common for proof
reduction to exhibit non-confluence. It is therefore peshapt a great surprise that
reduction in proof forests, too, is non-confluent. Noneths] it is interesting to look at
the way non-confluence occurs here, firstly, because of thendeal nature of forests.
A consequence of the strict focus on witness assignmentotiiers in proof forests,
while propositional content is ignored, is that reducinggmsitional cuts is trivially
confluent—which means that any non-confluence in proof ferissdue entirely to
first-order proof content. In addition, forests g@arisedin the sense that contraction
and weakening are only applied to existential formulae.sTtao notorious sources of
non-confluence in the standard sequent calculus, a cut owéakenings and a cut on
two contractions, are avoided (see e.g. [92, Appendix B, [or [68]).

a a
ﬁ? ~ ﬁ? ~*
s b st Ca

a s| t S t
st b M st bl b e s| tls| t
O O O O O O O _/

%\a . S i
S .

Figure 7.5: An example of non-confluence, made confluent by conquest

A second reason why non-confluence in proof forests is ist@g is the way it
appears in the universal counterexample, which may be seem anstance of the
familiar problem of two contractions interacting via cutephrased for the current
context of proof forests. Although many other examples af-nonfluence exist, most
are sensitive to modifications in the reduction relatior. &@mple, in Figure 7.5 the
first two reduction paths yield different normal forms, vehd conquest step would
modify the first forest to become that in the third reductiathp making the example
confluent. (The particular example in Figure 7.5 is due tdRid McKinley.)

A second example, in Figure 7.6, is confluentin normal rédagty), but as shown

208 Chapter 7. Exploring reduction

1
Figure 7.6: Non-confluence with minimal dependencies (where b ¢ fv(t))

becomes non-confluent when reduction is interleaved withmmsation (replacing the
dependency with the minimal one, see Section 5.4). In thergbeduction path of the
example, the grey arrow results from the reduction stefssinot part of the minimal
dependency, sindeis not free int. The reduction also shows that minimality of the

dependency is not preserved in reductions.

IXVy.=PxvPy Vx3y.Qxv-Qy

b

P(@)A-P(f(b)) w Q(b)A-Q(g(a))

®
(=P(a)vP(fb)) A (-Q(b)VQ(ga))

Q

o

Figure 7.7: The universal counterexample in a context

The universal counterexample is the simplest example foliais non-confluent
under any modification of the reduction relation describeceh-including reduction
in Herbrand nets, a fact that is demonstrated in [74, Se@&jonlin Figure 7.7 the
universal counterexample is put within a context, omitBogie (easily inferred) labels

7.4. Non-confluence 209

to prevent clutter. The example is a correct proof forestterformula

Wy, (=P VP(fy)) A (=Q(Y) VQ(9X)) -

In the regular reduction relatiotrs) the proof forest in Figure 7.7 has exactly two
normal forms. The one below is the result of the reductio paFigure 6.6, and of
any other path that fully reduces the cut on the right befedeicing that on the left.

~P(tg)VP(falt)) A ~Q(glo)V Q)
~P(fg(to))VP(faflte)) A ~Q(gfalto))vVQ(aTalo)

The labels that are indicated are the two that are necessatlgd correctness of the
above proof forest. As in both labels tQeatoms cancel out, the dual atof&f g(to))
and—-P(fg(tp)) make the disjunction over the propositional labels a tagpl

The other normal form of the proof forest in Figure 7.7, shdvefow, is reached
by any reduction path that fully reduces the left cut befeidurcing the right cut.

€)
f(t1) fo(to)| fof(ts

)
@ €), €)

g tog gf tlg ty g(to)| gf(ta)
®

P(fty)VP(fty) A ﬁQ(tl)\/Q(gf(tl))

~P(fgf(ty)VP(fgf(ty) A ~Qaf(t)vQ(afaf(ty))

This time, theP-atoms cancel out, revealing dual atom®(gf(t1)) andQ(gf(t1)).
The difference between the two normal forms is thus not siapinatter of having
different redundant existential branches: the two normaht are perfectly symmet-
ric, and provide symmetric solutions to the problem posethkyformula.

Much the same holds under the modifications to the reducgtation that were
discussed. In the modified reduction relaties) (Definition 6.4.6), the reduction
paths that reduce one of both cuts fully before reducing thercare still available.
In addition, the paths that interleave reduction stepstimeeicut, such as that in Fig-
ure 6.10, are normalising i) due to pruning. When reducing the proof forest in

210 Chapter 7. Exploring reduction

Figure 7.7 via the reduction path Figure 6.10 the symmetthefproof forest is pre-
served right up until the moment that pruning is needed—gabist in the reduction is
illustrated below.

From this point there are two possible reduction stegs:) both involving pruning,
that after one more step lead to two normal forms, each girtdlane of the normal
forms described above but with additional existential bres. Neither simultane-
ously contains both pairs of dual atoms of the other normah$—-Q(gf(t1)) and
Q(gf(t1)), andP(fg(to)) and—P(fg(to)).

Finally, reducing the example in Figure 7.7(is) augmented with conquest would
have the two initial reduction steps shown in Figure 7.8. nirtbere, the example
would reduce as iff~), to reach one of the two normal forms described. In different
contexts, however, using a conquest step in a reduction eaalytb a different normal
form than a normalising path if#) without conquest.

The non-confluence exhibited by these examples seems fiemdalnand it looks
improbable that simple modifications can make reductiorilaent.

7.4. Non-confluence 211

c d
@ @ ® @
® @ @ @
d o
@ @ ® @
® O @ @

Figure 7.8: The universal counterexample with conquest

Chapter 8

Conclusions

8.1 Summary

In this dissertation two canonical representations of fmere discussed. The present
section will briefly summarise the motivations for, and tasults of the work on these
formalisms, presented in the previous chapters. Sectidwal suggest angles for
future investigations.

Proof nets for additive linear logic

In Part | a new notion of proof net was presented, that is caabfor additive linear
logic with units. As was argued in the introductory chapt®edtion 1.3), this logic
is a simple but rich fragment of linear logic, that exhibitamyg of the problems with
composition in syntactic representations of linear logfc[@] and [64]). Its semantics
is that of bi-Cartesian or sum—product categories, categaovith finite products and
coproducts, which are ubiquitous throughout mathema#idslitive linear logic forms
a term calculus for such categories, whose equational fheas described in [25];
an effective (polynomial-time) decision procedure wasegivecently in [23]. Still,
the problem of finding proof nets for this fragment, canohiepresentations for the
morphisms of free sum—product categories, remained uedols set out in Chap-
ter 2, earlier proof nets by Hughes and Van Glabbeek [59k begsented (in slightly
modified form) as sum—product nets, were not canonical ®utfits.

The main contribution of Part | of the dissertation are theirsded nets that are
canonical representations of proof in additive linear ¢ogirhe theory of saturated
nets, as presented here, covers all the essential notigusae of proof nets, includ-
ing a correctness condition, a sequentialisation algworitand a direct definition of

213

214 Chapter 8. Conclusions

composition (i.e. not via translations with the sequensemation, or even unsatu-
rated sum—product nets). Saturated nets themselves asethsed, in Chapter 3, in
three ways:

* as the result of saturating sum—product nets—when cordhbiid the transla-
tion from proof terms to sum—product nets, this comprisestinect translation
from proofs in additive linear logic to saturated nets;

* as the union over an equivalence class of sum—product nets;
* as the prenets that satisfy the correctness criterionagdaition 3.4.5.

The characterisation of free sum—product categories wapleted by the description
of composition as relational composition plus saturatior§ection 3.3. Finally, satu-
ration constitutes an efficient decision procedure, bysietimng (cut-free) proof terms
to saturated nets to compare these for syntactic equaliy turation itself, and the
decision procedure it enables, operate in linear time irptbeuct of the sizes of the
source and target formulae.

The central technical contribution behind the results of Fa the proof presented
in Chapter 4, that the decision procedure of comparing aegdmets is sound for free
sum-—product categories.

Classical proof forests

Part Il of the dissertation discussed a canonical proof &ism for first-order classical
logic, called ‘classical proof forests’, and presentedras@stigation into composition
via cut-elimination for this formalism. The motivations ftnis work and for the de-
sign of the proof forests may be summarised as follows. Todigdod notion of proof
identity for propositional classical proof is problematit the same time, Herbrand’s
Theorem shows that propositional proof, being decidatale,be ignored in a formal-
ism for first-order proof. This allows an approach to canahroof that finds the
essential content of first-order classical proof in thegrssient of withessing terms
to the quantifiers. Such a route has been taken before: bgmMill[79], to find an
efficient representation for higher-order classical pr@ofd by Coquand in [26], to
give a semantics for classical arithmetic based on gamesh&@resent work, a main
motivation was the idea that a canonical representatiorrsifdrder proof based on
witnessing information might support a good notion of cosipon.

8.1. Summary 215

This representation of proof, classical proof forests, imd®duced in Chapter 5.
Two main views of classical proof forests were discussetiim¢hapter. Firstly, they
describe a natural notion of strategy for a two-player backing game. As a strategy
for dloise, a proof forest prescribes the moves to be madéldige, and their depen-
dence on moves bybelard; but no further order on moves is forced. A second view
detailed in Section 5.5, compares classical proof forests first-order sequent cal-
culus. The fact that classical proof forests factor out tineeaucracy of permutations
in the sequent presentation, is a main reason why they magrimdered canonical.
However, it is also shown that in the presence of cuts, theespondence between
dependency in proof forests and impermutability in the segjgalculus is not exact.

Mainly due to the divergence between these concepts, riedusteps in proof
forests behave differently from reduction in the sequemtutas, even though, in
spirit, reduction steps in both formalisms are comparabie Chapter 6 this leads
to the puzzling fact that, from a perfectly acceptable pfooést called the ‘universal
counterexample’, reduction steps produce cuts thatiasafe These are cuts where
both sides have common dependants, an unnatural confauraliich prevents them
from being reduced. Fortunately, the correctness comditioproof forests, based on
the game-theoretic interpretation, allows the sharedmtdgo®s to simply be removed,
in an operation callegruning Next, by grouping reduction steps together, the one
known cause of infinite reduction paths is prevented fronuoang. For the modified
reduction relatior(~), which implements these two solutions, a weak normalisatio
theorem is proven, and strong normalisation is conjectured

In Chapter 7 astrong safetyproperty was defined, closely related to the property
of being the translation of a sequent proof, implying theealoe of unsafe cuts in a
forest. A careful analysis of the universal counterexangubel the difference between
the dependency of proof forests and impermutability in #guent calculus, then led
to the identification of a class of reduction steps in for#sés preserve strong safety.
By showing that at least one such a reduction step must applyroof forest has
a cut, weak normalisation was shown for the original redurctielation(~). The
remainder of Chapter 7 was split between a discussion ahalige modifications to
the reduction relation, including an exploration of rethteork, and an overview of
non-confluence in proof forest reductions.

The two approaches to weak normalisation, one via prunimbae via strong
safety, can be viewed as corresponding to the two differgetrpretations of proof
forests, as strategies in backtracking games and as aracistrover the sequent

216 Chapter 8. Conclusions

calculus. In some respects, the modified reduction relgtenis the more natural
solution: itis simpler, it has a single, uniform first-oradeduction step instead of three
different ones, and pruning is naturally suggested by theegaterpretation of the cut.
In contrast, while the approach via strong safety succeefilsding an interpretation of
the cut in proof forests that corresponds more closely tdrthétiplicative) cut of the
sequent calculus, it seems that, to capture the full bebawbthe sequent calculus,
axiom links as in McKinley’s Herbrand nets are indispensabilhat being said, the
characterisation of a multiplicative interpretation oétbut in the absence of axiom
links, by strong safety and tregraddlingrelation, is undoubtedly of interest.

8.2 Further work

Further work on sum—product nets

This section presents a brief list of possible angles farritvork based on proof nets
for additive linear logic. The presentation of saturatets me this dissertation leaves
few open questions on saturated nets themselves—thougsucheproblem is listed

first, below. Nonetheless, there are numerous interesteagdor future investigations
that take saturated nets as their starting point.

A simpler soundness proof The soundness proof of saturation as a decision proce-
dure, in Chapter 4, is long and complex, especially givernstheplicity of the
saturation algorithm. Surely it must be possible to givengpder proof that satu-
rated nets are canonical. The current presentation refleztsrder in which the
results were obtained, and for that reason it is unlikelygmptimal. In partic-
ular, the correctness condition for saturated nets wasdféast. It is plausible
that its proof, in Section 4.9, could lead to a simpler proothe canonicity of
saturated nets.

Bicomplete categoriesSince products and coproducts are discrete limits and eolim
its, a natural question is whether sum—product nets andagatlnets can be
adapted to characterise the free completion with all finitet$ and colimits.
This would require to include equalisers and co-equaliserdop of the exist-
ing machinery. A notion of proof nets along these lines wdagdcanonical for
Joyal’s bicomplete categories [63], restricted to finiteits and colimits.

8.2. Further work 217

Infinite products and coproducts One extension of the present work would be to in-
vestigate canonical representations of categories withit@ products and co-
products. A direct, finite graphical depiction of such ingnobjects is of course
impossible, but it would be interesting, and possibly evesful, to see whether,
abstractly, canonical forms are possible. Combined witaettove suggestion of
proof nets for finite limits and colimits, the question of ocaital representations
could even be extended to all limits and colimits.

Games semantics of additive linear logicGames semantics is an important branch
of research on linear logic. While fully complete models limear logic are
known ([77]), as was mentioned in Section 1.3 it has proveml ha move
away from the alternating, interleaving approach, towadsue concurrency
approach. It is to be expected that a game-theoretic ird&jpon of saturated
nets will be a useful contribution towards this goal.

Completeness as a model for EECThe enriched effect calculus of Egger, Mggel-
berg, and Simpson [35] is a promising model of computatioat, incorporates a
rich theory of computational effects. Its term calculusrapes in two domains,
one ofvaluesand one otomputationslts models consist of a category of com-
putations, enriched in a category of values, with an adjandtetween the two
categories. The sum—product completion of the emptyEEEw), which is en-
riched in the category of finite sets, forms a family of basiclsEEC-models
(differing only in the choice of adjunction). An intereggiguestion is whether
such models are complete for the enriched effect calculus.

Proof nets for linear logic The search for canonical proof representations is a funda-
mental, long-standing open problem in full classical linegic. It is hoped that
saturated nets will prove a useful contribution towardsisgl this problem. In
addition, while the techniques in this dissertation argegspecific, it is hoped
that the general ideas and overall approach will prove todedéuliin the search
for proof nets for all of linear logic.

Further work on classical proof forests

The treatment of classical proof forests in this dissartelgaves a few open questions,
the most important of which is the strong normalisation eotyre for the modified
reduction relation. This, and several other angles forrutasearch, are listed below.

218 Chapter 8. Conclusions

Strong normalisation for the modified reduction relation The main open question
in this dissertation is the strong normalisation conjextior the modified re-
duction relation=>), Conjecture 6.4.10. Despite some effort, attempts to apply
existing techniques to this problem, most notably the apgnan [93], were
unsuccessful.

Conquest reductions A focal point in the discussion of alternative modificatidons
the reduction relation is the possibility cbnquessteps in reductions, steps that
include straddling into the dependency. This approach tigoybe formalised,
and although weak normalisation is almost immediate froenviieak normali-
sation of(~), it is quite plausible that a reduction relation employimgguest
steps could be strongly normalising.

Infinite normal forms One drastic approach to obtaining confluence would be the
following. Consider a process where cuts are duplicatedrbethey are re-
duced, retaining both the original cut and the reduced orteamroof forest.
It is plausible that in the limit, this process is confluenpgucing an infinite
‘proof forest’ that contains, at least, the results of alhgi@e reduction paths
to normal forms. Then cuts can be removed, leaving an infimotenal form.
Although the appeal of such a formalism would be mainly te&oal, there are
interesting questions to be considered, for example onweméke, and on com-
position of infinite normal forms. In addition, if such infiainormal forms can
be finitely represented, for example by a grammar or automatey may also
be of practical interest.

Computational content of witness assignmeniThe computational meaning of cut-
elimination in proof forests can be seen as lying in the ckarig the witnessing
information, effected during the normalisation procesxléar example of this
is given by the normal forms of the reduction of the universainterexample
in Section 7.4. Naturally, such computation occurs in ofbemalisms for first-
order classical logic, too. Nevertheless, because of tdagionicity, it would be
interesting to see how classical proof forests can be ersglopmputationally.
A more specific question in this direction is whether claalsproof forests can
simulate computation in first-order intuitionistic proainmalisation.

Bibliography

[1] Samson Abramsky. Computational interpretations ofdinlogic. Theoretical
Computer Sciencd 11:3-57, 1993.

[2] Samson Abramsky. Sequentiality vs. concurrency in gaara logic. Mathe-
matical Structures in Computer Sciend&(4):531-565, 2003.

[3] Samson Abramsky and Radha Jagadeesan. Games and fylleteness for
multiplicative linear logic.Journal of Symbolic Logic9(2):543-574, 1994.

[4] Samson Abramsky, Radha Jagadeesan, and Pasquale Naal&edl abstraction
for PCF. Information and Computatiqri63:409-470, 1996.

[5] Samson Abramsky and Paul-André Mellies. Concurrent ggmiand full com-
pleteness. IiProc. 14th Annual IEEE Symposium on Logic in Computer Seienc
(LICS’99), 1999.

[6] José Bacelar Almeida, Jorge Sousa Pinto, and MiguelgilaA local graph-
rewriting system for deciding equality in sum-product thes. Electronic Notes
in Theoretical Computer Scienck76:139-163, 2007.

[7] Matthias Baaz and Alexander Leitsch. Cut-eliminationdaredundancy-
elimination by resolution. Journal of Symbolic Computatior29(2):149-177,
2000.

[8] Patrick Baillot, Vincent Danos, Thomas Ehrhard, andiesut Regnier. Believe it
or not, AJM’s games model is a model of classical linear loBroc. 12th Annual
IEEE Symposium on Logic in Computer Science (LICS'Payes 6875, 1997.

[9] Franco Barbanera and Stefano Berardi. A strong norrataia result for classical
logic. Annals of Pure and Applied LogiZ6(2):99-116, 1995.

219

220 Bibliography

[10] Michael Barr. *-Autonomous categories and linear togMathematical Struc-
tures in Computer Scienc#:159-178, 1991.

[11] Gianluigi Bellin, Martin Hyland, Edmund Robinson, af@ristian Urban. Cat-
egorical proof theory of classical propositional logitheoretical Computer Sci-
ence 364(2):146-165, 2006.

[12] Gianluigi Bellin and Philip Scott. On the pi-calculusdilinear logic.Theoretical
Computer Sciencd 35:11-65, 1994.

[13] Gianluigi Bellin and Jacques van de Wiele. Subnets obpnets in MLL™. In
Advances in Linear Logjgpages 249-270, 1995.

[14] Nick Benton, Gavin Bierman, Valeria de Paiva, and Mattyland. Linear
lambda-calculus and categorical models revisitedPioc. 6th EACSL Annual
Conference on Computer Science Logic (CSL’'d2apes 61-84, 1993.

[15] Andreas Blass. A game semantics for linear loghtinals of Pure and Applied
Logic, 56:183-220, 1992.

[16] Richard Blute. Proof nets and coherence theoremsCadtegory Theory and
Computer Sciengevolume 530 ofLecture Notes in Computer Sciengeges
121-137. Springer Berlin / Heidelberg, 1991.

[17] Richard Blute, Robin Cockett, Robert Seely, and Todunbie. Natural de-
duction and coherence for weakly distributive categoridsurnal of Pure and
Applied Algebral113:229-296, 1996.

[18] Richard Blute, Masahiro Hamano, and Philip Scott. et of hypercoherences
and MALL full completenessAnnals of Pure and Applied Logi&31(1-3):1-63,
2005.

[19] Kai Brunnler. Deep Inference and Symmetry in Classical Prod®D thesis,
Technische Universitat Dresden, 2004.

[20] Samuel R. Buss. On Herbrand’s Theorelbecture Notes in Computer Science
960:195-209, 1995.

[21] lliano Cervesato and Andre Scedrov. Relating stasefaand process-based
concurrency through linear logi¢nformation and Computatiqr207(10):1044—
1077, 2009.

Bibliography 221

[22] Robin Cockett and Craig Pastro. The logic of messagsipgsScience of Com-
puter Programming74:498-533, 2009.

[23] Robin Cockett and Luigi Santocanale. On the word pnabfer ZI1-categories,
and the properties of two-way communication. Rroc. 18th EACSL Annual
Conference on Computer Science Logic (CSL’'06Jume 5771, pages 194-208,
2009.

[24] Robin Cockett and Robert Seely. Weakly distributiveegaries.Journal of Pure
and Applied Algebrapages 133-173, 1997.

[25] Robin Cockett and Robert Seely. Finite sum-productdogheory and Applica-
tions of Categories3(5):63—99, 2001.

[26] Thierry Coquand. A semantics of evidence for classacdghmetic. Journal of
Symbolic Logic60(1):325-337, 1995.

[27] Haskell Brooks Curry and Robert Fey§&ombinatory Logic, Vol..I Studies in
Logic and the Foundations of Mathematics. North-Hollanchsferdam, 1958.

[28] Vincent Danos, Jean-Baptiste Joinet, and Harold $ialxeA new deconstructive
logic: Linear logic.Journal of Symbolic Logi®62:755-807, 1997.

[29] Vincent Danos and Laurent Regnier. The structure otiplidatives.Archive for
Mathematical Logi¢c28:181-203, 1989.

[30] Nicolaas Govert de Bruijn. AUTOMATH, a language for rnhaiatics. Tech-
nical Report T.H.-Report 68-WSK-05, Department of Math&osa Technolog-
ical University Eindhoven, 1968. Reprinted Automation and Reasoning, vol.
2, Classical papers on computational logic 1967-193fringer Verlag, 1983,
pages 159-200.

[31] Harish Devarajan, Dominic Hughes, Gordon Plotkin, Madighan Pratt. Full
completeness of the multiplicative linear logic of Chu sgmacProc. 14th An-
nual IEEE Symposium on Logic in Computer Science (LICS[&8)es 234243,
1999.

[32] Paolo di Giamberardino and Claudia Faggian. Proof setpientialisation in
multiplicative linear logic. Annals of Pure and Applied Logid55(3):173-182,
2008.

222 Bibliography

[33] Kosta DoSen and Zoran PétriBicartesian coherenc8tudia Logica71(3):331—
353, 2002.

[34] Kosta DoSen and Zoran PétrProof-Theoretical Coherencgolume 1 ofStudies
in Logic. King’s College Publications, London, 2004.

[35] Jeff Egger, Rasmus Mggelberg, and Alex Simpson. Emrgchn effect calculus
with linear types. InComputer Science Logic 2009olume 5771 ofLecture
Notes in Computer Sciengeages 240-254, 2009.

[36] Thomas Ehrhard. Hypercoherences: a strongly stabléeinaf linear logic.
Mathematical Structures in Computer Scien@865—385, 1993.

[37] Claudia Faggian and Mauro Piccolo. Partial orderspegé&uctures and linear
strategies. IrProc. 9th International Conference on Typed Lambda Calaot
Applications (TLCA'09) volume 5608 ofLecture Notes in Computer Science
pages 95-111, 20009.

[38] Gilda Ferreira and Paolo Oliva. On various negativeshations. InProc. 3rd
International Workshop on Classical Logic and Computatwoiume 47 ofElec-
tronic Proceedings in Theoretical Computer Scigmages 22—-33, 2010.

[39] Carsten Fihrmann and David Pym. Order-enriched catajanodels of the
classical sequent calculuslournal of Pure and Applied Algebr&04:21-78,
2006.

[40] Gerhard Gentzen. Untersuchungen uber das logischeB8eh I, II. Mathema-
tische Zeitschrift39:176-210, 405-431, 1934-1935. English translatiof e
Collected Papers of Gerhard Gentzen, M.E. Szabo (ed.)hMNtotland 1969.

[41] Jean-Yves Girard. Linear logicTheoretical Computer Sciencb0(1):1-102,
1987.

[42] Jean-Yves Girard. A new constructive logic: Classicglic. Mathematical
Structures in Computer Science255-296, 1991.

[43] Jean-Yves Girard. Proof-nets: the parallel syntaxpiaof-theory. Logic and
Algebrg pages 97-124, 1996.

[44] Jean-Yves Girard, Yves Lafont, and Paul TaylBroofs and TypesCambridge
University Press, 1989.

Bibliography 223

[45] Timothy Griffin. A formulae-as-type notion of contrdh Proc. 17th ACM Sym-
posium on Principles of Programming Languageages 47-58, 1990.

[46] Stefano Guerrini. Correctness of multiplicative proets is linear. InProc.
14th Annual IEEE Symposium on Logic in Computer ScienceS(Bi@), pages
454-463, 1999.

[47] Alessio Guglielmi and Tom Gundersen. Normalisationtcol in deep inference
via atomic flows.Logical Methods in Computer Scienek1:9):1-36, 2008.

[48] Willem Heijltjes. Classical proof forestryAnnals of Pure and Applied Logic
161(11):1346-1366, 2010.

[49] Willem Heijltjes. Proof nets for additive linear logigith units. InProc. 26th
Annual IEEE Symposium on Logic in Computer Science (LiIQSgdges 207—-
216, 2011.

[50] Jacques Herbrand. Investigations in proof theory: ptuperties of true propo-
sitions. In Jean van Heijenoort, editéirom Frege to Godel: A source book in
mathematical logic, 1879-193fages 525-581. Harvard University Press, 1967.

[51] Stefan Hetzl and Alexander Leitsch. Proof transfoiioreg and structural invari-
ance.Lecture Notes in Computer Sciendd60:201-230, 2007.

[52] William A. Howard. The formulae-as-types notion of abruction. In Jonathan P.
Seldin and J. Roger Hindley, editor$p H.B. Curry: Essays on Combina-
tory Logic, Lambda Calculus and Formalismpages 479-490. Academic Press,
Boston, MA, 1980.

[53] Hongde Hu. Contractible coherence spaces and maximps$ri&lectronic Notes
in Theoretical Computer Scienc20:1-11, 1999.

[54] Hongde Hu and Andre Joyal. Coherence completions afgoates and their
enriched softnes<lectronic Notes in Theoretical Computer Sciergel997.

[55] Hongde Hu and Andre Joyal. Coherence completions egmates. Theoretical
Computer Scienc®27:153-184, 1999.

[56] Dominic Hughes. A canonical graphical syntax for nanpgy finite products
and sums. Technical report, Stanford University, 2002.

224 Bibliography

[57] Dominic Hughes. Simple free star-autonomous categoand full coherence.
Technical report, Stanford University, 2005.

[58] Dominic Hughes. Proofs without syntaAnnals of Mathemati¢c9.64(3):1065—
1076, 2006.

[59] Dominic Hughes and Rob van Glabbeek. Proof nets forna& multiplicative-
additive linear logicACM Transactions on Computational Log&(4), 2005.

[60] Martin Hyland. Abstract interpretation of proofs: Gfacal propositional calcu-
lus. Lecture Notes in Computer Scien8210:1-16, 2004.

[61] Martin Hyland and Luke Ong. Fair games and full comphetes for multiplica-
tive linear logic without the mix-rule. Unpublished mantpt 1993.

[62] Martin Hyland and Luke Ong. On full abstraction for PQFtl, and Ill. Infor-
mation and Computatiqri63(2):285—-408, 2000.

[63] Andre Joyal. Free bicomplete categori€3.R. Math. Rep. Acad. Sci. Canada
XVI1(5):219-224, 1995.

[64] Andre Joyal. Free lattices, communication and moneyem Proc. 10th Int.
Cong. of Logic, Methodology and Philosophy of Scied@&95.

[65] Thong Wei Koh and Luke Ong. Explicit substitution intaf languages for au-
tonomous and *-autonomous categori€dectronic Notes in Theoretical Com-
puter Scienceg29, 1999.

[66] Yves Lafont and Thomas Streicher. Games semanticsrfeal logic. Proc. 6th
Annual IEEE Symposium on Logic in Computer Science (LiQS{#bes 43-51,
1991.

[67] Francois Lamarche and Lutz StralRburger. ConstrudtagBoolean categories.
Proc. 20th Annual IEEE Symposium on Logic in Computer Sei€hiCS’05)
pages 209-218, 2005.

[68] Francgois Lamarche and Lutz Stral3burger. Naming prootdassical proposi-
tional logic. Lecture Notes in Computer Scien8d61:246—-261, 2005.

[69] Joachim Lambek and Philip Scoltroduction to higher order categorical logic
Cambridge University Press, 1986.

Bibliography 225

[70] Sam Lindley. Extensional rewriting with sums. Rroc. 8th International Con-
ference on Typed Lambda Calculi and Applications (TLCA'@apges 255-271,
2007.

[71] Saunders Mac LaneCategories for the working mathematiciavolume 5 of
Graduate Texts in MathematicsSpringer-Verlag, New York, second edition,
1998.

[72] Richard McKinley. Categorical Models of First-Order Classical Proof$?hD
thesis, University of Bath, 2006.

[73] Richard McKinley. Expansion nets: proof nets for preji@nal classical logic.
Logic Programming and Automated Reasoni2g10.

[74] Richard McKinley. Proof nets for Herbrand’s TheoremcXia:1005.3986v1,
2010.

[75] Paul-André Melliés. Asynchronous games 3: An innoceatlel of linear logic.
In Proc. 10th Conference on Category Theory and Computer Sgipages 1—
21, 2004.

[76] Paul-André Melliés. Asynchronous games 4: A fully cdetp model of propo-
sitional linear logic.Proc. 20th Annual IEEE Symposium on Logic in Computer
Science (LICS’05)pages 386-395, 2005.

[77] Paul-André Mellies. Asynchronous games 2: The truecaorncy of innocence.
In Selected Papers of CONCUR 20@4lume 358 ofTheoretical Computer Sci-
ence pages 200-228, 2006.

[78] Paul-André Mellies and Samuel Mimram. Asynchronousgsa: innocence with-
out alternation. IfProc. CONCUR 200,Lisboa, 2007.

[79] Dale A Miller. A compact representation of proofStudia Logica46(4):347—
370, 1987.

[80] Samuel Mimram. The structure of first-order causalifathematical Structures
in Computer Scien¢®1(1):65-110, 2011.

[81] Hanno Nickau. Hereditarily sequential functionalsecture Notes in Computer
Sciencepages 253-264, 1994.

226 Bibliography

[82] Michel Parigot. Ap-Calculus: an algorithmic interpretation of classicalumat
deduction.Lecture Notes in Computer Sciené24:190-201, 1992.

[83] Dag Prawitz.Natural deduction. A Proof-theoretical Studmqvist & Wiksell,
Uppsala, 1965.

[84] Dag Prawitz. Ideas and results in proof theory. In J ESEanh, editorProceedings
of the Second Scandinavian Logic Symposiotume 63 ofStudies in Logic and
the Foundations of Mathematigsages 235-306, 1971.

[85] Edmund Robinson. Proof nets for classical loglournal of Logic and Compu-
tation, 13(5):777-797, 2003.

[86] Robert Seely. Linear logic, *-autonomous categories @ofree coalgebragon-
temporary Mathematic92, 1989.

[87] Peter Selinger. Control categories and dualifiathematical Structures in Com-
puter Sciencell1:207-206, 2001.

[88] Lutz StraRburger. On the axiomatisation of Booleamgaties with and without
medial. Theory and Applications of Categoriels8:536—-601, 2007.

[89] Lutz StralRburgerTowards a Theory of Proofs of Classical Logldabilitation a
diriger des recherches, Ecole Polytechnique, Palais@di0, 2

[90] Lutz StraBburger and Francois Lamarche. On proof metsiiltiplicative linear
logic with units. Proc. 13th EACSL Annual Conference on Computer Science
Logic (CSL'04) pages 145-159, 2004.

[91] Thomas Streicher and Bernhard Reus. Classical logictimuation semantics
and abstract machine¥ournal of Functional Programmin@(6):543-572, 1998.

[92] Anne Sjerp Troelstra and Helmut SchwichtenbeBasic Proof Theory Num-
ber 43 in Cambridge Tracts in Theoretical Computer Scie@Geenbridge Uni-
versity Press, 1996.

[93] Christian Urban and Gavin Bierman. Strong normal@abf cut-elimination in
classical logicFundamenta Informaticae5(1-2):123-155, 2001.

[94] Jan Von Plato and Gerhard Gentzen. Gentzen'’s proofmhalization for natural
deduction.The Bulletin of Symbolic Logid 4(2):240-257, 2008.

Bibliography 227

[95] Philip Wadler. Linear types can change the world! In Mo and C. Jones,
editors,Programming Concepts and Methodorth-Holland Publ. Co., Amster-
dam, 1990.

[96] Glynn Winskel. Events in ComputationPhD thesis, University of Edinburgh,
1980.

Index

Mathematical notation in Part | <wm, 138
<, 46 E, 135
f{g}vw, 45 ES, 138
fuw, 45 lab, 135
#,36 ~, 157-160
MAXCP, 87 [—/-1,139
MAXP, 87 [-]. 140
~,67 U, 157
NET, 35, 41 V, 135 136-137
o, 35 val, 139
PNET, 37,41 atomic link, 35
pog—), 34
e, 60 backtracking games, 124
——|-,45 basic net, 38
~—|—), 54 bipointed net82
0,57 bureaucracy, 1-2, 6, 128-129, 145
v, 54 circle of cuts, 169, 186
>M(c), 27

classical proof forestl37
2M(c)-net,35

close-knit,68
[-1.39 co-switching, 35
U, 54 completeness of proof forests, 127
Xv, 34 composition;10
Mathematical notation in Part Il of proof forests, 129
1,135 of saturated nets, 64—66
~,~, 176 of sum—product nets, 59-63

#,173 compound reduction stefy76, 175-180

—, 135 conflict,173 173-175
—M, 138 confluenceb
<, 137 non-,seenon-confluence

229

230

of saturation, 56
connected37
conquest, 203
constructible (left-, right-, bi-), 40
construction, 39
constructor, 38
copointed preneg0
coproduct net, 77
correctnessl3
of cut-free proof forests, 126
of proof forests, 132-134139, 174,
200-202
of saturated net$8, 110-118
of sum—product net85
cut,4

INDEX

Herbrand nets, 19-20, 205-206
Herbrand’s Theorem, 123-124

impermutability, 128, 147
incompatible 36

initial link, 35

initial net, 75

legal configuration, 136
link (sum—product nets), 35
logical reduction step, 153-152158

matching prenet€0
maximal (co)pointed subnet, 87
minimal dependency, 126, 138, 139

neighbouring links67

in proof forests, 129-134, 137, 147non-confluence

149
cut-elimination4, 10
in sum—product logic, 29

decomposition, 131-132
dependency, 124-128, 147-149
minimal, seeminimal dependency
ordering,137
relation,135
dependent subforest, 140
desaturation] 11
disposal step, 152—-15858

empty prenet, 35

equivalence of sum—product nets, 44—
49, 51-53

expansion tree proofs, 127, 200-202

full prenet,76

Herbrand correctness, 201

of proof forest reduction, 207-210
normalisation, 4

strong,seestrong normalisation

weak,seeweak normalisation

parallel prenets, 45

partial net37

permutation, 6, 30, 147-149
pointed object, 79

pointed prenet80

pre-proof forest135
prenet35

primary cut, 160

primary edge, 160

product net, 77

proof forest,137
propositional reduction step, 15257
pruning,174

reduction cycle, 167

INDEX 231

reduction step synchronised equivalence step, — satura-
compound;176, 175-180 tion step, 81
disposal, 152-153,58
logical, 153-154158
propositional, 152157

terminal link, 35
terminal net, 75

structural, 154159 unit link, 35
rooted (co)pointed subnet, 87 universal counterexample, 167-173, 208—
rooted link, 80 210
safety,156, 174 value,139
saturation4, 53-58 weak normalisatiorh
separation]185 in proof forests, 169-173, 180-181,
sequentialisatior,3 199, 200

of proof forests, 131-132
of saturated nets, 110-118
of sum—product nets, 42
soundness of proof forests, 127
straddling,193 202
strict calculus, 127
strong normalisatiorf
in proof forests, 167, 181
of saturation, 56
strong safety185
structural reduction step, 15459
subforest, 140
subnet, subprenetb
substitution, 139-140
sum-—product
category, 27
logic, 29
net,35
switching
condition, 3335
for proof forests, 132138
for sum—product nets, 33, 35

